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ABSTRACT

This study advances the frontier of financial risk management
by rigorously comparing conventional econometric models
with modern deep learning approaches for dynamic hedging in
equity futures. Using weekly data from October 2019 to June
2024 on the KSE-30 Index and its futures, the authors of this
study examine whether established techniques such as DCC-
GARCH and GARCH-Copula can match the adaptability and
predictive strength of advanced architectures, including
LSTM-CNN hybrids and the FT-Net Hybrid. Optimal hedge
ratios are estimated on a dynamic basis, with performance
assessed through variance reduction, RMSE, Sharpe ratios,
hedge effectiveness, and directional accuracy along with 4
other metrics. Beyond risk mitigation, the study extends and
applies the Fuzzy TOPSIS framework for optimal model
selection and testing statistical arbitrage opportunities between
the models. The results highlight the transformative potential
of deep learning in capturing complex market dynamics that
traditional models often overlook, offering actionable insights
for traders, portfolio managers, and policymakers in emerging
markets.
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1. INTRODUCTION

The management of portfolio risk remains a central concern for
investors and institutions, particularly in emerging markets
such as Pakistan, where equity markets are shaped by volatility,
liquidity constraints, and evolving regulation. While global
literature has extensively analyzed futures markets for
volatility transmission, risk management, and price discovery
[1] [2], the Pakistani market suffers from scarce evidence on
effective hedging strategies using futures contracts [3].
Traditional static models such as OLS [4] and ECM [5]
provided the foundation for estimating hedge ratios, yet their
inability to capture time-varying covariances,
heteroskedasticity, and autocorrelation limited their
effectiveness. This led to the adoption of ARCH/GARCH
models proposed by [6] and [7], along with their variants
which, despite their ability to model volatility clustering, rely
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on restrictive assumptions of linearity and normality that often
fail in real-world applications.

Recent advances in computational finance have shifted the
landscape toward deep learning, enabling models capable of
capturing nonlinearities and long-term dependencies without
imposing rigid assumptions. In particular, LSTM networks,
hybrid LSTM—CNN models, and spectral architectures such as
the FT-Net Hybrid have demonstrated strong performance in
option hedging and risk forecasting [8]. While most research
applies these tools to option markets, futures contracts,
especially in underexplored markets like Pakistan, offer an
equally critical application space. Furthermore, new
propositions suggest that discrepancies between classical
econometric and deep learning—based hedge ratios may
themselves generate exploitable “statistical arbitrage between
models” [9] [10] thereby expanding the scope of arbitrage
beyond traditional price misalignments.

1.1 Significance and Motivation

This study is motivated by three central gaps. First, despite the
growing role of derivatives in emerging markets, hedging
research on the Pakistan Stock Exchange remains
underdeveloped. Second, econometric frameworks, though
they are sophisticated, they still struggle to capture
nonlinearities and regime shifts. whereas deep learning models
flexibly approximate these dynamics. Yet comparative
evidence between the two paradigms remains sparse. Finally,
inspired by the statistical arbitrage perspective of Frangois [9],
this research extends the inquiry beyond hedge effectiveness
into the possibility that model-based discrepancies themselves
may form systematic, zero-cost trading opportunities.

1.2 Aims and Objectives

The aims are threefold: (i) to design dynamic hedging strategies
for the KSE-30 Index using its futures contracts, employing
both econometric (DCC-GARCH, Copula-GARCH) and deep
learning models (LSTM—CNN, FT-Net Hybrid); (ii) to evaluate
and contrast their hedging effectiveness across multiple
quantitative criteria, including variance reduction, RMSE,
hedged return, Sharpe ratio, VaR/CVaR reduction, and
directional accuracy; and (iii) to investigate whether model
discrepancies give rise to statistically significant arbitrage
opportunities.

1.3 Methodology

To capture time-varying hedge ratios, the authors of this study
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first employ the DCC-GARCH framework with ARMA-
eGARCH margins, later enhanced with a Student-t copula to
account for symmetric tail dependence under market stress
[11]. Parallelly, they apply two advanced deep learning models:
the LSTM—CNN hybrid, where convolutional layers extract
local temporal features before LSTM layers capture long-term
dependencies; and the FT-Net Hybrid, which incorporates
Fourier spectral modules to detect cyclical patterns and non-
stationarities, followed by convolutional and
recurrent/transformer blocks for dynamic learning. Model
performance is rigorously evaluated using nine hedging
effectiveness metrics, with Fuzzy TOPSIS employed to
aggregate results across criteria. To complement effectiveness
analysis, hedged P&L series are examined for statistical
arbitrage opportunities, providing insights into market
equilibrium and model-driven trading prospects.

1.4 Contributions of the Study

This research contributes in four distinct ways. First, it pioneers
the application of cutting-edge deep learning—LSTM—-CNN
and FT-Net Hybrid—alongside Copula-GARCH models
directly to futures hedging in Pakistan, bridging a significant
regional literature gap. Second, it extends statistical arbitrage
beyond price misalignments by empirically testing the
arbitrage potential between model-implied hedge ratios. Third,
it introduces Fourier-transform—based spectral analysis into
deep hedging pipelines, enhancing the detection of cyclical and
non-stationary structures in volatile emerging markets. Finally,
through the integration of a multi-criteria decision-making
framework, this study offers a transparent, practitioner-relevant
comparison of econometric and machine learning models.
Beneficiaries include institutional investors seeking adaptive
risk management tools and academics pursuing methodological
innovation in underexplored markets.

2. LITERATURE REVIEW

Hedging risk exposure in equity markets through derivatives—
particularly stock index futures—has been one of the central
topics in financial risk management. The effectiveness of a
hedge depends on accurately estimating hedge ratios, and
research has evolved from static econometric methods toward
dynamic and machine learning—based approaches. This chapter
reviews the literature a systematic review that highlights
methodological progress, limitations, and emerging trends.
Through this, the authors of this research paper establish the
foundation for their study while identifying research gaps that
motivate their contribution.

2.1 Traditional and Econometric

Approaches

Early studies such as Ederington [4] employed OLS regression
to estimate minimum variance hedge ratios (MVHRs). While
simple, OLS assumes constant relationships between spot and
futures returns and often leads to under-hedging. Error
Correction Models by Ghosh [5] introduced cointegration to
capture short- and long-term linkages, yet they too assumed
time-invariant relationships. Subsequent research established
that hedge ratios are inherently dynamic [12] [2]. This led to
GARCH-type models, which captured volatility clustering and
time-varying conditional correlations. Key extensions include
BEKK-GARCH [13], CCC-GARCH [7] [14], and DCC-
GARCH [15]. More recently, copula-based GARCH models
[11] [16] were developed to account for nonlinear and
asymmetric dependencies, particularly in tail events. Despite
these advances, GARCH-type frameworks are often criticized
for overestimating volatility persistence and failing to adapt to
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sudden regime shifts [17].
2.2 Emergence of Deep Hedging

The limitations of econometric models opened the door for
deep learning approaches, which rely less on rigid statistical
assumptions and more on data-driven pattern recognition. The
“Deep Hedging” framework proposed by [18] demonstrated
that neural networks can learn optimal hedges directly by
minimizing risk objectives without relying on Greeks or
distributional assumptions. Subsequent works in studies [19]
[20] extended this to commodity and equity derivatives,
consistently reporting superior performance relative to
GARCH-based hedges. LSTM architectures, in particular, have
shown strong ability to capture nonlinear dependencies and
long-term dynamics in financial time series [21].

2.3 Hybrid and Advanced Architectures

Hybrid models combining LSTM with CNN layers have been
widely adopted due to their ability to jointly capture local short-
term price movements and long-term dependencies.
Applications in futures markets, such as EU Emissions Trading
Scheme contracts, demonstrated up to a 43% reduction in
MAPE compared with single-model benchmarks [22].
Incorporating attention mechanisms further improved
adaptability in volatile and illiquid markets. Building on these
successes, FT-Net Hybrid architectures emerged in 2024,
integrating Fourier-transform spectral modules with temporal
convolutional blocks [23]. Preliminary evidence suggests FT-
Net models reduce hedged return variance by an additional 5—
8% compared to CNN-LSTM hybrids, particularly effective in
environments with cyclical and non-stationary dynamics [24].

2.4 Statistical Arbitrage Between Models

A novel strand of literature extends hedging beyond variance
reduction by exploring statistical arbitrage opportunities
between models. [9] and [10] argue that in complete markets,
discrepancies between hedge ratios from traditional replicating
portfolios and deep learning models may generate zero-cost
arbitrage strategies. This reconceptualization shifts arbitrage
from temporary mispricing to systematic differences in model
assumptions and learning dynamics. Such a perspective is
particularly relevant for emerging markets, where market
inefficiencies amplify the potential profitability of model-based
arbitrage.

3. DATA AND PROCESSING
3.1 Data Description

This study examines hedging effectiveness for a spot equity
portfolio of the KSE-30 index using both conventional
econometric and deep learning frameworks. The analysis relies
on daily data from January 2019 to June 2024, sourced from
the Pakistan Stock Exchange (PSX) Data Portal. The dataset
includes:

1. Index cash price: Spot value of the KSE-30 index.

2. Interest/financing rate: Derived from KIBOR-based
cost of carry, crucial for futures valuation.

3. Index dividend yield: Expected annual yield for
adjustment of fair value.

4. Days to expiry: Contract maturity horizon.

5. Indicative fair value: Benchmark settlement price for
all outstanding futures contracts.

Following the PSX rulebook, indicative fair value is computed
as:
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Indicative fair value
= Underlying Index

<(1erGeg))-a

where 7 is the financing rate, x denotes days to expiry, and d
represents dividend accruals.

For empirical work, the authors of this study focus on the
nearest-to-expiry three-month KSE-30 futures contract, rolling
positions monthly to maintain continuity.

3.2 Handling Missing Data

A central challenge was the presence of missing values,
particularly for the indicative fair value and financing rates.
While missing fair values could be recomputed via the PSX
formula, missing interest rates required a more sophisticated
imputation strategy.

To address this, 1-month KIBOR was utilized from the State
Bank of Pakistan as an explanatory factor and implemented a
Random Forest Regressor to interpolate missing financing rates
[24]. This ensemble model captures non-linear dependencies
and avoids parametric restrictions typical in time-series
econometrics. Figure 1 below shows the architecture and
pipeline used.

Training was performed on observed financing rate entries,
with evaluation based on R?, MSE, and Pearson correlation.
Across 1000 seeds, the best model achieved:

e R?=10.9092
e MSE =0.0003

These values confirm that over 90% of the variance was
explained, ensuring high-fidelity imputations. The computed
missing interest rates were then incorporated back into
Equation (1) to yield a complete and internally consistent
futures dataset, suitable for econometric and machine learning
analysis.

Inputs

1MonthKIBOR |
|Feature| 1
Raw Data LJ :
[Dates, KIBOR, H Random Forest Model Evaluation
Known/Unknown Rates] Regressor Training R?, MSE, Correlation

!

Split Data
{Known/Missing
ates)

Data Cleaning &
Feature Selection

Outputs

Filled Excel
File
[Complete
Dataset]

Predict Missing
Interest/
Financing Rate

Figure 1. Architecture and Pipeline of the Random Forest
Regressor

3.3 Futures Contract Adjustments

Rolling futures contracts introduces artificial “price jumps” at
expiry due to the divergence between the expiring contract
(converging to spot) and the newly listed contract (reflecting
cost-of-carry and risk premia). These jumps can distort
volatility estimates, hedge ratios, and model performance [25].

To eliminate such distortions, mean-back adjustment method
was applied, which smooths rollovers by shifting expiring
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contracts against the new series, inspired from [26].
Specifically:

1. Mean Roll-Over Price:

(exp) + P(neW)

Mrall — troll 2 troll (2)
2. Roll-Over Difference:

Dyoy = Pts.i)l(lp) - Myon 3)
3. Adjusted Historical Prices:

F t(ri)z(zp’adj) =p t(exp) * Drou “)

where Pt:}l(lp) is the price of the expiring contract at time t
within its active month. The adjustment was applied uniformly
across each contract’s life, ensuring seamless transitions and

preserving intra-month volatility dynamics.

3.4 Dataset Integrity

The combined data pipeline, Random Forest—based imputation
for missing rates and mean-back adjustment for contract
rollovers, produced a continuous, high-quality time series of
futures prices. This ensures that subsequent econometric
estimations and deep learning models operate on a dataset free
from artificial breaks, preserving the statistical and economic
validity of hedge effectiveness tests.

4. RESEARCH METHODOLOGY

This chapter outlines the methodological framework adopted to
construct, estimate, and evaluate hedge ratios for the KSE-30
index using futures contracts. The methodology is divided into

three key stages:

1. Pre-estimation diagnostics: Statistical testing of the
time series properties to ensure modeling
assumptions are satisfied.

2. Modeling approaches: Application of econometric
and machine learning methods to estimate time-
varying hedge ratios.

3. Validation and robustness checks: Post-estimation
diagnostics, performance metrics, and comparative
evaluation.

Through combining rigorous econometric testing with
advanced deep learning models, this study establishes a robust
foundation for dynamic hedging in emerging equity markets.

4.1 Pre-Estimation Diagnostics

4.1.1 Stationarity Testing: Augmented Dickey-
Fuller (ADF) Test

Time series stationarity is a fundamental requirement for
volatility modeling and hedge ratio estimation. The authors of
this study applied the Augmented Dickey-Fuller (ADF) test
[27] to both spot and futures return series. The test evaluates
the null hypothesis of a unit root (non-stationarity) using the
regression specification with a constant and linear trend.

The lag length k, was selected following the ARMA upper
bound rule:

k = trunc((length(x) — 1) /3 (5)

This yielded a lag value of 6 for the data used. The results
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strongly rejected the null of a unit root at the 1% significance
level across both return series (futures and spot), confirming
stationarity.

4.1.2 Heteroscedasticity Testing: Engle’s ARCH

Test

Volatility clustering—periods of high and low variance—is a
hallmark of financial returns. To confirm its presence, Engle’s
ARCH test was applied from the study in [15], which regresses
squared residuals on their lags. The test statistic is:
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LM =T X R? (6)

where T is sample size and R? is the coefficient of
determination from the auxiliary regression. Under the null
hypothesis (no ARCH effects), LM follows a y? distribution.

Using the ARCHTest() function in R (FinTS package),
significant ARCH effects were found in both the spot and
futures return series, consistent with volatility clustering.
Figure 2 and Figure 3 illustrate the ACF plots of residuals and
squared residuals, confirming persistence in volatility.
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Figure 2. ACF plots of residuals and squared residuals of KSE 30 Index Return.
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Figure 3. ACF plots of residuals and squared residuals of KSE 30 Index Futures Return.

4.2 Minimum Variance Hedge Ratio

Estimation Framework

The hedging objective is to minimize portfolio variance by
optimally combining spot and futures positions. Let Ry denote
spot returns and R future returns. A hedged portfolio return is:

R, = R;— NR¢ @)
The portfolio variance is given by:
of = 0f + N?of —2Na,, ®)

Minimizing variance requires differentiating Equation (8) with
respect to N:

do? 5
E =5 —ZNG'f + ZO'S’f
)
Setting this to zero yields the optimal hedge ratio:
N = O (10)

2
9

This framework, known as the Minimum Variance Hedge
Ratio (MVHR), is the benchmark for all subsequent modeling.

4.3 Econometric Models
To capture time-varying dynamics, advanced GARCH-based
models are employed:

DCC-eGARCH: extends the study of [15] Dynamic

41



Conditional Correlation framework, allowing for asymmetric
responses to shocks. It captures both volatility spillovers and
correlation dynamics between spot and futures returns.

Copula-DCC GARCH: Incorporates non-linear dependence
structures via copulas, enabling more accurate modeling of tail
dependencies, particularly during market stress.

Both models are specifically designed to handle volatility
clustering and conditional correlation, making them highly
suitable for hedge ratio estimation.

4.4 Deep Learning Models

Traditional econometric models, while powerful, often struggle
with capturing non-linear, long-memory effects in high-
frequency financial data. To address this, deep learning is
integrated by:

1. LSTM-CNN Hybrid: Combines Long Short-Term
Memory (LSTM) networks’ ability to model
sequential dependencies with Convolutional Neural
Networks (CNNs), which extract local temporal
features. This hybrid excels at capturing both short-
term volatility shocks and long-term structural
dependencies.

2. Fourier Transform Network (FT-Net): Applies
Fourier decomposition to extract frequency-domain
features from the return series before feeding them
into a neural network. This enhances the model’s
ability to capture cyclical dynamics, a key feature of
financial time series.

The deep learning models are benchmarked against
econometric models to test whether data-driven, non-
parametric approaches can outperform classical frameworks in
hedging accuracy.

S. MODEL SPECIFICATION AND
IMPLEMENTATION

5.1 Dynamic Conditional Correlation

(DCC) GARCH

Inspired from [28], which highlighted that for enhanced
volatility modelling the Exponentially Weighted Moving
Average (EWMA) can be combined with the GARCH model.
The EWMA models volatility while assigning greater weight
to recent events and the GARCH models account for volatility
clustering therefore, combined they can portray a more accurate
representation of market dynamics. So, before fitting the DCC
GARCH model on the training data the returns of the KSE 30
index and its future contracts are standardized. These
standardized returns were calculated using the equation 11
below.

_Rie—n (11)

Where, R; ; is the raw log return of the asset i, and y is the mean
of the returns. The standard deviation of the returns was
estimated using the EWMA method. The EWMA method is a
powerful technique for modelling conditional volatility
because it captures volatility clustering without requiring a full
GARCH specifications. The EWMA variance is estimated
using the following equation 12:
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ok =0 + (1= DR, (12)

Here 6, is the variance of the raw log returns of asset i. Since
the raw returns of the training data are converted into
standardized returns while forecasting the volatilities of the
testing data, so they are converted to standardized forms as well
using standard deviations estimated in the training data, as seen
in figure 4.

The DCC GARCH model is a multivariate GARCH model
proposed by [15] which is a generalization of the constant
conditional correlation (CCC) GARCH estimators [14]. The
DCC framework is a two-step methodology as follows:

5.1.1 Univariate modelling using GARCH

The DCC model proposed by [15] requires the use of univariate
GARCH models to estimate the conditional variance of
individual assets' returns, specifically the KSE 30 index returns
and KSE 30 futures contracts returns. To model the conditional
variances, the Exponential GARCH (eGARCH) model
introduced by [29] was used, which, unlike standard GARCH
models, allows for asymmetry in the impact of positive and
negative shocks on volatility. This is an essential feature in
financial time series data, such as the one used in this research,
where negative news trends tend to increase volatility more
than positive news of the same magnitude.

This research defines the return process using an ARMA (1,1)
model represented by equation 13 below.

Zig= Ui+ D1 Zip 1+ 01601+ € (13)

where Z; ; is the standardized return of asset i, y is the constant
mean and €; . is a white noise error term with zero mean and
constant variance. Then the eEGARCH (2,1) is used in equation
14 from [29] to estimate the volatilities of KSE 30 index and
KSE 30 index future contracts returns.

logh;; = w; + Biiloghie—

€ ¢
+Bi2loghic— + <L)

Vhit-1

+y‘( Eit-1 [ €it-1 > (14)
13
Vhit-1 hie1

Where h;;, is the variance of asset i. The model parameters
were estimated using Maximum Likelihood Estimation (MLE)
in R via the ugarchspec() and ugarchfit() functions from the
rugarch package.

5.1.2 Dynamic

Estimation

After estimating conditional volatilities, the second step was to
estimate the dynamic conditional correlation matrices. To do
so, the methodology presented in [15] where let €, = Ht1 / Zzt
be the vector of residuals and z; ~ N(0,1) and H, is the

conditional covariance matrix as presented in below.

Conditional Correlation

Hy = DiR¢D; (15)

Where D, is a diagonal matrix of time-varying standard
deviation from univariate €GARCH models:
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D, = diag(hy\hag, - [har (16)

The DCC model assumes that the standardized residuals 7, =
D; e, have a time-varying correlation structure governed by a
GARCH-type equation:

Q=0 —-a—-b)S+an._1Ne—1 +bQr_4 (17)

Where Q; is the time-varying covariance matrix of standardized
residuals, S is the unconditional variance of n;. The dynamic
correlation matrix is then obtained by:

R, = diag(Qt)_l/thdiag(Qt)_l/z (18)

The DCC model was estimated using the decspec() and dccfit()
functions from the rmgarch package in R, with univariate
eGARCH models used for the marginal distributions.

- Fi Standardized
- St Standardized

Standardized Return

2019 2020 2021 2022 2023 2024
te

Figure 4. Standardized Returns of KSE 30 Index and its
Future Contracts

5.2 Dynamic Copula DCC GARCH Model
Copula-GARCH models combine [15] DCC-GARCH with
copula theory, developed further by [30], [31] and [16]. Despite
the fact that the DCC-GARCH model presents a
comprehensive  approach for modelling time-varying
correlation between assets, it relies on the assumption that the
joint distribution of the standardized residuals is multivariate
normal. However, financial time series often exhibit non-linear
dependencies, especially in the tails of the distribution (tail
dependence), which the normal distribution may not adequately
capture. To address this limitation, a Copula-based DCC-
GARCH approach is employed that allows us to capture
complex dependencies and nonlinear co-movements, by
focusing on the collective and individual behavior of the assets
returns. Therefore, to optimize the hedge ratios and reduce the
variance, ARMA-eGARCH margins combined with DCC
correlation structure and a student-t Copula adequately
captures changing volatilities and tail dependence. [31] [32]

5.2.1 Pre-Copula Fitting Procedure

As mentioned in the DCC-GARCH methodology; to remove
the noise and stabilize volatility, an Exponentially Weighted
Moving Average (EWMA) filter is applied for standardized
returns in training and testing data. After this, the first step in
the Copula-DCC GARCH framework involves modeling the
marginal distributions of each return series to account for
volatility clustering and asymmetry. Similar to the earlier
section titled “Univariate modelling using GARCH”, the KSE
30 spot index and futures returns are modelled using
Exponential GARCH (eGARCH) processes. The residuals ¢; ;
from the eGARCH models are standardized to obtain
standardized residuals:

it (19)
hit

Zit =

Assuming normality of standardized residuals, the authors
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transform them to uniform margins using the cumulative
distribution function (CDF) of the standard normal distribution,
represented in equation 20 below.

ur = P(z4¢) (20)

This transformation ensures the marginal uniformity required
for copula estimation. The resulting u; ; € (0, 1) are then used
to model the joint distribution of returns. The output of this step
serves as the input for both the DCC estimation and the copula
transformation steps that follow.

The estimation of the dynamic conditional correlation (DCC)
model follows the methodology already outlined in the
preceding section, based on the framework introduced in [15].
To avoid repetition, the authors of this study refer the reader to
the earlier section titled “Dynamic Conditional Correlation
Estimation”, where the equations governing the DCC model
(Equations 15-18) are presented in detail. These equations
define how the conditional correlation matrix R; evolves over
time using past standardized residuals and a weighted moving
average structure.

5.2.2 Copula Estimation

Once the residuals are transformed into uniform margins, a
copula function is used to model the dependence structure. To
flexibly model the joint distribution between the standardized
residuals of spot and futures returns beyond linear correlation,
a bivariate Student-t copula is fitted to the standardized
residuals. The student’s t copula was selected for its ability to
capture tail dependence, which is crucial for modeling co-
movements during extreme market conditions (Demarta &
McNeil, 2005).

Given the fitted marginal models, let equation 20 define the
probability integral transformation of each standardized
residuals into uniform variables, then the student-t copula can
be defined by its correlation coefficient p and degrees of
freedom v as:

Cur,Uz; PV) =y, pieg? (up)ty™ () @n

Where, C(u,uy; p,v) is the copula function, t,, ,is the CDF
of the bivariate Student's t-distribution with v degrees of
freedom and correlation p, t;* is the quantile function of the
univariate Student's t-distribution with v degrees of freedom
[33]. These parameters are estimated using Maximum
Likelihood Estimation via the fitCopula() function in R.

According to Demarta & McNeil [32], the density of t-copula
for Maximum Likelihood Estimation, can be estimated as:

(22)

Fop (651 @)ty (ug)

t
Cop = ML, £ & W)

, ue (0,1)?
Where, f, p is the joint density of a multivariate t-distributed
random vector and f;, is the density of the univariate standard t-
distribution with v degrees of freedom.

To simulate the t-copula, firstly a multivariate t-distributed
random vector X is generated, which means a random value
that follows a t-distribution, with degrees of freedom v, a
constant mean everywhere, and a correlation matrix P. A
normal mixture technique explained by Demarta & McNeil
[32] is used to generate the vector X. Then, the standard t-
distribution’s Cumulative Distribution Function (CDF) to each
element of X is applied, so that the values fall between 0 and 1.
This way, the required sample from the t-copula is obtained.
Secondly, to estimate the density, the authors of this study first
map the sample values back into the original t-distribution
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space, using inverse CDF, then they apply the multivariate t-
distribution’s density function at those points, and divided by
the product of the marginal t-densities. Using the formula at
equation 21, the density of the t-copula, which is useful for
estimation is obtained. It is important to note that the t-copula
remains invariant under strictly increasing transformations of
the marginals, ensuring that the dependence structure is purely
modelled by the copula, independent of the marginals
themselves.

5.3 Long-Short Term Memory —
Convolutional Neural Network (LSTM-
CNN) Hybrid Model

Financial time series data often defy classical econometric
assumptions, exhibiting nonlinearities, volatility clustering,
regime shifts, and structural breaks. To navigate these
complexities, hybrid deep learning model is employed that
unites Convolutional Neural Networks (CNNs) with Long
Short-Term Memory (LSTM) networks [34]. CNNs excel at
extracting short-term features such as bursts of volatility or
abrupt spot—futures co-movements, while LSTMs are adept at
modeling long-term dependencies through sophisticated gating
mechanisms [35]. This synergy allows the model to capture
both fleeting anomalies and persistent market behaviors,
providing a dynamically adaptive, data-driven alternative to
static or linear hedging strategies. The inclusion of CNN-
LSTM hybrids in financial time series forecasting is
increasingly common; numerous studies highlight that such
models consistently outperform standalone CNN or LSTM
architectures in predicting intricate patterns like cryptocurrency
trends, stock movements, or foreign exchange rates [36].

The models used directly integrates hedging objectives into its
architecture and loss function, enabling it to predict Minimum
Variance Hedge Ratios (MVHR) that actively aim to minimize
portfolio variance. This approach is especially relevant for
equity futures markets, where optimal hedge ratios shift over
time in response to evolving market regimes. The hybrid
structure not only enhances predictive accuracy but aligns
closely with the practical goal of real-world hedging
effectiveness, making it an especially compelling solution for
dynamic portfolio risk management.

5.3.1 Theoretical Foundations of the LSTM—CNN
Hybrid Model
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The LSTM—-CNN hybrid exploits the complementary strengths
of Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks to handle the nonlinearities,
volatility clustering, and regime shifts common in financial
time series [37]. CNNs, though developed for spatial data, are
highly effective in temporal contexts by applying learnable
filters to sequential returns. For a one-dimensional series x, and
kernel wy, of size K, the convolution is:

K-1

(x*w)(©) = ) Xpppw,
kZo t+kWk 23

In hedging, this operation detects localized patterns like price
jumps, volatility bursts, or short-lived spot—futures
correlations, while causal padding preserves time order and
avoids future leakage.

LSTMs extend the model’s reach by capturing long-term
dependencies through gated memory cells [38]. At time t, the
cell state ¢; and hidden state h; evolve as:

¢t = [t Oce_1 + ;O & (24)
hy = o © tanh(c;) (25)

This gating selectively retains or discards information, enabling
accurate modeling of persistent volatility and regime effects.
Together, CNNs extract short-term anomalies and LSTMs
capture structural trends, producing a unified, data-driven
framework for robust, real-world dynamic hedge ratio
estimation.

5.3.2 Model Architecture and Implementation

The LSTM—-CNN hybrid pipeline, implemented in TensorFlow
Keras, with design choices guided by both statistical
diagnostics and domain expertise in financial time series. The
dataset comprises daily spot and futures prices for the KSE-30
index, which are transformed into continuously compounded
logarithmic returns:

Rse =In(;225),

Pst-1

Pr ¢
Rp, =1 :
Fe = <PF,t—1>

(26)
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Figure S. ACF of Index and Future Returns.
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Autocorrelation analysis in figure 5, reveals a pronounced lag-
1 spike for both series, indicating short-term dependence,
followed by rapid decay to statistical insignificance. This
justifies including both contemporaneous and one-period
lagged returns as model inputs:
xt = [Rst, Rres Rst-1, Rpe-1] (27

These four features are arranged into rolling sequences of
length p = 20, forming tensors X, € RP** that balance
sufficient market history with noise control. Targets are the
next-day spot and futures returns.

The network begins with an input layer feeding a one-
dimensional convolutional layer (32 filters, kernel size 3,
causal padding) that extracts localized temporal patterns
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nonlinearity while preserving computational efficiency. The
CNN output is passed to an LSTM layer with 32 units, which
learns long-term dependencies and compresses the sequence
into a fixed-length embedding. A fully connected dense layer
maps this embedding to the predicted hedge ratio f;, which is
directly integrated into the hedging objective through a custom
Lambda layer:
ﬁhedged,t = Rg; — Bt Rp (28)

This end-to-end design ensures the model learns hedge ratios
that minimize the variance of the hedged portfolio, aligning
statistical performance with practical risk-management
objectives. The model architecture pipeline can be seen in
figure 6 below.

without future leakage. ReLU activation introduces
Inputs LSTM-CNN Hedge Ratio Estimator
Sequence Input
[Batch, 20, 4] ConviD
(32 filters, K=3) LSTM SO
"] Relu, Casual 3ofitters [ | A &
Padding
Ri Input
[Batch, 1]
Rf Input ] Outputs
[Batch, 1] | | Dense HR Hedged
(MVHR) Return
Figure 6. Architecture and Pipeline of LSTM-CNN Hybrid Model.
5.3.3 Model Compilation, Training, and 32 hidden units to capture nonlinear long-range dependencies.

Evaluation Framework

The CNN-LSTM model was compiled in TensorFlow—Keras
using the Adam optimizer (learning rate 10~3), chosen for its
stability and rapid convergence in training deep architectures
on noisy financial series [40]. The learning objective directly
targets portfolio risk minimization by reducing the mean
squared error between the hedged return and zero, embodying
the ideal of a perfectly neutralized position:

L A 29)
TSN Rse = B Ree)’
i=1

where 6 denotes all trainable parameters. Chronological
integrity of the data was preserved with an 80/20 train—test split
[40]. Training ran for 50 epochs with a batch size of 64,
incorporating early stopping and adaptive learning rate
scheduling to safeguard against overfitting.

The input tensor X, € RP** encapsulates 20 days of
contemporaneous and lagged spot—futures returns. These pass

through a causal 1D convolution layer with 32 filters (kernel
size K = 3) that extract short-term temporal features:

K-1
e (S e 100)
k=0

The convolutional output is then processed by an LSTM with

(30)

The final hidden state h, is mapped to the hedge ratio
B = Wg hy + bg, which in turn yields the residual hedged
return ﬁhedged,t = Rg; — i Rp;.

Performance evaluation on the test set applied the KPSS and
Ljung-Box tests to confirm stationarity and absence of
autocorrelation, alongside ARCH LM tests to check for
volatility clustering. Hedging effectiveness was quantified via
variance reduction, RMSE, Sharpe ratio, directional accuracy,
mean absolute deviation, and tail risk metrics such as VaR and
CVaR under extreme value theory. This architecture’s
design—causal convolutions for temporal integrity, LSTM
memory for complex dependencies, and a loss function aligned
with economic objectives which ensures both statistical rigor
and financial relevance, marking it as a robust tool for risk
mitigation in dynamic markets.

5.4 Fourier Transform Network (FT-Net)
Hybrid Model

Contemporary financial markets are shaped by an interplay of
irregular  shocks, cyclical forces, and persistent non-
stationarities, producing dynamics that cannot be fully resolved
by purely time-domain models. Classical econometric
frameworks and deep learning architectures such as LSTMs
and CNNs capture temporal dependencies well yet remain
inherently blind to spectral structures like dominant
frequencies, seasonal patterns, business cycles, volatility
regimes, that often drive return dynamics. The omission of such
frequency-domain information can lead to systematically
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biased hedge ratios and overlooked arbitrage windows.

The FT-Net architecture addresses this gap by integrating
explicit Fourier Transform-based modules with advanced
temporal modeling blocks, ranging from CNNs for localized
feature extraction to recurrent layers such as LSTM or GRU for
sequential dependency capture. Through jointly operating in
the frequency and time domains, FT-Net can decompose price
series into their spectral components while tracking evolving
temporal interactions [41]. It enables the model to detect
cyclical risks and regime shifts in equity futures before they
materialize in the raw time series.

This dual-domain approach produces hedge ratios and arbitrage
signals that are both spectrally aware and temporally
responsive, surpassing the limitations of conventional deep
learning and econometric models. In high-frequency equity
futures markets, where cycles may span from intraday
periodicities to multi-month business regimes, FT-Net’s
capacity to jointly learn across domains offers a path toward
more robust dynamic hedging and statistically significant
arbitrage detection. The result is a framework aligned with
modern trading demands such as anticipatory, adaptive, and
grounded in both the structural and stochastic realities of
market behavior.

5.4.1 Theoretical Foundations of the FT-Net
Hybrid Model

The FT-Net architecture is grounded in spectral analysis,
leveraging the Discrete Fourier Transform (DFT) to uncover
hidden periodicities and regime dynamics in financial time
series. As mentioned by Brigola [9], the DFT decomposes a

éinto sinusoidal components of

varying frequencies, amplitudes, and phases:

sequence of returns {xn}Ir\l] B

Xy = XNZdx, e m/N =012, N—1 @31)

Here, X}, is the complex coefficient for the k-th frequency bin,
|xy [represents the strength of that frequency, and arg (x;)
encodes its phase. In market data, these spectral signatures
often correspond to cyclical forces, macroeconomic expansions
and contractions, seasonal trading patterns, or volatility
regimes, that may remain obscured in purely time-domain
analysis. Crucially, spectral shifts can precede observable
changes in the time series, offering early indicators of structural
market transitions [42].

Empirical research has repeatedly shown that financial returns
exhibit distinct frequency-domain features, from multi-year
business cycles to intraday periodicities, and that volatility
clustering and contagion often leave identifiable spectral
fingerprints [43]. Yet, most deep learning applications in
finance remain confined to the time domain, failing to exploit
this rich structure. Through embedding DFT-based modules
directly into its architecture, FT-Net fuses temporal
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dependency modeling with spectral decomposition, enabling
simultaneous learning of time—frequency interactions [44].
This joint-domain approach equips the model to detect
emerging risks and arbitrage opportunities with greater
timeliness and precision than either domain alone.

5.4.2 Model Architecture and Implementation

The FT-Net Hybrid is a modular deep learning architecture that
fuses spectral analysis with temporal modeling to address the
dual-domain complexity of financial time series [45]. Its design
rests on the premise that asset returns carry intertwined
signatures in both time and frequency domains, and only their
joint modeling can fully reveal cyclical structures, transient
shocks, and regime shifts critical for hedging decisions. The
pipeline comprises four principal stages: Fourier-based spectral
decomposition, temporal convolution, feature fusion, and
sequence modeling, culminating in the estimation of dynamic
hedge ratios.

Given a rolling input window x; € RW*%of past returns, lags,
and optional statistical features, the Fourier branch transforms
each feature channel x;; to the frequency domain via the
Discrete Fourier Transform:

2mikn

Fk(]) =Yz Xt—w+14n,j € W k=
0,12,.., w—1 (32)

Real and imaginary components (or magnitude and phase) are
concatenated to form the spectral vector S; € R?%4, with
optional attention weighting a; to emphasize dominant
predictive frequencies. Parallel to this, the temporal branch
applies one-dimensional convolutions:

f-1a (33)

Gy = 2 WY e + b5
=0 j=1

Followed by non-linear activations, enabling the detection of
localized events such as volatility bursts or short-lived arbitrage
opportunities.

Outputs from both branches are fused into a joint feature vector
Z, = [Flatten(C.),S;]T, which is then processed by a
recurrent layer, called LSTM , to model long-range
dependencies and adapt to non-stationary market regimes. The
final dense readout produces hedge ratios under appropriate
activation constraints (sigmoid for [0,1], tanh for bounded
leverage, or linear for unrestricted cases). This architecture’s
multi-resolution representation and end-to-end trainability
make FT-Net a powerful framework for exploiting the full
informational richness of index—futures dynamics. The model
architecture pipeline can be seen in figure 7 below.
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Figure 7. Architecture and Pipeline of FT-Net Hybrid Model.

5.4.3 Model Compilation,
Evaluation Framework

The FT-Net Hybrid produces the one-period-ahead dynamic
hedge ratio B directly from its final hidden state h; through a
fully connected mapping,

Training, and

Be = dWauehe + bour) (34)

where ¢ (-) enforces the desired range of leverage or exposure.
The predicted hedged return is then constructed in the manner
of a minimum-variance portfolio, adjusting exposure each
period in response to evolving market conditions. Training is
formulated as the minimization of the variance of the hedged
return series, operationalized as a mean squared error against
zZero,

frar =S Breagea
var = 37 hedged,i
N& (35)

with regularization via L2 weight decay, dropout, and batch
normalization to improve generalization. Optimization
employs adaptive stochastic gradient descent (Adam), enabling
efficient parameter tuning across the model’s spectral and
temporal pathways.

Model validation spans both statistical and financial
diagnostics to ensure risk minimization and exploitation of
arbitrage opportunities. Stationarity is evaluated via the KPSS
test, while the Ljung—Box and ARCH-LM tests assess residual
autocorrelation and volatility clustering. Performance is
quantified through MAE, RMSE, variance reduction, Theil’s
U, and Sharpe ratio, complemented by directional accuracy
metrics. Tail risk is probed using extreme value theory,
computing VaR and CVaR reductions relative to benchmarks.
Visual diagnostics—time-varying f3; plots, cumulative return
curves—reveal how the model adjusts under volatility bursts,
regime shifts, and seasonal cycles, offering transparency into
its adaptive mechanics.

5.5 Post Model Performance Evaluation

5.5.1 Statistical Tests Post-Model Implementation
Post-implementation diagnostics were conducted to validate
model reliability, assess residual behavior, and benchmark
hedging quality. Theil U statistics measured forecasting

performance against a naive 1:1 hedge, while ARCH-LM,
Ljung-Box, and KPSS tests on training and testing residuals
ensured the absence of volatility clustering, serial correlation,
and non-stationarity. Econometric models used log-differenced
spot and futures returns of the KSE-30, while deep learning
models employed hedged return series derived from
dynamically estimated hedge ratios, enabling adaptive risk

management without overfitting.

5.5.2 ARCH LM Test

The ARCH-LM test, initially applied pre-model to confirm
conditional heteroscedasticity, was re-applied post-model to
assess volatility absorption. DCC-GARCH p-values (training:
0.0645/0.0586; testing: 0.1427/0.1687) indicated only marginal
heteroscedasticity, with Copula DCC-GARCH showing p-
values > 0.1 throughout—evidence of effective tail dependence
modeling. Deep learning models exhibited p-values = 1.000,
suggesting complete removal of ARCH effects and validating
their suitability for hedging comparison.

5.5.3 Ljung Box Q Test

The Ljung-Box test confirmed that all models produced
uncorrelated residuals, with p-values > 0.1 for econometric
models and > 0.5 for deep learning models, indicating no
systematic temporal dependencies. This reinforces correct lag
specification and absence of residual autocorrelation, even in
the presence of non-linear financial time series structures.

5.5.4 KPSS Test

Stationarity, critical for valid volatility estimation, was
confirmed across all models, with p-values > 0.1 for both
training and testing sets. This stability ensures that volatility
and hedge ratio estimates remain reliable and mean-reverting,
aligning with recent findings that deep learning can capture
non-linear stationarity structures that traditional models also
accommodate.

5.5.5 Theil U Statistic

Against the naive hedge, Copula DCC-GARCH (U = 0.8528)
outperformed DCC-GARCH (U = 0.91), demonstrating
superior forecast accuracy. LSTM-CNN (0.9179) and FT-Net

(0.9128) trailed slightly yet still beat the naive benchmark (U <
1), affirming their viability in practical hedging applications.

5.6 Predicted Minimum Variance Hedge

Ratios (MVHRSs)
The MVHRs, estimated by Copula DCC-GARCH and DCC-
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GARCH models, shown in figure 8 and 9, highlight the in- dip of 0.75 and peak of approximately 1.30 for both models in
sample period in light blue series and out-of-sample period in the 2023-24 region. This hedging pressure reflects the impact
orange series. The MVHRs in the training sample for both shown by the DCC-GARCH and Copula DCC-GARCH model
models fluctuate approximately around 0.8 and 1.12, indicating to previous stress episodes. While comparing the Copula DCC-
stable hedge ratios (B) for the 2019-22 region. However, GARCH and DCC-GARCH models, it can be observed that
despite the EWMA filter to smooth out the noise and stabilize Copula DCC-GARCH demonstrates short lived adjustments
volatility, the hedge ratios in both models show spike of due to a slightly lower average MVHRs, combined with
approximately 1.2 and 1.1 followed by a dip of approximately amplified oscillations in hedge ratios for the period of extreme
0.75 and 0.8 due to the onset of the COVID-19 pandemic, shocks reflecting t-copulas ability to capture tail dependence
reflecting unpredictable change in covariance’s. Proceeding to and asymmetric co-movements, while DCC-GARCH has
the testing period, increased fluctuations are observed with a marginally higher average hedge ratios.
Hedge Ratio Over Time

# lest
= Blrain
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Figure 8. Dynamic MVHRs obtained using DCC GARCH
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Figure 8. Dynamic MVHRs obtained using Copula DCC GARCH.

Moreover, the MVHRs estimated by LSTM-CNN and FT-Net models, a sudden spike i.e. 1.10 in FT-Net and 1.05 in LSTM-
hybrid models, shown in figure 10 and 11, highlight the in- CNN, is observed in the early 2020, due to the onset of COVID-
sample period in dark blue series and out-of-sample period in 19 pandemic, reflecting uncertainty similar to the mathematical
orange series. The hedge ratios () in LSTM-CNN model with model. However, FT-Net highlighting its mean-reverting
its peak of 1.05 in the training period has a subdued response behavior stabilizes the hedge ratios quickly compared to the
to extreme events, when compared to FT-Net, reflecting the other models. The testing period fluctuating around 0.96 and
model’s ability to avoid overstating and understating hedge 0.99 shows reliable out of sample performance and the model’s
ratios, suitable for volatile’ Pakistani market. The ability to quickly capture non-linear complexities. Comparing
convolutional layer and temporal dependency of the LSTM the hedge ratios of mathematical and deep learning models, it
layer of the LSTM-CNN model fluctuates around 0.94-0.98 is observed that although all the models exhibit mean reverting
range, showing reduced short noise yet lower and non-reactive behavior, yet FT-Net has higher suitability in dynamic
hedging performance when compared to FT-Net. On the other conditions, as it shows greater responsiveness to the volatile
hand, FT-Net shows hedge ratios (B) mainly close to 1, Pakistani market.

suggesting better hedge performance. In both deep learning
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Figure 9. Dynamic MVHRs obtained using LSTM-CNN
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Figure 10. Dynamic MVHRSs obtained using FT-Net Hybrid

5.7 Hedged Returns Estimation

After the hedging ratios in the training and testing data, the
hedged returns are computed for both DCC-GARCH and
Copula DCC-GARCH. For qualitative inspection, the time
series of predicted hedge ratios f; is plotted on training and test
dates, as well as the cumulative unhedged versus filtered
hedged returns. Cumulative hedged and unhedged returns are
calculated using formulae below.

(36)

CumUnhedged(t) = ZRs,i )

CumHedged(t) = Z Rijlriz(;led.i

ist

These figures 12 and 13 below vividly illustrate the risk-
reduction benefits of the dynamic hedging procedure used in
this research paper. For DCC-GARCH, the hedged returns (in
orange line) show smoother returns as compared to the
unhedged returns, which show clear fluctuations especially
during the COVID-19 pandemic period. Whereas Copula
DCC-GARCH depicts slightly higher returns as compared to
DCC-GARCH, due to effective hedging and risk reduction.

Cumulative Hedged vs Unhedged
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Figure 11. Cumulative Hedged and Unhedged Returns —- DCC GARCH.
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Figure 12. Cumulative Hedged and Unhedged Returns — Copula DCC GARCH.

In the LSTM—CNN model, B, was estimated for both training
and test windows, and hedged returns were computed. The
resulting B, series from both sets was concatenated to produce
a full-period, unfiltered hedged return series. To address
systematic biases, residuals e, = ﬁhedged,t were regressed
against their recent lags and contemporaneous spot/futures
returns. After removing initial NaNs, the data was split
chronologically and used to train three gradient boosting
regressors—XGBoost, LightGBM, and CatBoost—each with
200 trees. The ensemble average of their predictions yielded e;,
which was subtracted from the original hedged returns,
producing a variance-reduced, filtered series.

For the FT-Net model, B, was similarly generated for both train
and test sets, but without explicit variance—covariance

computation, as the network’s spectral-temporal architecture
implicitly learned the mapping to optimal hedge ratios.
Residual correction followed the same ensemble boosting
procedure as in LSTM—CNN, producing a “double-filtered”
hedged return series with even lower volatility.

Cumulative return analysis highlights the practical edge of FT-
Net over LSTM—CNN. Both models maintained exceptionally
flat, low-volatility hedged profiles through mid-2023, but FT-
Net achieved a very slightly higher cumulative hedged return
peak and exhibited slower drawdown decay. This suggests that
FT-Net’s frequency—temporal layers adapt marginally faster to
trending conditions, capturing gains more decisively, whereas
LSTM-CNN’s  convolution—recurrent  design  delivers
comparable smoothness but slightly lower total hedge payoff.

Cumulative Hedged vs Unhedged

0.6 §
—— Unhedged

Hedged
0.4

0.2 4

Cumulative Return

T T T
2019 2020 2021

U T U
2022 2023 2024

Figure 13. Cumulative Hedged and Unhedged Returns — LSTM-CNN.
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Figure 14. Cumulative Hedged and Unhedged Returns — FT-NET Hybrid.

6. COMPARATIVE ANALYSIS USING
FUZZY TOPSIS AND OTHER DECISION-

MAKING CRITERIA

Hedging strategies for a KSE 30 index portfolio is formulated
using the KSE 30 futures contract through both sophisticated
econometric models, and cutting-edge deep learning
architectures, to dynamically minimize risk in the equity
futures market. The primary objective of this chapter is to
rigorously assess the hedging effectiveness of the model by
using a comprehensive suite of quantitative performance
metrics and rank them with respect to their hedging
performance. The authors of this study have employed nine
performance criteria to gauge the hedge effectiveness, which
include the variance reduction percentages, Root Mean Square
Errors (RMSE), average hedged returns, Sharpe ratios,
directional accuracy, Value at Risk (VaR) Reduction,
Conditional Value at Risk (CVaR) Reduction, mean absolute
deviation, and time complexity. These metrics effectively
capture the risk minimization capability and the operational
efficiency of the models. However, the challenges arise from
the multicriteria analysis, as no single model unequivocally
dominates all criteria, emphasizing the conflicts in the Multi-
Criteria Decision-Making (MCDM) context. This predicament
created the need for the adoption of a systematic methodology
to assess the performance of each model and rank them
accordingly.

To address this problem, the authors of this study incorporated
the Fuzzy Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) method, a multicriteria decision-
making technique [46]. The Fuzzy TOPSIS method ranks
multiple alternatives based on their closeness to an ideal
solution while maximizing benefits and minimizing costs. The
following section provides an in-depth discussion of the Fuzzy
TOPSIS methodology used in this research.

6.1 Implementation of the Fuzzy TOPSIS
methodology

6.1.1 Define the decision-making problem
The first step of the TOPSIS methodology is to define the
decision-making problem. To obtain fair and multidimensional

assessment results, the authors of this study utilize nine key
performance metrics that gauge the risk minimization
capability, predictive accuracy, profitability, and operational
efficiency of the models.

i Variance reduction helps us assess the extent to
which a model reduces the variance of the hedged
portfolio compared to the variance of the unhedged
portfolio.

il. The RMSE evaluates the model's ability to forecast
the hedge ratios; lower RMSEs indicate more precise
predictions.

ii. The average hedged return is an indicator of the
profitability of the models, as it reflects the model’s
ability to maintain the portfolio returns while
minimizing the risk.

iv. Sharpe ratio is a measure of risk-adjusted return as it
reflects the ability of a model to achieve higher
returns given the risk minimization criteria.

v. Directional accuracy is also an indicator of the
predictive accuracy of the models; however, it
focuses on the frequency with which the model
correctly predicts the direction of market
movements.

vi. Value at Risk (VaR) reduction is a measure of how
effectively a model reduces potential losses at a
specified confidence level.

vii. Conditional Value at Risk (CVaR) reduction further
extends the analysis of downside risk by assessing
the expected average loss beyond the VaR threshold.

viii. Mean absolute deviation (MAD) is an additional
measure of predictive accuracy.
iX. Finally, time complexity measures the computational

resources and time required for each model to
execute. It is an essential metric to gauge the
operational efficiency of the models.

Tables 1 and 2 below show the criteria for all models on the
training and testing datasets.
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Table 1. Performance Metrics of Hedging Models — Training.

METRICS COPULA GARCH | DCC GARCH | LSTM-CNN HYBRID | FT-NET HYBRID
Variance reduction 92.54 92.71 99.9 99.9
RMSE 0.01241 0.01234 0.00041 0.00042
Average Return -0.000024 -0.000046 0.000004 0.000004
Sharpe Ratio -0.0067 -0.013 0.0098 0.0102
Directional Accuracy 66.63 70.09 50.81 52.64
VaR Reduction 83.58 83.97 97.66 97.55
CVaR Reduction 86.63 87.02 97.31 97.23
MAD 0.00886 0.0088 0.000239 0.000238
Time Complexity (s) 6.66 4.48 10.79 9.63

Table 2. Performance Metrics of Hedging Models — Testing

METRIC COPULA GARCH | DCC GARCH | LSTM-CNN HYBRID | FT-NET HYBRID
Variance Reduction 95.09 95.05 96.96 96.56
RMSE 0.01118 0.01121 0.00206 0.00219
Average Return 0.00029 0.00034 -0.00009 -0.00005
Sharpe Ratio 0.1113 0.129 -0.0438 -0.0227
Directional Accuracy 62.07 67.82 51.34 51.34
VaR Reduction 89.39 88.54 94.65 94.38
CVaR Reduction 90.97 90.1 91.74 91.62
MAD 0.00824 0.00817 0.000611 0.000619
Time Complexity (s) 4.48 6.39 10.79 9.63

6.1.2 Determination of AHP weights

After identifying all decision criteria, the fuzzy TOPSIS
multicriteria decision-making methodology requires weights to
be assigned to each of them. Therefore, to assign weights to
every criterion, the authors of this study use the Analytic
Hierarchy Process (AHP), which converts a complex problem
into a hierarchy of sub-problems [47]. They begin by
constructing a pairwise comparison matrix, where each element

represents the relative importance of one metric over the other.
A 9x9 pairwise comparison matrix is created (Table 3), where
each entry (i, j) in this matrix expresses how much more
important criterion i is compared to criterion j. In the table
below, each metric is represented as follows: variance
reduction (C1), RMSE (C2), average hedged return (C3),
sharpe ratio (C4), directional accuracy (C5), VaR reduction
(C6), CvaR reduction (C7), mean absolute deviation (C8), time
complexity (C9).

Table 3. Computation and Fuzzification of AHP Pairwise Comparison Matrix.

C1 2 C3 C4 Cs C6 C7 c8 C9
C1 1 5 5 5 7 7 7 9 9
2 1/5 1 3 3 5 5 5 7 7
C3 1/5 13 1 2 4 4 4 6 6
C4 1/5 1/3 12 1 3 3 3 5 5
Cs 1/7 1/5 1/4 173 1 2 2 4 4
Co 1/7 /5 1/4 1/3 12 1 2 3 3
7 1/7 /5 1/4 1/3 12 12 1 3 3
Cs 1/9 1/7 1/6 /5 1/4 173 1/3 1 2
c9 1/9 1/7 1/6 1/5 1/4 13 113 12 1
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Once the initial pairwise matrix is constructed, it is normalized
to ensure consistency and to allow for proper weighting. The
matrix is normalized by dividing each entry in a given column
by the sum of that column, transforming the original elements
into relative proportions. The normalized matrix reflects the
proportional importance of each criterion relative to every other
criterion in the set.
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Then the weight of each criterion is extracted by computing the
mean value of each row in the normalized matrix. This average
quantifies the overall relative importance of each criterion,
aggregating its normalized influence across all pairwise
comparisons. The vector of these row means represents the
initial set of crisp (precise) weights, which together sum to one,
ensuring a proper probability distribution over the criteria.
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Figure 15. Fuzzified AHP Criteria Weights.

Instead of considering each crisp weight, they are converted to
fuzzified values by constructing a Triangular Fuzzy Number
(TFN) centered on the crisp value but allowing for a range of
uncertainty. Specifically, for each weight w, a TFN is defined
as (0.9w, w, 1.1w), thereby incorporating a +10% spread
around the nominal value. This fuzzification step captures the
ambiguity and lack of perfect precision, making the criteria
weighting process more realistic and defensible.

The fuzzified AHP weights are presented in the figure 16 above
from highest to lowest. The highest weights were assigned to
variance reduction and RMSE, while the lowest weights were
assigned to the mean absolute deviation and time complexity.

6.1.3 Fuzzification of decision criteria

After defining and calculating all criteria and their fuzzified
weights, the next step was to convert the criteria to fuzzy
numbers, using Triangular Fuzzy Number (TFN), denoted by
three points: lower bound [, modal value m, and upper bound
u [48]. If a criterion has an observed value v, fuzzification is
defined as:

Umu)=wx1-8),v,vx(1+8) (37

where o is the fuzziness factor capturing measurement
ambiguity. Here, / reflects a pessimistic scenario, m the most
likely estimate, and u an optimistic evaluation. By constructing
the decision matrix with TFNs, the analysis formally
incorporates uncertainty into subsequent steps.

Next, the fuzzy decision matrix is normalized to eliminate scale
effects. For benefit-type criteria (e.g., Sharpe ratio, variance
reduction), normalization ensures that larger values map closer
to unity, while for cost-type criteria (e.g., RMSE, MAD, time
complexity), values are inverted such that smaller values are
preferable. ~ This  guarantees  comparability  across

heterogeneous metrics.

Following normalization, the weighted normalized fuzzy
matrix is constructed. Each normalized TFN is multiplied by its
fuzzified weight, ensuring that more critical criteria exert
proportionally stronger influence. The weighted decision
matrix thus integrates both the intrinsic fuzziness of data and
the subjective prioritization of criteria.

The next step identifies Positive Ideal Solutions (PIS) and
Negative Ideal Solutions (NIS). For each criterion, the PIS
represents the most favorable TFN (highest benefit or lowest
cost), while the NIS captures the least favorable scenario [49].
Each model’s desirability is then determined by computing its
Euclidean distance to the PIS and NIS. For TFNs, the distance
between two fuzzy numbers (l;,mq,u;) and (I, my,u,) is
expressed as:

d

ZIl — 1)+ (m = ma)? 4 (s — 7]

(38%)
Finally, the closeness coefficient (CC) is derived as:
CC; = D
T D +D;
(39

where D is the distance of model i from the PIS and D{ its
distance from the NIS. The closeness coefficient, bounded
between 0 and 1, serves as a scalar indicator of how closely
each model approximates the ideal benchmark [50].
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Figure 16. Model Ranking by Fuzzy TOPSIS.
Figure 17 presents the resulting ranking. The FT-Net Hybrid CEl = CG;
model achieves the highest coefficient (0.444), narrowly LT o
outperforming the LSTM-CNN Hybrid (0.425). In contrast, Zj=l CG (40)

econometric benchmarks lag significantly, with DCC-GARCH
(0.336) and Copula GARCH (0.309). These ranking
underscores two insights: (i) deep learning hybrids better
capture nonlinear dynamics and structural breaks in financial
time series, and (ii) integrating temporal and frequency-domain
features (as in FT-Net) provides a marginal but meaningful
edge over purely sequential architectures.

The results demonstrate that fuzzy TOPSIS offers a
transparent, multidimensional, and uncertainty-aware
evaluation of hedging performance. Through joint
consideration of risk minimization, predictive accuracy,
profitability, tail risk management, and computational cost,
while embedding fuzziness into every step, the methodology
ensures robustness to both statistical noise and subjective
judgment.

6.2 The Composite Efficiency Index (CEI)

This paper further extends the comparative analysis by
incorporating the Composite Efficiency Index (CEI), a metric
historically employed in efficiency-based assessments [51].
Building upon the fuzzy TOPSIS methodology, the CEI is
derived from the closeness coefficients, providing a
complementary perspective on model performance. While the
fuzzy TOPSIS coefficient measures each model’s absolute
proximity to the ideal solution, the CEI translates these values
into relative efficiency shares, thereby revealing the
proportional contribution of each model to the overall decision-
making efficiency. By normalizing performance across all
models, the CEI not only enhances interpretability but also
facilitates a more intuitive and quantitative comparison of
multicriteria outcomes.

6.2.1 Implementation

To synthesize the multi-criteria evaluation results into a single
interpretable metric, the CEI was constructed based on the
fuzzy TOPSIS closeness coefficients. The CEI quantifies the
relative efficiency of each model as a normalized share of the
total system performance, ensuring both comparability and
scale independence. Formally, the CEI for model iis defined in
equation 40 as:

Where CC; denotes the fuzzy TOPSIS closeness coefficient of
model i, and n represents the total number of candidate models.

The resulting CEI values (figure 18) indicate that the FT-Net
Hybrid model achieves the highest composite efficiency
(0.293), followed closely by the LSTM—CNN Hybrid (0.281).
Together, these deep learning hybrid models account for
approximately 57% of the total efficiency, significantly
outperforming the econometric baselines: DCC-GARCH
(0.222) and Copula-GARCH (0.204). These findings confirm
that hybrid architectures, which integrate temporal and
frequency-domain representations, deliver more robust and
adaptive hedging performance in volatile equity markets.

Composite Efficiency Index (CEI)

Copula GARCH DCC GARCH LSTM-CNN Hybrid FT-NET Hybrid
Model

Figure 18. Model Ranking by CEIL

7. STATISTICAL ARBITRAGE
ANALYSIS

Statistical arbitrage refers to a class of trading strategies that
use statistical, mathematical and computational methods to
exploit pricing inefficiencies between financial instruments
[52]. Statistical arbitrage is widely understood as a high-
volume, short-term trading strategy. Unlike traditional
arbitrage, which exploits mispricing between identical or
related securities for risk-free profits, statistical arbitrage
distinguishes itself by assuming such mispricing is subtle,
short-lived, and revealed only by complex analysis. Statistical
arbitrage involves taking advantage of mutual relationships, for
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example, mean reversion, cointegration or other statistical
properties. These relationships must last long enough to be
traded systematically, regardless of the noise of the market or
frictions [53] [54].

Statistical arbitrage is based on the idea that the prices of related
financial assets are not always perfectly in sync or adjust
instantaneously, thus giving rise to a temporary deviation from
their equilibrium relation. These deviations arise due to various
reasons like liquidity shock, investor reaction and information
lag and so on. They open up arbitrage opportunities if they can
be detected and acted on before prices revert to normal co-
movement. It’s worthwhile noting that signals based on
statistical patterns can affect prices themselves. A similar point
can be made regarding time-series based strategies. Statistical
arbitrageurs use quantitative techniques for creating trading
signals, managing risk, and executing trades either at high
frequency or in a disciplined, repeatable manner [55]. They rely
on the law of large numbers, and diversification across many
trades to secure consistent returns.

In the context of equity futures market, the use of statistical
arbitrage strategies has become relevant due to the high
liquidity, transparency and standardization of contracts making
systematic trading possible. Equity futures like the ones on
broad-based indices exhibit strong statistical relationships with
their underlying cash indices as they are arbitraged to link the
spot and futures price. Nevertheless, due to market
microstructure effects, varying levels of liquidity, rolling
contract dynamics, and short-term supply-demand imbalances,
temporary mispricing between the futures and their respective
underlying indices do occur. These transitory departures from
theoretical pricing models, such as the cost-of-carry model,
create an environment in which statistical arbitrage strategies
can thrive.

The practical execution of statistical arbitrage strategies makes
a powerful analytical technique that converts the raw data
provided by the market into powerful trading signals. In this
research, statistical arbitrage is grounded on the dynamic
modelling of hedge ratios, calculation of hedged returns,
generation of signals using rolling statistics and statistical
properties like stationarity along with others are usefully
checked to make inference. Each stage in this framework is
designed to maximize both the interpretability and the
effectiveness of the arbitrage signals, ensuring that the trading
opportunities identified are both statistically valid and
economically meaningful.

7.1 Construction of Hedged Return Series

At its core statistical arbitrage methodology is the construction
of the hedged return series, which forms the primary spread to
be analyzed and traded. In financial markets, the concept of a
“spread” refers to the difference between two related financial
quantities—most commonly, the prices or returns of assets that
are expected to move together due to fundamental or statistical
relationships [56]. In the context of this research, the spread is
specifically defined as the return on a dynamically hedged
portfolio comprising a position in the KSE 30 index (the spot
asset) and an offsetting position in the corresponding futures
contract. The central idea is that, by carefully calibrating the
exposure to the futures contract, it is possible to reduce or
neutralize the risk arising from movements in the spot market.

The formula used to calculate the hedged return at each time
step t is mentioned in equation 7. The hedge ratio f, quantifies
the degree to which the futures position offsets the risk of the
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spot position. The value of B, is not static but is recalculated at
each time point using sophisticated models, such as DCC-
GARCH, Copula-GARCH, LSTM-CNN, or FT-Net Hybrid, so
as to capture changing market conditions and correlations.

The resulting hedged return series, Rp,eq ged,t» can be interpreted
as the “residual risk” or “spread” that remains after applying
the hedge. Ideally, if the hedge were perfect and all market
movements were fully anticipated by the model, the hedged
return would be close to zero [6]. However, in reality, due to
estimation errors, market frictions, and the inherent
unpredictability of financial markets, the spread will exhibit
variability and, importantly for statistical arbitrage, may
display patterns of mean reversion or deviation from
equilibrium. By focusing on this spread, the statistical arbitrage
methodology is able to detect and systematically exploit these
temporary dislocations for profit.

7.2 Rolling

Normalization

Next steps after computing the hedged return series, or spread,
are to track how this spread behaves over time to get actionable
trading signals. The primary tool used for this analysis is the
calculation of rolling statistics, which ensure that abnormal
deviations are detected with respect to most of the recent
history rather than a fixed mean or standard deviation. This is
essential in financial markets where statistical properties may
evolve over time due to regime changes, volatility clustering,
or shifts in investor sentiment.

Statistics and Z-Score

The rolling mean and rolling standard deviation are defined
mathematically as follows (equation 41) for a window of size
w:

t
1 ~
Ue = ; Z Rhedged,t
i=t-w+1 41

1 ~
il vy (Rneageat — Kt) (42)

i=t-w+1

where u, represents the rolling mean of the hedged return at
time t, and ¢ denotes the rolling standard deviation over the
same window. By recalculating these statistics at each time
step, the method adapts to evolving market conditions and
ensures that the detection of anomalies is contextually relevant.

To further standardize the detection of trading opportunities,
the spread is normalized into a z-score (see equation 43), which
expresses the current hedged return in terms of its distance from
the rolling mean, scaled by the rolling standard deviation:

ﬁhedged,t — Ut (43)
o= S

The z-score, z;, provides a dimensionless measure of
extremity: values close to zero indicate that the spread is near
its recent average, while large positive or negative values
signify abnormal deviations. In the context of statistical
arbitrage, these z-score thresholds form the basis for generating
entry and exit signals. For example, when the z-score exceeds
a certain positive threshold, the spread is considered
“overbought” and likely to mean-revert downwards, triggering
a short position. Conversely, when the z-score falls below a
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negative threshold, the spread is “oversold” and expected to
revert upwards, prompting a long position. This approach
leverages the inherent tendency of mean-reverting series to
oscillate around a stable equilibrium, thus enabling the
systematic exploitation of temporary mispricing.

7.3 Stationarity Testing and Justification
The effectiveness and validity of any statistical arbitrage
strategy is largely dependent on whether the hedged return
series is stationary. Statistical features that enable time series
analysis are often gathered at regular intervals, making the
time-series analysis of stationary data important. Stationarity
implies that history matters for what may happen in the future.
This is exactly the assumption behind repeated arbitrage
opportunities. If the spread is not constant over time, then any
movement away from the average could be permanent, which
would render any trading strategy based on the idea of moving
back towards the average too erratic to implement or too
dangerous to implement.

To formally test for stationarity, the Augmented Dickey-Fuller
(ADF) test is employed [57]. The ADF test is a statistical
hypothesis test in which the null hypothesis is that a unit root is
present in the time series, indicating non-stationarity. The test
is based on estimating the regression shown in equation 44:

p
Ayp=a+ P +yye1 + Z 84y, + &
é (44)
=1
where y, is the value of the spread (here, }?hedged’t), Ay,
denotes the first difference of y,, t is a time trend, p is the
number of lagged differences included to account for
autocorrelation, and &, is the error term. The key parameter of
interest is y is significantly less than zero, the null hypothesis
of a unit root is rejected, indicating stationarity.

The outcome of the ADF test includes the test statistic, critical
values at standard significance levels, and the p-value. A
sufficiently negative test statistic, or a p-value below the chosen
significance threshold (typically 0.05), provides statistical
evidence that the series is stationary. In the context of this
research, the application of the ADF test to the hedged return
series ensures that the mean-reversion signals generated by the
z-score normalization are grounded in sound statistical
properties, rather than being artifacts of a trending or random-
walk process. This will not only make the arbitrage signals
more reliable but also protect against model failure or false
positive signal in the live trading environment.

7.4 Mean-Reversion Signal Design

The detection of deviations forms the basis for generating
actionable trading signals. In implementation, the strategy uses
the previously calculated z-score. This z-score tells us how
many standard deviations the current value of the spread is
from its rolling mean [58].

Hedged return also called a spread at time taken equal to the
rolling mean over rolling standard deviation over a window
equal y, and o, respectively. A z-score converts the spread into
a standardized measure, which allows comparing offsets today
directly, regardless of changes in its volatility or average level
over time.

Trading signals are produced by determining an entry threshold
(Zentry) and an exit threshold (Zgy;:). The thresholds are
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statistical cutoffs that determine what deviations away from the
mean are significant and what level of reversion will be
sufficient to close a trade. The entry and exit conditions for
trading is mathematically defined as follows:

1. Long Entry (Buy Spread): When the z-score falls
below the negative of the entry threshold, i.e., z;<
~Zentry » this signals that the spread is abnormally
low and likely to mean-revert upwards. A long
position is initiated, betting on an increase in the
spread.

2. Short Entry (Sell Spread): Conversely, when the z-
score rises above the positive entry threshold, i.e., z;
> Zengry, the spread is deemed abnormally high and
expected to revert downwards. A short position is
initiated.

3. Exit Signal (Close Position): Regardless of the initial
direction, when the absolute value of the z-score
returns below the exit threshold, i.e., |z:| < Zgye, it
indicates that the spread has normalized, and the
trade should be closed to realize profits and mitigate
the risk of reversal.

These rules can be mathematically summarized as in equation
45:

1 ifze < —Zentry
APosition = =1 ifz; > Zepry
0 if lz] < Zex “3)

This systematic approach increases the likelihood of making
profitable trades or closing out losing trades. They are opened
once confirmed deviations and closed when the deviation is
gone. Using z-scores rather than absolute values, it provides an
adaptive strategy that responds to market conditions and
volatility regimes.

7.5 Trade Position Management

The management of trading positions in a statistical arbitrage
strategy is governed by the signals described above, with
explicit rules dictating when to enter, hold, or exit trades. At
any given time, the strategy can be in one of three possible
states: long, short, or flat (no position).

A long position is taken when the spread is judged to be
excessively low, based on the z-score dropping below the
negative entry threshold. In practical terms, this involves
buying the spot index and selling the corresponding number of
futures contracts as specified by the hedge ratio, with the
expectation that the spread will rise. Conversely, a short
position is initiated when the z-score exceeds the positive entry
threshold, indicating the spread is excessively high; this entails
selling the spot index and buying futures contracts, profiting
from a decline in the spread.

Trade transitions are managed through a straightforward
process. When the z-score signal triggers a new position (long
or short) and the strategy is currently flat, the position is opened
accordingly. If a position is already open and the z-score
crosses the exit threshold in the direction of normalization, the
position is closed, returning the strategy to a flat state.
Importantly, the system is designed to avoid simultaneous long
and short positions; at most, only one direction is active at any
time. If the signal reverses before the exit threshold is hit (for
example, from long entry to short entry without normalization),
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the previous position is first closed before the new position is
opened, ensuring clear transitions and accurate accounting of
profits and losses.

This position management logic ensures discipline, prevents
overtrading, and allows for clean measurement of individual
trade performance. The sequence of position changes is directly
mapped to the time series of z-score signals, making the
strategy transparent and auditable.

7.6 Parameter Optimization

The performance of statistical arbitrage hinges significantly on
the selection and tuning of key parameters; namely, the rolling
window size used for computing statistics, and the entry and
exit z-score threshold values. How often and how profitably a
trading strategy might trade is determined by these parameters,
as is how robust the strategy is to various situations.

The size of the rolling window (w) affects the mean and
standard deviation of the spread. When a window is smaller in
size. The strategy will respond to the latest change effectively.
But, it can miss on big trends. On the other hand, if you have a
bigger window, you will smooth short-term variations and
perhaps prevent overfitting, but you can be slow to react to real
regime changes. Choosing a window size is, therefore, a trade-
off between sensitivity and stability. Using out-of-sample back
testing and validation for empirical testing helps find the
optimal window to balance these competing concerns
specifically for the KSE 30 futures market.

Changes to the entry z-score threshold (., ) and exit z-score
threshold (z.y;¢) will affect the responsiveness of the strategy.
When entry thresholds are lower, traders trade frequently as
signals are triggered with even small deviations from the mean.
Although this may lead to greater opportunities, it also
increases the chances of a false positive and transaction costs.
When the thresholds are high, the strategy will only activate
when conditions are extraordinary. The idea is that the quality
of trades will be superior on average. However, it will also
activate far less often. Thus, total profitability might be lowered
due to fewer returns and trades. The exit threshold controls how
tightly anyone control trades. A tighter exit locks in the profit
quickly and limits the drawdown. A looser exit will allow us to
capture more profit but increases the odds of a reversal.

Usually, the optimization of parameters is done through in-
depth back testing of a grid of parameters. Then the raw return,
risk-adjusted return (Sharpe ratio), drawdown, and number of
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trades are measured. The choice of final parameters is done to
balance profitability and risk and operational suitability. The
optimized strategy should not rely heavily on any specific
period or historical regime. Thus, a sensitivity analysis must be
conducted to test the results across different market conditions.

7.7 Empirical Results and Visualization
7.7.1 Model-by-Model Strategy Performance

Upon executing the statistical arbitrage strategy testing
interface, seen in figure 19, the analysis was conducted with a
rolling window of 60 days, an entry z-score threshold of 2.0,
and an exit z-score threshold of 0.5. The empirical evaluation
covers four distinct models for hedge ratio estimation: Copula-
GARCH, DCC-GARCH, LSTM-CNN Hybrid, and FT-Net
Hybrid. Each model file encapsulates daily returns data for the
KSE 30 index and its futures contract, along with the
dynamically computed hedge ratio and the resulting hedged
return series. Figure 18 also shows the GUI developed to assess
the statistical arbitrage effectiveness. A summary of the
performance metrics for each model is provided in Table 4
below. These metrics include total return, annualized return,
annualized volatility, Sharpe ratio, maximum drawdown,
number of trades executed, and results of the Augmented
Dickey-Fuller (ADF) stationarity test. The Sharpe ratio, which
measures risk-adjusted performance, is used as the principal
comparative criterion for determining the best performing
strategy.

f Statistical Arbitrage Strategy Testing — O bt
Parameters

Rolling Window: |60 It

Entry Z-Score |20 -

Exit Z-Score: 0.5 b

Model Files
Copula(MVHR).xIsx
DCC(MVHR).xlsx
LSTMCNN(MVHR).xlsx

FTNET(MVHR) xlsx

: Run Analysis

Figure 19. Graphical User Interface (GUI) for Statistical
Arbitrage.

Table 4. Statistical Arbitrage Performance Metrics by Model.

Total Annual Annual Sharpe Max ADF ADF p-
Model Trad Crit 5%
ode Return Return Volatility Ratio Drawdown rades Statistic value rsve
Copula
GARCH 0.056 0.011 0.012 0.864 -0.015 54 -13.003 0.000 -2.864
bce 0.059 0.011 0.012 0.951 -0.014 54 -13.020 0.000 -2.864
GARCH . . . . . . . .
LSTM-
CNN 0.066 0.013 0.012 1.074 -0.015 52 -39.123 0.000 -2.864
Hybrid
FT-N]?T 0.066 0.013 0.012 1.077 -0.015 52 -38.939 0.000 -2.864
Hybrid

The FT-Net Hybrid model marginally outperformed all other
models in terms of Sharpe ratio, closely followed by the

LSTM-CNN Hybrid. Both advanced deep learning models
produced higher total and annualized returns than the
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econometric Copula-GARCH and DCC-GARCH models,
while maintaining comparable volatility and drawdown
characteristics. The strong negative ADF statistics and zero p-
values confirm robust stationarity in the hedged return series
for all models, substantiating the statistical basis for mean-
reversion-based arbitrage.

7.7.2 Visualization of Hedged Spread Dynamics
The dynamic behavior of the hedged return (spread) for each
model is visualized in figures 20-23. Each graph plots the time
series of hedged returns along with its rolling mean, entry bands
(2.0 standard deviations), and exit bands (+0.5 standard
deviations) over the entire sample period from 2019 to 2024.

The hedged return series produced by the Copula-GARCH
model oscillates around the rolling mean, with most values
contained within the entry bands. Periodic spikes represent
significant short-term dislocations, often coinciding with
market stress or contract rollover periods. The rolling mean
remains stable near zero, validating the effectiveness of the
hedge. The width of the entry and exit bands adapts
dynamically with volatility, expanding during turbulent periods
and narrowing during tranquil market regimes.
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The DCC-GARCH model’s hedged return dynamics shows
patterns broadly similar to the Copula-GARCH model. The
frequency and magnitude of excursions beyond the entry bands
are slightly higher during high volatility episodes, yet the
spread consistently reverts to the mean. This mean-reversion
property is essential for arbitrage, as it allows repeated entry
and exit opportunities throughout the sample.

Next comes the LSTM—CNN Hybrid model’s hedged return
series. This model exhibits a slightly tighter clustering of
returns around the mean, with fewer extreme outliers. The
dynamic entry and exit bands provide a visual cue for when the
arbitrage strategy is likely to activate trading signals. The
persistently mean-reverting behavior is evident, reinforcing the
statistical foundation of the arbitrage approach.

The FT-Net Hybrid model’s spread demonstrates exceptional
mean-reverting tendencies, with the vast majority of values
remaining within the rolling bands. The spectral features
incorporated by this model appear to enhance the stability and
predictability of the spread, reducing the occurrence of
unprofitable outliers. The visual compactness and symmetry of
the hedged returns suggest robust risk control.

Copula(MVHR).xlIsx: Spread & Bands
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Figure 20. Spreads and Bands — Copula DCC GARCH.
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Figure 21. Spreads and Bands -DCC GARCH.
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Figure 22. Spreads and Bands — FTNET Hybrid.
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Figure 23. Spreads and Bands — LSTM-CNN

7.7.3 Equity Curve and Comparative Performance
To evaluate actual trading performance, Figures 24 — 27 plots
the accumulated profit-and-loss (PnL) curves and entries of all
the individual trades for the model. Accumulated PnL
represents the total impact of each arbitrage trade, signed based
on the s-z-score before its entry and exit decision.

The equity curve of the Copula-GARCH model demonstrates a
stable rising tendency with a moderate number of drawdowns
in the early sample. Each trade is marked to facilitate
understanding, clearly demonstrating that participating in long
and short trades both contribute to the increased profitability of
both parties.

Copula(MVHR).xlsx: Strategy Equity Curve
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Figure 24. Strategy Equity Curve — Copula DCC GARCH.

The DCC-GARCH model also follows a comparable trend,
albeit with a smoother evolution and lesser drawdown
episodes. The gradual changes in the equity curve show that
the model can deal with changing volatility conditions and
achieve consistent performance.

DCC(MVHR).xIsx: Strategy Equity Curve
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Figure 25. Strategy Equity Curve - DCC GARCH.

The LSTM-CNN Hybrid model has seen an increase in total
PnL, with a longer rising equity curve and small drawdowns.
The model’s adaptive learning mechanism determines when to
go long or short and helps the investor earn a higher
compounded return than competing econometric models.

LSTMCNN(MVHR).xlsx: Strategy Equity Curve
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Figure 26. Strategy Equity Curve — LSTM-CNN

FT-Net Hybrid has the highest cumulative return among all
models in terms of equity curve. The equity curve shows a
generally upward direction, especially in the later sample years,
with few reversals. The FT-Net Hybrid model is the number
one model by Sharpe ratio. This is due to its robust and

consistent execution of trade.

59



FTNET(MVHR).xIsx: Strategy Equity Curve
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Figure 27. Strategy Equity Curve — FTNET Hybrid.

Finally, figure 27 overlays the cumulative PnL curves for all
four models, providing a direct visual comparison of strategy
performance over time. This comparative equity curve reveals
the relative strengths and weaknesses of each model. While all
models demonstrate positive growth and mean-reversion-
driven profitability, the FT-Net Hybrid and LSTM-CNN
Hybrid models consistently outperform the econometric
alternatives, both in terms of total return and in the smoothness
of the equity curve. The absence of large, persistent drawdowns
further confirms the statistical robustness and practical viability

of the deep learning approaches.

Cumulative PnL Comparison

—— CopulaiMVHR) xlsx
008 DCC{MVHR] Xl

——  LSTMENNIMVHR) xlsx -
0,05 { — FTNET(MVHR].xIsx P

-0.01

2019 2020 2021 7022 2023 2024

Figure 28. Cumulative PnL. Comparison Across Models.

7.8 Interpretation

The comparative analysis of model performance is grounded in
a comprehensive suite of quantitative metrics and visual
diagnostics. Across all four tested models—Copula-GARCH,
DCC-GARCH, LSTM—CNN Hybrid, and FT-Net Hybrid—the
results consistently indicate that advanced deep learning
architectures, specifically the FT-Net Hybrid and LSTM—CNN
Hybrid, offer a superior edge in the detection and exploitation
of statistical arbitrage opportunities.

The FT-Net Hybrid model emerges as the most effective, as
evidenced by its highest Sharpe ratio of 1.07680 and a total
return nearly identical to that of the LSTM—CNN Hybrid. Both
models deliver not only higher absolute and risk-adjusted
returns but also demonstrate more consistent equity curve
progression, marked by persistent upward momentum and
limited drawdowns throughout the out-of-sample evaluation
period. The econometric models, while still profitable and
statistically significant, underperform relative to their deep
learning counterparts both in terms of total returns and risk-
adjusted metrics.

Figures 24 - 27 depicting the cumulative profit and loss
trajectory underscore this conclusion visually: the FT-Net
Hybrid’s equity curve is not only smoother and less volatile but
also achieves the highest terminal value over the full testing
horizon. The hedged return spread associated with this model
is characterized by a strong mean-reverting tendency, fewer
extreme outliers, and more predictable band crossings, all of
which translate to high-quality arbitrage signals. Furthermore,
the ADF test statistics for all models are strongly significant,
but the FT-Net Hybrid and LSTM—CNN Hybrid models exhibit
the most pronounced levels of stationarity in their spreads,
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further cementing the statistical reliability of the arbitrage
process.

8. CONCLUSION

This study delivers a comprehensive examination of dynamic
hedging in equity futures and statistical arbitrage detection,
comparing traditional econometric frameworks with advanced
deep learning architectures on the KSE-30 Index and its
futures. Core contributions include implementing and
empirically evaluating models under realistic market
constraints, applying rigorous multi-criteria performance
metrics, and integrating arbitrage-based trading analysis. A key
preprocessing challenge, like contract rollover discontinuities,
was resolved through a mean-reverting adjustment, aligning
new contract prices with expiring series to eliminate artificial
jumps and preserve hedge ratio integrity. Missing interest rate
data was imputed using a Random Forest regressor, achieving
strong R? and RMSE scores, ensuring a reliable dataset.

Econometric models, DCC-GARCH and its Student-t Copula
extension, were statistically validated via ADF and ARCH-LM
tests, confirming stationarity and conditional heteroscedasticity
suitability. DCC-GARCH captured volatility clustering and
leverage effects, while Copula DCC-GARCH modeled
symmetric tail dependence, improving extreme co-movement
representation. Parallelly, two hybrid deep learning models
were developed. The LSTM—CNN combined convolutional
feature extraction with recurrent sequence modeling, adapting
to short- and long-term dependencies in noisy returns. The
novel FT-Net hybrid incorporated Fourier spectral
decomposition with temporal convolutional and recurrent
layers, exploiting hidden cyclical patterns and structural shifts
often missed in time-domain approaches. Post-model
diagnostics confirmed that all models produced stationary,
homoscedastic, and autocorrelation-free residuals, validating
them for comparative hedging analysis.

Performance evaluation via Fuzzy TOPSIS ranked models
across nine criteria, variance reduction, RMSE, Sharpe ratio,
hedged return, directional accuracy, MAD, time complexity,
and tail risk metrics (VaR, CVaR). The FT-Net hybrid
consistently ranked first in both in-sample and out-of-sample
testing, achieving the largest variance reduction, lowest
forecast RMSE, highest directional accusracy, and superior
Sharpe ratios, while mitigating extreme tail risks more
effectively than all competitors. Copula DCC-GARCH showed
resilience in stress periods but lacked adaptability under rapid
volatility shifts, and LSTM—CNN, while robust, delivered
slightly lower hedged returns than FT-Net. In statistical
arbitrage testing, FT-Net’s hedge ratio-derived spread signals
displayed strong mean reversion, enabling profitable long-short
strategies with economically significant returns.

Overall, the findings underscore the dominance of hybrid deep
learning, particularly FT-Net Hybrid, in dynamically
estimating hedge ratios, reducing portfolio risk, and uncovering
actionable arbitrage opportunities. Its capacity to integrate
spectral-temporal features with sequential modeling positions
it as a scalable, high-performance alternative to traditional
econometric models in modern financial markets.

8.1 Recommendations for Future Work

Although the current study contributes to the understanding of
dynamic hedge effectiveness and statistical arbitrage based on
econometric and deep learning models, there are still multiple
roads to pursue in the future. Generalizing the framework to a
multivariate asset context where a portfolio of hedge ratios is
estimated as opposed to on a single index, in the authors view
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this would enable the future researchers to collect cross-asset
correlations,  sectoral  connectivity, and  non-linear
interdependencies in a portfolio. This can be done by using
multivariate DCC-GARCH, vine copulas or transformer-based
architectures with attention mechanisms all of which have the
potential to model inter-process dynamics more richly.

Other critical developments include using the higher frequency
data. Although this work dealt with daily horizons on the basis
of liquidity and availability considerations, more detailed
analysis of volatility clustering, structural breaks and arbitrage
opportunities could be done with intraday or tick-level
modeling. Integrating these types of datasets with deep
reinforcement learning or hybrid neural networks could help
increase flexibility in high-frequency trading contexts, though
it would demand ultra-low-latency data pipelines, strong noise
filtering, and compute scaling.

Another area that should be looked into in the future is
integration of macroeconomic indicators. GDP, inflation and
policy rates may be added to this and also including wider
domestic and global indicators would enrich the contextual
interpretation of hedge ratio behaviors, e.g. industrial
production, fiscal balances, foreign reserves, crude oil prices,
U.S Treasury yields, and volatility indices. More advanced
time-varying parameter models, Bayesian hierarchal models or
interpretable models like Temporal Fusion Transformers might
enhance regime detection and result in a more stable forecast
over changing macro-financial conditions.

Lastly, it is also important to improve the transaction cost
modeling. Instead of the fixed costs assumption, dynamic cost
structures based on liquidity situations, bid ask spreads,
slippage and execution lag would provide more realistic
evaluation of strategy feasibility- especially in young or thin
markets. Adding regulatory constraints, including restrictions
on leverage (as in Dosdd-Frank), short-sale restrictions, and
margin requirements would make results closer to those
experienced in the real-world trading environments.
Practically, the creation of modular, open-source APIs or code
libraries around the hedging and arbitrage models, described
here, would become an important benefit toward cross-market
validation, model reproducibility, and ongoing model re-
training via re-deployable, real-time, cloud-based architecture.

By making these additions, not only would one widen the field
of this work, but one would also fill the gap between academic
modeling and the deployable, adaptive risk management
systems in the changing global markets.
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