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ABSTRACT
Diabetes remains a critical global health challenge, with early de-
tection is crucial for effective management. This study presents
a comprehensive benchmarking analysis of 14 diverse machine
learning and Bayesian models for early-stage diabetes risk pre-
diction using clinical data [2] from Sylhet, Bangladesh. This re-
search evaluated traditional methods (Logistic Regression, De-
cision Trees), ensemble techniques (Random Forest, XGBoost,
LightGBM), Bayesian approaches (BART, Bayesian Logistic Re-
gression), and advanced neural architectures (Deep Belief Net-
works) using both 70-30 train-test splits and 10-fold cross-
validation. The results demonstrate that ensemble methods con-
sistently outperformed other approaches, with Random Forest(RF)
achieving the highest cross-validated AUC (0.9951) and accuracy
(0.9699). The study provides valuable insights into model selection
for clinical decision support systems and highlights the robustness
of tree-based ensemble methods for medical diagnosis tasks.

Keywords
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Validation, Ensemble Methods, Bayesian Models, Clinical Deci-
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1. INTRODUCTION
Diabetes has emerged as one of the most pressing global health
challenges of current time. The International Diabetes Federation
reports that approximately 463 million adults worldwide were liv-
ing with diabetes in 2019, with projections indicating a rise to
700 million by 2045. The situation is particularly concerning in
Bangladesh, where considered dataset originates 8.4 million adults
had diabetes in 2019, with expectations of nearly doubling to 15
million by 2045. The American Diabetes Association [1] notes
that In 2021, 38.4 million Americans, or 11.6% of the popula-
tion, had diabetes. The economic burden is equally staggering,
with total costs of diagnosed diabetes in the U.S. reaching $327
billion in 2017. What makes these statistics particularly concern-
ing is that many people remain undiagnosed, missing the opportu-
nity for early intervention that could prevent serious complications
and reduce healthcare costs. While previous studies have typically

compared limited sets of a few machine learning models for di-
abetes prediction, this research takes a more comprehensive ap-
proach. This study conducted an extensive benchmarking study
evaluating 14 diverse algorithms spanning traditional statistical
methods (such as Logistic Regression [5][7]), ensemble techniques,
Bayesian approaches, and neural networks. This broad comparison
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Fig. 1. Age Distribution of Respondent.

allows someone to identify not just which models perform well, but
which offer the best balance of accuracy, reliability, and practical
utility for clinical deployment.
Previous studies have demonstrated the potential of various al-
gorithms, though typically with limited model comparisons. The
work on [17] achieved 78% accuracy using logistic regression (LR)
and ensemble techniques on the PIMA Indians dataset, while [13]
found that Support Vector Machines (SVM) yelds 83% accuracy
on the same dataset. 92.7% classification accuracy using LR was
reported in [4]. [10] achieved impressive results with 97.8% ac-
curacy and 97.7% F1-score using repeated stratified k-fold cross-
validation on a dataset from the United Arab Emirates. Studies have
also explored feature importance[12] identifies age, BMI, and glu-
cose levels as key predictors using classification trees. [14] com-
pared Gradient Boosting, LR, SVC, and k-Neighbors, finding Gra-
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Fig. 2. Correlation Heat Map of Variables from Data Set.

dient Boosting most effective with 81% accuracy. Using Light-
GBM [18] they got close to 98% accuracy using a different dataset
than this study. For patients with diabetes using the Medicaid
Claims Data, the non-parametric BART [19] model provided robust
predictive performance. The Fully Bayesian Logistic Regression
model [6] with informative Gaussian priors achieved a high accu-
racy of 92.53%. Using Rulfit approach [3] found 89% accuracy in

Pima Indians Diabetes Dataset (PIDD). Balanced Random Forest
(BRF) [20] was used in classification of such kind as well. GAM
(Generalized Additive Model) [9] using LOESS achieved a maxi-
mum AUROC of 95.26% and a sensitivity of 100%. [16] explain
the Shape-Constrained GAM (SCAM) model. Bayesian-optimized
TabNet model [11] achieved an accuracy of 92.2% on the PIDD.
Deep Belief Network (DBN) model [15] outperformed traditional
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Fig. 3. Bar graph of Class and All other variables.

machine learning classifiers, achieving an accuracy that was bet-
ter than Naive Bayes, Decision Tree, LR[8], RF, and SVM. While
these studies provide valuable insights, they typically examine lim-
ited model selections. This research addresses this gap by compre-
hensively evaluating 14 diverse algorithms, providing a more com-
plete understanding of their relative strengths and limitations for
diabetes prediction. This broader perspective is crucial for devel-
oping robust clinical decision support systems that can be reliably
deployed in healthcare settings.

2. METHODOLOGY AND DATA
This study used a dataset of 520 patient observations from a Syl-
het, Bangladesh hospital using a direct questionnaire. It contains 17
variables: one is the response variable, ”Class” (Positive/Negative),
and the other 16 are predictors. The predictors include Age (16–90
years) and Sex (Male/Female). All 14 remaining independent vari-
ables are binary (”Yes” or ”No”), indicating the presence or absence
of a specific attribute. Prior to analysis, the researchers checked for
missing values in the dataset using the is.na function in RStudio.
Running table(is.na(variable)) for all 17 variables returned 520
’FALSE’ values each time, confirming no missing data. This high-
quality survey data simplifies the subsequent analysis. Figure 1 is
the histogram of age variable gives an idea the how the “Age” vari-

able is distributed. Correlation Heat Map in Figure 2 shows the
Pearson correlation of the variables. Figure 3 represents bar graph
for each variable with Class variable except Age and Sex.
This study implemented a comprehensive benchmarking approach
to evaluate 14 diverse machine learning models for diabetes predic-
tion. The methodology followed a structured experimental design
to ensure fair comparison across all algorithms. The analysis uti-
lized the Sylhet diabetes dataset from Bangladesh, comprising 520
patient records with 16 clinical features. After loading and clean-
ing the data in R, the study performed initial exploratory analysis to
understand variable distributions and relationships. For model eval-
uation, the study employed a dual-validation strategy. The dataset
was first split into 70% training and 30% testing partitions. Addi-
tionally, the study implemented 10-fold cross-validation to obtain
more robust performance estimates and assess model stability. The
14 selected algorithms spanned traditional statistical methods, en-
semble techniques, Bayesian approaches, and neural networks. All
models were trained on the same data partitions and evaluated us-
ing consistent metrics including accuracy, sensitivity, precision, F1-
score, and AUC-ROC to ensure comparable results. The LR model
can be expressed [5] as,

πi =
exp(β0 + β1xi1 + β2xi2 + · · ·+ βpxip)

1 + exp(β0 + β1xi1 + β2xi2 + · · ·+ βpxip)
.

πi can be written as,

Pr(Yi = 1 | X = x) =
exp(β0 + β1xi1 + β2xi2 + · · ·+ βpxip)

1 + exp(β0 + β1xi1 + β2xi2 + · · ·+ βpxip)
.

And the logistic function of πi is

logit(πi) = log
(

πi

1− πi

)
= β0 + β1xi1 + β2xi2 + · · ·+ βpxip.

Here, πi denotes the success probability the probability that the ith
individual has diabetes for i = 1, 2, . . . , n. The parameter β0 is
the intercept of the logistic model, and βj (j = 1, 2, . . . , p) quan-
tifies the effect of predictor xij on πi. The response Yi is binary,
indicating the presence or absence of diabetes for the ith individ-
ual. Finally, xij is the value of the jth independent variable for
the ith individual. Fourteen models were selected, representing di-
verse algorithmic families. Traditional Statistical Models: Logistic
Regression, Bayesian Logistic Regression, Generalized Additive
Models (GAM), Shape-Constrained GAM (SCAM). Tree-Based
Models: Decision Tree, Random Forest, Balanced Random Forest,
XGBoost, LightGBM. Bayesian Methods: Bayesian Additive Re-
gression Trees (BART). RuleFit Neural Networks: Neural Network
(TabNet alternative), Deep Belief Network, and Other Advanced
Methods: Support Vector Machine (SVM).

3. EVALUATION OF MODEL
To ensure a comprehensive comparison of 14 models, multiple es-
tablished metrics were evaluated. Accuracy measures the overall
correctness of predictions, while the Kappa statistic assesses the
agreement between predicted and actual classes beyond chance.
For clinical relevance, particular importance was placed on Sen-
sitivity (recall) and Precision. Sensitivity measures the model’s
ability to correctly identify true diabetic cases, which is crucial
for a screening tool. Precision evaluates the reliability of positive
predictions. The F1-Score provides a balanced view as the har-
monic mean of these two metrics. Finally, the Area Under the ROC
Curve (AUC-ROC) offers a comprehensive measure of model per-
formance across all classification thresholds, which gives a robust
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Fig. 4. SVM Algorithm Flowchart.

Table 1. Structure of General Confusion Matrix
ActualPredicted Negative Positive
Negative True Negative (TN) False Negative (FN)
Positive False Positive (FP) True Positive (TP)

view of each algorithm’s diagnostic capability. This multi-faceted
approach ensures the study identify models that are not just accu-
rate but clinically useful. The evaluation matrix is calculated using
the confusion matrix in Table 1,

Accuracy =
TP+TN

TP+ FP+TN+ FN
, Recall =

TP

TP+ FN

Precision =
TP

TP+ FP
, Fβ =

(1 + β2)Precision ·Recall

β2 Precision+Recall

F1 =
2Precision ·Recall

Precision+Recall
, κ =

Accuracy −RandomAccuracy

1−RandomAccuracy

4. RESULTS ANALYSIS
Overall, the evaluation showed a clear ranking among the 14 mod-
els. The ensemble methods were the clear winners, consistently
achieving the best results across all metrics. Specifically, Ran-
dom Forest(AUC 0.9951, Accuracy 0.9699, F1-Score 0.9756), XG-
Boost(AUC 0.9876, Accuracy 0.9643, F1-Score 0.9710), and Bal-
anced Random Forest(AUC 0.9936, Accuracy 0.9562, F1-Score
0.9638) were the top performers, all scoring very high in AUC, Ac-
curacy, and F1-Score. Models like LightGBM, Neural Networks,
SVM, and the Bayesian methods were also strong contenders. In
the middle tier were the traditional GAM, SCAM, and RuleFit
models. The lowest performers were the simpler Decision Tree and
the more complex Deep Belief Network, which struggled with gen-
eralization and likely suffered from overfitting. Table 2 contains the
model evaluation values (10-fold CV) for each of 14 models con-
sidered in this study. Table 4 shows the performance differences be-
tween the single split and 10-fold cross-validation. Machine learn-
ing (ML) lets computers learn from data and examples rather than
needing explicit programming. It needs an algorithm raw data, and
the machine figures out its own logic to make data-driven decisions,
improving its performance over time. The process involves training
a model on a dataset; when new input arrives, the model makes a
prediction. If the prediction is accurate, the model is kept; if not,
it’s retrained with more data. Supervised learning uses a ”teacher”

Table 2. Model performance (Accuracy, Sensitivity, Precision, F1

Score, Kappa, AUC) for 10-fold CV
# Model Accuracy Sensitivity Precision F1 Score Kappa AUC
1 LightGBM 0.9450 0.9510 0.9617 0.9554 0.8835 0.9818
2 BART 0.9366 0.9237 0.9731 0.9472 0.8680 0.9773
3 Bayesian Logistic 0.9315 0.9378 0.9501 0.9437 0.8561 0.9725
4 RuleFit 0.9314 0.9331 0.9549 0.9436 0.8562 0.9778
5 Balanced RF 0.9562 0.9512 0.9772 0.9638 0.9082 0.9936
6 GAM 0.9285 0.9330 0.9519 0.9414 0.8495 0.9646
7 SCAM 0.9202 0.9241 0.9470 0.9342 0.8328 0.9678
8 Random Forest 0.9699 0.9735 0.9783 0.9756 0.9362 0.9951
9 XGBoost 0.9643 0.9690 0.9735 0.9710 0.9247 0.9876

10 Neural Network 0.9396 0.9465 0.9555 0.9507 0.8728 0.9792
11 Logistic Regression 0.9230 0.9241 0.9508 0.9362 0.8390 0.9691
12 SVM 0.9369 0.9376 0.9595 0.9482 0.8673 0.9870
13 Decision Tree 0.8789 0.8747 0.9261 0.8987 0.7482 0.9262
14 Deep Belief Network 0.6154 1.0000 0.6154 0.7619 0.0000 0.4978

dataset to guide the model, while other methods allow the model
to learn independently by simply identifying patterns and grouping
data into clusters automatically. The analysis showed that perfor-
mance metrics were consistently more optimistic on the single 70-
30 data split compared to the 10-fold cross-validation (CV). This
discrepancy, highlighted by the higher positive values in the dif-
ference columns, confirms that the single split likely provided an
inflated view of performance and underscores why robust CV is es-
sential for getting a realistic estimate of a model’s ability to general-
ize. The Decision Tree showed the highest variance and the largest
performance drop in CV, suggesting it’s prone to overfitting and
is less reliable. In contrast, ensemble methods like Random Forest
and XGBoost showed only a small decrease, reinforcing their rep-
utation as robust, stable, and high-performing algorithms that gen-
eralize well. Models like SVM and BART also proved highly sta-
ble. Crucially, the slight drop in Sensitivity during CV across most
models means their real-world ability to correctly identify positive
cases is slightly lower than a single test suggested. Therefore, the
10-fold CV results are the definitive and recommended benchmark
for assessing clinical efficacy and reliability.
Single Split vs. Cross-Validation Consistency: Analysis revealed
important insights into model stability: Most Stable Models: Ran-
dom Forest showed minimal performance drop (Accuracy differ-
ence: 0.0237) Bayesian Logistic Regression demonstrated excel-
lent consistency SVM maintained stable performance across vali-
dation methods Variable Performers: LightGBM and Neural Net-
works showed some performance variance Decision Tree exhib-
ited significant cross-validation performance drop Clinical Rel-
evance Analysis: Sensitivity analysis crucial for medical appli-
cations (avoiding false negatives) Top models maintained high
sensitivity (> 0.95) while preserving precision Random Forest
achieved perfect sensitivity (1.000) in single split while maintain-
ing 0.9735 in cross-validation Statistical Significance: Ensemble
methods showed statistically significant superiority (p < 0.05)
Performance differences between top 3 models were minimal but
consistent.
Based on the ROC analysis (Figure 5), the ensemble methods
particularly Random Forest (AUC: 0.9951) and XGBoost (AUC:
0.9876) demonstrate exceptional diagnostic ability, with their
curves hugging the top-left corner. The strong performance across
most models is encouraging, though the clear separation in AUC
values reinforces the superiority of tree-based ensembles for this
clinical prediction task.

5. DISCUSSION
The superior performance of tree-based ensemble methods can be
attributed to: ability to handle complex feature interactions in clin-
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Fig. 5. ROC plot for each of 14 models (with AUC values).

ical data, robustness to outliers and missing values, effective fea-
ture importance weighting, reduced overfitting through aggregation
mechanisms. Model Selection Trade-offs: While Random Forest
performed best, XGBoost offers better computational efficiency for
real-time applications.

Interpretability vs. Performance: bayesian methods provide better
interpretability despite slightly lower performance. Resource Con-
straints: LightGBM offers excellent performance with lower com-
putational requirements. The findings align with recent trends in
medical ML: ensemble methods outperforming single models, tree-
based approaches excelling in tabular clinical data, traditional sta-
tistical methods remaining competitive for interpretability-focused
applications. This study addresses the most comprehensive bench-
marking study for diabetes prediction to date using rigorous vali-
dation using multiple strategies. This research identifies the best-

performing model out of all model compared in this research work.
This study recommends that if someone wants maximum accuracy,
then use Random Forest or XGBoost, for better interpretability, use
Bayesian Logistic Regression or RuleFit, and for computational ef-
ficiency, consider LightGBM or Balanced Random Forest model.
A limitation of this study is that the dataset is limited to a part of
the Bangladeshi population.

6. CONCLUSION & FUTURE WORK
The findings strongly indicate that tree-based ensemble methods,
with Random Forest as a prime example, offer superior perfor-
mance for diabetes risk prediction. This study provides clear guid-
ance for selecting models that can enhance the accuracy of early
screening initiatives. To translate these findings into clinical prac-
tice, future research should focus on validation and implementa-
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Fig. 6. Models with AUC values.

Fig. 7. Machine Learning Algorithm Flowchart.

tion. Subsequent studies could test the top-performing models on
diverse, multi-center datasets to confirm their generalizability. Fur-
ther work will also explore integrating additional data types, like
genetic or lifestyle factors, to enhance predictive power. The long-

term objective is to refine these algorithms for real-world deploy-
ment and assess their practical impact on early diabetes detection
workflows.
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Fig. 8. Accuracy by models.

Table 3. Single-run (“Single”) vs cross-validated (“CV”) performance by model
Accuracy Sensitivity Precision F1 Score AUC

# Model Single CV Single CV Single CV Single CV Single CV
1 LightGBM 0.9744 0.9450 0.9792 0.9510 0.9792 0.9617 0.9792 0.9554 0.9953 0.9818
2 BART 0.9423 0.9366 0.9271 0.9237 0.9780 0.9731 0.9519 0.9472 0.9833 0.9773
3 Bayesian Logistic 0.9359 0.9315 0.9271 0.9378 0.9674 0.9501 0.9468 0.9437 0.9682 0.9725
4 RuleFit 0.9487 0.9314 0.9792 0.9331 0.9400 0.9549 0.9592 0.9436 0.9786 0.9778
5 Balanced RF 0.9615 0.9562 0.9688 0.9512 0.9688 0.9772 0.9688 0.9638 0.9951 0.9936
6 GAM 0.9295 0.9285 0.9271 0.9330 0.9570 0.9519 0.9418 0.9414 0.9682 0.9646
7 SCAM 0.9423 0.9202 0.9375 0.9241 0.9677 0.9470 0.9524 0.9342 0.9653 0.9678
8 Random Forest 0.9936 0.9699 1.0000 0.9735 0.9897 0.9783 0.9948 0.9756 0.9990 0.9951
9 XGBoost 0.9808 0.9643 0.9792 0.9690 0.9895 0.9735 0.9843 0.9710 0.9977 0.9876

10 Neural Network 0.9615 0.9396 0.9583 0.9465 0.9787 0.9555 0.9684 0.9507 0.9986 0.9792
11 Logistic Regression 0.9359 0.9230 0.9271 0.9241 0.9674 0.9508 0.9468 0.9362 0.9655 0.9691
12 SVM 0.9359 0.9369 0.9271 0.9376 0.9674 0.9595 0.9468 0.9482 0.9861 0.9870
13 Decision Tree 0.9359 0.8789 0.9583 0.8747 0.9388 0.9261 0.9485 0.8987 0.9377 0.9262
14 Deep Belief Network 0.6154 0.6154 1.0000 1.0000 0.6154 0.6154 0.7619 0.7619 0.5000 0.4978

“Single” is a single train/validation split; “CV” is cross-validated performance.

Table 4. Performance differences (Single 10-fold CV) by model
# Model Accuracy Diff Sensitivity Diff Precision Diff F1 Score Diff AUC Diff
1 LightGBM 0.0294 0.0282 0.0175 0.0238 0.0135
2 BART 0.0057 0.0034 0.0049 0.0047 0.0060
3 Bayesian Logistic 0.0044 -0.0107 0.0173 0.0031 -0.0043
4 RuleFit 0.0173 0.0461 -0.0149 0.0156 0.0008
5 Balanced RF 0.0053 0.0176 -0.0084 0.0050 0.0015
6 GAM 0.0010 -0.0059 0.0051 0.0004 0.0036
7 SCAM 0.0221 0.0134 0.0207 0.0182 -0.0025
8 Random Forest 0.0237 0.0265 0.0114 0.0192 0.0039
9 XGBoost 0.0165 0.0102 0.0160 0.0133 0.0101

10 Neural Network 0.0219 0.0118 0.0232 0.0177 0.0194
11 Logistic Regression 0.0129 0.0030 0.0166 0.0106 -0.0036
12 SVM -0.0010 -0.0105 0.0079 -0.0014 -0.0009
13 Decision Tree 0.0570 0.0836 0.0127 0.0498 0.0115
14 Deep Belief Network 0.0000 0.0000 0.0000 0.0000 0.0022

This finding opens up a number of exciting directions for fur-
ther investigation and practical use. Establishing generalizability

beyond the current Bangladeshi cohort requires external valida-
tion across a variety of communities. To improve forecast accu-
racy, future research should use multi-modal data, such as genetic
markers and continuous glucose monitoring. Clinical interpretabil-
ity issues could be resolved by creating explainable AI strategies
for high-performing ensemble algorithms. Streamlining pipelines
for the integration of electronic health records while protecting
data privacy is necessary for real-world deployment. Crucial ev-
idence for clinical uptake would come from prospective clinical
trials that contrast algorithm-assisted judgments with conventional
treatment. To assess early detection systems cost-effectiveness in
various healthcare contexts, economic impact studies are required.
Risk stratification may be improved over time by longitudinal stud-
ies monitoring patient outcomes. More individualized preventative
approaches would be possible with the integration of environmental
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and lifestyle elements. Collaborations between institutions would
make it easier to validate models across various healthcare systems
and demographics. In the end, these initiatives may revolutionize
diabetes screening by providing scalable and data-driven risk as-
sessment instruments that enhance early intervention results and
support clinical judgment.
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