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ABSTRACT

Accurate sex classification of abalone is essential for selective
breeding and ethical harvesting, yet many existing studies rely
on invasive measurements (e.g., internal weights), limiting
real-world deployment. This study contributes two innovations
motivated by practical field constraints. First, a strictly non-
invasive framework is adopted, using only external traits—
length, diameter, height, and whole weight—so specimens are
not opened. Second, instead of the common rank-then-select
approach, a ranking-guided combinatorial search over
polynomial and interaction terms (degree < 5) is applied for
multinomial logistic regression. This design is motivated by
three considerations: (1) standard ranking methods (ANOVA,
Mutual Information, Random Forest) evaluate variables largely
in isolation, whereas sex signal emerges from feature—feature
interactions; (2) relationships among external measurements
are partly non-linear, so higher-order terms capture structure
missed by base features or linear models; and (3) rankings can
be unstable under collinearity and outliers, making empirical
validation of feature sets more robust.

Under an outlier-inclusive protocol, a compact model
excluding diameter attains 0.5689 test accuracy, while an all-
four-measurements model reaches 0.5641—both exceeding the
commonly reported 0.50-0.55 range for this dataset and
avoiding invasive measurements. The curated interaction
design enables logistic regression to outperform more complex
models (e.g., tuned SVM and XGBoost), indicating that
interaction construction, rather than model complexity, is the
key driver of accuracy under non-invasive constraints. The
resulting pipeline is interpretable, field-deployable, and
supported by fully reproducible code.
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1. INTRODUCTION

Accurate sex identification of abalone is essential for selective
breeding, ethical harvest timing, and stock sustainability.
Existing practices rely on invasive or destructive inspection,
while many machine-learning studies depend on internal
weight measurements or opaque models. When restricted to
external traits, reported accuracies on the UCI Abalone dataset
typically fall in the 0.50-0.55 range [5,7,13]. This motivates
the development of a non-invasive, interpretable method based
solely on measurable external features.

This study proposes such a method using length, diameter,
height, and externally measurable whole weight. Rather than
relying on a single ranking technique (ANOVA, Mutual

Information, Random Forest), the approach performs a
ranking-guided combinatorial search over polynomial and
interaction terms (degree <5) to obtain compact, biologically
plausible feature sets for multinomial logistic regression. Under
an outlier-inclusive protocol, the best compact model
(excluding diameter) achieves 0.5689 accuracy, and the best
all-four-measurement model attains 0.5641—both exceeding
commonly reported baselines without requiring destructive
traits.

Abalone populations across New Zealand, South Africa,
Australia, western North America, Japan, and Mexico hold
economic and cultural value for their meat and mother-of-pearl
[1,2]. Several species have become endangered due to illegal
harvesting, over-exploitation, and slow maturation (=3-5
years) [4]. Global landings declined from 14,830 t (1989) to
4,351 t (2019), with aquaculture now supplying ~95% of the
market; in Mexico, abalone remains commercially important,
particularly in Baja California [3]. These trends underscore the
need for field-deployable, non-invasive sex identification tools.

Although this study focuses on sex classification, most prior
work emphasizes age prediction using the same UCI dataset.
Age- and sex-related studies share predictors, preprocessing
requirements, and common learning frameworks such as
decision trees, regression models, clustering, and neural
networks [7,11,12]. Prior age studies include decision-tree
variants such as CLOUDS/SSE (=21-26% accuracy) [7,11],
clustering-based feature-importance analyses [12],
econometric ring-group models [6], and neural networks that
achieved low accuracy despite architectural complexity [7].
Collectively, these results indicate that sophisticated models
underperform without targeted feature construction.

1.1 Sex Prediction

Operational sexing relies on gonad-color inspection, histology,
or biochemical assays, all requiring maturity or laboratory
facilities and unsuitable for large-scale deployment [3]. Genetic
markers such as MSP-2 in Haliotis discus hannai provide high
precision but require tissue sampling and specialized
equipment [10]. Recent machine-learning work using non-
destructive traits reports accuracies around 0.50-0.55 [7,13].
This study addresses this gap by developing an interpretable
classifier using only external measurements and by improving
performance through curated interaction terms selected via a
ranking-guided combinatorial search.

2. LITERATURE REVIEW

The UCI abalone dataset has served as a standard benchmark
since 1995, with early work examining decision-tree variants
such as CLOUDS (=26.3% accuracy on abalone) and C4.5
(=21.5%), demonstrating that computational improvements in
split selection did not translate into higher predictive accuracy
for this task [11]. More broadly, machine learning has provided
scalable tools for marine analysis, including classification,
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tracking, and decision support, outperforming manual
approaches in efficiency and consistency [5]. Within this
context, supervised learning has been applied to estimate
abalone age or sex from physical measurements [6], with
typical sex-classification accuracies in the 0.50-0.55 range
when restricted to tabular, non-destructive traits [7].

A variety of supervised models has been evaluated on abalone
data. Instance-based KNN often degrades under overlapping
classes and distance sensitivity [7]. Naive Bayes offers
computational speed but relies on strong independence
assumptions [8]. SVM supports linear and non-linear margin-
based separation but is sensitive to feature scaling and kernel
parameters [9]. Artificial neural networks introduce greater
capacity but may offer only modest gains and reduced
interpretability on this dataset [7]. Related studies have
explored dimensionality reduction (e.g., PCA) and ensemble
techniques (e.g., boosted trees) to enhance robustness and
feature relevance, though sex-classification accuracy generally
remains within the same performance band [7].

Against this background, the present study differs in two
respects. First, it enforces a non-invasive constraint by using
only external measurements—Ilength, diameter, height, and
whole weight—unlike prior work that often includes internal or
destructive weight measurements. Second, instead of treating
ANOVA, Mutual Information, or Random-Forest rankings as
final selectors, the study uses these rankings to guide a
combinatorial search over polynomial and interaction terms
(degree < 5). This approach targets interaction-driven, partly
non-linear predictive structure while controlling feature-set
size for interpretability, addressing known limitations of
marginal rankers under collinearity and overlapping class
distributions, both of which are characteristic of abalone
measurements.

3. MATERIAL AND METHODS

3.1 Software

All analyses were conducted in Python 3.11 (Jupyter
Notebook). Data handling and preprocessing used pandas,
NumPy, and scikit-learn; visualization used Matplotlib and
Seaborn. Logistic Regression, SVM, KNN, and ensemble
models were implemented via scikit-learn, and XGBoost via
the xgboost library. Hyperparameter tuning used
GridSearchCV with stratified 5-fold CV. PCA (for selected
comparisons) used sklearn.decomposition. The workflow
emphasized reproducibility, interpretability, and consistent
preprocessing.

3.2 Data Description
The UCI Abalone dataset contains 4,177 specimens with the
following attributes:

Sex (M/F/I), Length, Diameter, Height (0 removed), Whole
weight, Shucked weight*, Viscera weight*, Shell weight*, and
Rings (Age = Rings + 1.5).

3.2.1 Key Observations from Exploratory Analysis
3.2.1.1 Class Distribution

Figure 1 shows that the dataset is reasonably balanced: Male
and Female are similarly represented, while Infants account for
approximately one-third of the dataset. This balance is
important because misclassifying Infants has direct
sustainability consequences in aquaculture.
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Figure 1: Class distribution of abalone sex categories
(M/F).

3.2.1.2 Distribution Shape and Outliers.

Histograms and boxplots (Figure 2) indicate right-skewed
distributions across most continuous variables and the presence
of high-end biological outliers. Implausible values (e.g., height
= 0) were removed. All remaining high-value measurements
were retained to preserve natural biological variability, which
later proved beneficial for model performance.
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Figure 2: Histogram and boxplot of all parameters

3.2.1.3Multicollinearity Correlation
analysis (Figure 3) revealed extremely strong correlations
among weight-related features (e.g., whole, shucked, viscera,
and shell weight). This redundancy motivated the use of
ANOVA, Mutual Information, and Random Forest ranking
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methods for later feature selection.

3.2.1.4 Scope of Predictors . For sex
classification, only non-invasive external measurements
(length, diameter, height, whole weight) were used. The
invasive internal-weight measurements were excluded because
they require opening the specimen and therefore violate non-
destructive constraints.
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Figure 3: Correlation heatmap of abalone features.

3.3 Preprocessing

e Categorical Encoding:

Sex (M/F/I) was label-encoded. One-hot encoding was
used only in diagnostic checks.

e Variable Transformation:

Histograms and Q-Q plots confirmed right skew in
continuous variables. Several transformations (loglp, sqrt,
reciprocal, Box—Cox, Yeo—Johnson, quantile
normalization) were tested; rank-inverse-normal was
selected for minimizing skewness/kurtosis and improving
normality while remaining robust to outliers.

e Scaling: All predictors were standardized using
StandardScaler, required for SVM, Logistic Regression,
and KNN.

e Structural Adjustments: Numeric columns were cast to
float; invalid rows were removed; category integrity
checked.

3.4 Ranking-Guided Combinatorial

Interaction Design (Degree <5)

To preserve interpretability and adhere to non-invasive
constraints, engineered features were derived exclusively from
the four external measurements: length, diameter, height, and
whole weight. Instead of relying on a single automatic ranking
method, ANOVA F-scores, Mutual Information, and Random-
Forest importance values were used collectively to guide the
construction of polynomial and interaction terms up to total
degree < 5.

3.4.1 Candidate Generation

3.4.1.1 Generate polynomial powers (degrees 2-5) and
multiplicative interactions among the four base variables,
limited to total degree < 5.

3.4.1.2 Remove duplicates or symmetric equivalents and
discard terms with near-zero variance after scaling.
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3.4.1.3 Construct compact candidate sets (typically 4—6 terms)
by combining top-ranked terms from ANOVA/MI/RF with a
small number of exploratory interactions to reduce ranking
bias.

3.4.2 Model and Selection Protocol

3.4.2.1 Classifier
Multinomial Logistic Regression (SoftMax) with L2
regularization; standardization performed within each CV fold.

3.4.2.2 Tuning

Grid search over C (inverse regularization strength) and class
weight options to evaluate alternative emphasis on the Infant
class.

3.4.2.3 Validation

Stratified 80/20 train—test split with 5-fold cross-validation on
the training portion to select hyperparameters and candidate
feature sets.

3.4.2.4 Parsimony and Collinearity
Final models were restricted to 4—6 terms. Multicollinearity
was assessed using VIF (threshold < 10) before final refitting.

3.4.3 Outlier Policy

Only physically invalid measurements (e.g., height = 0) were
removed. All remaining biological outliers were retained to
reflect natural variability. Unless otherwise stated, reported
performance corresponds to the outlier-inclusive dataset.(The
specific selected interaction sets and their associated test
accuracies are reported in Section 4.)

3.5 Assumptions
The analysis relied on the following assumptions:

e Dataset assumed representative; measurements reliable
after corrections.

e Each specimen treated as independent.

e Rank-based transforms assumed adequate for normality
when needed.

e Standardization assumed essential for distance/margin-
based learners.

e Logistic Regression linearity relaxed via
polynomial/interaction terms (< 5).

e Multicollinearity mitigated via ranking and VIF.

e Predictor-response relationships assumed stationary.

3.6 Modeling Methods

3.6.1 Overview

A range of supervised classifiers was benchmarked using

ranked feature subsets derived from polynomial and interaction

expansions (up to degree 3). Feature ranking was performed

using three complementary criteria:

e ANOVA F-test — captures linear discriminative signal;

e  Mutual Information — detects nonlinear dependencies;

e Random Forest importance — provides model-based
relevance estimates.

Each model was evaluated in both baseline and tuned

configurations. PCA-based variants were examined to assess

the effect of dimensionality reduction.

3.6.2 Models Applied

o Logistic Regression — interpretable linear classifier with
L2 regularization.

e Support Vector Machine (SVM) — linear and RBF
kernels, with and without PCA.
o K-Nearest Neighbors (KNN) — distance-based classifier
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with tuned neighborhood size.

e XGBoost — gradient-boosted trees evaluated in default
and tuned form.

e Voting Classifier — soft-voting ensemble combining
Logistic Regression, SVM, and XGBoost.

3.6.3 Logistic Regression Formulation
For a three-class problem (Male, Female, Infant), the
multinomial logistic model estimates:

e.xp(ﬂ,m + By ¢(z)) ’
Zj‘ 1exp(8pp + B; ¢(z))

Ply=k|z) =

where ¢ (x)denotes the engineered feature map, consisting of
standardized original predictors and selected polynomial and
interaction terms. The predicted class corresponds to:

9= argm}?XP(y =k|z).

3.7 Tuning Strategy

Hyperparameters for all models were optimized using
GridSearchCV with 5-fold stratified cross-validation. The
following parameter groups were explored:

e Logistic Regression: solver type and regularization
strength C.

e SVM: kernel (linear/RBF), C, and y(for RBF).

e KNN: number of neighbors and distance metric.

e  XGBoost: maximum tree depth, learning rate, number of
estimators, and regularization parameters.

e Voting Classifier: seclection of base estimators and
ensemble weights.

PCA-based variants were evaluated selectively to assess their
effect on model stability and generalization.

3.8 Feature Sets

Polynomial and interaction features (up to degree 3) were
generated from the four external measurements and ranked
using ANOVA F-score, Mutual Information, and Random
Forest importance. For each ranking method, Top-N subsets
( N =4to 35) were constructed to evaluate how model
accuracy varied with increasing feature count. These subsets
were used to benchmark all classifiers under both baseline and
tuned configurations.

3.9 Evaluation Metrics

Performance was assessed using: Accuracy, Macro FI,
Weighted F1, Confusion matrix, Top-N comparison (best
feature count per model)

4. ANALYSIS OF RESULTS

This section evaluates the performance of nine machine-
learning models under different feature-ranking strategies
(ANOVA, Mutual Information, Random Forest), using datasets
both with and without outliers. Models were tested on fixed
and variable feature subsets (Top-N), with and without PCA,
and under tuned and default configurations. In addition to
ranked Top-N subsets, we also evaluated a ranking-guided
combinatorial search over polynomial/interaction terms
(degree < 5) to curate compact feature sets for logistic
regression.

4.1 Best Overall Performers
The highest-performing models were obtained through the
ranking-guided combinatorial interaction search (degree < 5).
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Multinomial Logistic Regression achieved the best overall
test accuracy of 0.5689 using a compact four-term feature set
that excluded diameter (whole weight, height, length, and the
interaction height3 - whole weight). When all four external
measurements were retained, the best configuration reached
0.5641. Both results were obtained under the outlier-inclusive
protocol, indicating that preserving natural biological
variability improves generalization and that a small number of
well-constructed nonlinear interactions can outperform larger
ranked subsets.

A tuned SVM (RBF kernel) yielded the next best performance
at 0.5515 on the Random-Forest-ranked feature set with
outliers. Although below logistic regression, SVM remained
consistently strong across ranking methods and feature counts.

All tuned XGBoost, KNN, and ensemble voting models
produced lower accuracies than the top logistic regression and
SVM configurations. These outcomes collectively show that
feature-interaction quality, rather than model complexity, is
the primary driver of performance under non-invasive
measurement constraints.

4.2 Model-by-Model Comparison
4.2.1 Logistic Regression.

The combinatorial interaction approach (degree < 5) produced
the highest accuracies: 0.5689 using a compact feature set
without diameter and 0.5641 wusing all four external
measurements (both with outliers retained). Ranked-subset
baselines (degree < 3) reached 0.5619 with ANOVA and
0.5411 with Mutual Information. Even without tuning,
performance remained strong on ranked subsets (e.g., 0.5507
with ANOVA, 0.5379 with MI). These results confirm that
targeted interaction design yields superior performance
compared to relying on ranked Top-N features alone.

4.2.2 Support Vector Machine (SVM).

SVM was a consistent top-three performer, achieving 0.5489
(default, ANOVA, no outliers), 0.5531 (tuned, ANOVA, with
outliers), and 0.5427 (RF, with outliers). PCA-based variants
performed lower, with tuned SVM+PCA reaching only 0.5148
(no outliers) and 0.5331 (MI, with outliers). Overall, SVM
performed best with full feature sets and without PCA; tuning
provided moderate but not transformative gains.

4.2.3 XGBoost.

Tuned XGBoost outperformed its default configuration across
all feature-ranking methods. The best accuracy was 0.5483
(M1, with outliers, 7 features). Other strong results included
0.5453 (M1, no outliers, 12 features) and 0.5411 (RF, with
outliers). Default XGBoost rarely exceeded 0.532, and even
tuned versions did not surpass the top logistic regression or
SVM models.

4.2.4 K-Nearest Neighbors (KNN).

KNN produced lower and more variable accuracies, with best
results of 0.5283 (ANOVA, with outliers) and 0.5157 (RF, no
outliers). Performance was sensitive to scaling, distance metric
choice, and dimensionality, making it less robust than margin-
based or linear models.

4.2.5 Voting Classifier.

The soft-voting ensemble (Logistic Regression, SVM,
XGBoost) provided stable but not superior performance. Its
best accuracies were 0.5399 (RF, no outliers) and 0.5395
(ANOVA, with outliers). While the ensemble improved
robustness, it did not exceed the strongest individual models.
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4.3 Feature Ranking Comparison

The three feature-ranking methods produced distinct
performance patterns across models. ANOVA F-score
consistently yielded the strongest overall results, particularly
for Logistic Regression and SVM, reflecting its ability to
highlight linear discriminative structure in the external
measurements. Mutual Information (MI) produced more
variable rankings; it improved performance for XGBoost but
delivered slightly lower peak accuracies for linear and margin-
based models due to its sensitivity to local nonlinear
dependencies. Random Forest importance benefited KNN and
ensemble classifiers and produced the best tuned SVM result
(0.5515), indicating that tree-based relevance estimates better
capture interaction-driven structure that some models can
exploit.

Table 1 summarizes the comparative behavior of the three
ranking approaches.

Table 1. Feature Ranking Comparison

Ranking

Method Summary

Highest overall performance; best for
ANOVA Logistic Regression and SVM; strongest
linear discriminative signal.

More variable; benefits XGBoost and

Mutual . . .
Information models leveraging nonlinear dependencies;
slightly lower peak accuracy for LR/SVM.
Most helpful for tree-based models, KNN,
Random
Forest and ensembles; produced the top tuned

SVM score (0.5515).

4.4 Impact of PCA

Principal Component Analysis did not improve performance
for any model or feature-ranking method. Both Logistic
Regression and SVM showed reduced accuracy when PCA was
applied, indicating that dimensionality reduction removed
interpretable variance and suppressed key predictors that
contribute directly to class separation. Only one Voting
Classifier variant reached 0.5347, and this remained below the
corresponding non-PCA baselines. Overall, PCA proved
unnecessary and often detrimental for this dataset, where
meaningful information is carried by specific physical
measurements rather than by aggregated principal components.

4.5 Outliers: Effect on Model Performance

Retaining outliers generally improved performance in the
strongest models. Both Logistic Regression and tuned SVM
achieved higher accuracies on the outlier-inclusive datasets—
for example, the top logistic regression configurations yielded
0.5689 and 0.5641, and tuned SVM reached 0.5515, all
exceeding their non-outlier counterparts. This pattern suggests
that the preserved biological variability carries discriminative
signal that benefits linear and margin-based models,
particularly when interactions or nonlinear kernels are present.
Removing outliers, although simplifying the distribution,
tended to reduce the diversity of boundary cases needed for
optimal generalization.

4.6 Summary of Best Accuracy by Model
Table 2 summarizes the highest test accuracies obtained for
each classifier across all feature-ranking strategies and
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configurations. Multinomial Logistic Regression achieved the
best overall performance through the ranking-guided
combinatorial interaction search (degree < 5), followed by
tuned SVM and tuned XGBoost. Ensemble and KNN methods
provided stable but comparatively lower accuracy. The table
highlights that the strongest results consistently arise from
models that leverage either well-curated interaction terms
(Logistic Regression) or margin-based structure (SVM).

Table 2. Summary of Best Accuracy by Model

Best Top-N
Model || Accurac Dataset || Feature Notes
y s
0.5689
Logistic (compact| Combinatori Best overall;
. , no al search
Regressio || .. 4 terms curated
n diameter)|| (degree <5, interactions
; 0.5641 ||with outliers)
(all four)
. Strong with
SVM 1l g ss15 || REOVith §1 5 1l ned hyper-
(Tuned) outliers)
parameters
Competitive
SVM 1 5489 || ANOVA (0|l o without
(Default) outliers) .
tuning
XGBoost MI (with Best among
0.5483 . 7 tree-based
(Tuned) outliers)
models
SVM +
Voting RF (no XGBoost +
Classifier | "-53%° outliers) 8-9 LR
ensemble
ANOVA Sensitive to
KNN 0.5283 (with — ||scale/distanc
outliers) e

4.7 Key Takeaways

Table 3 summarizes the main insights from the comparative
evaluation of all models, highlighting the factors that most
strongly influenced performance under non-invasive
measurement constraints.

Table 3. Key Takeaways

Observation Implication

Logistic Regression and SVM
consistently outperformed more
complex models, indicating that

the discriminative structure is
largely captured by well-selected

features.

Simple models +
ranked features win

Nonlinear interaction terms
produced the highest accuracies
and were particularly effective for
linear and margin-based
classifiers.

Combinatorial
interactions
outperform other
feature sets

Dimensionality reduction removed

PCA is . . .
informative variance and
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Observation Implication Length 867.79375

- - Diameter* Height"2 460.655932
counterproductive consistently reduced accuracy
across models. DiameterAZ*Height 460.482096
— Height"3 457.342584
Hyperparameter tuning improved e P
Tuning helps — XGBoost and SVM but offered Length*Diameter*Height 455.390393
selectively limited benefit for Logistic Length*Height*2 454.516593
Regression. X
Diameter”3 452.900619
Retaining biological variability Length”~2*Height 449.744484
Outliers can improve || enhanced performance, especially 3
generalization for Logistic Regression and tuned Length*Diameter”2 449.116694
SVM. Length”2*Diameter 444.305919
A
Ensembles add Soft-voting improved robustness Length"3 437886137
. but did not surpass the strongest Diameter*Height 109.787755
stability, not power individual model
fndividual modets. Length*Height 106.848632
. . 1 A

4.8 Feature Interactions and Nonlinear Height"2 93.56833
Effects Diameter”2 76.998233
Tuned Logistic Regression vs Number of ANOVA Features Length*Diameter 75 475557

-+ Ci:ssfﬂahé:::i(wracy {Train) Length"Z 67054866

Figure 4 illustrates how tuned Logistic Regression performs as

0s6 i the number of ANOVA-ranked polynomial and interaction

= features increases (ranked-subset analysis, degree < 3). Test

g oss N Ses | accuracy remains relatively stable between 4 and ~20 features,

g 1 after which performance declines. This pattern suggests that

05 ‘ ailka additional higher-order terms introduce noise rather than useful

1 \ J discriminative ~ signal, consistent with the strong

s multicollinearity observed among external measurements. The

| J | combinatorial search (degree < 5) produced the highest overall

052 accuracies (0.5689 and 0.5641), indicating that targeted

interaction design is more effective than simply expanding the
feature set.

5 0 15 0 25 ) s
Number of Features

Figure 4. Logistic Regression accuracy vs. number of

Table 4 summarizes the feature importance rankings produced
ANOVA-ranked features.

by ANOVA. Although the three methods rank features
differently, all highlight that nonlinear interactions involving

Table 4. Anova feature importance. . > o . . .
whole weight, height, and combinations of dimension ratios

Feature F-Score (e.g., length x diameter % height®) carry meaningful signal for
- sex classification.
Height 944.93735
Diameter 925.073994
Table 5. Top-performing feature combinations and corresponding accuracies for Logistic Regression
Features Accuracy
['whole_weight',height','length’,'height"3*whole_weight'] 0.568862
['whole_weight','length’,'height*2*whole_weight',height"2*whole_weight"2] 0.566467
['whole_weight','length’,whole_weight"3',height*whole_weight"4'] 0.565269
['whole_weight','length','height*3','height"2*whole_weight"2'] 0.564072
['whole_weight','length','length*whole_weight2','length”3*height*whole_weight'] 0.564072
['whole_weight',length','whole_weight"3','length*diameter*height*2*whole_weight'] 0.564072
['whole_weight','length','diameter*whole_weight”2','height"3*whole_weight'] 0.564072
['whole_weight','length’,'height*2,'height"3*whole_weight'] 0.564072
['whole_weight','height','length','whole_weight"2] 0.564072
['whole_weight','height','length','length*height”3] 0.562874
['whole_weight','height','length','length*height'] 0.562874
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Table 5 lists the top-performing feature combinations from the
degree < 5 combinatorial search. The best accuracy (0.5689)
was achieved with a compact four-term feature set consisting
of whole weight, height, whole weight®, and the interaction:

length x diameter x height?
X whole weight.

Even when all four external measurements were preserved, the
highest accuracy achieved was 0.5641, confirming that a small
number of well-constructed nonlinear interactions can
outperform larger ranked subsets and even more complex
models.

Further examination of Figure 4 shows that including too many
interaction terms increases variance in cross-validation
accuracy and reduces generalization. This reflects (1) increased
risk of overfitting, (2) reduced interpretability, and (3)
amplification of multicollinearity within logistic regression.
Compact feature sets (4-9 terms) offered the best balance
between model capacity and stability, aligning with the
biological structure of the dataset, where subtle nonlinear
relationships dominate over broad high-dimensional patterns.

4.9 Conclusion

The analysis shows that interaction-driven feature construction
plays a more decisive role than model complexity in abalone
sex classification using external measurements. Only a subset
of nonlinear terms contributes meaningful signal, while
additional higher-order combinations tend to introduce noise
and reduce generalization. Models built on compact, well-
ranked, and biologically interpretable features consistently
outperformed large ranked subsets and more complex
classifiers. These findings confirm that, under non-invasive
measurement constraints, carefully selected interactions
combined with simple models such as Logistic Regression
provide the strongest and most stable performance.

S. DISCUSSION, CONCLUSION, AND
FUTURE WORK

5.1 Discussion of Results

This study compared nine machine-learning models for non-
invasive abalone sex classification using external physical
measurements. Three ranking strategies (ANOVA, Mutual
Information, Random Forest) were evaluated under outlier-
inclusive and outlier-removed settings, combined with both
fixed and variable Top-N feature subsets. A ranking-guided
combinatorial approach (degree <5) was additionally used to
design compact interaction feature sets for logistic regression.

Results show that feature quality and interaction design
outweighed model complexity. Logistic Regression with
curated polynomial/interaction terms achieved the highest
accuracies—0.5689 (compact four-term model, excluding
diameter) and 0.5641 (all four measurements). The strongest
ranked-subset baseline (ANOVA Top-N, degree <3) reached
0.5619, confirming the benefit of the combinatorial search. A
tuned SVM (C=100, y=1) performed comparably well (0.5515)
on RF-ranked data, demonstrating the competitiveness of
margin-based classifiers when supported by strong features.

Tree-based models such as XGBoost showed moderate gains
with tuning (best 0.5483 on MIl-ranked features) but did not
surpass logistic regression or SVM. KNN consistently yielded
the lowest accuracies (best 0.5283), reflecting sensitivity to
scaling and dimensionality.
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Dimensionality reduction via PCA consistently degraded
performance. For example, tuned SVM with PCA achieved
0.5148, compared with 0.5489 for the equivalent non-PCA
model, indicating that PCA removed discriminative structure.

The Voting Classifier provided stable mid-range performance
but did not exceed the best individual models. Analysis across
35 ANOVA-ranked polynomial features showed diminishing
returns: accuracy peaked around 0.5619 with ~18-20 features
before declining, whereas the combinatorial degree <5 models
delivered superior performance.Overall, three key findings
emerge:

1. Interaction terms improve generalization, but excessive
complexity introduces noise.

2. Interpretable models outperform complex learners
when supported by structured feature engineering.

3. Biologically valid outliers should be retained—all top
accuracies (0.5689/0.5641) occurred under the outlier-
inclusive protocol.

5.2 Conclusion

This work demonstrates that simple, well-regularized
models—augmented by targeted feature engineering—can
achieve strong, non-invasive abalone sex classification. Key
conclusions include:

e Feature ranking matters, with ANOVA outperforming
MI and RF within the ranked-subset baselines; however, a
ranking-guided combinatorial design further improved
performance.

e Simplicity plus good features beats complexity: curated
four-term logistic regression models surpassed tuned
XGBoost and other black-box classifiers.

e Retaining biological outliers improves robustness, with
the best accuracies (0.5689 compact; 0.5641 all-four)
obtained under outlier-inclusive settings.

e PCA reduced accuracy, indicating that dimensionality
reduction was unnecessary for this structured dataset.

e Ensembles provided stability but no breakthroughs,
never exceeding the top individual models.

Together, these findings highlight the value of interpretable,
data-efficient pipelines for aquaculture domains where invasive
measurements are impractical.

5.3 Further Issues and Future Work
Several extensions offer promising directions:

e Advanced hyperparameter optimization:

through Bayesian methods, randomized search, or AutoML.

e Cost-sensitive learning: especially to reduce Infant
misclassification via weighted loss or custom cost matrices.

e Biologically informed feature engineering, such as
ratios, volume proxies, or growth indices.

e Profitability prediction by modeling shucked/viscera
weight and economic indices.

e Deep learning for multimodal pipelines (e.g., integrating
shell images or sensor data).

e Cross-dataset validation to assess generalizability across
environments and species.

Data and Code Availability The dataset used in this study is

publicly available from the UCI Machine Learning Repository

(Abalone dataset). The code developed for preprocessing,

feature engineering, and model training will be released in a
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public repository upon acceptance of this paper.
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