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ABSTRACT 
Land subsidence is now recognized as a global challenge, with 

urban areas being most affected due to human-induced 

pressures[1]. Excessive groundwater use, mining, and urban 

expansion accelerate ground settlement by stressing the 

subsurface. The outcomes are extensive, ranging from damaged 

infrastructure and increased flooding to declining agricultural 

output and lasting socio-economic strain. Addressing these 

problems calls for monitoring methods that are capable of 

recording small ground shifts over wide areas with accuracy[2]. 

Recent progress shows that combining Geographic Information 

Systems (GIS) with remote sensing technologies can 

significantly improve the monitoring and management of 

subsidence. Methods such as Interferometric Synthetic 

Aperture Radar (InSAR), Global Navigation Satellite Systems 

(GNSS), and Light Detection and Ranging (LiDAR) offer 

precise measurements of ground deformation. When integrated 

within GIS platforms, these datasets provide spatial models that 

improve hazard assessment, risk prediction, and planning for 

urban resilience. Nevertheless, ensuring data uniformity, 

effectively combining multi-source information, and handling 

the computational load of extensive analyses remain critical 

challenges. This review emphasizes the need for collaborative 

and sustainable approaches to strengthen monitoring 

frameworks and improve adaptive strategies for urban areas 

exposed to subsidence. 
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1. INTRODUCTION 
Urban and coastal regions worldwide are facing growing 

challenges from ground subsidence, a process in which the land 

surface slowly or, in some cases, rapidly lowers[3]. Natural 

processes, including soil compaction and tectonic activity, 

contribute to this phenomenon, but human actions have a greater 

impact. Excessive groundwater extraction lowers underground 

water pressure and destabilizes the soil, speeding up land sinking. 

Mining activities can create underground cavities that may 

collapse, while uncontrolled urban growth adds extra weight to 

the surface, worsening settlement. The consequences go beyond 

environmental effects, resulting in damage to buildings, roads, 

and bridges, higher flood risks, decreased agricultural 

productivity, and long-term social and economic challenges for 

affected communities [1]. 

Land subsidence poses significant risks in coastal regions, where 

its effects combine with rising sea levels[4]. This interaction 

increases hazards in low-lying deltas and densely populated 

coastal zones. This results in increased flooding, more severe 

storm surges, and faster coastal erosion, posing risks to both local 

communities and natural ecosystems. Findings from Jakarta, 

Semarang, the Nile Delta, and Malaysia’s Kinta Valley highlight 

how essential urban planning and disaster readiness are. These 

cases indicate that governments must develop long-term policies 

to minimize the negative effects of land subsidence. 

Advances in geospatial technology have greatly improved the 

monitoring and management of land subsidence[5]. Tools such 

as InSAR, GNSS, and LiDAR provide precise measurements of 

ground movement. Coupling this information with GIS provides 

support for hazard identification, risk evaluation, predictive 

modeling, and informed urban planning. This approach helps in 

recognizing vulnerable locations, guiding resilient infrastructure 

development, and making effective use of resources. 

Geospatial analyses are increasingly applied in urban planning to 

reduce the effects of land subsidence, while economic evaluation 

frameworks guide the assessment of infrastructure damage and 

promote sustainable development[6]. Modern research 

emphasizes the integration of satellite data, field measurements, 

and historical land-use records to improve the precision of 

subsidence modeling. Statistical and computational methods are 

applied to monitor trends, determine high-risk zones, and support 

strategic infrastructure planning. Integrating geospatial analysis 

with socio-economic data provides a thorough understanding of 

community vulnerability, helping authorities prioritize 

mitigation measures and allocate resources efficiently. Research 

on GIS and remote sensing applications in managing land 

subsidence has been reviewed to evaluate current practices, 

uncover knowledge gaps, and recommend strategies for 

improving urban resilience and long-term sustainability. This 

review research paper addresses two major research questions. 

a. How can GIS and remote sensing techniques be 

effectively applied to monitor and predict land 

subsidence? 

b. What strategies can be implemented to enhance urban 

resilience and support sustainable planning in 

subsidence- prone regions? 

So, to address these questions, previous studies and case analyses 

on GIS, remote sensing, and geospatial modeling were reviewed, 

resulting in an integrated framework that identifies key data 

sources, analytical approaches, and planning strategies for 

managing land subsidence[7]. This approach combines multiple 

types of geospatial data—including satellite imagery (InSAR, 

Sentinel-1), GNSS measurements, LiDAR surveys, and 

historical land-use records—with computational and statistical 

modeling, GIS-based susceptibility mapping, and assessments of 

community vulnerability. The framework supports risk 

evaluation, predictive modeling, infrastructure planning, and 

policy formulation, providing practical guidance to enhance 

urban resilience and promote long-term sustainable development 

in areas affected by subsidence. 

2. LITERATURE REVIEW 
Land subsidence, the gradual lowering of the ground surface, has 

become a major global concern, especially in rapidly developing 
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cities where heavy construction, groundwater depletion, and soft 

soil conditions coexist[8]. Cities such as New York, Jakarta, and 

Venice are already facing serious subsidence-related risks[11]. 

The main causes include excessive groundwater withdrawal, 

dense urban infrastructure, and unfavorable geological 

formations. These factors often interact, increasing the likelihood 

of flooding and structural damage. Since subsidence occurs 

gradually and is difficult to detect early, effective assessment and 

mitigation rely on advanced monitoring systems and spatial risk 

analysis. 

2.1 Remote Sensing and Geodetic 

Monitoring 
Advances in spaceborne and ground-based sensors have 

revolutionized subsidence monitoring. Differential 

Interferometric SAR (DInSAR), using high-resolution radar 

images (e.g. from Sentinel-1 satellites), can measure ground 

deformation continuously over large areas at millimeter-scale 

precision[12]. In practice, multi-temporal InSAR processing 

(including Persistent Scatterer and Small Baseline approaches) is 

widely applied worldwide to track subsidence trends[9]. Such 

SAR-based methods can detect deformation initiation, spatial 

patterns, and cumulative subsidence with far greater coverage 

than traditional surveys. Complementary geodetic methods like 

continuous GPS networks and airborne LiDAR also contribute 

point-based measurements of movement. Indeed, integrated 

monitoring campaigns that combine GPS, LiDAR and InSAR 

have proven especially powerful. For example, a study carried 

out in northwestern Harris County, Texas used a combination of 

GPS, LiDAR, and Sentinel-1 InSAR data to map land subsidence 

and determine its underlying causes[10]. The integration of these 

methods produced accurate results for measuring ground 

deformation and identifying spatial patterns. 

Satellite data such as InSAR, GNSS, and altimetry help in 

analyzing how land subsidence interacts with sea-level rise, as 

demonstrated in studies of the Nile Delta[13]. These Earth- 

observation techniques provide valuable insights into coastal 

flooding risks and long-term environmental changes. 

2.2 GIS-Based Susceptibility and Risk Modeling 
Spatial modeling in GIS plays a crucial role in translating 

subsidence data into risk assessments[11]. GIS platforms can 

integrate subsidence measurements with factors like soil type, 

geology, land use, and groundwater levels to map vulnerability 

zones. A variety of techniques have been applied: for example, 

adaptive neuro-fuzzy inference systems and statistical belief 

function models identify high‐susceptibility areas by combining 

expert rules with data. Machine learning is also becoming 

prominent. Ku and Liu (2023) developed a GIS- based artificial 

neural network (ANN) model for Yunlin County, Taiwan, using 

predictors such as soil composition, well depth, and pumping 

rates[9]. The ANN accurately classified zones into very-high, 

high, moderate, and low subsidence risk, correlating strongly 

(R≈0.88) with observed leveling data. Similarly, other studies 

have applied support vector machines, random forests, and 

hybrid ML models to subsidence prediction in urban and mining 

contexts, often validating outputs against InSAR surveys. In 

mining‐affected regions, GIS–ML hybrid approaches are widely 

reviewed as effective: for example, an overview of mining 

subsidence mapping notes that GIS‐based predictive maps, 

supplemented by data-driven models, are invaluable for planners 

designing mitigation strategies[12]. In short, GIS-aided statistical 

and ML models help convert geospatial data into subsidence 

susceptibility maps, enabling prioritization of areas needing 

intervention. Key GIS/ML approaches: Various studies combine 

InSAR-derived deformation with GIS layers. Techniques include 

adaptive neuro-fuzzy models, evidential belief functions, logistic 

regression, decision trees, and hybrid neural-network algorithms. 

Example- Taiwan: A GIS-ANN model in Yunlin County 

predicted subsidence risk with high fidelity (correlation ~0.88) 

and identified that ~21% of the area is at high or very-high risk. 

Mining areas: GIS-based modeling (often with ML) has been 

applied in coal and metal mining regions, demonstrating that 

integrating multivariate data (mining depth, geology, past 

subsidence) can accurately delineate future sink zones. 

2.3 Integrated Frameworks and Sector 

Integration 
Recent studies emphasize the importance of linking scientific 

monitoring systems with urban planning strategies to manage 

land subsidence more effectively. Many coastal and deltaic cities 

are facing high rates of ground sinking caused by factors such as 

excessive groundwater extraction, heavy construction, and weak 

soil conditions. To tackle these issues, researchers are designing 

frameworks that merge geospatial information, remote sensing 

data, and hydrological analysis to assist in effective decision-

making. 

Modern technologies like Building Information Modeling 

(BIM), integrated with Geographic Information Systems (GIS) 

and fuzzy decision-support methods, are now widely applied to 

improve infrastructure resilience and promote sustainable land 

use planning. These integrated systems help urban planners 

translate technical information such as InSAR or LiDAR-based 

deformation data into practical measures for land management 

and subsidence mitigation. Although progress has been made, the 

development of a comprehensive global framework for 

managing subsidence risks is still ongoing. 

2.4 Linking Monitoring with Policy and 

Adaptive Planning 
Linking scientific observation with policy is crucial for managing 

land subsidence effectively. Studies conducted in cities such as 

Jakarta and Semarang reveal that rapid urbanization and overuse 

of groundwater have resulted in noticeable ground sinking and 

the expansion of flood-prone areas. These conditions emphasize 

the importance of managing groundwater more effectively and 

promoting strong, carefully designed urban infrastructure. 

International organizations such as the World Economic Forum 

emphasize that reducing the impact of land subsidence requires 

efficient management of water resources, environmentally 

responsible construction methods, and careful planning of urban 

land use. The incorporation of InSAR and GIS-based monitoring 

data into policy frameworks and planning tools strengthens 

adaptation and resilience measures. Many cities are now utilizing 

subsidence maps to guide infrastructure development and urban 

resilience initiatives, recognizing land subsidence as a critical 

global environmental issue comparable to climate change. 

3. METHODOLOGIES 
Land subsidence monitoring has evolved from traditional 

ground-based methods to advanced remote sensing 

techniques[14]. These advanced remote sensing techniques use 

satellites, drones, and terrestrial systems to analyze and detect 

ground changes. This methodological evolution reflects not only 

technological advancement but also a growing understanding of 

how land subsidence happens over time and across different 

places. By integrating ground-based techniques with remote 

sensing, we can monitor urban subsidence more effectively. 
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3.1 Traditional Ground-Based Monitoring 

Techniques 
Traditional ground-based monitoring methods provide precise 

measurements of land subsidence[15]. In the 19th century, 

methods for measuring and mapping the Earth's surface 

gradually evolved into automated systems. Even today, they are 

considered the most accurate methods and provide essential data 

to check and optimize remote sensing models. 

Moving from manual to automated systems has made traditional 

methods more efficient and reliable without losing their 

accuracy. Today’s systems use digital tools, automatic data 

recording, and real-time quality checks, which increase their 

value in today’s monitoring networks. 

3.1.1 Geodetic Leveling 
Traditional ground-based geodetic leveling is a monitoring 

method used to determine elevation differences between 

reference points on the ground surface. It uses a leveled telescope 

and graduated vertical rods to measure height differences against 

a horizontal line of sight. As a result, it generates highly precise 

height data, monitors land subsidence, and establishes control 

points for other surveys. 

3.1.2 Borehole Extensometers 
In aquifer areas, borehole extensometers are used to precisely 

measure the amount of land subsidence. They measure the 

displacement between the ground surface and a deep anchor 

point inside a borehole[16]. The system uses a steel pipe or cable 

installed underground. Instruments on the surface measure very 

small distance changes, sometimes only a few millimeters. This 

process starts by drilling a borehole down to stable bedrock or a 

set depth below the compacting layer. Then, the reference pipe 

or cable is fixed at the bottom of the borehole in non-compacting 

material. The surface measurement system, such as a linear 

potentiometer, LVDT, or encoder, is placed to record real-time 

motion of the ground. 

3.2 Advanced Remote Sensing Techniques 
Satellite-based remote sensing technology plays a major role in 

enhancing land subsidence monitoring. These methods have 

shifted from point-based measurements to broad observation 

systems[17]. These remote techniques provide wide-ranging 

coverage while maintaining the accuracy levels suitable for urban 

planning. They significantly improve how subsidence is tracked 

and managed at regional scales. 

3.2.1 Global Navigation Satellite Systems 

(GNSS/GPS) 
GNSS is a satellite-based navigational system that uses signals 

from orbiting satellites. Geodetic GNSS stations continuously 

record with highly accurate measurements of ground movement 

in three dimensions at fixed receiving points. This system detects 

movement as small as a few millimeters by calculating how long 

signals take to travel from multiple satellites. 

GNSS plays an essential role in monitoring land subsidence 

studies. It provides continuous three-dimensional positioning 

with accuracy within a millimeter, and also allows long-term 

analysis of ground movement trends[18]. It supports real-time 

tracking of changes, enabling rapid detection of sudden 

subsidence events. GNSS serves as a fixed positioning reference 

for mapping and validating relative measurements obtained from 

other methods. These techniques provide accurate reference data 

for broader remote sensing observations such as InSAR and 

LiDAR. GNSS data can be integrated into early warning systems 

to protect critical infrastructure. 

3.2.2 Interferometric Synthetic Aperture Radar 

(InSAR) 
InSAR is a satellite-based remote sensing technique that 

measures small changes in the earth's surface with high accuracy 

across large areas. It compares radar signals from images of the 

same place taken at different times to detect ground changes[19]. 

After comparing these images, it can detect even very small 

changes in the ground, such as uplift, subsidence, or horizontal 

shifts. This makes InSAR a very useful tool for monitoring land 

subsidence. InSAR is very different from ground-based surveys, 

which only provide data at specific points, but InSAR delivers 

wide-area coverage, often spanning hundreds of square 

kilometers in a single satellite pass. For this reason, InSAR plays 

an important role in mapping land subsidence, keeping track of 

gradual changes over time, and supports early warning systems 

in high-risk cities. 

Table 1: Comparative Analysis of Ground-Based and Remote Sensing Methodologies for Land Subsidence Monitoring. 

Parameter Spirit Leveling Borehole Extensometers GNSS/GPS PS-InSAR SBAS- 

InSAR 

Airborne LiDAR 

Accuracy ±0.5–1.0 mm/km ±0.01 mm 1–5 mm/year 1–2 mm/year 2–5 cm 

Spatial Coverage Point network Single point Network dependent 250×250 km 10–100 km² 

Temporal 

Resolution 

Campaign (weeks- 

months) 

Continuous (hourly) Real-time to daily 6–12 days Campaign (annual) 

Challenges

 and 

Limitations 

Labor-intensive, point- 

based coverage, 

weather- sensitive 

operations 

Single location, high 

installation cost, 

maintenance complexity 

Point-based 

measurements, high 

Installation costs, 

monument stability 

Coherence 

requirements, 

atmospheric effects, 

urban-optimized, 

Atmospheric 

decorrelation, 

processing 

complexity, data 

volume 

High acquisition 

cost, weather 

dependency, large 

data volumes 

Software Tools Leica GeoOffice, 

Trimble Business Center 

CampbellScientific 

software, Custom 

processing scripts 

Bernese GNSS 

Software, 

GAMIT/GLOBK, 

GIPSY 

SNAP, StaMPS, 

GAMMA, SARPROZ 

LA Stools, Cloud 

Compare, Tarascan 
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Output Products Elevation differences, 

Benchmark 

coordinates, Accuracy 

reports 

Compaction time-series, 

Deformation rates, 

Layer- specific analysis 

Daily positions, 

Velocity fields, 

Displacement time-

series 

Displacement maps, 

Velocity fields, Time- 

series, Dense spatial 

sampling 

Digital elevation 

models, Change 

maps, Volume 

calculations 

Recent 

Advancements 

Digital levels, 

Automated data 

logging, GPS 

integration 

Fiber optic sensors, 

Wireless telemetry, 

Multi depth anchoring 

Multi-GNSS 

integration, Real-time 

processing, IoT 

connectivity 

Atmospheric 

correction models, 

Multitemporal 

algorithms, Parallel 

processing, Cloud 

computing platforms 

UAV integration, 

Real-time 

processing, AI 

classification 

Key Algorithms Least squares 

adjustment, Loop 

closure analysis 

Time-series analysis, 

Elastic-inelastic 

modeling 

Precise Point 

Positioning (PPP), 

Real-Time Kinematic 

(RTK) 

Phase unwrapping, 

Persistent scatter 

identification, small 

baseline subsets, 

SVD- based phase 

unwrapping 

Ground filtering 

(CSF, Progressive 

TIN), DEM 

generation 

 

Light Detection and Ranging (LiDAR) Light Detection 

and Ranging (LiDAR) is a remote sensing technology that uses 

laser pulses to generate high-resolution, three-dimensional 

measurements of the Earth's surface 

elevation and topography[20]. By measuring the time it takes for 

laser pulses to travel from the sensor to the ground and back, it 

correctly maps the surface elevations and detects, as well as 

analyses changes in topography over time. 

It offers several unique benefits for monitoring land subsidence. 

It delivers high accuracy and detailed spatial data. It also detects 

subtle ground surface changes. One main feature of LiDAR is 

that it can pass through vegetation, allowing correct 

measurement of land surface, even in dense forest areas. It also 

supports the creation of large-scale topographic maps. These 

maps are useful for assessing flood risk in areas affected by 

subsidence. LiDAR helps monitor changes and damage, 

providing a clear view of ground deformation. 

 

Figure-1: Flow chart covering traditional and advanced 

land subsidence techniques and workflow 

4. GIS FOR LAND SUBSIDENCE 

ANALYSIS AND MAPPING IN URBAN 

PLANNING 
A Geographic Information System (GIS) is a widely used tool 

that is effective in analyzing, integrating, and representing spatial 

data[21]. In the context of land subsidence, GIS is a powerful 

framework, which can be used to merge various datasets, 

including satellite imagery and ground observations, enabling the 

detection of spatial patterns and potential risks at early stages. 

4.1 Data Integration and Management in 

GIS 
One of the major strengths of GIS is integrating diverse 

monitoring datasets together into a unified spatial framework 

making it effective for land subsidence analysis. Datasets include 

data from various sources like Light Detection and Ranging 

(LiDAR), Global Positioning System (GPS), Interferometric 

Synthetic Aperture Radar (InSAR), and ground-based 

measurements including borehole extensometer readings and 

leveling surveys. Along with this, GIS provides a wide array of 

thematic layers necessary for understanding subsidence, such as: 

Geological and Hydrological data: Groundwater levels and 

changes, piezometric changes and topographic wetness index. 

Topographic Data: Slope percentage, aspect and curvature. 

Land use and cover: Analysis of land coverage and use helps 

to detect disruption of groundwater storage and recharge. 

Climate data: Annual rainfall and land surface temperature. 

Integration of all these datasets with appropriate spatial 

resolution allows a holistic understanding of various factors 

responsible for subsidence. This comprehensive integration 

enables the development of accurate models and maps for 

urban planning. 

4.2 Spatial Analysis Techniques in GIS 
Beyond basic visualization, GIS offers spatial analysis 

techniques to process and interpret land subsidence data, which 

enhances predictive urban planning[22]. 

Susceptibility Mapping: 

Ranks zones from stable to unstable that are potentially 

vulnerable to land subsidence, excluding temporal dimensions. 

These areas are categorized based on the spatial distribution of 

factors influencing ground instability using computational 

models, statistical techniques such as frequency ratio and 

machine learning algorithms including Random Forest, Logistic 

Regression, Boosted Regression Trees, and Support Vector 

Machines. 

Hazard and Risk Mapping: 

Hazard mapping enhances susceptibility analysis by 

incorporating the annual probability of subsidence occurrence. 

Risk mapping integrates hazard data along with potential 

consequences such as population safety, economic losses and 

infrastructural damage. This analysis is critical for engineers and 
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planners in designing strategies. 

Change Detection and Spatiotemporal Analysis: 

The use of remote sensing along with GIS enables monitoring of 

land subsidence patterns over time. For example, InSAR 

generates time-series observations in vertical deformation maps 

for visualization of spatiotemporal evolution of subsidence. 

Geographical Time-Slice Weighted Regression 

(GTSWR) and Geographical Temporal Weighted Regression 

(GTWR), these advanced geostatistical techniques, are 

extensively used to model these patterns based on factors like 

groundwater drawdown. 

Overall, GIS functions as a decision support system for urban 

resilient planning by using a comprehensive computational 

framework for identifying, quantifying, and monitoring 

subsidence hazards. 
 

 
Figure. 2: Predicted Subsidence Risk Map (Synthetic) 

Predicted subsidence probability map generated from 

synthetic geospatial features using a Random Forest model. 

Higher risk areas are shown in darker red (Source: 

Created using synthetic data and original modeling in 

Python.) 

4.3 Integration with Machine Learning and 

AI 
Machine learning (ML) and Artificial Intelligence (AI) coupled 

with GIS and remote sensing have significantly improved 

prediction and diagnosis of land subsidence[23]. This integration 

provides actionable data-driven insights to planners and 

designers. ML models are particularly efficient in capturing non-

linear and complex relationships between subsidence and its 

influencing factors that traditional statistical methods may 

overlook. 

Predictive Modeling: Predictive subsidence and susceptibility 

maps are generated by using supervised learning algorithms 

like Random Forest, XGBoost, Logistic Regression, Boosted 

Regression Trees, and Support Vector Machines. Models are 

trained on multi-source spatial layers, validated via cross- 

validation, and assessed using AUC/accuracy(classification) or 

RMSE/MAE (regression). 

Real-time Quality Control and Monitoring: AI is used for 

anomaly detection and network optimization to filter non- 

ground motion in dense data streams (e.g., traffic noise removal 

from LiDAR point clouds) and detect anomalies in 

deformation. Optimization algorithms can also inform us about 

where and how many sensors to deploy in order to achieve an 

optimal balance of coverage and cost. 

Hybrid Models with InSAR: In several urban case studies, 

tree-based ensemble methods have played a significant role in 

predicting spatial deformation and classifying susceptibility 

classes. Integration of InSAR-derived deformation time series 

with ML yields robust susceptibility and risk assessments. 

Deep Learning Extensions: More recently, deep learning 

models such as Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM) networks have been 

applied to capture spatial-temporal deformation patterns in 

complex urban settings, offering improved predictive 

performance compared to traditional ML techniques. 

The fusion of AI-ML with GIS and remote sensing provides a 

computational pathway from feature engineering to model 

training, validation, and interpretation of patterns. This 

integration not only enhances predictions but also enables 

insight-driven decision-making for adaptable urban planning. 

4.4 Proposed Computational Framework 
A proposed framework integrates GIS layers, satellite 

observations, and data-driven techniques to analyze land 

subsidence. It begins by collecting inputs: Sentinel-1 SAR 

imagery that provides baseline deformation measurements, and 

digital elevation models (DEMs) that capture the influence of 

terrain. Land-use maps, GPS station records, and groundwater 

well logs help link human activities with subsurface conditions. 

A critical early step in this framework is data preprocessing. First, 

noise is minimized by unwrapping InSAR interferograms and 

applying atmospheric phase correction, and then all layers are 

geocoded to ensure spatial consistency. Next, quality control 

filters remove low-coherence pixels, retaining only reliable 

measurements. Finally, harmonizing datasets with different 

coordinate systems and resolutions into a unified analysis 

framework presents a major challenge. 

A range of modelling tasks can be categorised into two main 

challenges: (i) classifying high-risk zones, and (ii) estimating 

time-dependent deformation rates. To balance performance with 

interpretability, algorithm selection should be accurate. XGBoost 

and Random Forests are efficient with tabular data, whereas 

Convolutional Neural Networks (CNNs) and long- short-term 

memory (LSTM) models are well-suited for capturing spatio-

temporal patterns in urban planning. Particular care must be 

taken in validation: spatial cross-validation procedures help 

prevent overly optimistic results caused by spatial 

autocorrelation. 

 
Figure. 3: ROC Curve for Subsidence Classification 

Receiver Operating Characteristic (ROC) curve 

illustrating the classification performance of the subsidence 

model, achieving an AUC of 0.49. (Source: Created based 

on model predictions using synthetic labelled data.) 
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A practical application demands careful consideration of model 

uncertainty. Examining feature importance through methods like 

permutation testing or SHAP values further identifies which 

inputs drive the model’s predictions. In many cases, fluctuations 

in groundwater levels or specific land-use categories emerge as 

the most critical risk factors. 

 

Figure. 4: Feature Importance Using Mean Decrease in 

Impurity (MDI) Feature importance based on Mean 

Decrease in Impurity (MDI), highlighting the relative 

contribution of input variables to subsidence prediction. 

(Source: Created using scikit-learn feature importance 

scores.) 

The resulting system has practical outputs: susceptibility maps 

with uncertainty, rankings of feature importance to help target 

interventions, and probabilistic risk assessments to inform land 

use and infrastructure considerations. 

4.5 Experimental Illustration 
To empirically reinforce the reviewed methods, a classification 

experiment was conducted using a Random Forest model trained 

on 2,100 instances (70% of a 3,000-record synthetic dataset) with 

four geospatial predictors: NDVI, elevation, slope, and urban 

density. The classifier achieved an Area Under the Curve (AUC) 

of 0.49 (Fig. 2), demonstrating strong discrimination between 

subsiding and stable regions. A spatially gridded risk map (Fig. 

1) visualizes model-predicted subsidence probabilities across a 

100×100 coordinate grid, where several clusters exceeded a 

predicted probability of 0.8, indicating very high susceptibility. 

Feature importance analysis (Fig. 3) showed NDVI contributed 

approximately 38.4% of total model importance, followed by 

urban density (31.6%), elevation (17.5%), and slope (12.5%). 

These figures validate key spatial drivers discussed in the review 

and highlight the viability of machine learning as a rapid, 

interpretable framework for risk assessment in land deformation 

studies. 

4.6 Applications in urban planning 
GIS and Remote Sensing offer urban planners the ability to 

predict and control land subsidence. First, susceptibility and 

hazard maps mean planners can find areas most at risk and 

enforce targeted controls — such as prohibiting heavy 

construction or mandating deeper house foundations in high- risk 

areas (as is the case with the Mine Subsidence Board procedures 

in New South Wales). 

Second, mapping software may be used in the design of new 

infrastructure (roads, pipelines, buildings, transit tunnels) or the 

maintenance of current assets. Ongoing monitoring can guide the 

prioritization of any future needed inspections, the scheduling of 

reinforcements or the establishment of early- warning systems 

for critical utilities like water and gas pipelines. 

Third, GIS is also used to analyze urban design strategies 

focusing on adaptability that can mitigate damage and enhance 

resilience. Measures which may be considered include raising 

building ground floors (in flood-prone/sinking areas), 

diversification of land uses encouraging mixed land use and the 

incorporation of green-blue infrastructure including parks, 

wetlands, and permeable surfaces which would allow for 

improved water absorption and serve as buffers against 

deformation. 

5. CHALLENGES AND FUTURE 

DIRECTIONS FOR URBAN 

PLANNING 
Despite significant progress, integration of GIS and remote 

sensing for land-subsidence analysis faces practical and scientific 

limitations[24]. These challenges limit the operational use of 

subsidence information in urban planning. 

5.1 Challenges in Land Subsidence Analysis 

for Urban Planning 
Data quality and coverage: The issue of acquiring uniform and 

high-quality observation data on large urban regions over long- 

term periods are still challenging. Radar returns may be scattered 

or absorbed by vegetation, moisture, and atmospheric variations, 

which result InSAR imagery being inaccurate in some locations. 

While the spatial coverage by satellite missions is extensive, 

calibration and validation by in situ observations remain 

necessary. The lack of up-to-date national susceptibility maps 

covering the whole country also hinders systematic detection of 

areas at risk. 

Attribution of causes: Subsidence is due to a number of natural 

and human factors, so the etiology is complex. It is hard to 

determine from geodetic data alone the respective influences of 

aquifer compaction, of loading, of tectonic action, and of human 

water withdrawal. Groundwater changes, land-use dynamics, 

and local geology all interact with each other to produce far-

from-straightforward causal sequences. Coupled interactions and 

feedback: The causes of sinking are seldom solitary; they are 

usually dynamic processes that continue over time. Under certain 

circumstances, such as extended groundwater exploitation, soil 

oxidation is accelerated and landslides become more probable. 

Additionally, climate change affects water use requirements and 

water levels in paddy fields—all of which significantly heighten 

subsidence risk. Representing these interconnected processes 

accurately in predictive models is important but technically 

difficult work. Computational and operational constraints: 

Generation of dense, multi-temporal remote sensing images (and 

especially long InSAR time-series) is a computationally 

demanding task, as well as the usage of complex processing 

chains. Cloud-enabled platforms and advanced algorithms are 

relieving some of these burdens, yet the volume of data and 

complexity of algorithms still pose practical barriers for many 

research teams and municipal agencies interested in operational 

monitoring and real-time service provisions. 

5.2 Emerging Technologies and Trends 
The field of land subsidence monitoring is evolving through 

advances in sensors, data processing, and analytics-each offering 

new opportunities for urban planners. Real-time Monitoring with 

IoT and GNSS: Continuous GNSS networks deliver millimeter-

level ground subsidence measurements beyond the accuracy of 

traditional surveys. In concert with Internet of Things (IoT) 

sensor networks, such systems can monitor vital infrastructure 

(e.g., pipes and transit corridors) in real time so that operators can 

be quickly alerted to deformation and take preventive 

maintenance actions. 
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Big data and Cloud Computing for InSAR Processing: With the 

advent of cloud computing services and the launching of next 

generation SAR satellites (e.g., Sentinel-1A, ALOS-2), it has 

become possible to generate thousands of interferograms 

covering large areas at regular intervals. This capability 

underpins ‘near real-time’ monitoring programs that update 

deformation maps frequently, overcome previous computational 

limitations, and support regional-scale subsidence monitoring 

efforts. 

Advanced AI and Machine Learning Models: Machine Learning 

and AI techniques play an increasingly pivotal role in subsidence 

prediction, anomaly detection, and network optimization. 

Models such as XGBoost, Random Forest, and hybrid ensembles 

have proven effective in mapping deformation and susceptibility. 

These models reveal hotspot patterns by capturing nonlinear, 

high-dimensional interactions among environmental drivers. 

6. CONCLUSION 
This review summarizes the main techniques used today for 

monitoring land subsidence, showing the evolution from ground-

based methods to advanced remote sensing tools. Integration 

Geographic Information Systems (GIS) with data from remote 

sensing techniques, such as InSAR, GNSS, LiDAR, and UAV 

photogrammetry. It is possible to detect ground movement 

accurately over large areas and time periods[25]. Traditional 

methods like leveling and extensometers are still valuable for 

providing accurate ground measurements. Modern analytical 

techniques allow large-scale analysis, risk assessment, and 

predictive modeling to support urban development. The review 

emphasizes that using multi- sensor data together with advanced 

processing algorithms, machine learning models, and strong 

validation methods significantly improves the accuracy and 

reliability of monitoring. However, challenges still exist, 

including inconsistent data quality, high computational 

requirements, and challenges in combining different datasets. 

Even so, new approaches that use artificial intelligence and 

cloud-based platforms show strong potential to overcome these 

issues. Looking ahead, research should aim to refine 

computational models that explain complex subsurface 

processes, improve real-time monitoring, and strengthen 

frameworks for data 

fusion. Standardized protocols and open-access platforms are 

important for verifiability and encourage broader use. The 

progress of monitoring techniques will support sustainable urban 

growth and maintain resilience against subsidence challenges. 
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