
International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.58, November 2025 

65 

Non-Invasive Abalone Sex Classification from External 
Measurements using Interpretable Machine Learning 

Ramtin Dabiri 
Master of Data Science, University of New South Wales (UNSW Sydney) 

Kensington, NSW 2052, Australia 
ORCID: https://orcid.org/0009-0002-5586-567X 

 
ABSTRACT 

Accurate sex classification of abalone is essential for selective 

breeding and ethical harvesting, yet many existing studies rely 

on invasive measurements (e.g., internal weights), limiting 

real-world deployment. This study contributes two innovations 

motivated by practical field constraints. First, a strictly non-

invasive framework is adopted, using only external traits—

length, diameter, height, and whole weight—so specimens are 

not opened. Second, instead of the common rank-then-select 

approach, a ranking-guided combinatorial search over 

polynomial and interaction terms (degree ≤ 5) is applied for 

multinomial logistic regression. This design is motivated by 

three considerations: (1) standard ranking methods (ANOVA, 

Mutual Information, Random Forest) evaluate variables largely 

in isolation, whereas sex signal emerges from feature–feature 

interactions; (2) relationships among external measurements 

are partly non-linear, so higher-order terms capture structure 

missed by base features or linear models; and (3) rankings can 

be unstable under collinearity and outliers, making empirical 

validation of feature sets more robust. 

Under an outlier-inclusive protocol, a compact model 

excluding diameter attains 0.5689 test accuracy, while an all-

four-measurements model reaches 0.5641—both exceeding the 

commonly reported 0.50–0.55 range for this dataset and 

avoiding invasive measurements. The curated interaction 

design enables logistic regression to outperform more complex 

models (e.g., tuned SVM and XGBoost), indicating that 

interaction construction, rather than model complexity, is the 

key driver of accuracy under non-invasive constraints. The 

resulting pipeline is interpretable, field-deployable, and 

supported by fully reproducible code. 
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1. INTRODUCTION 
Accurate sex identification of abalone is essential for selective 

breeding, ethical harvest timing, and stock sustainability. 

Existing practices rely on invasive or destructive inspection, 

while many machine-learning studies depend on internal 

weight measurements or opaque models. When restricted to 

external traits, reported accuracies on the UCI Abalone dataset 

typically fall in the 0.50–0.55 range [5,7,13]. This motivates 

the development of a non-invasive, interpretable method based 

solely on measurable external features. 

This study proposes such a method using length, diameter, 

height, and externally measurable whole weight. Rather than 

relying on a single ranking technique (ANOVA, Mutual 

Information, Random Forest), the approach performs a 

ranking-guided combinatorial search over polynomial and 

interaction terms (degree ≤5) to obtain compact, biologically 

plausible feature sets for multinomial logistic regression. Under 

an outlier-inclusive protocol, the best compact model 

(excluding diameter) achieves 0.5689 accuracy, and the best 

all-four-measurement model attains 0.5641—both exceeding 

commonly reported baselines without requiring destructive 

traits. 

Abalone populations across New Zealand, South Africa, 

Australia, western North America, Japan, and Mexico hold 

economic and cultural value for their meat and mother-of-pearl 

[1,2]. Several species have become endangered due to illegal 

harvesting, over-exploitation, and slow maturation (≈3–5 

years) [4]. Global landings declined from 14,830 t (1989) to 

4,351 t (2019), with aquaculture now supplying ≈95% of the 

market; in Mexico, abalone remains commercially important, 

particularly in Baja California [3]. These trends underscore the 

need for field-deployable, non-invasive sex identification tools. 

Although this study focuses on sex classification, most prior 

work emphasizes age prediction using the same UCI dataset. 

Age- and sex-related studies share predictors, preprocessing 

requirements, and common learning frameworks such as 

decision trees, regression models, clustering, and neural 

networks [7,11,12]. Prior age studies include decision-tree 

variants such as CLOUDS/SSE (≈21–26% accuracy) [7,11], 

clustering-based feature-importance analyses [12], 

econometric ring-group models [6], and neural networks that 

achieved low accuracy despite architectural complexity [7]. 

Collectively, these results indicate that sophisticated models 

underperform without targeted feature construction. 

1.1 Sex Prediction 

Operational sexing relies on gonad-color inspection, histology, 

or biochemical assays, all requiring maturity or laboratory 

facilities and unsuitable for large-scale deployment [3]. Genetic 

markers such as MSP-2 in Haliotis discus hannai provide high 

precision but require tissue sampling and specialized 

equipment [10]. Recent machine-learning work using non-

destructive traits reports accuracies around 0.50–0.55 [7,13]. 

This study addresses this gap by developing an interpretable 

classifier using only external measurements and by improving 

performance through curated interaction terms selected via a 

ranking-guided combinatorial search. 

2.  LITERATURE REVIEW 
The UCI abalone dataset has served as a standard benchmark 

since 1995, with early work examining decision-tree variants 

such as CLOUDS (≈26.3% accuracy on abalone) and C4.5 

(≈21.5%), demonstrating that computational improvements in 

split selection did not translate into higher predictive accuracy 

for this task [11]. More broadly, machine learning has provided 

scalable tools for marine analysis, including classification, 
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tracking, and decision support, outperforming manual 

approaches in efficiency and consistency [5]. Within this 

context, supervised learning has been applied to estimate 

abalone age or sex from physical measurements [6], with 

typical sex-classification accuracies in the 0.50–0.55 range 

when restricted to tabular, non-destructive traits [7]. 

A variety of supervised models has been evaluated on abalone 

data. Instance-based KNN often degrades under overlapping 

classes and distance sensitivity [7]. Naïve Bayes offers 

computational speed but relies on strong independence 

assumptions [8]. SVM supports linear and non-linear margin-

based separation but is sensitive to feature scaling and kernel 

parameters [9]. Artificial neural networks introduce greater 

capacity but may offer only modest gains and reduced 

interpretability on this dataset [7]. Related studies have 

explored dimensionality reduction (e.g., PCA) and ensemble 

techniques (e.g., boosted trees) to enhance robustness and 

feature relevance, though sex-classification accuracy generally 

remains within the same performance band [7]. 

Against this background, the present study differs in two 

respects. First, it enforces a non-invasive constraint by using 

only external measurements—length, diameter, height, and 

whole weight—unlike prior work that often includes internal or 

destructive weight measurements. Second, instead of treating 

ANOVA, Mutual Information, or Random-Forest rankings as 

final selectors, the study uses these rankings to guide a 

combinatorial search over polynomial and interaction terms 

(degree ≤ 5). This approach targets interaction-driven, partly 

non-linear predictive structure while controlling feature-set 

size for interpretability, addressing known limitations of 

marginal rankers under collinearity and overlapping class 

distributions, both of which are characteristic of abalone 

measurements. 

3. MATERIAL AND METHODS 

3.1 Software 
All analyses were conducted in Python 3.11 (Jupyter 

Notebook). Data handling and preprocessing used pandas, 

NumPy, and scikit-learn; visualization used Matplotlib and 

Seaborn. Logistic Regression, SVM, KNN, and ensemble 

models were implemented via scikit-learn, and XGBoost via 

the xgboost library. Hyperparameter tuning used 

GridSearchCV with stratified 5-fold CV. PCA (for selected 

comparisons) used sklearn.decomposition. The workflow 

emphasized reproducibility, interpretability, and consistent 

preprocessing. 

3.2 Data Description 
The UCI Abalone dataset contains 4,177 specimens with the 

following attributes: 

 

Sex (M/F/I), Length, Diameter, Height (0 removed), Whole 

weight, Shucked weight*, Viscera weight*, Shell weight*, and 

Rings (Age ≈ Rings + 1.5). 

3.2.1 Key Observations from Exploratory Analysis 

3.2.1.1 Class Distribution 

Figure 1 shows that the dataset is reasonably balanced: Male 

and Female are similarly represented, while Infants account for 

approximately one-third of the dataset. This balance is 

important because misclassifying Infants has direct 

sustainability consequences in aquaculture. 

 

Figure 1: Class distribution of abalone sex categories 

(M/F/I). 

3.2.1.2 Distribution Shape and Outliers.   

Histograms and boxplots (Figure 2) indicate right-skewed 

distributions across most continuous variables and the presence 

of high-end biological outliers. Implausible values (e.g., height 

= 0) were removed. All remaining high-value measurements 

were retained to preserve natural biological variability, which 

later proved beneficial for model performance.    

 

 

 

Figure 2: Histogram and boxplot of all parameters 

3.2.1.3Multicollinearity                                       Correlation 

analysis (Figure 3) revealed extremely strong correlations 

among weight-related features (e.g., whole, shucked, viscera, 

and shell weight). This redundancy motivated the use of 

ANOVA, Mutual Information, and Random Forest ranking 
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methods for later feature selection. 

3.2.1.4 Scope of Predictors                                   . For sex 

classification, only non-invasive external measurements 

(length, diameter, height, whole weight) were used. The 

invasive internal-weight measurements were excluded because 

they require opening the specimen and therefore violate non-

destructive constraints. 

Figure 3: Correlation heatmap of abalone features. 

3.3 Preprocessing 

• Categorical Encoding: 

Sex (M/F/I) was label-encoded. One-hot encoding was 

used only in diagnostic checks. 

• Variable Transformation: 

Histograms and Q–Q plots confirmed right skew in 

continuous variables. Several transformations (log1p, sqrt, 

reciprocal, Box–Cox, Yeo–Johnson, quantile 

normalization) were tested; rank-inverse-normal was 

selected for minimizing skewness/kurtosis and improving 

normality while remaining robust to outliers. 

• Scaling: All predictors were standardized using 

StandardScaler, required for SVM, Logistic Regression, 

and KNN. 

• Structural Adjustments: Numeric columns were cast to 

float; invalid rows were removed; category integrity 

checked. 

3.4 Ranking-Guided Combinatorial 

Interaction Design (Degree ≤ 5)   
To preserve interpretability and adhere to non-invasive 

constraints, engineered features were derived exclusively from 

the four external measurements: length, diameter, height, and 

whole weight. Instead of relying on a single automatic ranking 

method, ANOVA F-scores, Mutual Information, and Random-

Forest importance values were used collectively to guide the 

construction of polynomial and interaction terms up to total 

degree ≤ 5.  

3.4.1 Candidate Generation 

3.4.1.1 Generate polynomial powers (degrees 2–5) and 

multiplicative interactions among the four base variables, 

limited to total degree ≤ 5. 

3.4.1.2 Remove duplicates or symmetric equivalents and 

discard terms with near-zero variance after scaling. 

3.4.1.3 Construct compact candidate sets (typically 4–6 terms) 

by combining top-ranked terms from ANOVA/MI/RF with a 

small number of exploratory interactions to reduce ranking 

bias. 

3.4.2 Model and Selection Protocol 

3.4.2.1 Classifier 
Multinomial Logistic Regression (SoftMax) with L2 

regularization; standardization performed within each CV fold. 

3.4.2.2 Tuning 
Grid search over C (inverse regularization strength) and class 

weight options to evaluate alternative emphasis on the Infant 

class. 

3.4.2.3 Validation 
Stratified 80/20 train–test split with 5-fold cross-validation on 

the training portion to select hyperparameters and candidate 

feature sets.  

3.4.2.4 Parsimony and Collinearity 
Final models were restricted to 4–6 terms. Multicollinearity 

was assessed using VIF (threshold < 10) before final refitting. 

3.4.3 Outlier Policy 

Only physically invalid measurements (e.g., height = 0) were 

removed. All remaining biological outliers were retained to 

reflect natural variability. Unless otherwise stated, reported 

performance corresponds to the outlier-inclusive dataset.(The 

specific selected interaction sets and their associated test 

accuracies are reported in Section 4.) 

3.5 Assumptions 
The analysis relied on the following assumptions: 

• Dataset assumed representative; measurements reliable 

after corrections. 

• Each specimen treated as independent. 

• Rank-based transforms assumed adequate for normality 

when needed. 

• Standardization assumed essential for distance/margin-

based learners. 

• Logistic Regression linearity relaxed via 

polynomial/interaction terms (≤ 5). 

• Multicollinearity mitigated via ranking and VIF. 

• Predictor–response relationships assumed stationary. 

3.6 Modeling Methods 

3.6.1 Overview 
A range of supervised classifiers was benchmarked using 

ranked feature subsets derived from polynomial and interaction 

expansions (up to degree 3). Feature ranking was performed 

using three complementary criteria: 

• ANOVA F-test — captures linear discriminative signal; 

• Mutual Information — detects nonlinear dependencies; 

• Random Forest importance — provides model-based 

relevance estimates. 

Each model was evaluated in both baseline and tuned 

configurations. PCA-based variants were examined to assess 

the effect of dimensionality reduction. 

3.6.2 Models Applied 
• Logistic Regression — interpretable linear classifier with 

L2 regularization. 

• Support Vector Machine (SVM) — linear and RBF 

kernels, with and without PCA. 

• K-Nearest Neighbors (KNN) — distance-based classifier 
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with tuned neighborhood size. 

• XGBoost — gradient-boosted trees evaluated in default 

and tuned form. 

• Voting Classifier — soft-voting ensemble combining 

Logistic Regression, SVM, and XGBoost. 

3.6.3 Logistic Regression Formulation 
For a three-class problem (Male, Female, Infant), the 

multinomial logistic model estimates: 

 

where 𝜙(𝑥)denotes the engineered feature map, consisting of 

standardized original predictors and selected polynomial and 

interaction terms. The predicted class corresponds to: 

 

3.7 Tuning Strategy 
Hyperparameters for all models were optimized using 

GridSearchCV with 5-fold stratified cross-validation. The 

following parameter groups were explored: 

• Logistic Regression: solver type and regularization 

strength 𝐶. 

• SVM: kernel (linear/RBF), 𝐶, and 𝛾(for RBF). 

• KNN: number of neighbors and distance metric. 

• XGBoost: maximum tree depth, learning rate, number of 

estimators, and regularization parameters. 

• Voting Classifier: selection of base estimators and 

ensemble weights. 

PCA-based variants were evaluated selectively to assess their 

effect on model stability and generalization. 

3.8 Feature Sets 
Polynomial and interaction features (up to degree 3) were 

generated from the four external measurements and ranked 

using ANOVA F-score, Mutual Information, and Random 

Forest importance. For each ranking method, Top-N subsets 

( 𝑁 = 4to 35) were constructed to evaluate how model 

accuracy varied with increasing feature count. These subsets 

were used to benchmark all classifiers under both baseline and 

tuned configurations. 

3.9 Evaluation Metrics  
Performance was assessed using: Accuracy, Macro F1, 

Weighted F1, Confusion matrix, Top-N comparison (best 

feature count per model) 

4. ANALYSIS OF RESULTS   
This section evaluates the performance of nine machine-

learning models under different feature-ranking strategies 

(ANOVA, Mutual Information, Random Forest), using datasets 

both with and without outliers. Models were tested on fixed 

and variable feature subsets (Top-N), with and without PCA, 

and under tuned and default configurations. In addition to 

ranked Top-N subsets, we also evaluated a ranking-guided 

combinatorial search over polynomial/interaction terms 

(degree ≤ 5) to curate compact feature sets for logistic 

regression. 

4.1 Best Overall Performers 
The highest-performing models were obtained through the 

ranking-guided combinatorial interaction search (degree ≤ 5). 

Multinomial Logistic Regression achieved the best overall 

test accuracy of 0.5689 using a compact four-term feature set 

that excluded diameter (whole weight, height, length, and the 

interaction height
𝟑 ⋅ whole weight). When all four external 

measurements were retained, the best configuration reached 

0.5641. Both results were obtained under the outlier-inclusive 

protocol, indicating that preserving natural biological 

variability improves generalization and that a small number of 

well-constructed nonlinear interactions can outperform larger 

ranked subsets. 

A tuned SVM (RBF kernel) yielded the next best performance 

at 0.5515 on the Random-Forest–ranked feature set with 

outliers. Although below logistic regression, SVM remained 

consistently strong across ranking methods and feature counts. 

All tuned XGBoost, KNN, and ensemble voting models 

produced lower accuracies than the top logistic regression and 

SVM configurations. These outcomes collectively show that 

feature-interaction quality, rather than model complexity, is 

the primary driver of performance under non-invasive 

measurement constraints. 

4.2 Model-by-Model Comparison 

4.2.1 Logistic Regression. 

The combinatorial interaction approach (degree ≤ 5) produced 

the highest accuracies: 0.5689 using a compact feature set 

without diameter and 0.5641 using all four external 

measurements (both with outliers retained). Ranked-subset 

baselines (degree ≤ 3) reached 0.5619 with ANOVA and 

0.5411 with Mutual Information. Even without tuning, 

performance remained strong on ranked subsets (e.g., 0.5507 

with ANOVA, 0.5379 with MI). These results confirm that 

targeted interaction design yields superior performance 

compared to relying on ranked Top-N features alone. 

4.2.2 Support Vector Machine (SVM). 

SVM was a consistent top-three performer, achieving 0.5489 

(default, ANOVA, no outliers), 0.5531 (tuned, ANOVA, with 

outliers), and 0.5427 (RF, with outliers). PCA-based variants 

performed lower, with tuned SVM+PCA reaching only 0.5148 

(no outliers) and 0.5331 (MI, with outliers). Overall, SVM 

performed best with full feature sets and without PCA; tuning 

provided moderate but not transformative gains. 

4.2.3 XGBoost. 

Tuned XGBoost outperformed its default configuration across 

all feature-ranking methods. The best accuracy was 0.5483 

(MI, with outliers, 7 features). Other strong results included 

0.5453 (MI, no outliers, 12 features) and 0.5411 (RF, with 

outliers). Default XGBoost rarely exceeded 0.532, and even 

tuned versions did not surpass the top logistic regression or 

SVM models. 

4.2.4 K-Nearest Neighbors (KNN). 

KNN produced lower and more variable accuracies, with best 

results of 0.5283 (ANOVA, with outliers) and 0.5157 (RF, no 

outliers). Performance was sensitive to scaling, distance metric 

choice, and dimensionality, making it less robust than margin-

based or linear models. 

4.2.5 Voting Classifier. 

The soft-voting ensemble (Logistic Regression, SVM, 

XGBoost) provided stable but not superior performance. Its 

best accuracies were 0.5399 (RF, no outliers) and 0.5395 

(ANOVA, with outliers). While the ensemble improved 

robustness, it did not exceed the strongest individual models. 
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4.3 Feature Ranking Comparison 
The three feature-ranking methods produced distinct 

performance patterns across models. ANOVA F-score 

consistently yielded the strongest overall results, particularly 

for Logistic Regression and SVM, reflecting its ability to 

highlight linear discriminative structure in the external 

measurements. Mutual Information (MI) produced more 

variable rankings; it improved performance for XGBoost but 

delivered slightly lower peak accuracies for linear and margin-

based models due to its sensitivity to local nonlinear 

dependencies. Random Forest importance benefited KNN and 

ensemble classifiers and produced the best tuned SVM result 

(0.5515), indicating that tree-based relevance estimates better 

capture interaction-driven structure that some models can 

exploit. 
Table 1 summarizes the comparative behavior of the three 

ranking approaches. 

Table 1. Feature Ranking Comparison 

Ranking 

Method 
Summary 

ANOVA 

Highest overall performance; best for 

Logistic Regression and SVM; strongest 

linear discriminative signal. 

Mutual 

Information 

More variable; benefits XGBoost and 

models leveraging nonlinear dependencies; 

slightly lower peak accuracy for LR/SVM. 

Random 

Forest 

Most helpful for tree-based models, KNN, 

and ensembles; produced the top tuned 

SVM score (0.5515). 

 

4.4 Impact of PCA 
Principal Component Analysis did not improve performance 

for any model or feature-ranking method. Both Logistic 

Regression and SVM showed reduced accuracy when PCA was 

applied, indicating that dimensionality reduction removed 

interpretable variance and suppressed key predictors that 

contribute directly to class separation. Only one Voting 

Classifier variant reached 0.5347, and this remained below the 

corresponding non-PCA baselines. Overall, PCA proved 

unnecessary and often detrimental for this dataset, where 

meaningful information is carried by specific physical 

measurements rather than by aggregated principal components. 

4.5 Outliers: Effect on Model Performance 
Retaining outliers generally improved performance in the 

strongest models. Both Logistic Regression and tuned SVM 

achieved higher accuracies on the outlier-inclusive datasets—

for example, the top logistic regression configurations yielded 

0.5689 and 0.5641, and tuned SVM reached 0.5515, all 

exceeding their non-outlier counterparts. This pattern suggests 

that the preserved biological variability carries discriminative 

signal that benefits linear and margin-based models, 

particularly when interactions or nonlinear kernels are present. 

Removing outliers, although simplifying the distribution, 

tended to reduce the diversity of boundary cases needed for 

optimal generalization. 

4.6 Summary of Best Accuracy by Model 
Table 2 summarizes the highest test accuracies obtained for 

each classifier across all feature-ranking strategies and 

configurations. Multinomial Logistic Regression achieved the 

best overall performance through the ranking-guided 

combinatorial interaction search (degree ≤ 5), followed by 

tuned SVM and tuned XGBoost. Ensemble and KNN methods 

provided stable but comparatively lower accuracy. The table 

highlights that the strongest results consistently arise from 

models that leverage either well-curated interaction terms 

(Logistic Regression) or margin-based structure (SVM). 

Table 2. Summary of Best Accuracy by Model 

Model 

Best 

Accurac

y 

Dataset 

Top-N 

Feature

s 

Notes 

Logistic 

Regressio

n 

0.5689 

(compact

, no 

diameter)

; 0.5641 

(all four) 

Combinatori

al search 

(degree ≤ 5, 

with outliers) 

4 terms 

Best overall; 

curated 

interactions 

SVM 

(Tuned) 
0.5515 

RF (with 

outliers) 
35 

Strong with 

tuned hyper-

parameters 

SVM 

(Default) 
0.5489 

ANOVA (no 

outliers) 
4–9 

Competitive 

without 

tuning 

XGBoost 

(Tuned) 
0.5483 

MI (with 

outliers) 
7 

Best among 

tree-based 

models 

Voting 

Classifier 
0.5399 

RF (no 

outliers) 
8–9 

SVM + 

XGBoost + 

LR 

ensemble 

KNN 0.5283 

ANOVA 

(with 

outliers) 

— 

Sensitive to 

scale/distanc

e 

4.7 Key Takeaways 
Table 3 summarizes the main insights from the comparative 

evaluation of all models, highlighting the factors that most 

strongly influenced performance under non-invasive 

measurement constraints. 

Table 3. Key Takeaways 

Observation Implication 

Simple models + 

ranked features win 

Logistic Regression and SVM 

consistently outperformed more 

complex models, indicating that 

the discriminative structure is 

largely captured by well-selected 

features. 

Combinatorial 

interactions 

outperform other 

feature sets 

Nonlinear interaction terms 

produced the highest accuracies 

and were particularly effective for 

linear and margin-based 

classifiers. 

PCA is 
Dimensionality reduction removed 

informative variance and 
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Observation Implication 

counterproductive consistently reduced accuracy 

across models. 

Tuning helps — 

selectively 

Hyperparameter tuning improved 

XGBoost and SVM but offered 

limited benefit for Logistic 

Regression. 

Outliers can improve 

generalization 

Retaining biological variability 

enhanced performance, especially 

for Logistic Regression and tuned 

SVM. 

Ensembles add 

stability, not power 

Soft-voting improved robustness 

but did not surpass the strongest 

individual models. 

4.8 Feature Interactions and Nonlinear 

Effects 

 

Figure 4. Logistic Regression accuracy vs. number of 

ANOVA-ranked features. 

Table 4. Anova feature importance. 

Feature F-Score 

Height 944.93735 

Diameter 925.073994 

Length 867.79375 

Diameter* Height^2 460.655932 

Diameter^2*Height 460.482096 

Height^3 457.342584 

Length*Diameter*Height 455.390393 

Length*Height^2 454.516593 

Diameter^3 452.900619 

Length^2*Height 449.744484 

Length*Diameter^2 449.116694 

Length^2*Diameter 444.305919 

Length^3 437.886137 

Diameter*Height 109.787755 

Length*Height 106.848632 

Height^2 93.56833 

Diameter^2 76.998233 

Length*Diameter 75.475557 

Length^2 67.054866 

Figure 4 illustrates how tuned Logistic Regression performs as 

the number of ANOVA-ranked polynomial and interaction 

features increases (ranked-subset analysis, degree ≤ 3). Test 

accuracy remains relatively stable between 4 and ~20 features, 

after which performance declines. This pattern suggests that 

additional higher-order terms introduce noise rather than useful 

discriminative signal, consistent with the strong 

multicollinearity observed among external measurements. The 

combinatorial search (degree ≤ 5) produced the highest overall 

accuracies (0.5689 and 0.5641), indicating that targeted 

interaction design is more effective than simply expanding the 

feature set. 

Table 4 summarizes the feature importance rankings produced 

by ANOVA. Although the three methods rank features 

differently, all highlight that nonlinear interactions involving 

whole weight, height, and combinations of dimension ratios 

(e.g., length × diameter × height²) carry meaningful signal for 

sex classification. 

 

Table 5.Top-performing feature combinations and corresponding accuracies for Logistic Regression 

Features Accuracy 

['whole_weight',height','length','height^3*whole_weight'] 0.568862 

['whole_weight','length','height^2*whole_weight',height^2*whole_weight^2] 0.566467 

['whole_weight','length',whole_weight^3',height*whole_weight^4'] 0.565269 

['whole_weight','length','height^3','height^2*whole_weight^2'] 0.564072 

['whole_weight','length','length*whole_weight^2','length^3*height*whole_weight'] 0.564072 

['whole_weight',length','whole_weight^3','length*diameter*height^2*whole_weight'] 0.564072 

['whole_weight','length','diameter*whole_weight^2','height^3*whole_weight'] 0.564072 

['whole_weight','length','height^2,'height^3*whole_weight'] 0.564072 

['whole_weight','height','length','whole_weight^2] 0.564072 

['whole_weight','height','length','length*height^3] 0.562874 

['whole_weight','height','length','length*height'] 0.562874 
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Table 5 lists the top-performing feature combinations from the 

degree ≤ 5 combinatorial search. The best accuracy (0.5689) 

was achieved with a compact four-term feature set consisting 

of whole weight, height, whole weight³, and the interaction:  

length × diameter × height
2

× whole_weight. 
 

Even when all four external measurements were preserved, the 

highest accuracy achieved was 0.5641, confirming that a small 

number of well-constructed nonlinear interactions can 

outperform larger ranked subsets and even more complex 

models. 

Further examination of Figure 4 shows that including too many 

interaction terms increases variance in cross-validation 

accuracy and reduces generalization. This reflects (1) increased 

risk of overfitting, (2) reduced interpretability, and (3) 

amplification of multicollinearity within logistic regression. 

Compact feature sets (4–9 terms) offered the best balance 

between model capacity and stability, aligning with the 

biological structure of the dataset, where subtle nonlinear 

relationships dominate over broad high-dimensional patterns. 

4.9 Conclusion 
The analysis shows that interaction-driven feature construction 

plays a more decisive role than model complexity in abalone 

sex classification using external measurements. Only a subset 

of nonlinear terms contributes meaningful signal, while 

additional higher-order combinations tend to introduce noise 

and reduce generalization. Models built on compact, well-

ranked, and biologically interpretable features consistently 

outperformed large ranked subsets and more complex 

classifiers. These findings confirm that, under non-invasive 

measurement constraints, carefully selected interactions 

combined with simple models such as Logistic Regression 

provide the strongest and most stable performance. 

5. DISCUSSION, CONCLUSION, AND 

FUTURE WORK  

5.1 Discussion of Results     
This study compared nine machine-learning models for non-

invasive abalone sex classification using external physical 

measurements. Three ranking strategies (ANOVA, Mutual 

Information, Random Forest) were evaluated under outlier-

inclusive and outlier-removed settings, combined with both 

fixed and variable Top-N feature subsets. A ranking-guided 

combinatorial approach (degree ≤5) was additionally used to 

design compact interaction feature sets for logistic regression. 

Results show that feature quality and interaction design 

outweighed model complexity. Logistic Regression with 

curated polynomial/interaction terms achieved the highest 

accuracies—0.5689 (compact four-term model, excluding 

diameter) and 0.5641 (all four measurements). The strongest 

ranked-subset baseline (ANOVA Top-N, degree ≤3) reached 

0.5619, confirming the benefit of the combinatorial search. A 

tuned SVM (C=100, γ=1) performed comparably well (0.5515) 

on RF-ranked data, demonstrating the competitiveness of 

margin-based classifiers when supported by strong features. 

Tree-based models such as XGBoost showed moderate gains 

with tuning (best 0.5483 on MI-ranked features) but did not 

surpass logistic regression or SVM. KNN consistently yielded 

the lowest accuracies (best 0.5283), reflecting sensitivity to 

scaling and dimensionality. 

Dimensionality reduction via PCA consistently degraded 

performance. For example, tuned SVM with PCA achieved 

0.5148, compared with 0.5489 for the equivalent non-PCA 

model, indicating that PCA removed discriminative structure. 

The Voting Classifier provided stable mid-range performance 

but did not exceed the best individual models. Analysis across 

35 ANOVA-ranked polynomial features showed diminishing 

returns: accuracy peaked around 0.5619 with ~18–20 features 

before declining, whereas the combinatorial degree ≤5 models 

delivered superior performance.Overall, three key findings 

emerge: 

1. Interaction terms improve generalization, but excessive 

complexity introduces noise. 

2. Interpretable models outperform complex learners 

when supported by structured feature engineering. 

3. Biologically valid outliers should be retained—all top 

accuracies (0.5689/0.5641) occurred under the outlier-

inclusive protocol. 

5.2 Conclusion 
This work demonstrates that simple, well-regularized 

models—augmented by targeted feature engineering—can 

achieve strong, non-invasive abalone sex classification. Key 

conclusions include: 

• Feature ranking matters, with ANOVA outperforming 

MI and RF within the ranked-subset baselines; however, a 

ranking-guided combinatorial design further improved 

performance. 

• Simplicity plus good features beats complexity: curated 

four-term logistic regression models surpassed tuned 

XGBoost and other black-box classifiers. 

• Retaining biological outliers improves robustness, with 

the best accuracies (0.5689 compact; 0.5641 all-four) 

obtained under outlier-inclusive settings. 

• PCA reduced accuracy, indicating that dimensionality 

reduction was unnecessary for this structured dataset. 

• Ensembles provided stability but no breakthroughs, 

never exceeding the top individual models. 

Together, these findings highlight the value of interpretable, 

data-efficient pipelines for aquaculture domains where invasive 

measurements are impractical. 

5.3 Further Issues and Future Work  
Several extensions offer promising directions: 
• Advanced hyperparameter optimization: 

 through Bayesian methods, randomized search, or AutoML. 

• Cost-sensitive learning: especially to reduce Infant 

misclassification via weighted loss or custom cost matrices. 

• Biologically informed feature engineering, such as 

ratios, volume proxies, or growth indices. 

• Profitability prediction by modeling shucked/viscera 

weight and economic indices. 

• Deep learning for multimodal pipelines (e.g., integrating 

shell images or sensor data). 

• Cross-dataset validation to assess generalizability across 

environments and species. 

Data and Code Availability The dataset used in this study is 

publicly available from the UCI Machine Learning Repository 

(Abalone dataset). The code developed for preprocessing, 

feature engineering, and model training will be released in a 
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public repository upon acceptance of this paper. 
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