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ABSTRACT

Land subsidence is now recognized as a global challenge, with
urban areas being most affected due to human-induced
pressures[1]. Excessive groundwater use, mining, and urban
expansion accelerate ground settlement by stressing the
subsurface. The outcomes are extensive, ranging from damaged
infrastructure and increased flooding to declining agricultural
output and lasting socio-economic strain. Addressing these
problems calls for monitoring methods that are capable of
recording small ground shifts over wide areas with accuracy[2].
Recent progress shows that combining Geographic Information
Systems (GIS) with remote sensing technologies can
significantly improve the monitoring and management of
subsidence. Methods such as Interferometric Synthetic
Aperture Radar (InSAR), Global Navigation Satellite Systems
(GNSS), and Light Detection and Ranging (LiDAR) offer
precise measurements of ground deformation. When integrated
within GIS platforms, these datasets provide spatial models that
improve hazard assessment, risk prediction, and planning for
urban resilience. Nevertheless, ensuring data uniformity,
effectively combining multi-source information, and handling
the computational load of extensive analyses remain critical
challenges. This review emphasizes the need for collaborative
and sustainable approaches to strengthen monitoring
frameworks and improve adaptive strategies for urban areas
exposed to subsidence.
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1. INTRODUCTION

Urban and coastal regions worldwide are facing growing
challenges from ground subsidence, a process in which the land
surface slowly or, in some cases, rapidly lowers[3]. Natural
processes, including soil compaction and tectonic activity,
contribute to this phenomenon, but human actions have a greater
impact. Excessive groundwater extraction lowers underground
water pressure and destabilizes the soil, speeding up land sinking.
Mining activities can create underground cavities that may
collapse, while uncontrolled urban growth adds extra weight to
the surface, worsening settlement. The consequences go beyond
environmental effects, resulting in damage to buildings, roads,
and bridges, higher flood risks, decreased agricultural
productivity, and long-term social and economic challenges for
affected communities [1].

Land subsidence poses significant risks in coastal regions, where
its effects combine with rising sea levels[4]. This interaction
increases hazards in low-lying deltas and densely populated
coastal zones. This results in increased flooding, more severe
storm surges, and faster coastal erosion, posing risks to both local
communities and natural ecosystems. Findings from Jakarta,
Semarang, the Nile Delta, and Malaysia’s Kinta Valley highlight
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how essential urban planning and disaster readiness are. These
cases indicate that governments must develop long-term policies
to minimize the negative effects of land subsidence.

Advances in geospatial technology have greatly improved the
monitoring and management of land subsidence[5]. Tools such
as InNSAR, GNSS, and LiDAR provide precise measurements of
ground movement. Coupling this information with GIS provides
support for hazard identification, risk evaluation, predictive
modeling, and informed urban planning. This approach helps in
recognizing vulnerable locations, guiding resilient infrastructure
development, and making effective use of resources.

Geospatial analyses are increasingly applied in urban planning to
reduce the effects of land subsidence, while economic evaluation
frameworks guide the assessment of infrastructure damage and
promote sustainable development[6]. Modern research
emphasizes the integration of satellite data, field measurements,
and historical land-use records to improve the precision of
subsidence modeling. Statistical and computational methods are
applied to monitor trends, determine high-risk zones, and support
strategic infrastructure planning. Integrating geospatial analysis
with socio-economic data provides a thorough understanding of
community vulnerability, helping authorities prioritize
mitigation measures and allocate resources efficiently. Research
on GIS and remote sensing applications in managing land
subsidence has been reviewed to evaluate current practices,
uncover knowledge gaps, and recommend strategies for
improving urban resilience and long-term sustainability. This
review research paper addresses two major research questions.

a. How can GIS and remote sensing techniques be
effectively applied to monitor and predict land
subsidence?

b.  What strategies can be implemented to enhance urban
resilience and support sustainable planning in
subsidence- prone regions?

So, to address these questions, previous studies and case analyses
on GIS, remote sensing, and geospatial modeling were reviewed,
resulting in an integrated framework that identifies key data
sources, analytical approaches, and planning strategies for
managing land subsidence[7]. This approach combines multiple
types of geospatial data—including satellite imagery (InSAR,
Sentinel-1), GNSS measurements, LiDAR surveys, and
historical land-use records—with computational and statistical
modeling, GIS-based susceptibility mapping, and assessments of
community vulnerability. The framework supports risk
evaluation, predictive modeling, infrastructure planning, and
policy formulation, providing practical guidance to enhance
urban resilience and promote long-term sustainable development
in areas affected by subsidence.

2. LITERATURE REVIEW

Land subsidence, the gradual lowering of the ground surface, has
become a major global concern, especially in rapidly developing
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cities where heavy construction, groundwater depletion, and soft
soil conditions coexist[8]. Cities such as New York, Jakarta, and
Venice are already facing serious subsidence-related risks[11].
The main causes include excessive groundwater withdrawal,
dense urban infrastructure, and unfavorable geological
formations. These factors often interact, increasing the likelihood
of flooding and structural damage. Since subsidence occurs
gradually and is difficult to detect early, effective assessment and
mitigation rely on advanced monitoring systems and spatial risk
analysis.

2.1 Remote Sensing and Geodetic

Monitoring

Advances in spaceborne and ground-based sensors have
revolutionized subsidence monitoring. Differential
Interferometric SAR (DInSAR), using high-resolution radar
images (e.g. from Sentinel-1 satellites), can measure ground
deformation continuously over large areas at millimeter-scale
precision[12]. In practice, multi-temporal InSAR processing
(including Persistent Scatterer and Small Baseline approaches) is
widely applied worldwide to track subsidence trends[9]. Such
SAR-based methods can detect deformation initiation, spatial
patterns, and cumulative subsidence with far greater coverage
than traditional surveys. Complementary geodetic methods like
continuous GPS networks and airborne LiDAR also contribute
point-based measurements of movement. Indeed, integrated
monitoring campaigns that combine GPS, LiDAR and InSAR
have proven especially powerful. For example, a study carried
out in northwestern Harris County, Texas used a combination of
GPS, LiDAR, and Sentinel-1 InSAR data to map land subsidence
and determine its underlying causes[10]. The integration of these
methods produced accurate results for measuring ground
deformation and identifying spatial patterns.

Satellite data such as InSAR, GNSS, and altimetry help in
analyzing how land subsidence interacts with sea-level rise, as
demonstrated in studies of the Nile Delta[13]. These Earth-
observation techniques provide valuable insights into coastal
flooding risks and long-term environmental changes.

2.2 GIS-Based Susceptibility and Risk Modeling
Spatial modeling in GIS plays a crucial role in translating
subsidence data into risk assessments[11]. GIS platforms can
integrate subsidence measurements with factors like soil type,
geology, land use, and groundwater levels to map vulnerability
zones. A variety of techniques have been applied: for example,
adaptive neuro-fuzzy inference systems and statistical belief
function models identify high-susceptibility areas by combining
expert rules with data. Machine learning is also becoming
prominent. Ku and Liu (2023) developed a GIS- based artificial
neural network (ANN) model for Yunlin County, Taiwan, using
predictors such as soil composition, well depth, and pumping
rates[9]. The ANN accurately classified zones into very-high,
high, moderate, and low subsidence risk, correlating strongly
(R~0.88) with observed leveling data. Similarly, other studies
have applied support vector machines, random forests, and
hybrid ML models to subsidence prediction in urban and mining
contexts, often validating outputs against InSAR surveys. In
mining-affected regions, GIS-ML hybrid approaches are widely
reviewed as effective: for example, an overview of mining
subsidence mapping notes that GIS-based predictive maps,
supplemented by data-driven models, are invaluable for planners
designing mitigation strategies[12]. In short, GIS-aided statistical
and ML models help convert geospatial data into subsidence
susceptibility maps, enabling prioritization of areas needing
intervention. Key GIS/ML approaches: Various studies combine
InSAR-derived deformation with GIS layers. Techniques include
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adaptive neuro-fuzzy models, evidential belief functions, logistic
regression, decision trees, and hybrid neural-network algorithms.
Example- Taiwan: A GIS-ANN model in Yunlin County
predicted subsidence risk with high fidelity (correlation ~0.88)
and identified that ~21% of the area is at high or very-high risk.
Mining areas: GIS-based modeling (often with ML) has been
applied in coal and metal mining regions, demonstrating that
integrating multivariate data (mining depth, geology, past
subsidence) can accurately delineate future sink zones.

2.3 Integrated Frameworks and Sector

Integration

Recent studies emphasize the importance of linking scientific
monitoring systems with urban planning strategies to manage
land subsidence more effectively. Many coastal and deltaic cities
are facing high rates of ground sinking caused by factors such as
excessive groundwater extraction, heavy construction, and weak
soil conditions. To tackle these issues, researchers are designing
frameworks that merge geospatial information, remote sensing
data, and hydrological analysis to assist in effective decision-
making.

Modern technologies like Building Information Modeling
(BIM), integrated with Geographic Information Systems (GIS)
and fuzzy decision-support methods, are now widely applied to
improve infrastructure resilience and promote sustainable land
use planning. These integrated systems help urban planners
translate technical information such as InSAR or LiDAR-based
deformation data into practical measures for land management
and subsidence mitigation. Although progress has been made, the
development of a comprehensive global framework for
managing subsidence risks is still ongoing.

2.4 Linking Monitoring with Policy and
Adaptive Planning

Linking scientific observation with policy is crucial for managing
land subsidence effectively. Studies conducted in cities such as
Jakarta and Semarang reveal that rapid urbanization and overuse
of groundwater have resulted in noticeable ground sinking and
the expansion of flood-prone areas. These conditions emphasize
the importance of managing groundwater more effectively and
promoting strong, carefully designed urban infrastructure.

International organizations such as the World Economic Forum
emphasize that reducing the impact of land subsidence requires
efficient management of water resources, environmentally
responsible construction methods, and careful planning of urban
land use. The incorporation of InSAR and GIS-based monitoring
data into policy frameworks and planning tools strengthens
adaptation and resilience measures. Many cities are now utilizing
subsidence maps to guide infrastructure development and urban
resilience initiatives, recognizing land subsidence as a critical
global environmental issue comparable to climate change.

3. METHODOLOGIES

Land subsidence monitoring has evolved from traditional
ground-based methods to advanced remote sensing
techniques[14]. These advanced remote sensing techniques use
satellites, drones, and terrestrial systems to analyze and detect
ground changes. This methodological evolution reflects not only
technological advancement but also a growing understanding of
how land subsidence happens over time and across different
places. By integrating ground-based techniques with remote
sensing, we can monitor urban subsidence more effectively.
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3.1 Traditional Ground-Based Monitoring

Techniques
Traditional ground-based monitoring methods provide precise
measurements of land subsidence[15]. In the 19th century,
methods for measuring and mapping the Earth's surface
gradually evolved into automated systems. Even today, they are
considered the most accurate methods and provide essential data
to check and optimize remote sensing models.

Moving from manual to automated systems has made traditional
methods more efficient and reliable without losing their
accuracy. Today’s systems use digital tools, automatic data
recording, and real-time quality checks, which increase their
value in today’s monitoring networks.

3.1.1 Geodetic Leveling

Traditional ground-based geodetic leveling is a monitoring
method used to determine elevation differences between
reference points on the ground surface. It uses a leveled telescope
and graduated vertical rods to measure height differences against
a horizontal line of sight. As a result, it generates highly precise
height data, monitors land subsidence, and establishes control
points for other surveys.

3.1.2  Borehole Extensometers
In aquifer areas, borehole extensometers are used to precisely

measure the amount of land subsidence. They measure the
displacement between the ground surface and a deep anchor
point inside a borehole[16]. The system uses a steel pipe or cable
installed underground. Instruments on the surface measure very
small distance changes, sometimes only a few millimeters. This
process starts by drilling a borehole down to stable bedrock or a
set depth below the compacting layer. Then, the reference pipe
or cable is fixed at the bottom of the borehole in non-compacting
material. The surface measurement system, such as a linear
potentiometer, LVDT, or encoder, is placed to record real-time
motion of the ground.

3.2 Advanced Remote Sensing Techniques

Satellite-based remote sensing technology plays a major role in
enhancing land subsidence monitoring. These methods have
shifted from point-based measurements to broad observation
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systems[17]. These remote techniques provide wide-ranging
coverage while maintaining the accuracy levels suitable for urban
planning. They significantly improve how subsidence is tracked
and managed at regional scales.

3.2.1 Global Navigation Satellite Systems
(GNSS/GPS)

GNSS is a satellite-based navigational system that uses signals
from orbiting satellites. Geodetic GNSS stations continuously
record with highly accurate measurements of ground movement
in three dimensions at fixed receiving points. This system detects
movement as small as a few millimeters by calculating how long
signals take to travel from multiple satellites.

GNSS plays an essential role in monitoring land subsidence
studies. It provides continuous three-dimensional positioning
with accuracy within a millimeter, and also allows long-term
analysis of ground movement trends[18]. It supports real-time
tracking of changes, enabling rapid detection of sudden
subsidence events. GNSS serves as a fixed positioning reference
for mapping and validating relative measurements obtained from
other methods. These techniques provide accurate reference data
for broader remote sensing observations such as InSAR and
LiDAR. GNSS data can be integrated into early warning systems
to protect critical infrastructure.

3.2.2  Interferometric Synthetic Aperture Radar
(InSAR)

InSAR is a satellite-based remote sensing technique that
measures small changes in the earth's surface with high accuracy
across large areas. It compares radar signals from images of the
same place taken at different times to detect ground changes[19].
After comparing these images, it can detect even very small
changes in the ground, such as uplift, subsidence, or horizontal
shifts. This makes InSAR a very useful tool for monitoring land
subsidence. InSAR is very different from ground-based surveys,
which only provide data at specific points, but InSAR delivers
wide-area coverage, often spanning hundreds of square
kilometers in a single satellite pass. For this reason, InSAR plays
an important role in mapping land subsidence, keeping track of
gradual changes over time, and supports early warning systems
in high-risk cities.

Table 1: Comparative Analysis of Ground-Based and Remote Sensing Methodologies for Land Subsidence Monitoring.

Parameter Spirit Leveling Borehole Extensometers| GNSS/GPS PS-InSAR SBAS- Airborne LiDAR
InSAR
Accuracy +0.5-1.0 mm/km +0.01 mm 1-5 mm/year 1-2 mm/year 2-5cm
Spatial Coverage | Point network Single point Network dependent 250%250 km 10-100 km?
Temporal Campaign (weeks- Continuous (hourly) Real-time to daily 6-12 days Campaign (annual)
Resolution months)
Challenges Labor-intensive, point- | Single location, high | Point-based Coherence High acquisition
and based coverage, | installation cost, | measurements, high requirements, cost, weather
Limitations weather- sensitive | maintenance complexity | Installation costs, atmospheric effects, dependency, large
operations monument stability urban-optimized, data volumes
Atmospheric
decorrelation,
processing
complexity, data
volume
Software Tools Leica GeoOffice, CampbellScientific Bernese GNSS SNAP, StaMPS, LA Stools, Cloud
Trimble Business Center| software, Custom Software, GAMMA, SARPROZ | Compare, Tarascan
processing scripts GAMIT/GLOBK,
GIPSY
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Output Products | Elevation differences, | Compaction time-series, | Daily positions, | Displacement maps, | Digital elevation
Benchmark Deformation rates, | Velocity fields, | Velocity fields, Time- | models, Change
coordinates, Accuracy | Layer- specific analysis | Displacement  time- | series, Dense spatial maps, Volume
reports series sampling calculations

Recent Digital levels, | Fiber optic sensors, [ Multi-GNSS Atmospheric UAV integration,

Advancements Automated data | Wireless telemetry, | integration, Real-time | correction models, | Real-time
logging, GPS | Multi depth anchoring processing, IoT | Multitemporal processing, Al
integration connectivity algorithms, Parallel | classification

processing, Cloud
computing platforms
Key Algorithms | Least squares Time-series analysis, Precise Point | Phase  unwrapping, | Ground filtering

Elastic-inelastic
modeling

adjustment, Loop
closure analysis

Positioning (PPP), | Persistent scatter
Real-Time Kinematic | identification, small | TIN), DEM
(RTK) baseline subsets, | generation

(CSF, Progressive

SVD- based phase
unwrapping

Light Detection and Ranging (LiDAR) Light Detection
and Ranging (LiDAR) is a remote sensing technology that uses
laser pulses to generate high-resolution, three-dimensional
measurements of the Earth's surface

elevation and topography[20]. By measuring the time it takes for
laser pulses to travel from the sensor to the ground and back, it
correctly maps the surface elevations and detects, as well as
analyses changes in topography over time.

It offers several unique benefits for monitoring land subsidence.
It delivers high accuracy and detailed spatial data. It also detects
subtle ground surface changes. One main feature of LiDAR is
that it can pass through vegetation, allowing correct
measurement of land surface, even in dense forest areas. It also
supports the creation of large-scale topographic maps. These
maps are useful for assessing flood risk in areas affected by
subsidence. LiDAR helps monitor changes and damage,
providing a clear view of ground deformation.

Data Collection
satellite images ground l

sensors geological data

Data Preprocessing
* noise removal
GIS Analysis normalization data
spatial data integration fusion
mapping geospatial L
correlation

¢ Machine Learning
Algorithms
training models
regression classification
anomaly detection
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detection trend analysis l

b
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Figure-1: Flow chart covering traditional and advanced
land subsidence techniques and workflow

4. GIS FOR LAND SUBSIDENCE
ANALYSIS AND MAPPING IN URBAN
PLANNING

A Geographic Information System (GIS) is a widely used tool

that is effective in analyzing, integrating, and representing spatial

data[21]. In the context of land subsidence, GIS is a powerful
framework, which can be used to merge various datasets,

including satellite imagery and ground observations, enabling the
detection of spatial patterns and potential risks at early stages.

4.1 Data Integration and Management in
GIS

One of the major strengths of GIS is integrating diverse
monitoring datasets together into a unified spatial framework
making it effective for land subsidence analysis. Datasets include
data from various sources like Light Detection and Ranging
(LiDAR), Global Positioning System (GPS), Interferometric
Synthetic Aperture Radar (InSAR), and ground-based
measurements including borehole extensometer readings and
leveling surveys. Along with this, GIS provides a wide array of
thematic layers necessary for understanding subsidence, such as:

Geological and Hydrological data: Groundwater levels and
changes, piezometric changes and topographic wetness index.
Topographic Data: Slope percentage, aspect and curvature.
Land use and cover: Analysis of land coverage and use helps
to detect disruption of groundwater storage and recharge.

Climate data: Annual rainfall and land surface temperature.
Integration of all these datasets with appropriate spatial
resolution allows a holistic understanding of various factors
responsible for subsidence. This comprehensive integration
enables the development of accurate models and maps for
urban planning.

4.2 Spatial Analysis Techniques in GIS
Beyond basic visualization, GIS offers spatial analysis
techniques to process and interpret land subsidence data, which
enhances predictive urban planning[22].

Susceptibility Mapping:

Ranks zones from stable to unstable that are potentially
vulnerable to land subsidence, excluding temporal dimensions.
These areas are categorized based on the spatial distribution of
factors influencing ground instability using computational
models, statistical techniques such as frequency ratio and
machine learning algorithms including Random Forest, Logistic
Regression, Boosted Regression Trees, and Support Vector
Machines.

Hazard and Risk Mapping:

Hazard mapping enhances susceptibility analysis by
incorporating the annual probability of subsidence occurrence.
Risk mapping integrates hazard data along with potential
consequences such as population safety, economic losses and
infrastructural damage. This analysis is critical for engineers and
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planners in designing strategies.

Change Detection and Spatiotemporal Analysis:

The use of remote sensing along with GIS enables monitoring of
land subsidence patterns over time. For example, InSAR
generates time-series observations in vertical deformation maps
for visualization of spatiotemporal evolution of subsidence.
Geographical Time-Slice Weighted Regression

(GTSWR) and Geographical Temporal Weighted Regression
(GTWR), these advanced geostatistical techniques, are
extensively used to model these patterns based on factors like
groundwater drawdown.

Overall, GIS functions as a decision support system for urban
resilient planning by using a comprehensive computational
framework for identifying, quantifying, and monitoring
subsidence hazards.

Latitude
Predicted Subsidence Risk (Probability)

Longitude
Figure. 2: Predicted Subsidence Risk Map (Synthetic)
Predicted subsidence probability map generated from
synthetic geospatial features using a Random Forest model.
Higher risk areas are shown in darker red (Source:
Created using synthetic data and original modeling in
Python.)

4.3 Integration with Machine Learning and

Al
Machine learning (ML) and Artificial Intelligence (AI) coupled
with GIS and remote sensing have significantly improved
prediction and diagnosis of land subsidence[23]. This integration
provides actionable data-driven insights to planners and
designers. ML models are particularly efficient in capturing non-
linear and complex relationships between subsidence and its
influencing factors that traditional statistical methods may
overlook.

Predictive Modeling: Predictive subsidence and susceptibility
maps are generated by using supervised learning algorithms
like Random Forest, XGBoost, Logistic Regression, Boosted
Regression Trees, and Support Vector Machines. Models are
trained on multi-source spatial layers, validated via cross-
validation, and assessed using AUC/accuracy(classification) or
RMSE/MAE (regression).

Real-time Quality Control and Monitoring: Al is used for
anomaly detection and network optimization to filter non-
ground motion in dense data streams (e.g., traffic noise removal
from LiDAR point clouds) and detect anomalies in
deformation. Optimization algorithms can also inform us about
where and how many sensors to deploy in order to achieve an
optimal balance of coverage and cost.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.57, November 2025

Hybrid Models with InSAR: In several urban case studies,
tree-based ensemble methods have played a significant role in
predicting spatial deformation and classifying susceptibility
classes. Integration of InSAR-derived deformation time series
with ML yields robust susceptibility and risk assessments.

Deep Learning Extensions: More recently, deep learning
models such as Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks have been
applied to capture spatial-temporal deformation patterns in
complex urban settings, offering improved predictive
performance compared to traditional ML techniques.

The fusion of AI-ML with GIS and remote sensing provides a
computational pathway from feature engineering to model
training, validation, and interpretation of patterns. This
integration not only enhances predictions but also enables
insight-driven decision-making for adaptable urban planning.

4.4 Proposed Computational Framework

A proposed framework integrates GIS layers, satellite
observations, and data-driven techniques to analyze land
subsidence. It begins by collecting inputs: Sentinel-1 SAR
imagery that provides baseline deformation measurements, and
digital elevation models (DEMs) that capture the influence of
terrain. Land-use maps, GPS station records, and groundwater
well logs help link human activities with subsurface conditions.
A critical early step in this framework is data preprocessing. First,
noise is minimized by unwrapping InSAR interferograms and
applying atmospheric phase correction, and then all layers are
geocoded to ensure spatial consistency. Next, quality control
filters remove low-coherence pixels, retaining only reliable
measurements. Finally, harmonizing datasets with different
coordinate systems and resolutions into a unified analysis
framework presents a major challenge.

A range of modelling tasks can be categorised into two main

challenges: (i) classifying high-risk zones, and (ii) estimating
time-dependent deformation rates. To balance performance with
interpretability, algorithm selection should be accurate. XGBoost
and Random Forests are efficient with tabular data, whereas
Convolutional Neural Networks (CNNs) and long- short-term
memory (LSTM) models are well-suited for capturing spatio-
temporal patterns in urban planning. Particular care must be
taken in validation: spatial cross-validation procedures help
prevent overly optimistic results caused by spatial
autocorrelation.

ROC Curve for Subsidence Classification
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-
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0.0 0.2 0.4 06 08 10

False Positive Rate

Figure. 3: ROC Curve for Subsidence Classification
Receiver Operating Characteristic (ROC) curve
illustrating the classification performance of the subsidence
model, achieving an AUC of 0.49. (Source: Created based
on model predictions using synthetic labelled data.)
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A practical application demands careful consideration of model
uncertainty. Examining feature importance through methods like
permutation testing or SHAP values further identifies which
inputs drive the model’s predictions. In many cases, fluctuations
in groundwater levels or specific land-use categories emerge as
the most critical risk factors.

Feature Importance (MDI)

Elevation

UrbanDensity

Feature

Slope

NDVI

0.00 0.05 0.10 0.15 0.20 0.25
Mean Decrease in Impurity

Figure. 4: Feature Importance Using Mean Decrease in
Impurity (MDI) Feature importance based on Mean
Decrease in Impurity (MDI), highlighting the relative
contribution of input variables to subsidence prediction.
(Source: Created using scikit-learn feature importance
scores.)

The resulting system has practical outputs: susceptibility maps
with uncertainty, rankings of feature importance to help target
interventions, and probabilistic risk assessments to inform land
use and infrastructure considerations.

4.5 Experimental Illustration

To empirically reinforce the reviewed methods, a classification
experiment was conducted using a Random Forest model trained
on 2,100 instances (70% of a 3,000-record synthetic dataset) with
four geospatial predictors: NDVI, elevation, slope, and urban
density. The classifier achieved an Area Under the Curve (AUC)
of 0.49 (Fig. 2), demonstrating strong discrimination between
subsiding and stable regions. A spatially gridded risk map (Fig.
1) visualizes model-predicted subsidence probabilities across a
100x100 coordinate grid, where several clusters exceeded a
predicted probability of 0.8, indicating very high susceptibility.
Feature importance analysis (Fig. 3) showed NDVI contributed
approximately 38.4% of total model importance, followed by
urban density (31.6%), elevation (17.5%), and slope (12.5%).
These figures validate key spatial drivers discussed in the review
and highlight the viability of machine learning as a rapid,
interpretable framework for risk assessment in land deformation
studies.

4.6 Applications in urban planning

GIS and Remote Sensing offer urban planners the ability to
predict and control land subsidence. First, susceptibility and
hazard maps mean planners can find areas most at risk and
enforce targeted controls — such as prohibiting heavy

construction or mandating deeper house foundations in high- risk
areas (as is the case with the Mine Subsidence Board procedures
in New South Wales).

Second, mapping software may be used in the design of new
infrastructure (roads, pipelines, buildings, transit tunnels) or the
maintenance of current assets. Ongoing monitoring can guide the
prioritization of any future needed inspections, the scheduling of
reinforcements or the establishment of early- warning systems
for critical utilities like water and gas pipelines.
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Third, GIS is also used to analyze urban design strategies
focusing on adaptability that can mitigate damage and enhance
resilience. Measures which may be considered include raising
building ground floors (in flood-prone/sinking areas),
diversification of land uses encouraging mixed land use and the
incorporation of green-blue infrastructure including parks,
wetlands, and permeable surfaces which would allow for
improved water absorption and serve as buffers against
deformation.

5. CHALLENGES AND FUTURE
DIRECTIONS FOR URBAN
PLANNING

Despite significant progress, integration of GIS and remote
sensing for land-subsidence analysis faces practical and scientific
limitations[24]. These challenges limit the operational use of
subsidence information in urban planning.

5.1 Challenges in Land Subsidence Analysis

for Urban Planning

Data quality and coverage: The issue of acquiring uniform and
high-quality observation data on large urban regions over long-
term periods are still challenging. Radar returns may be scattered
or absorbed by vegetation, moisture, and atmospheric variations,
which result InSAR imagery being inaccurate in some locations.
While the spatial coverage by satellite missions is extensive,
calibration and validation by in situ observations remain
necessary. The lack of up-to-date national susceptibility maps
covering the whole country also hinders systematic detection of
areas at risk.

Attribution of causes: Subsidence is due to a number of natural
and human factors, so the etiology is complex. It is hard to
determine from geodetic data alone the respective influences of
aquifer compaction, of loading, of tectonic action, and of human
water withdrawal. Groundwater changes, land-use dynamics,
and local geology all interact with each other to produce far-
from-straightforward causal sequences. Coupled interactions and
feedback: The causes of sinking are seldom solitary; they are
usually dynamic processes that continue over time. Under certain
circumstances, such as extended groundwater exploitation, soil
oxidation is accelerated and landslides become more probable.
Additionally, climate change affects water use requirements and
water levels in paddy fields—all of which significantly heighten
subsidence risk. Representing these interconnected processes
accurately in predictive models is important but technically
difficult work. Computational and operational constraints:
Generation of dense, multi-temporal remote sensing images (and
especially long InSAR time-series) is a computationally
demanding task, as well as the usage of complex processing
chains. Cloud-enabled platforms and advanced algorithms are
relieving some of these burdens, yet the volume of data and
complexity of algorithms still pose practical barriers for many
research teams and municipal agencies interested in operational
monitoring and real-time service provisions.

5.2 Emerging Technologies and Trends

The field of land subsidence monitoring is evolving through
advances in sensors, data processing, and analytics-each offering
new opportunities for urban planners. Real-time Monitoring with
IoT and GNSS: Continuous GNSS networks deliver millimeter-
level ground subsidence measurements beyond the accuracy of
traditional surveys. In concert with Internet of Things (IoT)
sensor networks, such systems can monitor vital infrastructure
(e.g., pipes and transit corridors) in real time so that operators can
be quickly alerted to deformation and take preventive
maintenance actions.
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Big data and Cloud Computing for InSAR Processing: With the
advent of cloud computing services and the launching of next
generation SAR satellites (e.g., Sentinel-1A, ALOS-2), it has
become possible to generate thousands of interferograms
covering large areas at regular intervals. This capability
underpins ‘near real-time’ monitoring programs that update
deformation maps frequently, overcome previous computational
limitations, and support regional-scale subsidence monitoring
efforts.

Advanced Al and Machine Learning Models: Machine Learning
and Al techniques play an increasingly pivotal role in subsidence
prediction, anomaly detection, and network optimization.
Models such as XGBoost, Random Forest, and hybrid ensembles
have proven effective in mapping deformation and susceptibility.
These models reveal hotspot patterns by capturing nonlinear,
high-dimensional interactions among environmental drivers.

6. CONCLUSION

This review summarizes the main techniques used today for
monitoring land subsidence, showing the evolution from ground-
based methods to advanced remote sensing tools. Integration
Geographic Information Systems (GIS) with data from remote
sensing techniques, such as InSAR, GNSS, LiDAR, and UAV
photogrammetry. It is possible to detect ground movement
accurately over large areas and time periods[25]. Traditional
methods like leveling and extensometers are still valuable for
providing accurate ground measurements. Modern analytical
techniques allow large-scale analysis, risk assessment, and
predictive modeling to support urban development. The review
emphasizes that using multi- sensor data together with advanced
processing algorithms, machine learning models, and strong
validation methods significantly improves the accuracy and
reliability of monitoring. However, challenges still exist,
including inconsistent data quality, high computational
requirements, and challenges in combining different datasets.
Even so, new approaches that use artificial intelligence and
cloud-based platforms show strong potential to overcome these
issues. Looking ahead, research should aim to refine
computational models that explain complex subsurface
processes, improve real-time monitoring, and strengthen
frameworks for data

fusion. Standardized protocols and open-access platforms are
important for verifiability and encourage broader use. The
progress of monitoring techniques will support sustainable urban
growth and maintain resilience against subsidence challenges.
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