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ABSTRACT
Spiking neural P systems (in short SNP systems) [4] are the com-
puting devices inspired by the spiking neurons. Spiking neural P
systems with Structural Plasticity (SNPSP systems) is a variant
of SNP systems in which the biological feature of structural plas-
ticity is incorporated. In this paper, we extend and generalize the
spike - travel between neurons. In 2012, L. Pan et. al. [6] proposed
weighted synapses inspired from the biological concept that each
pair of neurons is connected by several synapses. Different multi-
ple synaptic connections of each pair of neurons extends this study
for a variant SNP systems with different weight structural plasticity
and its universality.
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1. INTRODUCTION
In membrane computing, Spiking Neural P systems (in short SNP
systems) are a emerging research area, with the insight of spik-
ing neurons which communicate each other by means of electrical
impulses. This parallel, computing devices in membrane comput-
ing, are introduced in [4]. SNP systems are depicted as a directed
graph whose nodes are neurons and directed arcs are synapses. The
electrical impulse in neuron is known as spike and is denoted by
′a′. The spikes are triggered with the spiking rules which consume
some spikes and produce a spike to all neurons connected by the
synapses. The spikes of a neuron are removed by the forgetting
rules. One of the neurons called output neuron emits a spike to en-
vironment. The output of a SNP system can be defined in several
ways: Output is a set of numbers, denotes the time–step difference
of two consecutive emission of spikes from output neuron to the en-
vironment. In other way, output is binary sequences (binary spike
trains) which mark the moments by 1 when output neuron spills
a spike to the environment and 0 when no spike is emitted from
output neuron. SNP systems can be used in accepting mode also.
SNP systems can compute morphisms over {0, 1}. Such systems
are known as SNP transducers. Thus SNP systems can be used as
generators, accepters and transducers of sequences of spikes [7],
[2].
Inspired from the neuroscience, Structural plasticity, one of the fea-
tures of the brain, is the motivation for the new variant Spiking

neural P systems with Structural Plasticity (SNPSP systems)[1].
Besides the spiking rules, the plasticity rules are used in SNPSP
systems, which creates or deletes the synaptic connectivity, so the
synapse diagram is vigorous. The study of these systems is devel-
oped through [9], [10]. From biological motivation, each pair of
neurons is connected by several synapses. In [6], an integer weight
is empowered with a synapse to represent the number of synapses
for a connected couple of neurons. Synapses are junctions of neu-
rons which allows the transmission of electrical and chemical sig-
nals to the adjacent cells. Synapses can be either excitatory or in-
hibitory. The firing action potential of a neuron is decreased by
the inhibitory synapse; while excitatory synapse increase the pos-
sibility of the firing action potential of a neuron. The functioning
of excitatory and inhibitory synapses are due to the discharge of
neurotransmitters Acetylcohline (Ach) and GABA (Gamma Amino
Butyric Acid) respectively [3],[8]. In this work, excitatory synapse
is endowed with a positive weight; while an inhibitory synapse is
effected with a negative weight. Especially the number of spikes
passes through the inhibitory synapses becomes negative and they
annihilate the same number of spikes of the post synaptic neuron.
The plasticity rules are restricted for the creation of either excita-
tory synapses or inhibitory synapses, but not both. This paper mo-
tivates the study of SNPSP systems with different weights; which
allows the different number of connections from a neuron so that
the neuron can transfer different number of spikes to the neighbour-
ing neurons by creating (for the cases– creation, creation with dele-
tion and deletion with creation) synapses with different weights. A
new variant of Spiking neural P systems with structural plasticity
is defined in section 2. Section 3, throws light on the universality
of such systems both in generating and accepting mode. In [9], it is
shown that the universality with the restriction that a neuron is al-
lowed to create or delete instead of both, connections to some of its
neighbour neurons in a computation step. It deserves for further re-
search whether there are improved normal forms of universal SNP
systems with structural plasticity.

2. SPIKING NEURAL P SYSTEMS WITH
DIFFERENT WEIGHT STRUCTURAL
PLASTICITY

Now the definition of a new variant namely Spiking Neural P sys-
tems with Different weight structural plasticity is given as follows:
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DEFINITION 1. Spiking Neural P systems with Different
Weight Structural Plasticity (SNPDWSP systems) of degree (m ≥
1) is a construct of the form

Π = (O,σ1, σ2, . . . , σm, synt, in, out)

where

- O = {a}, is an alphabet consists of only a symbol a, which is
known as spike;

- σ1, σ2, . . . , σm denotes m neurons. Each neuron σi is repre-
sented as (ni, Ri) where ni ≥ 0 indicates the number of spikes
and Ri is a set of rules consists of two type of rules namely
spiking rules and plasticity rules. For a regular expression E
over O;

⋆ Spiking rule SRi : E/ac → ap; d with c ≥ p ≥ 1;
⋆ Plasticity rule

PRi : E/ac → αkβ{(i, j, wij) : i, j ∈ {1, 2, . . . ,m}, j ̸= i, wij ∈ W}
where c ≥ 1, α ∈ {+,−,±,∓}, β ∈ {+,−}, k ≥ 1 and W
is a finite subset of N .

- synt denotes the set of synapses between the neurons at time
t which is a subset of {1, 2, . . . ,m} × {1, 2, . . . ,m} with
(i, i) /∈ synt for 1 ≤ i ≤ m.

- in, out ∈ {1, 2, . . . ,m} denote input and output neurons re-
spectively.

For a given neuron σi, there are two sets which are defined as fol-
lows :- prest(i) and post(i). prest(i) = {j : (i, j) ∈ synt}, is
the set of all neuron labels which has σi as presynaptic neuron at
time t. post(i) = {j : (j, i) ∈ synt}, is the set of all neuron labels
which has σi as postsynaptic neuron at time t. The sets prest(i)
and post(i) can be determined from synapse graph synt at time t.
The set of all neighbouring neurons of neuron i is denoted by Ni.
Spiking rules and plasticity rules work as in SNPSP systems [1].
For a neuron σi, the implementation of a rule with α ∈ {+,±,∓}
means the creation of a synapse (i, j) always involves an inher-
ent transmission of wij spikes to each neuron connected to. When
β = +, the plasticity rule evolves with excitatory synapses; while
β = −, the plasticity rule evolves with inhibitory synapses. In
this work, we incorporates a feature in plasticity rules- creation
of synapses with different weights. That is a neuron can create
synapses with different weights and thus it can transmit different
number of spikes to each connected neuron. When β = +, it is
omitted from that representation for convenience. The creation of
an inhibitory synapse (1,2) from neuron 1 to neuron 2 is denoted by
+1−(1, 2, 2) and two spikes reached at neuron 2 causes the anni-
hilation of two spikes in non- empty neuron 2 having two or more
spikes.
The configuration, transition, computation and halting computation
of SNPDWSP system is defined as that of SNPSP systems. Here we
can consider only the first two time instances t and t+ k at which
first and second spiking of σout occurs and spikes are emitted to
the environment. Their difference (t + k) − t = k is said to be
computed or generated by the SNPDWSP system. The set of all
numbers computed in this manner by Π as N2(Π). The number 2
denotes the result is the time step difference of the first two spikes
emitted by the output neuron. In generating mode, in is ignored.
Output of the system is incorporated by the spike train with the bi-
nary sequence 1 if output neuron expels a spike to the environment
and 0 if no spike is emitted by the output neuron. The SNPDWSP
system can also work in accepting mode, where out is ignored. In
accepting mode, exactly two spikes are introduced to the system
using in at time steps t1 and t2. The number t2 − t1 is accepted

or computed by the system if the computation halts. The set of all
numbers accepted in this way is denoted by Nacc(Π). Thus the
family of all sets Nα(Π) with α ∈ {2, acc} is denoted by Nα(Π).

2.1 Example
An example of SNPDWSP is described in figure 1. At time step 1,
the rules of neurons σ1 and σ3 fire. The plasticity rule of neuron
σ1 nondeterministically creates a synapse either to the neuron σ2

with weight 1 or to the neuron σ3 with weight 2. If the synapse
(1, 3) is created with weight 2 and the output neuron σ3 obtains two
spikes and emits a spike to the environment at time step 2. Thus the
number t2 − t1 = 1 is generated. If the synapse (1, 2) with weight
1 is created and one spike is sent to the neuron σ2 then it applies
its rule at step 2. One spike is directed to the neuron σ1 and the
plasticity rule is enabled again. If the synapse (1, 2) is created once,
then it will take two time steps for the opportunity of creating the
synapse (1, 3) again. Once the synapse (1, 3) is created, it requires
one more step for the second spiking of output neuron. If synapse
creation (1, 2) repeats m ≥ 1 times, then N2(Πe) = {2m+1/m ∈
N}.
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Fig. 1. A SNPDWSP System Πe

3. UNIVERSALITY OF SNPDWSP SYSTEMS
The universality results of the paper are based on the notion of reg-
ister machine. The definition of Register machine is given below
[5].
Register machine is a construct M = (m,H, l0, lh, I) where m
is the number of registers, H is the set of instruction labels, l0
is the start label which labels an ADD instruction, lh is the label
which is assigned to HALT instruction and I is the set of instruc-
tions; each label li from H is assigned to exactly one instruction
li : (OP(r), lj , lk) from I . The instructions are of the following
forms:

li : (ADD(r), lj , lk): Add 1 to the number stored in the register
r and go nondeterministically to the instruction lj or lk.
li : (SUB(r), lj , lk): Subtract 1 from the number stored in the
register r and go to the instruction with label lj if r has non-
zero number; otherwise go to the instruction lk.
lh: the HALT instruction.

Beginning with all registers empty ( that is stored number is 0 ),
and the instruction labelled by l0 and then continue with the ap-
plication of instructions by the indicated labels, as the contents of
registers. It is assumed that the content of the register 1 is never
decremented by the SUB instruction and all other registers become
empty in the halting configuration. The register machine M gener-
ates a number n, which is the existent number in register 1 at the
halting instruction. Such a way, a set of numbers generated by the
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register machine M is obtained which is denoted by N(M), which
is Turing computable and characterize NRE [5].
For, a number n is introduced into the register r0, and begins with
the instruction l0. The number n is said to be accepted by the
machine M if M reaches the halting instruction. If the numbers
n1, n2, . . . , nk are introduced to the registers r1, r2, . . . , rk and
begins with the instruction label l0, then gradually M halts and the
value of the functions are placed in a designated register ru, mak-
ing with all other registers empty. The register machine functions
deterministically for both the accepting and computing case. That
is deterministic ADD instruction with li : (ADD(r), lj) ; adding 1 to
the number stored in register r and go to the instruction label lj .

3.1 SNPDWSP systems as generating mode
THEOREM 2. NRE = N2SNPDWSP

PROOF. To prove this, it is enough to show that NRE ⊆
N2SNPDWSP . The reverse inclusion is clear since [5] regis-
ter machines generates all sets of numbers which are Turing com-
putable. Without loss of generality, assume that for a register ma-
chine M = (m,H, l0, lh, I) (a) all registers except 1 become
empty at halting instruction (b) the register 1 never be decremented
by SUB instruction (c) the label l0 labels an ADD instruction.
For a given register machine M = (m,H, l0, lh, I) we can con-
struct a SNPDWSP system Π to simulate M . The three modules -
ADD, SUB and FIN shown in figures 2, 3, 4 are contained in the
system Π. The first two modules simulate ADD and SUB instructions
of M, respectively; FIN module gives the computation result. For
the register r in M , the neuron σr is considered in Π. If the register
has the number n ≥ 0, then 2n spikes are associated with neuron
σr . For each label li of an instruction in M , there is a neuron σli
in Π and σli simulates the instruction li with a spike. When the
neuron σlh becomes active (that is the halting instruction lh of M
), the complete computation in M is simulated by Π and gives the
output. The neuron σlh fires at time steps t1 and t2 and the number
t2 − t1 corresponds to the number stored in register 1 of M .
ADD Module
At time step t, an instruction li : (ADD(r), lj , lk) has to be played
by the activation of neuron li with a spike. All other neurons are
empty other than the neurons related with registers. With a spike,
neuron li fires at time step t and a spike is transferred to the neuron
σl1

i
. The neuron σl1

i
fires at step t + 1 and sends two spikes to

neuron σr and one spike to σl2
i
. At time step t+ 2, the neuron σl2

i

non-deterministically chooses the creation of a synapse (l2i , lj) or
(l2i , lk) and thus a spike is transferred to σlj or σlk and finally that
synapse is removed. Therefore the insertion of two spikes to the
neuron σr corresponds to the number in the register r incremented
by 1. One of the neurons σlj , σlk is activated in next step, hence
ADD module simulates the instruction li : (ADD(r), lj , lk).
SUB Module
Module SUB shown in figure 3, simulates the instruction
li : (SUB(r), lj , lk). Assume that the neuron σr represents the
register r and σr has 2n, (n ≥ 0) spikes as the number stored n
in r and there are neurons corresponds to each instruction label.
Initially, the neuron li is activated with a spike at time step t. At
time step t, neuron σli fires using its rule and sends one spike to
neuron σr . The neuron σr fires with odd number of spikes at the
next step. At time step t + 1, if σr contains odd number of spikes
more than one, it consumes 3 spikes and creates two synapses to
neuron σl2

i
with weight two and to neuron σl3

i
with weight one;

hence 2 spikes and 1 spike are reached the neurons respectively.
At time step t + 2, σl2

i
activates and two spikes are transmitted
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Fig. 2. ADD Module

to σlj . Similarly the simultaneous creation of inhibitory synapse
(l3i lj) causes the activation of only one neuron σlj with a spike.
At time instance t + 1, if σr contains only one spike, then it
creates two synapses to the neurons, σl2

i
with weight one and

σl3
i

with weight two and hence the neurons σl2
i
, σl3

i
receive one

spike and two spikes respectively. The creation of both inhibitory
and excitatory synapses from σl2

i
and σl3

i
respectively, leads to

the activation of only one neuron σlk with a spike. At the former
case, removing three spikes from σr , remains an even number
of spikes 2n − 2, corresponds to the number n − 1 in register
r. SUB module simulates the diminishment of the value of r by
one and execution of the instruction lj when r has non-zero value.
Similarly it simulates the activation of the instruction lk with a
spike when the stored value in register r is 0.
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i
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i
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a → +1−{(l3
i
, lj ,1)}

Fig. 3. Module SUB (simulating li : (SUB(r), lj , lk))
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FIN Module
Once the halting instruction lh is reached in M , module FIN shown
in figure 4 is relevant. As in figure 4, neuron σ1 has 2n spikes,
corresponds to the number n stored in the register 1 of M when
the computation halts. At time t, with one spike, neuron lh sends
one spike to neuron σ1 and two spikes to neuron σout by creat-
ing synapses (σlh , σ1) with weight 1 and (σlh , σout) with weight
2. At time step t + 1, σout fires first time and delivers a spike to
the environment. At the same time instance, σ1 with odd number
of spikes more than 3, continuously applies its rule a2n+1/a2 →
−1(1, out, 1). Since there is no synapse (1, out), σ1 consumes two
spikes and no synapse is removed. Once the number of spikes re-
duced into three, σ1 applies the rule a3 → ±1−(1, out, 2). The
creation of this inhibitory synapse and passing of two spikes causes
the reduction of number of spikes in σout by 2. This rule can be ex-
ecuted after the n applications of the previous rule. Thus the neuron
σout fires at time steps t+ 1 and t+ n+ 1 and transmits spikes to
the environment. The time difference of first and second spiking of
σout is n, the number stored in the register 1 when the computation
of M halts.
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out

a4
a6/a2 → a

a2 → a

a2n

a2n+1/a2 → −1{(1,out,1)}

a3 → ±1−{(1,out,2)}

a → ±2{(lh,1), (lh,out,2)}

Fig. 4. FIN Module

From the above explanation of the operations of modules ADD,
SUB and FIN, it is clear that it simulates the computation of M .
Consequently N2SNPDWSP = N(M). This completes the
proof.

3.2 SNPDWSP systems in accepting mode
Observe that a register machine M is computationally universal
even for a deterministic accepting case. The time difference be-
tween the first two spikes introduced into the system, is the number
which is stored into the register 1, is accepted by the system if it
halts.

THEOREM 3. NRE = NaccSNPDWSP

PROOF. In accepting mode, for a given deterministic register
machine M , a SNPDWSP system Π is constructed as in the proof
of theorem 2, with the deterministic ADD instruction and the INPUT
module instead of FIN module. In accepting mode, output neuron
is ignored and use input neuron to input exactly two input spikes.
The INPUT module is shown in the figure 5 and works as follows:
Initially all neurons are empty. The first input spike is lead into the
input neuron in at the time step t. Using its rule, it creates two
synapses with different weights 1 and 2 and passes a spike to neu-
ron I1 and two spikes to the neuron I2. At the time t+1 I1 creates
two synapses to neuron 1 and I2, with weight 2 and 1 respectively.
From the step t + 1, the neurons I1 and I2 start to exchange their
spikes and neuron I1 puts 2 spikes each to neuron 1. If the last and
second spike enters the system at t + n, then the spikes are flown
to the neurons I1 and I2 as detailed above and consequently the

transaction of the neurons I1 and I2 and the deposition of spikes
into the neuron 1 are stopped at the step t + n + 1. At the same
time, I1 and I2 activates the neuron l0 with a spike for the next step
which simulates the execution of the instruction l0. Thus 2n spikes
are stored in the neuron σ1 corresponding to the number n in the
register 1.
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a2 → ±1−(I1, l0,1)
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a4 → ±1(I2, l0,2)

a → ±2{(in,I1,1), (in,I2,2)}
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Fig. 5. INPUT Module

A deterministic ADD module is constructed for simulating li :
(ADD(r), lj) as shown in figure 6, which is simpler than non-
deterministic ADD module. SUB module resides same as in the
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Fig. 6. Deterministic ADD Module

proof of theorem 2. Although the module FIN is irrelevant in this
case, the neuron σlh remains in the system with prest(lh) = ∅
for all t. Once σlh receives a spike indicates that the computation
of M has halted. The neuron applies its rule but does not send its
spike to any other neurons. The computation of Π halts according
to the computation of M halts. If the computation halts, the number
n = (t+n)− t is accepted. Thus we have Nacc(Π) = N(M).

4. CONCLUSION
SNPDWSP system adopts transducer mode by considering both in-
put and output neurons. Spikes are introduced into the input neu-
ron and while output neuron emits its spikes to the environment.
With a computation, halting or not, we associate a binary digit 1
or 0 with the moment at which output neuron emits spikes or (no
spikes) to the environment. Similarly the binary sequence associ-
ated with spikes is considered to the input of the system. A large
class of Boolean functions can be computed in this mode.
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This paper enlightens the universality of SNPDWSP systems both
in generating and accepting mode, with the following features: (a)
only plasticity rules are used in all neurons except output neuron
(b) forgetting rules and rules with delay are omitted (c) creation of
synapses with different weights which helps to transfer more than
one spike while connected to (d) initial synapse set is empty (e)
each neuron (except output neuron) contains at most two plasticity
rules. The capability of systems as transducers is also discussed, in
which further study is improved with simpler structures for exact
computations of real numbers with the potential of different weight
structural plasticity and excitatory– inhibitory nature of synapses.
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