
International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.58, November 2025 

6 

A Comprehensive Review of Financial Market 

Forecasting: From Historical Data to Sentiment-based 

Approaches 

Komal Batool 
Department of Mathematics 

NED University of Engineering & 
Technology 

 

Mirza Faizan Ahmed 
Department of Economics & 

Management Sciences 
NED University of Engineering & 

Technology 

Ubaida Fatima 
Department of Mathematics 

NED University of Engineering & 
Technology 

 

 

ABSTRACT 

Financial market is stochastic in nature. The movement in 

financial market is random. One of the reasons of this fact is 

that the market is sensitive to multiple factors. It is 

autoregressive in nature, which means that it depends on its past 

values. Other than that, macroeconomic variables like Gross 

Domestic Product (GDP), interest rate, gold price or currency 

exchange rate also cause fluctuations in the market. Along with 

that the market is also sensitive to socio-political events, news, 

tweets and trends. The objective of this review is to understand 

the predictivity of financial markets based on different datasets 

and different training models. This paper describes a detailed 

review that how much features have been incorporated in order 

to predict the financial market and discusses the effect on 

predictivity of a market by changing these factors. The novelty 

of this paper is that it elaborates the methodologies used for the 

forecasting of financial market and the optimal features 

required for efficient prediction. 

• This review paper provides a comprehensive 

overview of research conducted on forecasting of 

financial markets over past 20 years, focusing on 

datasets and models employed. 

• The study categorizes forecasting approaches in three 

main methodologies: statistical modelling based 

forecasting, machine learning modelling based 

forecasting and hybrid modelling based forecasting. 

• This survey aims to identify the factors that are most 

significant for the forecasting of financial market by 

categorizing the studies based on datasets: historical 

dataset, technical dataset and textual dataset. 
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1. INTRODUCTION 
Stock market is considered as one of the best options for the 

investors to invest. The first and the major step of any 

investment is to decide the particular investment instrument 

among available options. Decision making is the most crucial 

step as investors aim to invest in a market to have maximum 

return with minimum risk. As the stock market is a volatile 

market, it can produce major returns and major losses. 

Prediction of future behavior of a stock market is a strenuous 

task as it can be affected by several internal as well as external 

factors [1]. Stock market prediction is done to ease the decision 

making process, so that the investors can have a clear picture 

of future behavior of the market and can make decisions 

accordingly [2]. In order to predict the future behavior of the 

stock market, an optimal number of factors are required to be 

incorporated in a predictive model that affects the market 

directly or indirectly. From historical data, foreign exchange 

rate, gold prices, crude oil prices to Google trends all can make 

a little or obvious effect on the stock market and can be used to 

predict its future behavior [3] [4]. Stock market is also sensitive 

to financial news, political events and traders’ sentiments. 

These factors can make a dramatic change in the price 

movements. This is another reason that makes the prediction of 

stock market a difficult task. In short, prediction of the stock 

market is a challenging task as it is a highly volatile market and 

depends on a variety of economic factors, political news and 

market sentiments [5]. 

Forecasting the stock market using econometric models based 

on historical data is a classical way of prediction. Time series 

models are widely used models in this regard. These are the 

linear statistical models that use past values to predict future 

behavior. The concept that history may repeat is the key 

motivation to design a model based on historical data [6]. 

Time series models dig out the linear relation between previous 

values with the current value and add randomness in it by 

including white noise that makes the models more realistic. 

Such models are called univariate models that only consider the 

single independent factor (historical data) to predict future 

results. Multivariate model on the other hand is also a time 

series model that considers not only historical data but also 

incorporate other economic factors affecting the stock market 

to predict the future behavior. The main assumption of both 

univariate and multivariate time series model is that it considers 

a linear relation between the independent variable and the 

dependent one. However, the financial time series are more 

often contain irregularity and nonlinearity [7]. 

Machine learning models can also be used to forecast the stock 

market. Machine learning is a branch of artificial intelligence 

which is based on learning and adoption of the patterns 

observed from the given dataset. Over the last few decades, 

machine learning algorithms have been widely used to predict 

the financial markets. Predictive models can be designed using 

machine learning algorithms based on both historical data and 

economic factors [8]. These models were found to be better 

predictive models as compared to that of econometric models, 

particularly for long-term prediction [9-11]. Secondly, unlike 

statistical models machine learning algorithms are capable of 

handling both unstructured and structured data and can 

generate quick conclusions [12]. Advanced machine learning 

models and approaches of sentiment analysis can help to get a 

clear picture of future movement of financial market. Thus, 

enable the investors to get the maximum return and minimum 

investment risk [13].  

Deep learning models are also widely used models to 

understand the insights of fluctuations in financial markets. 

These models are quite efficient to dig out the complex relation 

between the financial markets with other attributes [14]. Deep 

learning models give improved results as compared to classical 

training models because of their multi-layered architecture that 

captures non-linear relationship among the variables [15].  

Other than historical data and economic factors, the stock 

market is also affected by the trends, news and events [16].  As 

per efficient market hypothesis, financial markets are efficient 

in nature which means that any public or private information is 

translated to the market immediately [17]. This information can 

be collected from news, social sites, forums, tweets and trends. 

These factors change the sentiments of the investors and can 

change the decision of the investor and thus affect the stock 

prices [18]. Therefore, incorporating the sentiments in a 

predictive model is also another better approach to forecast the 

future behavior of the financial markets [19, 20].  

The novelty of this paper is to elaborate the methodologies used 

to design the predictive model to forecast the future behavior 

of financial markets. Along with that it also discusses the 

factors that are helpful in the prediction of the financial market 

that contribute in model designing and improve the predictivity 

of the models. Other than historical data and economic factors, 

the stock market is also affected by the trends, news and events.   

2. OVERVIEW 
This survey is based on recent research articles published in 

different journals and conferences. The survey is performed to 

get the answers to the following research questions: 

i. What are the different approaches used by the 

researchers to forecast the financial markets? 

ii. Which attributes are used by the researchers that are 

found significant for the forecasting of financial markets?  

iii. Does the combination of multiple factors improve the 

predictivity of financial market? 

The key term used to perform the survey was “financial market 

prediction”. Along with that, “time series prediction”, 

“statistical models”, “machine learning”, “sentiment-based 

prediction”, “news headlines” and “hybrid models” were used 

to make the searching criteria more specific. 

In order to predict the financial market, we have two different 

approaches in research: technical analysis and fundamental 

analysis. In technical analysis, the financial markets are 

predicted using time series analysis based on historical data. 

Past values of the time series is the only provided data on which 

the predictive model is trained [21, 22]. Whereas in 

fundamental analysis, other factors that can affect the 

movement of the financial market are also incorporated while 

training any model. In this type of modelling the selection of 

features can be a challenging task to design an effective 

predictive model [23]. 

In this paper, the prediction of the financial market is 

categorized on the basis of the dataset used to train the model. 

Firstly, all those researches are filtered in which historical data 

is used to predict the future behavior of the financial market. 

After that those researches are considered in which financial 

markets are predicted using economic indicators. Lastly, those 

papers are reviewed in which textual data-based prediction of 

the financial market is performed that uses news, political 

events and investors’ sentiments to forecast the future 

movement of the financial market.   
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In this survey, 145 research papers of the last twenty years are 

reviewed from the year 2001 to date. Figure 1 shows the count 

of reviewed papers with respect to their year of publication. The 

survey gives a brief summary of the attributes used in last 20 

years by the researchers for the forecasting of financial market. 

It tells the significance of the features that play vital role in 

financial market fluctuations and thus improve the predictivity 

of the models. It further elaborates the techniques used for 

building the predictive models, the difference among them and 

the impact they make on the accuracy of the models. 

 
Fig 1: Year wise reviewed research papers 

3. SURVEY METHODOLOGY 
This section briefly elaborates multiple approaches adopted for 

the forecasting of financial markets. It is divided into three 

phases. In the first phase, recent research papers that focus on 

financial market forecasting are collected that are based on 

historical data. Significance of historical data in future 

prediction is reviewed along with the possible models used for 

the training. Three different approaches of model training are 

found; econometric model, machine learning model and hybrid 

model that can be used to design a predictive model based on 

historical data. 41 papers have been reviewed in this survey, 

which has used multiple predictive models to predict the 

financial market based on historical data.  

In the second phase research papers with different training 

attributes are highlighted. External factors that make an impact 

on the financial markets are studied. The aim of this study is to 

understand the importance of economic factors or external 

factors in the movement of financial markets and their 

contribution in designing predictive models for the forecasting 

of financial markets. 26 papers have been reviewed in this 

survey that uses different models to predict financial market 

based on macroeconomic variables. 

In the third phase, price movement in the financial market is 

observed based on trends, news headlines, political and socio-

economic events. 43 research papers have been reviewed that 

focus on the textual data-based prediction of the financial 

market. The objective of this review is to identify that how 

these factors affect the financial market of any particular 

economy and whether incorporating these factors in designing 

a predictive model is beneficial or not. Figure 2 represents the 

count of research papers reviewed for the survey in which 

multiple features have been used for financial market 

prediction. 

   
Fig 2: Feature wise reviewed research papers 

The main reason behind dividing this systematic literature 

review into three phases is to observe the factors affecting the 

financial market separately and to determine how strongly they 

are correlated to the financial market. The second objective is 

to identify the recent approaches picked by the researchers to 

predict the financial market and which attributes are preferred 

to be included in the predictive model.  Figure 3 represents the 

research papers studied during a survey that shows the data 

selection priorities of researchers with respect to the time. 

Figure 4 represents the complete breakage of the reviewed 

research papers using different approaches of model designing 

based on different data types. 

 
Fig 3: data and year breakage 

 
Fig 4: Count of reviewed research papers using different 

data types 
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3.1 Financial Market Prediction Based on 

Historical Data 
Prediction of a stock market based on historical data is a 

classical method of the prediction of a market. Historical data 

is used to design a predictive model to forecast the future prices 

of the stocks with the belief that the market will behave in the 

same manner in future as it moved in the past.  

Time series modelling is one of the approaches to forecast the 

future movements of a financial market based on historical 

data. Time series data or sequential data is numeric data 

collected at a specific time point in a given time interval. Both 

econometrics models and machine learning models can be used 

for time series analysis. The objective of time series prediction 

techniques is to predict the future behavior of the series based 

on past values [24]. In a stock market, the quotes given are 

Open, Close, High, Low and Volume collected at evenly 

spaced time points.  These quotations can be used to design the 

predictive model such as a time series of closing price can be 

used as a predictor variable to forecast the future closing price 

of the stock [25]. Multiple techniques can be used for time 

series prediction including econometric models and machine 

learning models. Both approaches have been widely used to 

forecast the financial market. 

3.1.1 Historical Data Based Statistical Models 
Statistical models like the Autoregressive (AR) model, moving 

average (MA) model, Autoregressive moving average 

(ARMA) model and Autoregressive integrated moving average 

(ARIMA) model are the widely used models for the forecasting 

of time series. For financial time series, these models are used 

to predict the future expected return [26, 27]. While dealing 

with the time series data, two statistical measures are required 

to be predicted; the mean and variance, considered as the 

expected return and the risk associated with that return [28, 29]. 

Return and risk are equally significant for the prediction as a 

trader or an investor is always keen to know the future return 

along with the risk associated with it [29].  

It is one of the properties of volatility that there is a co-

movement among different stock markets. It is evident that the 

stocks with similar volatility have a tendency of greater co-

movement than the stocks with different volatility [30]. 

Autoregressive Conditional Heteroscedasticity (ARCH) model 

is one of the time series models that is used to forecast the 

volatility or risk associated in a financial market. Generalized 

ARCH (GARCH) is a modified form of ARCH model [31]. 

Prediction of risk is equally significant as that of prediction of 

return in the financial market as the traders who invest in the 

market aim to get the maximum return with the minimum 

uncertainty [24]. [32] designed a hybrid ARMA-GARCH 

model on daily returns from NASDAQ stock exchange from 

2000 to 2016 and designed a predictive model. It was observed 

that the designed hybrid model can forecast the daily return of 

the NASDAQ stock exchange with the error level of 1%. 

[33] used ARIMA model to predict the time series of Italian 

banks’ deposits. It was found that ARIMA model is good to 

predict the volume of deposits in the bank along with the 

changes and the time trends. It was also observed that this 

model is useful to deal with the seasonality in time series data. 

[34] studied the relationship between china stock market and 

global financial market statistically and depicted a 

unidirectional relationship. 

A predictive model was designed to forecast the volatility of 

Nifty Realty Index and found that GARCH(1,1) model is the 

best fitted model to understand the past volatility calculated 

using squared residuals and is best to predict future volatility 

[35].Twelve years historical data was used by [36] to forecast 

the volatility of DJIA index using log-ARCH model. [37] used 

ARIMA model to predict the stock price of Apple stock based 

on historical data.  It was found that the designed predictive 

model is good for short-term prediction and can be used for 

decision making.   

From the literature review, it is concluded that the statistical/ 

econometric models are widely used models to forecast the 

future price of financial instruments based on current and 

historical prices. The predictions of these models are quite 

helpful for the investors to make investment decisions. 

3.1.2 Historical Data Based Machine Learning 

Models 
Statistical models like ARMA, ARCH and GARCH assumed 

the linear relation between the past and the future values. These 

models also consider the time series as stationary [38]. On the 

contrary, machine learning models are effective for non-

stationary time series and can dig out the non-linear 

relationship between past and future values [8, 39]. These 

models are therefore widely used to predict the financial 

markets based on historical data to extract the complex non-

linear relationship [40]. Several machine learning algorithms 

can be used in this regard like artificial neural network (ANN), 

support vector machine (SVM), random forest and so on. In 

research, these models have been widely used to forecast 

financial markets. Financial markets, particularly equity 

markets are non-linear in nature. Therefore, machine learning 

models are more effective for future predictions. [41] studied 

the significance of artificial intelligence in the field of finance 

by considering US financial markets. [42] compared multiple 

machine learning models with econometric models to predict 

the price movement of crypto currency. A comparison analysis 

was done among K-Nearest Neighbor (KNN), Auto ARIMA 

and Facebook’s Prophet (Fbprophet) for crypto currency price 

prediction. [43] studied the role of deep learning models in 

predicting financial markets and concluded that the deep 

learning models are better predictive model as compared to the 

traditional models as they are more capable to explain the non-

linear relation in a data. [44] also studied the role of deep 

learning in the field of finance and demonstrated the efficiency 

of deep learning models for the forecasting of stock market.  

Reinforcement learning is another technique that has been 

widely used in the domain of finance. [45, 46] have used deep 

reinforcement learning for financial market analysis 

• Artificial Neural Network 

Artificial neural network is one of the machine learning 

algorithms which is a human brain inspired algorithm 

consisting of artificial neurons similar to neurons of the human 

brain. It consists of three layers; input, hidden and output [47]. 

This model is capable to learn the patterns from non-linear data 

and therefore, performs better in the prediction of non-linear 

time series. [48] performed a recent survey in the domain of 

machine learning algorithms to predict the stock market and 

concluded that artificial intelligent models are the dominant 

machine learning models to predict the financial time series.   

[47] designed a predictive model using ANN for the Indian 

stock market and found ANN as an efficient model to predict 

Bombay stock exchange. A random walk model was compared 

with the probabilistic neural network model (PNN) by [49] to 

predict returns from the Taiwan stock index and found that 

PNN model performed better as compared to the other model. 

A feed-forward neural network and radial basis neural network 

with back propagation was designed to predict National Stock 

Exchange (NSE) indices and found that the feed-forward NN 
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outperformed back propagation NN with the accuracy of 

almost 100% compared to the other model with 80% accuracy 

for trend prediction. On the contrary, radial basis NN showed 

better performance for stock price prediction than a feed-

forward neural network [50]. [51] designed a predictive model 

based on a back propagation neural network to forecast the 

stock exchange of Thailand index. Mean Absolute Percentage 

Error (MAPE) was used to calculate the error level of the model 

and found the least error of 2% to predict the stock index. Using 

the past three values nine days ahead Athens stock exchange 

indicator was predicted by [52]. The back propagation neural 

network was designed to predict the time series that predict the 

future values with the root mean square error (RMSE) of 

0.0024. A group of researchers forecasted the volatility of the 

stock market of China Pakistan Economic Corridor (CPEC) 

linked countries namely KSE-100 (Pakistan), SSE-100 

(China), KASE (Kazakhstan), TADAWUL (Kingdom of Saudi 

Arabia), KLSE (Malaysia), MOEX (Russia), CAC40 (France), 

BIST (Turkey) and FTSE (United Kingdom). A machine 

learning model Non-linear AutoRegressive Neural Network 

(NAR) was used along with the traditional GARCH family 

models based on historical data from 2014 to 2021. It was 

found that the NAR model outperforms the traditional GARCH 

models [53].  

• Long Short-Term Memory 

Long-Short Term Memory (LSTM) is another artificial neural 

network designed particularly for sequential data. This model 

is capable of dealing with the long sequential data as compared 

to other neural network models [54]. [55] used daily stock 

indices of S&P 500 from 1992 to 2005 and designed the LSTM 

model along with other neural network models. It was found 

that LSTM outperformed random forest, deep neural network 

(DNN) and logistic regression. 

• Support Vector Machine 

Support vector machine is a machine learning algorithm that 

can be used for both regression and classification. This model 

can be used for time series prediction along with other machine 

learning applications [56]. [57] has proved that this model is a 

powerful predictive tool to forecast the stock market. [58] 

compared GARCH (1,1), neural network and support vector 

machine to predict the volatility of six different indices and 

found that the GARCH (1,1) and support vector machine are 

better predictive models than back propagation neural network.  

In accordance with the above literature review, it is found that 

both econometric/statistical models and machine learning 

models have been widely used to forecast the future movement 

of the financial market. It is found that both approaches are 

equally significant for forecasting. One approach may 

outperform the other depending on the dataset or the measuring 

tool of accuracy. As [59] compared Econometric models like 

ARIMA, SARIMA and Self Exciting Threshold 

AutoRegressive (SETAR) model with machine learning model 

NAR and found that NAR outperforms other models based on 

RMSE and Mean Absolute Error (MAE), but if the comparison 

is based on Mean Absolute Percentage Error (MAPE) 

SARIMA is found to be the best model. 

3.1.3 Historical Data Based Hybrid Models 
Hybrid model is the one in which two or more models are 

ensembled to design a single predictive model with the aim to 

design a better predictive model that adds up the performance 

of all the models used in it. These models combine the accuracy 

of different separate models and can contribute to achieve 

higher accuracy and precision [60]. [61] in a literature review 

of multiple research papers concluded that the hybrid models 

are capable of obtaining more accurate and promising results in 

forecasting of financial time series as compared to individual 

predictive models. Econometric/ Statistical models are good in 

capturing the linear relationship in a time series. If these models 

are combined with non-linear machine learning algorithms like 

neural networks, then the combined hybrid model can be 

proved to be a better predictive model that has the capability of 

analysing both linear and non-linear data patterns in a financial 

series [62]. [63] highlighted the significance of hybrid models 

for the forecasting of financial market. [64] forecasted the time 

series of Canadian lynx data and the IBM stock price indices 

using the hybrid model of ARIMA and ANN and concluded 

that the hybrid model performs more effectively than the 

ordinary ARIMA and ANN model. It was concluded that the 

designing of a hybrid model is an effective way to improve the 

accuracy achieved by either of the models separately. [65] used 

ARIMA and GARCH models to design a hybrid predictive 

model to predict the NSE index. The hybrid ARIMA-GARCH 

model was compared with ordinary ARIMA and GARCH and 

found that the ARIMA-GARCH hybrid model reduces the error 

and improves the performance over other models. Hybrid DSS 

based Hyper-Kernel SVM (HKSVM) was designed by [66] 

using historical financial data to forecast future movements. 

[67] designed a hybrid model using recursive empirical model 

decomposition (REMD) and long short-term memory (LSTM) 

for time series forecasting and concluded that the designed 

hybrid model is more effective than the individual REMD and 

LSTM models. It was found that the hybrid model has 

increased the accuracy by 20% compared with the LSTM 

model. [13] designed hybrid model of Neural network 

AutoRegressive (NNAR) model and GARCH using three 

different ways to predict the volatility of KSE-100 index and 

concluded that the linear combination of GARCH and NNAR 

is the best hybrid model to predict the volatility of KSE-100 

index for both short and long term prediction. In 2022 a hybrid 

model by using the combined approach of Long Short-Term 

Memory, Auto encoder, and Deep Neural Networks (LSTM-

AE-DNNs) was designed by [68] to predict Dow Jones daily 

stock index and concluded that the designed hybrid model is 

more efficient for the prediction then the individual models. A 

hybrid model of Multivariate Artificial Neural Network 

(MANN) and Dynamic Conditional Correlation GARCH 

(DCC-GARCH) was developed to forecast the volatility of five 

stock markets S&P 500, FTSE-100, KSE-100, KLSE and 

BSESN. It was concluded that the hybrid MANN-DCC-

GARCH model is a better predictive model as compared to 

individual MANN and DCC-GARCH [69]. [70] used 

combined CNN with LSTM model to design a hybrid 

predictive model for the forecasting of stock price using 

historical data of OHLCV (Open High Low Close Volume). 

[71] used Generative Adversarial Network (GAN) with CNN 

to analyse inter stock correlations. 10 years historical data of 

multiple stock markets was considered in this study.  

Figure 5 represents the count of year wise research papers 

reviewed that use historical dataset for the forecasting of 

financial market. Table 1 represents the complete summary of 

datasets used in the reviewed researches used for the financial 

market prediction. Table 2 represents the modelling approach 

used for the forecasting of financial markets based on past data. 
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3.2 Financial Market Prediction Based on 

Macroeconomic Variables 
Financial market is sensitive to several economic factors like 

exchange rate, tax, crude oil prices, interest rate, US dollar rate 

and so on [72, 73]. These features can also be used along with 

historical data to forecast financial markets. [74] examined the 

causal relations between the stock price and macroeconomic 

variables. Industrial output, inflation and exchange rate were 

taken as basic macroeconomic factors to investigate the long 

and short-term relation with the stock market index. It was 

observed that in the short run there is unidirectional and 

bidirectional relation among the variables whereas in long run 

there is a cointegration relationship between stock price 

macroeconomic variables. A group of researchers in 2017 

investigated the forecast ability of stock returns of S&P 500, 

NASDAQ and DJIA with respect to the Treasury bill interest 

rate. It was concluded that the forecasting is favorable for short-

term prediction of five days and long-term prediction of 30 

days [75]. [76] claimed that the foreign investor’s decisions can 

be affected by local investments and therefore the 

macroeconomic environment should be strictly monitored. It 

was also claimed that changes in the macroeconomic variables 

had a significant effect on the stock market performance. The 

relation between the oil prices, exchange rates and prices of 

emerging stocks was studied and a strong correlation was found 

among them. It was found that the increase in the price of 

emerging stock causes the increase in oil prices. It was also 

observed that the positive shocks to oil prices decrease the 

stock prices of emerging markets and the US dollar exchange 

rate in the short run [77]. [78] studied the relation between the 

oil price and the gold price and concluded that the fluctuations 

in oil price influence gold and other metals in the market. In 

2010 six macroeconomic indicators including gold price, US 

Dollar exchange rate, interest rate on T-bills, interest rate on 

deposits and closing price of 4 indices were used to predict the 

return on stock price index of the Istanbul Stock Exchange 

(ISE). It was concluded that using macroeconomic factors, the 

monthly price index can be successfully predicted with the 

accuracy of 98% [79]. [80] studied the relationship between the 

prices of precious metals and the exchange rate and found a 

significant long run relationship between them. [81] showed 

that the macroeconomic factors are the leading predictor to 

forecast the price of thirteen US sector indices.  

From the research survey it is found that macroeconomic 

factors are the key indicators that can be used to predict the 

future behavior of the financial market. These factors are 

significantly correlated to the prices of financial instruments 

like equity, stock and currencies and incorporating these factors 

in predictive models can enhance and improve the predictivity 

of the model.  

In order to predict the future movement of the financial market 

based on economic factors statistical models, machine learning 

models and hybrid models can be used.  

3.2.1 Economic Factors Based Statistical Models  
Several statistical models can be used to extract the relation 

between the financial market and other economic factors to 

design a better predictive model. Multivariate time series is one 

of the approaches that can be used to forecast the series of 

financial markets based on other financial time series. [82] used 

a nonlinear multivariate MS-ARMA-GARCH approach to 

predict the volatility of the Tehran Stock Exchange based on 

macroeconomic factors: inflation rate, money growth rate and 

exchange rate. [12] predicted crude oil price for five years 

ahead based on three economic factors: CPI, GDP and gold 

price using the econometric model Auto Regressive Integrated 

Moving Average with Exogenous Input (ARIMAX) along with 

other models. It was concluded that ARIMAX is the best 

predictive model with the least RMSE of 8.71. Econometric/ 

statistical model ARMA and E-GARCH was used by [44] to 

measure the impact of NIFTY, energy index and stock price 

index on the price of crude oil. In 2016 the volatility of Chinese 

stock market was predicted based on US economic factors 

using regressive models. It was found that the Chinese stock 

market is significantly correlated to the US economic variables 

[83].[76] investigated the reaction between macroeconomic 

variables and NSE. Three macroeconomic variables; Lending 

Interest rate, Inflation Rate and 91 day T-bill were used to 

predict the NSE indices using a regression model. [84] used the 

econometric model ARMA-EGARCH and found a significant 

effect of bit coin, gold price and exchange rate on crude oil 

prices. [85] forecasted the volatility of crude oil price using 

VAR (Vector AutoRegressive) model based on six 

econometric factors. VAR (Vector AutoRegressive) model was 

also used to investigate the interaction of Crude Oil Price, 

Consumer Price Level and Exchange Rate in Nigeria [86]. [87] 

used Exponential GARCH (EGARCH) to investigate the 

factors affecting the price of gold in the United States with the 

data from 2003 to 2016. It was found that there is a strong, 

linear and negative relation among gold return, Dollar return, 

oil price and silver price. [88] used econometric model 

GARCH and Structured VAR (SVAR) models to study the 

effect of financial, political and economic risk on the risk and 

return of the stock market. Macroeconomic factors including 

foreign exchange rate of hard currencies, interest rate and 

inflation rate were used along with the weighted average 

monthly indices of the companies listed on the Nairobi 

Securities Exchange in Kenya from January 2008 to December 

2012. A multivariate regression analysis was performed to 

investigate the relation between the selected macroeconomic 

variables and the stock indices [89]. 

3.2.2 Economic Factors Based Machine Learning 

Models  
Along with econometric models, machine learning models 

have been widely used to forecast price movement in financial 

markets based on economic factors. These models have the 

capability to extract the nonlinear relation between the 

macroeconomic factors and the prices of financial instruments. 

[90] studied Artificial Neural Network (ANN) model to review 

its application in the prediction of the financial market based 

on economic variables.  In 2005 a predictive model using ANN 

was developed based on 31 financial and economic factors to 

forecast stock market returns [91]. [92] examined the 

effectiveness of incorporating external factors in designing a 

predictive model to forecast the stock market. ANN is used to 

design a model based on external indicators, such as 

commodity prices and currency exchange rates, in predicting 

movements in the Dow Jones Industrial Average (DJIA) index. 

[93] used 10 technical indicators to predict the future 

movement of Istanbul Stock Exchange. ANN and SVM were 

used for the prediction, and it was concluded that the average 

performance of ANN model is better than that of SVM. [94] 

used artificial neural network to examine the effectiveness of 

combined approach of technical analysis, fundamental analysis 

and of time series to predict price behavior.   

3.2.3 Economic Factors Based Hybrid Models  
Based on economic factors, several econometric series models 

have been used to forecast the financial market. Along with that 

multiple machine learning algorithms have also been used for 

the prediction of the financial market. A combined approach, 
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in which two or more time series models or machine learning 

models ensembles for better prediction can be used for future 

forecasting of markets. [95] used the Wolf's sunspot data, the 

Canadian lynx data, and the British pound/US dollar exchange 

rate data from 1700 to 1987 to design a hybrid model by 

combining a statistical model ARIMA and a machine learning 

model Neural Network to take advantage of the unique strength 

of ANN and ARIMA in linear and non-linear modelling. It was 

concluded that the designed hybrid model is a better predictive 

model which is more effective and can improve forecasting 

accuracy.  

Figure 6 represents the year wise number of research papers 

reviewed for this survey in which macroeconomic variables 

have been used for the financial market prediction.  Table 3 

shows a compete summary of the datasets used for 

macroeconomic based forecasting in the reviewed research 

papers. Table 4 represents the summary of model types used for 

financial market forecasting based on economic indicators. 

 
Fig 6: Year wise papers reviewed for macroeconomic 

variables-based forecasting 

Table 2: Summary table of macroeconomic variables-

based market prediction approach 

Ref Year Data  

[95] 

2003 

Wolf's sunspot data, the Canadian lynx 

data, and the British pound/US dollar 

exchange rate. 

[92] 
2005 

Dow Jones Industrial Average (DJIA) 

index. 

[93] 
2010 

Istanbul Stock Exchange along with 10 

technical indicators. 

[76] 
2012 

NSE indices, lending interest rate, 

inflation rate and 91 day T-bill  

[86] 
2015 

Crude Oil Price, Consumer Price Level 

and Exchange Rate  

[89] 

2015 

Foreign exchange rate of hard currencies, 

interest rate and inflation rate and monthly 

indices of the companies listed on the 

Nairobi Securities Exchange in Kenya. 

[87] 
2017 

Gold return, Dollar return, oil price and 

silver price.  

[84] 
2021 

Bit coin price, gold price and exchange 

rate on crude oil prices 

[12] 2022 crude oil price, CPI, GDP and gold price  

[44] 
2022 

NIFTY, energy index, stock price and 

price of crude oil.  

 
Table 3: Summary table of models used for 

macroeconomic variables-based prediction 

Ref Year Model  Model Type 

[95] 2003 ANN-ARIMA  Hybrid Model 

[91] 
2005 ANN  

Machine Learning 

Model 

[92] 
2005 ANN  

Machine Learning 

Model 

[93] 
2010 ANN and SVM  

Machine Learning 

Model 

[94] 
2013 ANN 

Machine Learning 

Model 

[86] 2015 VAR Statistical Model 

[84] 
2021 

ARMA-

EGARCH  
Statistical Model 

[12] 2022 ARIMAX Statistical Model 

[44] 
2022 

ARMA and E-

GARCH 
Statistical Model 

[85] 2022 VAR  Statistical Model 

[88] 
2022 

GARCH and 

Structured VAR  
Statistical Model 

3.3 Text based Prediction of Financial 

Market  
It is believed that the trends, financial news and political events 

make a significant impact on the sentiments of the traders and 

thus these factors affect the financial markets. Incorporating 

these factors while training a model can enhance the 

predictivity of the model. Google trends, tweets, local and 

international news and events are considered as the major 

attributes that have a direct impact on financial markets and can 

make a drastic change in the market. Sentiment based 

prediction of the stock market can be done using multiple forms 

of data like news data, tweets, trends and so on. It is found that 

the stock market is highly correlated with company’s 

sentiments and tweets [96]. News and events have a significant 

impact on sales and prices of products and incorporating these 

factors in a training model can enhance the predictive of the 

models [97].  The significance of news for future prediction 

was studied by [98] and concluded that news data is one of the 

most significant attributes for future forecasting. [99] claimed 

that sentiment mining analysis can result in more predictable 

models for future forecasting. [100] discussed the impact of 

emotions on financial markets and concluded that the stock 

price movement is affected by the volume of tweets related to 

that stock or company. The importance of online emotions in 
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predicting the stock market in China was investigated in 2016. 

Over 10 million stock-relevant tweets were analyzed, and it 

was concluded that various online emotions like joy, fear, 

disgust and sadness can contribute to predict five attributes of 

the stock market in China [101]. [102] performed a 

comprehensive review to understand how major stock market 

indices react to emotions extracted from financial news. [103] 

quantified the information from financial news using text 

mining analysis and concluded that the accuracy of predictive 

model can be enhanced by incorporating news data in the 

model. [104] claimed that the combination of all datasets 

including historical data, macro-economic variables and text 

based data, instead of using selected features, yields better 

predictive results. 

Based on news and events financial markets can be forecasted 

using multiple approaches like using statistical models, 

machine learning models, deep learning models and hybrid 

models. These models have been frequently used for financial 

market prediction using news and events. 

3.3.1 Textual Data Based Statistical Models  
As far as statistical or econometric models are concerned, time 

series models are the best used models for this purpose. Time 

series model has been widely used econometric model for 

future forecasting whether it is financial data, weather data, 

sales or purchases, political data or as well as medical data. 

Sentiment analysis has also been done using classical time 

series models. [105] used the ARMA model for public opinion 

evaluation. ARMA model was used for multidimensional 

sentiment analysis on large scale textual data related to 

COVID-19. An asymmetric GARCH model was designed to 

predict the volatility of the Indian stock exchange based on 

positive and negative sentiments [106]. In 2015 it was 

investigated if stock market is sensitive to oil news, if yes then 

to what extent crude oil prices are driven by news. Regression 

models like Instrumental Variable Regression and Vector 

Autoregressive (VAR) Model was used to study the relation of 

news with WTI crude oil prices and a visible effect of news 

sentiments was noticed on oil market [107]. 

3.3.2 Textual Data Based Machine Learning 

Models  
Machine learning models are the most frequently used models 

for financial market prediction. These models have the 

capability to train on multiple types of datasets like textual data, 

numeric data, images, audio and video. This is one of the 

reasons why such models are used for sentiment based 

predictions [108]. [109] studied the effectiveness of machine 

learning models for stock market prediction based on historical 

data and public tweets. [110] analyzed the relationship between 

social media messages and stock price and found a strong 

correlation between number of daily messages and volume of 

trade and a negative association between trade volume and 

financial indicators. [111] used multiple machine learning 

algorithms like Support Vector Machine (SVM), Multi-Layer 

Perceptron (MLP) and Radial Basis Function (RBF) to predict 

KSE-100 index based on external factors including Oil rates, 

Interest rate, Gold & Silver rates and Foreign Exchange (FEX) 

rate and sentiment features from NEWS and social media feed. 

It was found that MLP outperforms other machine learning 

models. In 2016 Support Vector Machine (SVM) model was 

used for financial market prediction and it was concluded that 

the forecasting models can be more efficient and effective if 

social media mining is combined along with other information 

[112]. [3] attempted to predict the Pakistan Stock exchange 

using Google trends along with macroeconomic factors by 

quantifying the semantics of the international market. 

Multiclass neural network and multiclass decision tree were 

used to design the predictive models. It was found that the 

multiclass decision tree outperforms multiclass neural network 

with an accuracy of 94%. Ten influential companies from 

NASDAQ were forecasted based on sentiment analysis using 

deep learning [113]. [114] forecasted the Hong Kong exchange 

market based on technical indicators and news sentiments using 

machine learning algorithms. It was found that LSTM 

outperforms Multiple Kernel Learning (MKL) and SVM in 

forecasting the financial market. A group of researchers in 2015 

used macroeconomic indicators and domestic trends as public 

mood indicators to forecast the daily volatility of S&P 500. 

Predictive model was designed using LSTM for the prediction 

[115]. Using the same model, LSTM KSE-100 index was 

predicted based on multiple types of investor sentiments, using 

categorized financial news and historical data and categorized 

financial to understand the impact of financial news on stock 

market [116]. [117] proposed a web-based sentiment analysis 

approach. This technique was used to extract information from 

web text to forecast the oil prices based on compound, neutral, 

positive and negative sentiments. LSTM model was again used 

to predict the closing price of stock based on sentiment analysis 

[118]. [119] predicted the stock market based on multiple types 

of investor sentiments. Different machine learning models like 

LSTM, SVM and CNN were used to predict the financial 

market based on text mining [120]. [121] used random forest 

classifier to predict the direction of stock market index based 

on sentiment scores which were classified using Bidirectional 

Encoder Representations (BERT). Similarly, Recurrent Neural 

Network (RNN) model was used with character language for 

inter and intraday stock price prediction of Korean stock market 

[122]. [123] applied BERT to analyze the sentiments of 

Chinese stock review and achieved higher prediction accuracy. 

BERT model was compared by [124] with other machine 

learning models like LSTM, logistic regression, SentWordNet 

and found that BERT outperforms all other models in 

sentiment-based forecasting. [125] used deep learning models 

for opinion based prediction of stock market. 

3.3.3 Textual Data Based Hybrid Models  
Hybrid models have been widely used for the prediction of 

financial markets based on textual data. Semantic based, 

sentiment based and event extraction based techniques are used 

in this regard. A hybrid SVM-LSTM-GRU was designed by 

[126] to forecast the stock market based on news sentiments. 

[105] designed a hybrid model of Latent Dirichlet Allocation 

(LDA) and ARMA to predict the public opinion sentiments. It 

was found that the designed hybrid model LDA-ARMA has the 

average error of less than 5.64% and is effective to apply on 

large scale public sentiment evolution. ARIMA-GARCH was 

combined with LSTM for the prediction in which historical 

data was treated by ARIMA-GARCH whereas news sentiments 

and event embeddings were taken as the input of the LSTM 

model to predict the price of crude oil. It was found that the 

combined model is an effective predictive model to forecast 

crude oil price [127]. [128] designed a hybrid model of CNN 

and LSTM to forecast the bit coin price based on market 

sentiments. LSTM was also combined with Relational Graph 

Convolutional Network (RGCN) to understand the 

interconnectivity among the news using the news headlines to 

find out the relation of news headlines with stock price 

movement [129].  [113] ensembled multimodal AdaBoost and 

LSTM to predict the bit coin price based on trading data, block 

chain information and media sentiment. A hybrid system was 

proposed by [130] that apply text mining on social media data 

mining on the past stock dataset to enhance the prediction 

performance. In 2023, an emotion enhanced convolutional 
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neural network (ECNN), the denoising autoencoder (DAE) 

models, and long short-term memory model (LSTM) were 

combined by [131] to design a hybrid model for the forecasting 

of risk and return of a stock market. [132] used hybrid deep 

learning models along with meta-learning model based on 

sentiments dataset and other macroeconomic features for 

multiple financial markets including cryptocurrency and equity 

markets. 

Figure 7 represents the year wise papers reviewed for this 

survey that are using text-based data for the forecasting of 

financial market. Table 5 summarizes the dataset used in the 

studied research papers for text-based prediction. Table 6 

shows a complete summary of different approaches to design a 

model for financial market prediction based on textual dataset. 

 
Fig 7: Year wise papers reviewed for text-based 

forecasting 

Table 4: Summary table of text-based market prediction 

approach 

Ref Year Data  

[107] 2015 WTI crude oil prices  

[115] 
2015 

Macroeconomic indicators, domestic 

trends and daily volatility of S&P 500. 

[111] 

2016 

KSE-100 index, Oil rates, Interest rate, 

Gold & Silver rates and Foreign Exchange 

(FEX) rate and sentiment features from 

NEWS and social media feed.  

[3] 
2017 

Pakistan Stock exchange, Google trends 

and macroeconomic factors 

[122] 2017 Korean stock market.  

[106] 2020 Indian stock exchange.  

[114] 
2020 

Hong Kong exchange market, technical 

indicators and news sentiments 

[105] 
2021 

Large scale textual data related to 

COVID-19.  

[123] 2021 Chinese stock review 

[116] 2023 KSE-100 and categorized financial news  

Table 5: Summary table of models used for text-based 

prediction 

Ref Year Model  Model Type 

[105] 2021 ARMA  Statistical 

Model 

[107] 
2015 VAR 

Statistical 

Model 

[115] 

2015 LSTM 

Machine 

Learning 

Model 

[111] 

2016 SVM, MLP and RBF  

Machine 

Learning 

Model 

[99] 

2016 SVM 

Machine 

Learning 

Model 

[3] 

2017 

Multiclass neural 

network and multiclass 

decision tree  

Machine 

Learning 

Model 

[122] 

2017 RNN 

Machine 

Learning 

Model 

[106] 
2020 Asymmetric GARCH  

Statistical 

Model 

[114] 

2020 LSTM, MKL and SVM  

Machine 

Learning 

Model 

[118] 

2020 LSTM 

Machine 

Learning 

Model 

[129] 2021 RGCN and LSTM Hybrid Model 

[133] 

2021 BERT 

Machine 

Learning 

Model 

[124] 

2021 

BERT, LSTM, logistic 

regression and 

SentWordNet 

Machine 

Learning 

Model 

[105] 2021 LDA and ARMA  Hybrid Model 

[127] 

2022 
LSTM, SVM and 

CNN.  

Machine 

Learning 

Model 

[120] 

2022 
Random forest 

classifier and BERT 

Machine 

Learning 

Model 

[121] 2022 SVM-LSTM-GRU  Hybrid Model 

[126] 2022 CNN and LSTM Hybrid Model 
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[128] 
2022 

Multimodal AdaBoost 

and LSTM 
Hybrid Model 

[113] 

2023 LSTM 

Machine 

Learning 

Model 

 

3.4 Multiple NLP Approaches for textual 

Data 
Text based forecasting of financial market can be classified into 

three different categories of Natural Language Processing 

(NLP): semantic based, sentiment based and event extraction 

based [134]. 

3.4.1 Semantic Based Forecasting of Stock 

Market 
Semantic based analysis is one of the approaches in NLP to 

collect features from textual data for further modelling. 

Financial market forecasting using semantic based approach 

can be used to identify the interconnectivity impact between the 

textual data and financial market fluctuations. This approach 

has a limitation of processing of long-text data [134]. Multiple 

NLP techniques can be used for the extraction of semantics 

from textual data. Bag of Words (BOW) has been used by [135] 

and [136] that break up the text into list of words to quantify 

the words. [137] used Term frequency-inverse document 

frequency (TF-IDF) that calculates the terms present in a 

textual data and identify the importance of each term in a 

document. Pakistan Stock Exchange was predicted using 

multiclass decision tree based on Google trends and 

macroeconomic factors in which semantics of international 

market was quantified [3]. 

3.4.2 Sentiment Based Forecasting of Stock 

Market 
Sentiment analysis is an NLP technique that is used to dig out 

the emotions, opinions or attitude of people towards a certain 

topic or event [138]. It gives result in a form of polarities; 

positive, negative, neutral or sarcastic [139]. Traders’ 

sentiments play a vital role in the fluctuation of prices in stock 

market and can result in heavy loss and profits [140]. Sentiment 

based learning can be classified into three approaches; firstly, 

the lexicon-based approach that uses sentiment dictionaries to 

identify the polarities of each word. Secondly, the machine 

learning approach that trains the sentiment classifiers using 

different techniques like n-gram, BOW or TF-IDF and lastly, 

deep learning approaches that use neural networks to 

automatically extract the feature representation for sentiment 

measure [141]. LSTM model was used by [118] for the 

prediction of financial market based on sentiment analysis. 

[121, 133] analyse the different financial markets based on 

sentiment analysis using BERT model. 

3.4.3 Event Extraction Based Forecasting of 

Stock Market 
Event extraction is a technique that focuses to dig out the 

essential event information from textual dataset and represent 

the extracted data in a structured form. In other words, event 

extraction is used to convert the unstructured natural languages 

into structured one [142].  

FTSE 50 stock index was predicted by [143] based on events 

from Reuters News articles extracted by ViewerPro system that 

filters irrelevant news and identifies events through pattern 

matching. Monitoring the factors that cause the occurrence of 

extreme events can lead to make effective entry and exit 

strategy for investors and can therefore play a significant role 

in decision making [144]. [145] designed an event based hybrid 

model for the prediction of two stock markets S&P 500 index 

and NIFTY with the prediction accuracy of 80% to 86%.The 

relationship between events and financial indicators for the 

prediction of S&P 500 was studied by [146] using dilated 

causal convolution networks with attention (Att-DCNN). Table 

7 summarizes the multiple NLP approaches used for 

forecasting of financial market. 

Table 6: Summary Table of forecasting of financial 

markets using different NLP approaches 

Ref Year Model NLP Approach 

[135] 2006 BOW Semantic Based 

[143] 2014 ViewerPro Event Based 

[136] 2015 BOW Semantic Based 

[137] 2016 TF-IDF Semantic Based 

[3] 2017 Multi class 

decision tree 

Semantic Based 

[122] 2017 BERT Sentiment Based 

[118] 2020 LSTM Sentiment Based 

[123] 2021 BERT Sentiment Based 

[121] 2022 BERT Sentiment Based 

[146] 2020 Att-DCNN Event Based 

4. CONCLUSION 
This survey is performed in order to have a clear picture of the 

methodologies; researchers have been adopting in order to 

predict financial markets. This survey includes the extensive 

study of forecasting of financial market based on multiple 

features and using different approaches. It has been found that 

financial market is sensitive to historical values, 

macroeconomic variables, news and events. Therefore, all 

these features contribute in order to have affective prediction of 

financial markets. 

The extensive study of the review paper of almost two decades 

showed that the prediction of financial market based on 

historical and macroeconomic features is a classical approach 

but text-based forecasting of financial market was not very 

common technique before last few years. Financial market is 

sensitive to tweets, trends, news headlines and related 

discussions in other social media platform. Therefore, natural 

language-based prediction of financial market improves the 

predictivity of the market and incorporating the latest NLP 

techniques in this domain will help the researchers in getting 

efficiency in their results. 

It concludes that as the financial market is sensitive to multiple 

factors therefore all these factors contribute in the efficient 

forecasting of financial markets. Incorporating different types 

of datasets, fusion of datasets and hybrid construction increase 

the predictivity of the future patterns of the market. Along with 

that advanced deep learning models along with classical 

statistical and machine learning models also improve the 

forecastability.  



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.58, November 2025 

17 

 

5. LIMITATIONS 
It is a bigger picture of methodologies adopted for the 

forecasting of financial markets but not all approaches have 

been covered. 
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