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ABSTRACT 

This study advances the frontier of financial risk management 

by rigorously comparing conventional econometric models 

with modern deep learning approaches for dynamic hedging in 

equity futures. Using weekly data from October 2019 to June 

2024 on the KSE-30 Index and its futures, the authors of this 

study examine whether established techniques such as DCC-

GARCH and GARCH-Copula can match the adaptability and 

predictive strength of advanced architectures, including 

LSTM–CNN hybrids and the FT-Net Hybrid. Optimal hedge 

ratios are estimated on a dynamic basis, with performance 

assessed through variance reduction, RMSE, Sharpe ratios, 

hedge effectiveness, and directional accuracy along with 4 

other metrics. Beyond risk mitigation, the study extends and 

applies the Fuzzy TOPSIS framework for optimal model 

selection and testing statistical arbitrage opportunities between 

the models. The results highlight the transformative potential 

of deep learning in capturing complex market dynamics that 

traditional models often overlook, offering actionable insights 

for traders, portfolio managers, and policymakers in emerging 

markets. 
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1. INTRODUCTION 
The management of portfolio risk remains a central concern for 

investors and institutions, particularly in emerging markets 

such as Pakistan, where equity markets are shaped by volatility, 

liquidity constraints, and evolving regulation. While global 

literature has extensively analyzed futures markets for 

volatility transmission, risk management, and price discovery 

[1] [2], the Pakistani market suffers from scarce evidence on 

effective hedging strategies using futures contracts [3]. 

Traditional static models such as OLS [4] and ECM [5] 

provided the foundation for estimating hedge ratios, yet their 

inability to capture time-varying covariances, 

heteroskedasticity, and autocorrelation limited their 

effectiveness. This led to the adoption of ARCH/GARCH 

models proposed by [6] and [7], along with their variants 

which, despite their ability to model volatility clustering, rely 

on restrictive assumptions of linearity and normality that often 

fail in real-world applications. 

Recent advances in computational finance have shifted the 

landscape toward deep learning, enabling models capable of 

capturing nonlinearities and long-term dependencies without 

imposing rigid assumptions. In particular, LSTM networks, 

hybrid LSTM–CNN models, and spectral architectures such as 

the FT-Net Hybrid have demonstrated strong performance in 

option hedging and risk forecasting [8]. While most research 

applies these tools to option markets, futures contracts, 

especially in underexplored markets like Pakistan, offer an 

equally critical application space. Furthermore, new 

propositions suggest that discrepancies between classical 

econometric and deep learning–based hedge ratios may 

themselves generate exploitable “statistical arbitrage between 

models” [9] [10] thereby expanding the scope of arbitrage 

beyond traditional price misalignments. 

1.1 Significance and Motivation 
This study is motivated by three central gaps. First, despite the 

growing role of derivatives in emerging markets, hedging 

research on the Pakistan Stock Exchange remains 

underdeveloped. Second, econometric frameworks, though 

they are sophisticated, they still struggle to capture 

nonlinearities and regime shifts. whereas deep learning models 

flexibly approximate these dynamics. Yet comparative 

evidence between the two paradigms remains sparse. Finally, 

inspired by the statistical arbitrage perspective of François [9], 

this research extends the inquiry beyond hedge effectiveness 

into the possibility that model-based discrepancies themselves 

may form systematic, zero-cost trading opportunities. 

1.2 Aims and Objectives 
The aims are threefold: (i) to design dynamic hedging strategies 

for the KSE-30 Index using its futures contracts, employing 

both econometric (DCC-GARCH, Copula-GARCH) and deep 

learning models (LSTM–CNN, FT-Net Hybrid); (ii) to evaluate 

and contrast their hedging effectiveness across multiple 

quantitative criteria, including variance reduction, RMSE, 

hedged return, Sharpe ratio, VaR/CVaR reduction, and 

directional accuracy; and (iii) to investigate whether model 

discrepancies give rise to statistically significant arbitrage 

opportunities. 

1.3 Methodology 
To capture time-varying hedge ratios, the authors of this study 
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first employ the DCC-GARCH framework with ARMA–

eGARCH margins, later enhanced with a Student-t copula to 

account for symmetric tail dependence under market stress 

[11]. Parallelly, they apply two advanced deep learning models: 

the LSTM–CNN hybrid, where convolutional layers extract 

local temporal features before LSTM layers capture long-term 

dependencies; and the FT-Net Hybrid, which incorporates 

Fourier spectral modules to detect cyclical patterns and non-

stationarities, followed by convolutional and 

recurrent/transformer blocks for dynamic learning. Model 

performance is rigorously evaluated using nine hedging 

effectiveness metrics, with Fuzzy TOPSIS employed to 

aggregate results across criteria. To complement effectiveness 

analysis, hedged P&L series are examined for statistical 

arbitrage opportunities, providing insights into market 

equilibrium and model-driven trading prospects. 

1.4 Contributions of the Study 
This research contributes in four distinct ways. First, it pioneers 

the application of cutting-edge deep learning—LSTM–CNN 

and FT-Net Hybrid—alongside Copula-GARCH models 

directly to futures hedging in Pakistan, bridging a significant 

regional literature gap. Second, it extends statistical arbitrage 

beyond price misalignments by empirically testing the 

arbitrage potential between model-implied hedge ratios. Third, 

it introduces Fourier-transform–based spectral analysis into 

deep hedging pipelines, enhancing the detection of cyclical and 

non-stationary structures in volatile emerging markets. Finally, 

through the integration of a multi-criteria decision-making 

framework, this study offers a transparent, practitioner-relevant 

comparison of econometric and machine learning models. 

Beneficiaries include institutional investors seeking adaptive 

risk management tools and academics pursuing methodological 

innovation in underexplored markets.  

2. LITERATURE REVIEW 
Hedging risk exposure in equity markets through derivatives—

particularly stock index futures—has been one of the central 

topics in financial risk management. The effectiveness of a 

hedge depends on accurately estimating hedge ratios, and 

research has evolved from static econometric methods toward 

dynamic and machine learning–based approaches. This chapter 

reviews the literature a systematic review that highlights 

methodological progress, limitations, and emerging trends. 

Through this, the authors of this research paper establish the 

foundation for their study while identifying research gaps that 

motivate their contribution. 

2.1 Traditional and Econometric 

Approaches 
Early studies such as Ederington [4] employed OLS regression 

to estimate minimum variance hedge ratios (MVHRs). While 

simple, OLS assumes constant relationships between spot and 

futures returns and often leads to under-hedging. Error 

Correction Models by Ghosh [5] introduced cointegration to 

capture short- and long-term linkages, yet they too assumed 

time-invariant relationships. Subsequent research established 

that hedge ratios are inherently dynamic [12] [2]. This led to 

GARCH-type models, which captured volatility clustering and 

time-varying conditional correlations. Key extensions include 

BEKK-GARCH [13], CCC-GARCH [7] [14], and DCC-

GARCH [15]. More recently, copula-based GARCH models 

[11] [16] were developed to account for nonlinear and 

asymmetric dependencies, particularly in tail events. Despite 

these advances, GARCH-type frameworks are often criticized 

for overestimating volatility persistence and failing to adapt to 

sudden regime shifts [17].  

2.2 Emergence of Deep Hedging 
The limitations of econometric models opened the door for 

deep learning approaches, which rely less on rigid statistical 

assumptions and more on data-driven pattern recognition. The 

“Deep Hedging” framework proposed by [18] demonstrated 

that neural networks can learn optimal hedges directly by 

minimizing risk objectives without relying on Greeks or 

distributional assumptions. Subsequent works in studies [19] 

[20] extended this to commodity and equity derivatives, 

consistently reporting superior performance relative to 

GARCH-based hedges. LSTM architectures, in particular, have 

shown strong ability to capture nonlinear dependencies and 

long-term dynamics in financial time series [21]. 

2.3 Hybrid and Advanced Architectures 
Hybrid models combining LSTM with CNN layers have been 

widely adopted due to their ability to jointly capture local short-

term price movements and long-term dependencies. 

Applications in futures markets, such as EU Emissions Trading 

Scheme contracts, demonstrated up to a 43% reduction in 

MAPE compared with single-model benchmarks [22]. 

Incorporating attention mechanisms further improved 

adaptability in volatile and illiquid markets. Building on these 

successes, FT-Net Hybrid architectures emerged in 2024, 

integrating Fourier-transform spectral modules with temporal 

convolutional blocks [23]. Preliminary evidence suggests FT-

Net models reduce hedged return variance by an additional 5–

8% compared to CNN–LSTM hybrids, particularly effective in 

environments with cyclical and non-stationary dynamics [24]. 

2.4 Statistical Arbitrage Between Models 
A novel strand of literature extends hedging beyond variance 

reduction by exploring statistical arbitrage opportunities 

between models. [9] and [10] argue that in complete markets, 

discrepancies between hedge ratios from traditional replicating 

portfolios and deep learning models may generate zero-cost 

arbitrage strategies. This reconceptualization shifts arbitrage 

from temporary mispricing to systematic differences in model 

assumptions and learning dynamics. Such a perspective is 

particularly relevant for emerging markets, where market 

inefficiencies amplify the potential profitability of model-based 

arbitrage. 

3. DATA AND PROCESSING 

3.1 Data Description 
This study examines hedging effectiveness for a spot equity 

portfolio of the KSE-30 index using both conventional 

econometric and deep learning frameworks. The analysis relies 

on daily data from January 2019 to June 2024, sourced from 

the Pakistan Stock Exchange (PSX) Data Portal. The dataset 

includes: 

1. Index cash price: Spot value of the KSE-30 index. 

2. Interest/financing rate: Derived from KIBOR-based 

cost of carry, crucial for futures valuation. 

3. Index dividend yield: Expected annual yield for 

adjustment of fair value. 

4. Days to expiry: Contract maturity horizon. 

5. Indicative fair value: Benchmark settlement price for 

all outstanding futures contracts. 

Following the PSX rulebook, indicative fair value is computed 

as: 
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𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑓𝑎𝑖𝑟 𝑣𝑎𝑙𝑢𝑒
= 𝑈𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥

× (1 + 𝑟 (
𝑥

365
)) − 𝑑 

 

(1) 

 

where 𝑟 is the financing rate, 𝑥 denotes days to expiry, and 𝑑 

represents dividend accruals. 

For empirical work, the authors of this study focus on the 

nearest-to-expiry three-month KSE-30 futures contract, rolling 

positions monthly to maintain continuity. 

3.2 Handling Missing Data 
A central challenge was the presence of missing values, 

particularly for the indicative fair value and financing rates. 

While missing fair values could be recomputed via the PSX 

formula, missing interest rates required a more sophisticated 

imputation strategy. 

To address this, 1-month KIBOR was utilized from the State 

Bank of Pakistan as an explanatory factor and implemented a 

Random Forest Regressor to interpolate missing financing rates 

[24]. This ensemble model captures non-linear dependencies 

and avoids parametric restrictions typical in time-series 

econometrics. Figure 1 below shows the architecture and 

pipeline used. 

Training was performed on observed financing rate entries, 

with evaluation based on R², MSE, and Pearson correlation. 

Across 1000 seeds, the best model achieved: 

• 𝑅2 = 0.9092 

• 𝑀𝑆𝐸 = 0.0003 

These values confirm that over 90% of the variance was 

explained, ensuring high-fidelity imputations. The computed 

missing interest rates were then incorporated back into 

Equation (1) to yield a complete and internally consistent 

futures dataset, suitable for econometric and machine learning 

analysis. 

 
Figure 1. Architecture and Pipeline of the Random Forest 

Regressor 

3.3 Futures Contract Adjustments 
Rolling futures contracts introduces artificial “price jumps” at 

expiry due to the divergence between the expiring contract 

(converging to spot) and the newly listed contract (reflecting 

cost-of-carry and risk premia). These jumps can distort 

volatility estimates, hedge ratios, and model performance [25]. 

To eliminate such distortions, mean-back adjustment method 

was applied, which smooths rollovers by shifting expiring 

contracts against the new series, inspired from [26]. 

Specifically: 

1. Mean Roll-Over Price: 

𝑀𝑟𝑜𝑙𝑙 =  
𝑃𝑡𝑟𝑜𝑙𝑙

(exp)
+ 𝑃𝑡𝑟𝑜𝑙𝑙

(new)
 

2
                      (2)    

2. Roll-Over Difference:  

𝐷𝑟𝑜𝑙𝑙 = 𝑃𝑡𝑟𝑜𝑙𝑙

(exp)
− 𝑀𝑟𝑜𝑙𝑙                            (3) 

3. Adjusted Historical Prices: 

𝑃𝑡𝑟𝑜𝑙𝑙

(exp,adj)
=  𝑃𝑡

(exp)
± 𝐷𝑟𝑜𝑙𝑙                     (4) 

where 𝑃𝑡𝑟𝑜𝑙𝑙

(exp)
 is the price of the expiring contract at time 𝑡 

within its active month. The adjustment was applied uniformly 

across each contract’s life, ensuring seamless transitions and 

preserving intra-month volatility dynamics. 

3.4 Dataset Integrity 
The combined data pipeline, Random Forest–based imputation 

for missing rates and mean-back adjustment for contract 

rollovers, produced a continuous, high-quality time series of 

futures prices. This ensures that subsequent econometric 

estimations and deep learning models operate on a dataset free 

from artificial breaks, preserving the statistical and economic 

validity of hedge effectiveness tests. 

4. RESEARCH METHODOLOGY 
This chapter outlines the methodological framework adopted to 

construct, estimate, and evaluate hedge ratios for the KSE-30 

index using futures contracts. The methodology is divided into 

three key stages: 

1. Pre-estimation diagnostics: Statistical testing of the 

time series properties to ensure modeling 

assumptions are satisfied. 

2. Modeling approaches: Application of econometric 

and machine learning methods to estimate time-

varying hedge ratios. 

3. Validation and robustness checks: Post-estimation 

diagnostics, performance metrics, and comparative 

evaluation. 

Through combining rigorous econometric testing with 

advanced deep learning models, this study establishes a robust 

foundation for dynamic hedging in emerging equity markets. 

4.1 Pre-Estimation Diagnostics 

4.1.1 Stationarity Testing: Augmented Dickey-

Fuller (ADF) Test 
Time series stationarity is a fundamental requirement for 

volatility modeling and hedge ratio estimation. The authors of 

this study applied the Augmented Dickey-Fuller (ADF) test 

[27] to both spot and futures return series. The test evaluates 

the null hypothesis of a unit root (non-stationarity) using the 

regression specification with a constant and linear trend. 

The lag length 𝑘, was selected following the ARMA upper 

bound rule: 

𝑘 =  𝑡𝑟𝑢𝑛𝑐((𝑙𝑒𝑛𝑔𝑡ℎ(𝑥)  −  1) 1/3 (5) 

This yielded a lag value of 6 for the data used. The results 
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strongly rejected the null of a unit root at the 1% significance 

level across both return series (futures and spot), confirming 

stationarity. 

4.1.2 Heteroscedasticity Testing: Engle’s ARCH 

Test 
Volatility clustering—periods of high and low variance—is a 

hallmark of financial returns. To confirm its presence, Engle’s 

ARCH test was applied from the study in [15], which regresses 

squared residuals on their lags. The test statistic is: 

𝐿𝑀 = 𝑇 × 𝑅2 (6) 

where 𝑇 is sample size and 𝑅2 is the coefficient of 

determination from the auxiliary regression. Under the null 

hypothesis (no ARCH effects), 𝐿𝑀 follows a 𝜒2 distribution. 

Using the ARCHTest() function in R (FinTS package), 

significant ARCH effects were found in both the spot and 

futures return series, consistent with volatility clustering. 

Figure 2 and Figure 3 illustrate the ACF plots of residuals and 

squared residuals, confirming persistence in volatility. 

Figure 2. ACF plots of residuals and squared residuals of KSE 30 Index Return. 

Figure 3. ACF plots of residuals and squared residuals of KSE 30 Index Futures Return. 

4.2 Minimum Variance Hedge Ratio 

Estimation Framework 
The hedging objective is to minimize portfolio variance by 

optimally combining spot and futures positions. Let 𝑅𝑠 denote 

spot returns and 𝑅𝑓 future returns. A hedged portfolio return is: 

𝑅𝑣 =  𝑅𝑠 −  𝑁𝑅𝑓 (7) 

The portfolio variance is given by: 

𝜎𝑣
2 =  𝜎𝑠

2 + 𝑁2𝜎𝑓
2 − 2𝑁𝜎𝑠,𝑓  (8) 

Minimizing variance requires differentiating Equation (8) with 

respect to N: 

𝜕𝜎𝑣
2

𝜕𝑁
= −2𝑁𝜎𝑓

2 + 2𝜎𝑠,𝑓 
 

(9) 

Setting this to zero yields the optimal hedge ratio: 

𝑁∗ =  
𝜎𝑠𝑓

𝜎𝑓
2  (10) 

This framework, known as the Minimum Variance Hedge 

Ratio (MVHR), is the benchmark for all subsequent modeling. 

4.3 Econometric Models 
To capture time-varying dynamics, advanced GARCH-based 

models are employed: 

DCC-eGARCH: extends the study of [15] Dynamic 
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Conditional Correlation framework, allowing for asymmetric 

responses to shocks. It captures both volatility spillovers and 

correlation dynamics between spot and futures returns. 

Copula-DCC GARCH: Incorporates non-linear dependence 

structures via copulas, enabling more accurate modeling of tail 

dependencies, particularly during market stress. 

Both models are specifically designed to handle volatility 

clustering and conditional correlation, making them highly 

suitable for hedge ratio estimation. 

4.4 Deep Learning Models 
Traditional econometric models, while powerful, often struggle 

with capturing non-linear, long-memory effects in high-

frequency financial data. To address this, deep learning is 

integrated by: 

1. LSTM–CNN Hybrid: Combines Long Short-Term 

Memory (LSTM) networks’ ability to model 

sequential dependencies with Convolutional Neural 

Networks (CNNs), which extract local temporal 

features. This hybrid excels at capturing both short-

term volatility shocks and long-term structural 

dependencies. 

2. Fourier Transform Network (FT-Net): Applies 

Fourier decomposition to extract frequency-domain 

features from the return series before feeding them 

into a neural network. This enhances the model’s 

ability to capture cyclical dynamics, a key feature of 

financial time series. 

The deep learning models are benchmarked against 

econometric models to test whether data-driven, non-

parametric approaches can outperform classical frameworks in 

hedging accuracy. 

5. MODEL SPECIFICATION AND 

IMPLEMENTATION 

5.1 Dynamic Conditional Correlation 

(DCC) GARCH  
Inspired from [28], which highlighted that for enhanced 

volatility modelling the Exponentially Weighted Moving 

Average (EWMA) can be combined with the GARCH model. 

The EWMA models volatility while assigning greater weight 

to recent events and the GARCH models account for volatility 

clustering therefore, combined they can portray a more accurate 

representation of market dynamics. So, before fitting the DCC 

GARCH model on the training data the returns of the KSE 30 

index and its future contracts are standardized. These 

standardized returns were calculated using the equation 11 

below. 

𝑍𝑖,𝑡 =
𝑅𝑖,𝑡 − 𝜇

𝜎𝑡
 

(11) 

Where, 𝑅𝑖,𝑡 is the raw log return of the asset i, and 𝜇 is the mean 

of the returns. The standard deviation of the returns was 

estimated using the EWMA method. The EWMA method is a 

powerful technique for modelling conditional volatility 

because it captures volatility clustering without requiring a full 

GARCH specifications. The EWMA variance is estimated 

using the following equation 12: 

𝜎𝑖,𝑡
2 = 𝜆𝜎𝑖,𝑡−1

2 + (1 − 𝜆)𝑅𝑖,𝑡−1
2  (12) 

Here 𝜎𝑖,𝑡
2  is the variance of the raw log returns of asset i. Since 

the raw returns of the training data are converted into 

standardized returns while forecasting the volatilities of the 

testing data, so they are converted to standardized forms as well 

using standard deviations estimated in the training data, as seen 

in figure 4. 

The DCC GARCH model is a multivariate GARCH model 

proposed by [15] which is a generalization of the constant 

conditional correlation (CCC) GARCH estimators [14]. The 

DCC framework is a two-step methodology as follows: 

5.1.1 Univariate modelling using GARCH  
The DCC model proposed by [15] requires the use of univariate 

GARCH models to estimate the conditional variance of 

individual assets' returns, specifically the KSE 30 index returns 

and KSE 30 futures contracts returns. To model the conditional 

variances, the Exponential GARCH (eGARCH) model 

introduced by [29] was used, which, unlike standard GARCH 

models, allows for asymmetry in the impact of positive and 

negative shocks on volatility. This is an essential feature in 

financial time series data, such as the one used in this research, 

where negative news trends tend to increase volatility more 

than positive news of the same magnitude. 

This research defines the return process using an ARMA (1,1) 

model represented by equation 13 below. 

𝑍𝑖,𝑡 =  𝜇𝑖 + ∅1𝑍𝑖,𝑡−1 + 𝜃1𝜖𝑖,𝑡−1 + 𝜖𝑖,𝑡 (13) 

where 𝑍𝑖,𝑡 is the standardized return of asset i, 𝜇𝑠 is the constant 

mean and 𝜖𝑖,𝑡 is a white noise error term with zero mean and 

constant variance. Then the eGARCH (2,1) is used in equation 

14 from [29] to estimate the volatilities of KSE 30 index and 

KSE 30 index future contracts returns.   

log ℎ𝑖,𝑡 =  𝜔𝑖 + 𝛽𝑖,1𝑙𝑜𝑔ℎ𝑖,𝑡−1  

+𝛽𝑖,2𝑙𝑜𝑔ℎ𝑖,𝑡−2 + ∝𝑖 (
𝜖𝑖,𝑡−1

√ℎ𝑖,𝑡−1

) 

+ 𝛾𝑖 (|
𝜖𝑖,𝑡−1

√ℎ𝑖,𝑡−1

| − 𝐸 |
𝜖𝑖,𝑡−1

√ℎ𝑖,𝑡−1

|) 

 

 

 

(14) 

Where ℎ𝑖,𝑡, is the variance of asset i. The model parameters 

were estimated using Maximum Likelihood Estimation (MLE) 

in R via the ugarchspec() and ugarchfit() functions from the 

rugarch package. 

5.1.2 Dynamic Conditional Correlation 

Estimation  
After estimating conditional volatilities, the second step was to 

estimate the dynamic conditional correlation matrices. To do 

so, the methodology presented in [15] where let 𝜖𝑡 =  𝐻𝑡
1/2

𝑧𝑡 

be the vector of residuals and 𝑧𝑡  ~ 𝑁(0,1) and 𝐻𝑡 is the 

conditional covariance matrix as presented in below.  

𝐻𝑡 =  𝐷𝑡𝑅𝑡𝐷𝑡 (15) 

Where 𝐷𝑡 is a diagonal matrix of time-varying standard 

deviation from univariate eGARCH models: 
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𝐷𝑡 = 𝑑𝑖𝑎𝑔(√ℎ1,𝑡, √ℎ2,𝑡, … , √ℎ3,𝑡 (16) 

The DCC model assumes that the standardized residuals 𝜂𝑡 =
 𝐷𝑡

−1𝜖𝑡 have a time-varying correlation structure governed by a 

GARCH-type equation: 

𝑄𝑡 = (1 − 𝑎 − 𝑏)𝑆 + 𝑎𝜂𝑡−1𝜂𝑡−1 + 𝑏𝑄𝑡−1 (17) 

Where 𝑄𝑡 is the time-varying covariance matrix of standardized 

residuals, 𝑆 is the unconditional variance of 𝜂𝑡. The dynamic 

correlation matrix is then obtained by: 

𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑄𝑡)−1/2𝑄𝑡𝑑𝑖𝑎𝑔(𝑄𝑡)−1/2 (18) 

The DCC model was estimated using the dccspec() and dccfit() 

functions from the rmgarch package in R, with univariate 

eGARCH models used for the marginal distributions.  

 
Figure 4.  Standardized Returns of KSE 30 Index and its 

Future Contracts 

5.2 Dynamic Copula DCC GARCH Model 
Copula-GARCH models combine [15] DCC-GARCH with 

copula theory, developed further by [30], [31] and [16]. Despite 

the fact that the DCC-GARCH model presents a 

comprehensive approach for modelling time-varying 

correlation between assets, it relies on the assumption that the 

joint distribution of the standardized residuals is multivariate 

normal. However, financial time series often exhibit non-linear 

dependencies, especially in the tails of the distribution (tail 

dependence), which the normal distribution may not adequately 

capture. To address this limitation, a Copula-based DCC-

GARCH approach is employed that allows us to capture 

complex dependencies and nonlinear co-movements, by 

focusing on the collective and individual behavior of the assets 

returns. Therefore, to optimize the hedge ratios and reduce the 

variance, ARMA-eGARCH margins combined with DCC 

correlation structure and a student-t Copula adequately 

captures changing volatilities and tail dependence. [31] [32]  

5.2.1 Pre-Copula Fitting Procedure 
As mentioned in the DCC-GARCH methodology; to remove 

the noise and stabilize volatility, an Exponentially Weighted 

Moving Average (EWMA) filter is applied for standardized 

returns in training and testing data. After this, the first step in 

the Copula-DCC GARCH framework involves modeling the 

marginal distributions of each return series to account for 

volatility clustering and asymmetry. Similar to the earlier 

section titled “Univariate modelling using GARCH”, the KSE 

30 spot index and futures returns are modelled using 

Exponential GARCH (eGARCH) processes. The residuals 𝜀𝑖,𝑡 

from the eGARCH models are standardized to obtain 

standardized residuals: 

𝑧𝑖,𝑡 =
𝜀𝑖,𝑡

√ℎ𝑖,𝑡

 (19) 

Assuming normality of standardized residuals, the authors 

transform them to uniform margins using the cumulative 

distribution function (CDF) of the standard normal distribution, 

represented in equation 20 below.  

𝑢𝑖,𝑡 = Φ(𝑧𝑖,𝑡) (20) 

This transformation ensures the marginal uniformity required 

for copula estimation. The resulting 𝑢𝑖,𝑡  𝜖 (0, 1) are then used 

to model the joint distribution of returns. The output of this step 

serves as the input for both the DCC estimation and the copula 

transformation steps that follow. 

The estimation of the dynamic conditional correlation (DCC) 

model follows the methodology already outlined in the 

preceding section, based on the framework introduced in [15]. 

To avoid repetition, the authors of this study refer the reader to 

the earlier section titled “Dynamic Conditional Correlation 

Estimation”, where the equations governing the DCC model 

(Equations 15-18) are presented in detail. These equations 

define how the conditional correlation matrix 𝑅𝑡 evolves over 

time using past standardized residuals and a weighted moving 

average structure. 

5.2.2 Copula Estimation 
Once the residuals are transformed into uniform margins, a 

copula function is used to model the dependence structure. To 

flexibly model the joint distribution between the standardized 

residuals of spot and futures returns beyond linear correlation, 

a bivariate Student-t copula is fitted to the standardized 

residuals. The student’s t copula was selected for its ability to 

capture tail dependence, which is crucial for modeling co-

movements during extreme market conditions (Demarta & 

McNeil, 2005).  

Given the fitted marginal models, let equation 20 define the 

probability integral transformation of each standardized 

residuals into uniform variables, then the student-t copula can 

be defined by its correlation coefficient 𝜌 and degrees of 

freedom 𝑣 as:  

𝐶(𝑢1, 𝑢2;  𝜌, 𝑣) =  𝑡𝑣,   𝑝(𝑡𝑣
−1 (𝑢1),𝑡𝑣

−1 (𝑢2))  (21) 

Where, 𝐶(𝑢1, 𝑢2;  𝜌, 𝑣) is the copula function, 𝑡𝑣,   𝑝 is the CDF 

of the bivariate Student's t-distribution with 𝑣 degrees of 

freedom and correlation 𝜌,   𝑡𝑣
−1 is the quantile function of the 

univariate Student's t-distribution with 𝑣 degrees of freedom 

[33]. These parameters are estimated using Maximum 

Likelihood Estimation via the fitCopula() function in R.  

According to Demarta & McNeil [32], the density of t-copula 

for Maximum Likelihood Estimation, can be estimated as: 

𝐶𝑣,𝑃
𝑡 =  

𝑓
𝑣,𝑃 (𝑡𝑣

−1 (𝑢1),……..,𝑡𝑣
−1 (𝑢𝑑)

∏  𝑓𝑣  (𝑡𝑣
−1 (𝑢𝑖))𝑑

𝑖=1

,  𝑢 𝜖 (0,1)𝑑 
(22) 

Where, 𝑓𝑣,𝑃 is the joint density of a multivariate t-distributed 

random vector and 𝑓𝑣 is the density of the univariate standard t-

distribution with 𝑣 degrees of freedom.  

To simulate the t-copula, firstly a multivariate t-distributed 

random vector X is generated, which means a random value 

that follows a t-distribution, with degrees of freedom 𝑣, a 

constant mean everywhere, and a correlation matrix 𝑃. A 

normal mixture technique explained by Demarta & McNeil 

[32] is used to generate the vector X. Then, the standard t-

distribution’s Cumulative Distribution Function (CDF) to each 

element of X is applied, so that the values fall between 0 and 1. 

This way, the required sample from the t-copula is obtained. 

Secondly, to estimate the density, the authors of this study first 

map the sample values back into the original t-distribution 
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space, using inverse CDF, then they apply the multivariate t-

distribution’s density function at those points, and divided by 

the product of the marginal t-densities. Using the formula at 

equation 21, the density of the t-copula, which is useful for 

estimation is obtained. It is important to note that the t-copula 

remains invariant under strictly increasing transformations of 

the marginals, ensuring that the dependence structure is purely 

modelled by the copula, independent of the marginals 

themselves. 

5.3 Long-Short Term Memory – 

Convolutional Neural Network (LSTM–

CNN) Hybrid Model 
Financial time series data often defy classical econometric 

assumptions, exhibiting nonlinearities, volatility clustering, 

regime shifts, and structural breaks. To navigate these 

complexities, hybrid deep learning model is employed that 

unites Convolutional Neural Networks (CNNs) with Long 

Short-Term Memory (LSTM) networks [34]. CNNs excel at 

extracting short-term features such as bursts of volatility or 

abrupt spot–futures co-movements, while LSTMs are adept at 

modeling long-term dependencies through sophisticated gating 

mechanisms [35]. This synergy allows the model to capture 

both fleeting anomalies and persistent market behaviors, 

providing a dynamically adaptive, data-driven alternative to 

static or linear hedging strategies. The inclusion of CNN-

LSTM hybrids in financial time series forecasting is 

increasingly common; numerous studies highlight that such 

models consistently outperform standalone CNN or LSTM 

architectures in predicting intricate patterns like cryptocurrency 

trends, stock movements, or foreign exchange rates [36]. 

The models used directly integrates hedging objectives into its 

architecture and loss function, enabling it to predict Minimum 

Variance Hedge Ratios (MVHR) that actively aim to minimize 

portfolio variance. This approach is especially relevant for 

equity futures markets, where optimal hedge ratios shift over 

time in response to evolving market regimes. The hybrid 

structure not only enhances predictive accuracy but aligns 

closely with the practical goal of real-world hedging 

effectiveness, making it an especially compelling solution for 

dynamic portfolio risk management. 

5.3.1 Theoretical Foundations of the LSTM–CNN 

Hybrid Model 

The LSTM–CNN hybrid exploits the complementary strengths 

of Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks to handle the nonlinearities, 

volatility clustering, and regime shifts common in financial 

time series [37]. CNNs, though developed for spatial data, are 

highly effective in temporal contexts by applying learnable 

filters to sequential returns. For a one-dimensional series 𝑥𝑡 and 

kernel 𝑤𝑘 of size 𝐾, the convolution is: 

(𝑥 ∗ 𝑤)(𝑡) =  ∑ 𝑥𝑡+𝑘𝑤𝑘

𝐾−1

𝑘=0

 

 

(23) 

In hedging, this operation detects localized patterns like price 

jumps, volatility bursts, or short-lived spot–futures 

correlations, while causal padding preserves time order and 

avoids future leakage. 

LSTMs extend the model’s reach by capturing long-term 

dependencies through gated memory cells [38]. At time 𝑡, the 

cell state 𝑐𝑡 and hidden state ℎ𝑡 evolve as: 

𝑐𝑡 = 𝑓𝑡  ⨀𝑐𝑡−1 + 𝑖𝑡⨀ 𝑐̃𝑡 (24) 

ℎ𝑡 = 𝑜𝑡 ⨀ 𝑡𝑎𝑛ℎ(𝑐𝑡) (25) 

This gating selectively retains or discards information, enabling 

accurate modeling of persistent volatility and regime effects. 

Together, CNNs extract short-term anomalies and LSTMs 

capture structural trends, producing a unified, data-driven 

framework for robust, real-world dynamic hedge ratio 

estimation. 

5.3.2 Model Architecture and Implementation 
The LSTM–CNN hybrid pipeline, implemented in TensorFlow 

Keras, with design choices guided by both statistical 

diagnostics and domain expertise in financial time series. The 

dataset comprises daily spot and futures prices for the KSE-30 

index, which are transformed into continuously compounded 

logarithmic returns: 

𝑅𝑆,𝑡 = ln (
𝑃𝑆,𝑡

𝑃𝑆,𝑡−1
) , 

𝑅𝐹,𝑡 = ln (
𝑃𝐹,𝑡

𝑃𝐹,𝑡−1
) 

   (26) 

 

Figure 5. ACF of Index and Future Returns. 
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Autocorrelation analysis in figure 5, reveals a pronounced lag-

1 spike for both series, indicating short-term dependence, 

followed by rapid decay to statistical insignificance. This 

justifies including both contemporaneous and one-period 

lagged returns as model inputs: 

𝑥𝑡 = [𝑅𝑆,𝑡, 𝑅𝐹,𝑡 , 𝑅𝑆,𝑡−1, 𝑅𝐹,𝑡−1] (27) 

These four features are arranged into rolling sequences of 

length 𝑝 = 20, forming tensors 𝑋𝑡  ∈  ℝ𝑝×4 that balance 

sufficient market history with noise control. Targets are the 

next-day spot and futures returns. 

The network begins with an input layer feeding a one-

dimensional convolutional layer (32 filters, kernel size 3, 

causal padding) that extracts localized temporal patterns 

without future leakage. ReLU activation introduces 

nonlinearity while preserving computational efficiency. The 

CNN output is passed to an LSTM layer with 32 units, which 

learns long-term dependencies and compresses the sequence 

into a fixed-length embedding. A fully connected dense layer 

maps this embedding to the predicted hedge ratio 𝛽̂𝑡, which is 

directly integrated into the hedging objective through a custom 

Lambda layer: 

𝑅̂ℎ𝑒𝑑𝑔𝑒𝑑,𝑡 = 𝑅𝑆,𝑡 −   𝛽̂𝑡 𝑅𝐹,𝑡 (28) 

This end-to-end design ensures the model learns hedge ratios 

that minimize the variance of the hedged portfolio, aligning 

statistical performance with practical risk-management 

objectives. The model architecture pipeline can be seen in 

figure 6 below. 

 

Figure 6. Architecture and Pipeline of LSTM-CNN Hybrid Model. 

5.3.3 Model Compilation, Training, and 

Evaluation Framework 
The CNN–LSTM model was compiled in TensorFlow–Keras 

using the Adam optimizer (learning rate 10−3), chosen for its 

stability and rapid convergence in training deep architectures 

on noisy financial series [40]. The learning objective directly 

targets portfolio risk minimization by reducing the mean 

squared error between the hedged return and zero, embodying 

the ideal of a perfectly neutralized position: 

𝑚𝑖𝑛
θ

1

𝑛
∑(𝑅𝑆,𝑡 −  𝛽̂𝑡  𝑅𝐹,𝑡)2

𝑛

𝑖=1

 
(29) 

where 𝜃 denotes all trainable parameters. Chronological 

integrity of the data was preserved with an 80/20 train–test split 

[40]. Training ran for 50 epochs with a batch size of 64, 

incorporating early stopping and adaptive learning rate 

scheduling to safeguard against overfitting. 

The input tensor 𝑋𝑡  ∈  ℝ𝑝×4 encapsulates 20 days of 

contemporaneous and lagged spot–futures returns. These pass 

through a causal 1D convolution layer with 32 filters (kernel 

size 𝐾 = 3) that extract short-term temporal features: 

ℎ𝑐
(𝑡)

= 𝑓 (∑ 𝑤𝑐
(𝑘)

∙ 𝑥𝑡−𝑘 + 𝑏(𝑐)

𝐾−1

𝑘=0

) 

(30) 

The convolutional output is then processed by an LSTM with 

32 hidden units to capture nonlinear long-range dependencies. 

The final hidden state ℎ𝑝 is mapped to the hedge ratio  

𝛽̂𝑡 = 𝑊β ℎ𝑝 + 𝑏β, which in turn yields the residual hedged 

return 𝑅̂ℎ𝑒𝑑𝑔𝑒𝑑,𝑡 = 𝑅𝑆,𝑡 −   𝛽̂𝑡 𝑅𝐹,𝑡. 

Performance evaluation on the test set applied the KPSS and 

Ljung–Box tests to confirm stationarity and absence of 

autocorrelation, alongside ARCH LM tests to check for 

volatility clustering. Hedging effectiveness was quantified via 

variance reduction, RMSE, Sharpe ratio, directional accuracy, 

mean absolute deviation, and tail risk metrics such as VaR and 

CVaR under extreme value theory. This architecture’s 

design—causal convolutions for temporal integrity, LSTM 

memory for complex dependencies, and a loss function aligned 

with economic objectives which ensures both statistical rigor 

and financial relevance, marking it as a robust tool for risk 

mitigation in dynamic markets. 

5.4 Fourier Transform Network (FT-Net) 

Hybrid Model 
Contemporary financial markets are shaped by an interplay of 

irregular shocks, cyclical forces, and persistent non-

stationarities, producing dynamics that cannot be fully resolved 

by purely time-domain models. Classical econometric 

frameworks and deep learning architectures such as LSTMs 

and CNNs capture temporal dependencies well yet remain 

inherently blind to spectral structures like dominant 

frequencies, seasonal patterns, business cycles, volatility 

regimes, that often drive return dynamics. The omission of such 

frequency-domain information can lead to systematically 
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biased hedge ratios and overlooked arbitrage windows. 

The FT-Net architecture addresses this gap by integrating 

explicit Fourier Transform–based modules with advanced 

temporal modeling blocks, ranging from CNNs for localized 

feature extraction to recurrent layers such as LSTM or GRU for 

sequential dependency capture. Through jointly operating in 

the frequency and time domains, FT-Net can decompose price 

series into their spectral components while tracking evolving 

temporal interactions [41]. It enables the model to detect 

cyclical risks and regime shifts in equity futures before they 

materialize in the raw time series. 

This dual-domain approach produces hedge ratios and arbitrage 

signals that are both spectrally aware and temporally 

responsive, surpassing the limitations of conventional deep 

learning and econometric models. In high-frequency equity 

futures markets, where cycles may span from intraday 

periodicities to multi-month business regimes, FT-Net’s 

capacity to jointly learn across domains offers a path toward 

more robust dynamic hedging and statistically significant 

arbitrage detection. The result is a framework aligned with 

modern trading demands such as anticipatory, adaptive, and 

grounded in both the structural and stochastic realities of 

market behavior. 

5.4.1 Theoretical Foundations of the FT-Net 

Hybrid Model 
The FT-Net architecture is grounded in spectral analysis, 

leveraging the Discrete Fourier Transform (DFT) to uncover 

hidden periodicities and regime dynamics in financial time 

series. As mentioned by Brigola [9], the DFT decomposes a 

sequence of returns {𝑥𝑛}𝑁 − 1
𝑛 = 0

into sinusoidal components of 

varying frequencies, amplitudes, and phases: 

𝑋𝑘 = ∑ 𝑥𝑛 ∙ 𝑒−2𝜋𝑖𝑘𝑛/𝑁𝑁−1
𝑛=0 , 𝑘 = 0,1,2 … N − 1 (31) 

Here, 𝑋𝑘 is the complex coefficient for the 𝑘-th frequency bin, 
|𝑥𝑘|represents the strength of that frequency, and arg (𝑥𝑘) 

encodes its phase. In market data, these spectral signatures 

often correspond to cyclical forces, macroeconomic expansions 

and contractions, seasonal trading patterns, or volatility 

regimes, that may remain obscured in purely time-domain 

analysis. Crucially, spectral shifts can precede observable 

changes in the time series, offering early indicators of structural 

market transitions [42]. 

Empirical research has repeatedly shown that financial returns 

exhibit distinct frequency-domain features, from multi-year 

business cycles to intraday periodicities, and that volatility 

clustering and contagion often leave identifiable spectral 

fingerprints [43]. Yet, most deep learning applications in 

finance remain confined to the time domain, failing to exploit 

this rich structure. Through embedding DFT-based modules 

directly into its architecture, FT-Net fuses temporal 

dependency modeling with spectral decomposition, enabling 

simultaneous learning of time–frequency interactions [44]. 

This joint-domain approach equips the model to detect 

emerging risks and arbitrage opportunities with greater 

timeliness and precision than either domain alone. 

5.4.2 Model Architecture and Implementation 
The FT-Net Hybrid is a modular deep learning architecture that 

fuses spectral analysis with temporal modeling to address the 

dual-domain complexity of financial time series [45]. Its design 

rests on the premise that asset returns carry intertwined 

signatures in both time and frequency domains, and only their 

joint modeling can fully reveal cyclical structures, transient 

shocks, and regime shifts critical for hedging decisions. The 

pipeline comprises four principal stages: Fourier-based spectral 

decomposition, temporal convolution, feature fusion, and 

sequence modeling, culminating in the estimation of dynamic 

hedge ratios. 

Given a rolling input window 𝑥𝑡 ∈  ℝ𝑤×𝑑of past returns, lags, 

and optional statistical features, the Fourier branch transforms 

each feature channel 𝑥𝑡,𝑗 to the frequency domain via the 

Discrete Fourier Transform: 

𝐹𝑘
(𝑗)

= ∑ 𝑥𝑡−𝑤+1+𝑛,𝑗 ∙ 𝑒−
2𝜋𝑖𝑘𝑛

𝑤𝑤−1
𝑛=0 , 𝑘 =

0,1,2, … , 𝑤 − 1 

 

(32) 

Real and imaginary components (or magnitude and phase) are 

concatenated to form the spectral vector 𝑆𝑡 ∈ ℝ2𝑤𝑑, with 

optional attention weighting 𝛼𝑘 to emphasize dominant 

predictive frequencies. Parallel to this, the temporal branch 

applies one-dimensional convolutions: 

𝐶𝑡,𝑠
(𝑚)

= ∑ ∑ 𝑊𝑙,𝑗,𝑠
(𝑚)

∙

𝑑

𝑗=1

𝑓−1

𝑙=0

𝑥𝑡−𝑤+1+𝑙,𝑗 + 𝑏𝑠
(𝑚)

 

(33) 

Followed by non-linear activations, enabling the detection of 

localized events such as volatility bursts or short-lived arbitrage 

opportunities. 

Outputs from both branches are fused into a joint feature vector  
𝑍𝑡 = [𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐶𝑡), 𝑆𝑡]⊤, which is then processed by a 

recurrent layer, called LSTM , to model long-range 

dependencies and adapt to non-stationary market regimes. The 

final dense readout produces hedge ratios under appropriate 

activation constraints (sigmoid for [0,1], tanh for bounded 

leverage, or linear for unrestricted cases). This architecture’s 

multi-resolution representation and end-to-end trainability 

make FT-Net a powerful framework for exploiting the full 

informational richness of index–futures dynamics. The model 

architecture pipeline can be seen in figure 7 below. 
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Figure 7. Architecture and Pipeline of FT-Net Hybrid Model. 

5.4.3 Model Compilation, Training, and 

Evaluation Framework 
The FT-Net Hybrid produces the one-period-ahead dynamic 

hedge ratio 𝛽𝑡  directly from its final hidden state ℎ𝑡 through a 

fully connected mapping, 

𝛽𝑡 = 𝜙(𝑤𝑜𝑢𝑡
⊤ ℎ𝑡 + 𝑏𝑜𝑢𝑡) (34) 

where 𝜙(∙) enforces the desired range of leverage or exposure. 

The predicted hedged return is then constructed in the manner 

of a minimum-variance portfolio, adjusting exposure each 

period in response to evolving market conditions. Training is 

formulated as the minimization of the variance of the hedged 

return series, operationalized as a mean squared error against 

zero, 

ℒ𝑣𝑎𝑟 =
1

𝑁
∑(𝑅̂ℎ𝑒𝑑𝑔𝑒𝑑,𝑖)2

𝑛

𝑖=1

 

 

(35) 

with regularization via L2 weight decay, dropout, and batch 

normalization to improve generalization. Optimization 

employs adaptive stochastic gradient descent (Adam), enabling 

efficient parameter tuning across the model’s spectral and 

temporal pathways. 

Model validation spans both statistical and financial 

diagnostics to ensure risk minimization and exploitation of 

arbitrage opportunities. Stationarity is evaluated via the KPSS 

test, while the Ljung–Box and ARCH–LM tests assess residual 

autocorrelation and volatility clustering. Performance is 

quantified through MAE, RMSE, variance reduction, Theil’s 

𝑈, and Sharpe ratio, complemented by directional accuracy 

metrics. Tail risk is probed using extreme value theory, 

computing VaR and CVaR reductions relative to benchmarks. 

Visual diagnostics—time-varying 𝛽𝑡  plots, cumulative return 

curves—reveal how the model adjusts under volatility bursts, 

regime shifts, and seasonal cycles, offering transparency into 

its adaptive mechanics. 

5.5 Post Model Performance Evaluation 

5.5.1 Statistical Tests Post-Model Implementation 
Post-implementation diagnostics were conducted to validate 

model reliability, assess residual behavior, and benchmark 

hedging quality. Theil U statistics measured forecasting 

performance against a naïve 1:1 hedge, while ARCH-LM, 

Ljung-Box, and KPSS tests on training and testing residuals 

ensured the absence of volatility clustering, serial correlation, 

and non-stationarity. Econometric models used log-differenced 

spot and futures returns of the KSE-30, while deep learning 

models employed hedged return series derived from 

dynamically estimated hedge ratios, enabling adaptive risk 

management without overfitting. 

5.5.2 ARCH LM Test 
The ARCH-LM test, initially applied pre-model to confirm 

conditional heteroscedasticity, was re-applied post-model to 

assess volatility absorption. DCC-GARCH p-values (training: 

0.0645/0.0586; testing: 0.1427/0.1687) indicated only marginal 

heteroscedasticity, with Copula DCC-GARCH showing p-

values > 0.1 throughout—evidence of effective tail dependence 

modeling. Deep learning models exhibited p-values ≈ 1.000, 

suggesting complete removal of ARCH effects and validating 

their suitability for hedging comparison. 

5.5.3 Ljung Box Q Test 
The Ljung-Box test confirmed that all models produced 

uncorrelated residuals, with p-values > 0.1 for econometric 

models and > 0.5 for deep learning models, indicating no 

systematic temporal dependencies. This reinforces correct lag 

specification and absence of residual autocorrelation, even in 

the presence of non-linear financial time series structures. 

5.5.4 KPSS Test 
Stationarity, critical for valid volatility estimation, was 

confirmed across all models, with p-values > 0.1 for both 

training and testing sets. This stability ensures that volatility 

and hedge ratio estimates remain reliable and mean-reverting, 

aligning with recent findings that deep learning can capture 

non-linear stationarity structures that traditional models also 

accommodate. 

5.5.5 Theil U Statistic 
Against the naïve hedge, Copula DCC-GARCH (U = 0.8528) 

outperformed DCC-GARCH (U = 0.91), demonstrating 

superior forecast accuracy. LSTM-CNN (0.9179) and FT-Net  

(0.9128) trailed slightly yet still beat the naïve benchmark (U < 

1), affirming their viability in practical hedging applications. 

5.6 Predicted Minimum Variance Hedge 

Ratios (MVHRs) 
The MVHRs, estimated by Copula DCC-GARCH and DCC-
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GARCH models, shown in figure 8 and 9, highlight the in-

sample period in light blue series and out-of-sample period in 

orange series. The MVHRs in the training sample for both 

models fluctuate approximately around 0.8 and 1.12, indicating 

stable hedge ratios (β) for the 2019-22 region. However, 

despite the EWMA filter to smooth out the noise and stabilize 

volatility, the hedge ratios in both models show spike of 

approximately 1.2 and 1.1 followed by a dip of approximately 

0.75 and 0.8 due to the onset of the COVID-19 pandemic, 

reflecting unpredictable change in covariance’s. Proceeding to 

the testing period, increased fluctuations are observed with a 

dip of 0.75 and peak of approximately 1.30 for both models in 

the 2023-24 region. This hedging pressure reflects the impact 

shown by the DCC-GARCH and Copula DCC-GARCH model 

to previous stress episodes. While comparing the Copula DCC-

GARCH and DCC-GARCH models, it can be observed that 

Copula DCC-GARCH demonstrates short lived adjustments 

due to a slightly lower average MVHRs, combined with 

amplified oscillations in hedge ratios for the period of extreme 

shocks reflecting t-copulas ability to capture tail dependence 

and asymmetric co-movements, while DCC-GARCH has 

marginally higher average hedge ratios. 

 

Figure 8. Dynamic MVHRs obtained using DCC GARCH 

 

Figure 8. Dynamic MVHRs obtained using Copula DCC GARCH. 

Moreover, the MVHRs estimated by LSTM-CNN and FT-Net 

hybrid models, shown in figure 10 and 11, highlight the in-

sample period in dark blue series and out-of-sample period in 

orange series.  The hedge ratios (β) in LSTM-CNN model with 

its peak of 1.05 in the training period has a subdued response 

to extreme events, when compared to FT-Net, reflecting the 

model’s ability to avoid overstating and understating hedge 

ratios, suitable for volatile` Pakistani market. The 

convolutional layer and temporal dependency of the LSTM 

layer of the LSTM-CNN model fluctuates around 0.94-0.98 

range, showing reduced short noise yet lower and non-reactive 

hedging performance when compared to FT-Net. On the other 

hand, FT-Net shows hedge ratios (β) mainly close to 1, 

suggesting better hedge performance. In both deep learning 

models, a sudden spike i.e. 1.10 in FT-Net and 1.05 in LSTM-

CNN, is observed in the early 2020, due to the onset of COVID-

19 pandemic, reflecting uncertainty similar to the mathematical 

model. However, FT-Net highlighting its mean-reverting 

behavior stabilizes the hedge ratios quickly compared to the 

other models. The testing period fluctuating around 0.96 and 

0.99 shows reliable out of sample performance and the model’s 

ability to quickly capture non-linear complexities. Comparing 

the hedge ratios of mathematical and deep learning models, it 

is observed that although all the models exhibit mean reverting 

behavior, yet FT-Net has higher suitability in dynamic 

conditions, as it shows greater responsiveness to the volatile 

Pakistani market. 
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Figure 9. Dynamic MVHRs obtained using LSTM-CNN 

 
Figure 10. Dynamic MVHRs obtained using FT-Net Hybrid 

5.7 Hedged Returns Estimation 
After the hedging ratios in the training and testing data, the 

hedged returns are computed for both DCC-GARCH and 

Copula DCC-GARCH. For qualitative inspection, the time 

series of predicted hedge ratios 𝛽̂𝑡 is plotted on training and test 

dates, as well as the cumulative unhedged versus filtered 

hedged returns. Cumulative hedged and unhedged returns are 

calculated using formulae below.  

𝐶𝑢𝑚𝑈𝑛ℎ𝑒𝑑𝑔𝑒𝑑(𝑡) =  ∑ 𝑅𝑆,𝑖

𝑖≤𝑡

 , 

(36) 

𝐶𝑢𝑚𝐻𝑒𝑑𝑔𝑒𝑑(𝑡) =  ∑ 𝑅ℎ𝑒𝑑𝑔𝑒𝑑,𝑖
𝑓𝑖𝑛𝑎𝑙

𝑖≤𝑡

 

These figures 12 and 13 below vividly illustrate the risk‐

reduction benefits of the dynamic hedging procedure used in 

this research paper. For DCC-GARCH, the hedged returns (in 

orange line) show smoother returns as compared to the 

unhedged returns, which show clear fluctuations especially 

during the COVID-19 pandemic period. Whereas Copula 

DCC-GARCH depicts slightly higher returns as compared to 

DCC-GARCH, due to effective hedging and risk reduction. 

 

Figure 11. Cumulative Hedged and Unhedged Returns – DCC GARCH. 
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Figure 12. Cumulative Hedged and Unhedged Returns – Copula DCC GARCH. 

In the LSTM–CNN model, 𝛽̂𝑡 was estimated for both training 

and test windows, and hedged returns were computed. The 

resulting 𝛽̂𝑡 series from both sets was concatenated to produce 

a full-period, unfiltered hedged return series. To address 

systematic biases, residuals 𝑒𝑡 =  𝑅̂ℎ𝑒𝑑𝑔𝑒𝑑,𝑡  were regressed 

against their recent lags and contemporaneous spot/futures 

returns. After removing initial NaNs, the data was split 

chronologically and used to train three gradient boosting 

regressors—XGBoost, LightGBM, and CatBoost—each with 

200 trees. The ensemble average of their predictions yielded 𝑒𝑡, 

which was subtracted from the original hedged returns, 

producing a variance-reduced, filtered series. 

For the FT-Net model, 𝛽̂𝑡 was similarly generated for both train 

and test sets, but without explicit variance–covariance 

computation, as the network’s spectral–temporal architecture 

implicitly learned the mapping to optimal hedge ratios. 

Residual correction followed the same ensemble boosting 

procedure as in LSTM–CNN, producing a “double-filtered” 

hedged return series with even lower volatility. 

Cumulative return analysis highlights the practical edge of FT-

Net over LSTM–CNN. Both models maintained exceptionally 

flat, low-volatility hedged profiles through mid-2023, but FT-

Net achieved a very slightly higher cumulative hedged return 

peak and exhibited slower drawdown decay. This suggests that 

FT-Net’s frequency–temporal layers adapt marginally faster to 

trending conditions, capturing gains more decisively, whereas 

LSTM–CNN’s convolution–recurrent design delivers 

comparable smoothness but slightly lower total hedge payoff. 

 
Figure 13. Cumulative Hedged and Unhedged Returns – LSTM-CNN. 
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Figure 14. Cumulative Hedged and Unhedged Returns – FT-NET Hybrid. 

6. COMPARATIVE ANALYSIS USING 

FUZZY TOPSIS AND OTHER DECISION-

MAKING CRITERIA 
Hedging strategies for a KSE 30 index portfolio is formulated 

using the KSE 30 futures contract through both sophisticated 

econometric models, and cutting-edge deep learning 

architectures, to dynamically minimize risk in the equity 

futures market. The primary objective of this chapter is to 

rigorously assess the hedging effectiveness of the model by 

using a comprehensive suite of quantitative performance 

metrics and rank them with respect to their hedging 

performance. The authors of this study have employed nine 

performance criteria to gauge the hedge effectiveness, which 

include the variance reduction percentages, Root Mean Square 

Errors (RMSE), average hedged returns, Sharpe ratios, 

directional accuracy, Value at Risk (VaR) Reduction, 

Conditional Value at Risk (CVaR) Reduction, mean absolute 

deviation, and time complexity. These metrics effectively 

capture the risk minimization capability and the operational 

efficiency of the models. However, the challenges arise from 

the multicriteria analysis, as no single model unequivocally 

dominates all criteria, emphasizing the conflicts in the Multi-

Criteria Decision-Making (MCDM) context. This predicament 

created the need for the adoption of a systematic methodology 

to assess the performance of each model and rank them 

accordingly.    

To address this problem, the authors of this study incorporated 

the Fuzzy Technique for Order Preference by Similarity to 

Ideal Solution (TOPSIS) method, a multicriteria decision-

making technique [46]. The Fuzzy TOPSIS method ranks 

multiple alternatives based on their closeness to an ideal 

solution while maximizing benefits and minimizing costs. The 

following section provides an in-depth discussion of the Fuzzy 

TOPSIS methodology used in this research. 

6.1 Implementation of the Fuzzy TOPSIS 

methodology 

6.1.1 Define the decision-making problem 
The first step of the TOPSIS methodology is to define the 

decision-making problem. To obtain fair and multidimensional 

assessment results, the authors of this study utilize nine key 

performance metrics that gauge the risk minimization 

capability, predictive accuracy, profitability, and operational 

efficiency of the models.  

i. Variance reduction helps us assess the extent to 

which a model reduces the variance of the hedged 

portfolio compared to the variance of the unhedged 

portfolio. 

ii. The RMSE evaluates the model's ability to forecast 

the hedge ratios; lower RMSEs indicate more precise 

predictions.  

iii. The average hedged return is an indicator of the 

profitability of the models, as it reflects the model’s 

ability to maintain the portfolio returns while 

minimizing the risk.  

iv. Sharpe ratio is a measure of risk-adjusted return as it 

reflects the ability of a model to achieve higher 

returns given the risk minimization criteria. 

v. Directional accuracy is also an indicator of the 

predictive accuracy of the models; however, it 

focuses on the frequency with which the model 

correctly predicts the direction of market 

movements. 

vi. Value at Risk (VaR) reduction is a measure of how 

effectively a model reduces potential losses at a 

specified confidence level. 

vii. Conditional Value at Risk (CVaR) reduction further 

extends the analysis of downside risk by assessing 

the expected average loss beyond the VaR threshold. 

viii. Mean absolute deviation (MAD) is an additional 

measure of predictive accuracy.   

ix. Finally, time complexity measures the computational 

resources and time required for each model to 

execute. It is an essential metric to gauge the 

operational efficiency of the models.  

Tables 1 and 2 below show the criteria for all models on the 

training and testing datasets. 
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Table 1. Performance Metrics of Hedging Models – Training. 

 

Table 2. Performance Metrics of Hedging Models – Testing 

6.1.2  Determination of AHP weights  
 After identifying all decision criteria, the fuzzy TOPSIS 

multicriteria decision-making methodology requires weights to 

be assigned to each of them. Therefore, to assign weights to 

every criterion, the authors of this study use the Analytic 

Hierarchy Process (AHP), which converts a complex problem 

into a hierarchy of sub-problems [47]. They begin by 

constructing a pairwise comparison matrix, where each element 

represents the relative importance of one metric over the other. 

A 9x9 pairwise comparison matrix is created (Table 3), where 

each entry (i, j) in this matrix expresses how much more 

important criterion i is compared to criterion j. In the table 

below, each metric is represented as follows: variance 

reduction (C1), RMSE (C2), average hedged return (C3), 

sharpe ratio (C4), directional accuracy (C5), VaR reduction 

(C6), CvaR reduction (C7), mean absolute deviation (C8), time 

complexity (C9).  

Table 3. Computation and Fuzzification of AHP Pairwise Comparison Matrix. 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 1 5 5 5 7 7 7 9 9 

C2 1/5 1 3 3 5 5 5 7 7 

C3 1/5 1/3 1 2 4 4 4 6 6 

C4 1/5 1/3 1/2 1 3 3 3 5 5 

C5 1/7 1/5 1/4 1/3 1 2 2 4 4 

C6 1/7 1/5 1/4 1/3 1/2 1 2 3 3 

C7 1/7 1/5 1/4 1/3 1/2 1/2 1 3 3 

C8 1/9 1/7 1/6 1/5 1/4 1/3 1/3 1 2 

C9 1/9 1/7 1/6 1/5 1/4 1/3 1/3 1/2 1 

METRICS COPULA GARCH DCC GARCH LSTM-CNN HYBRID FT-NET HYBRID 

Variance reduction 92.54 92.71 99.9 99.9 

RMSE 0.01241 0.01234 0.00041 0.00042 

Average Return -0.000024 -0.000046 0.000004 0.000004 

Sharpe Ratio -0.0067 -0.013 0.0098 0.0102 

Directional Accuracy 66.63 70.09 50.81 52.64 

VaR Reduction 83.58 83.97 97.66 97.55 

CVaR Reduction 86.63 87.02 97.31 97.23 

MAD 0.00886 0.0088 0.000239 0.000238 

Time Complexity (s) 6.66 4.48 10.79 9.63 

METRIC COPULA GARCH DCC GARCH LSTM-CNN HYBRID FT-NET HYBRID 

Variance Reduction 95.09 95.05 96.96 96.56 

RMSE 0.01118 0.01121 0.00206 0.00219 

Average Return 0.00029 0.00034 -0.00009 -0.00005 

Sharpe Ratio 0.1113 0.129 -0.0438 -0.0227 

Directional Accuracy 62.07 67.82 51.34 51.34 

VaR Reduction 89.39 88.54 94.65 94.38 

CVaR Reduction 90.97 90.1 91.74 91.62 

MAD 0.00824 0.00817 0.000611 0.000619 

Time Complexity (s) 4.48 6.39 10.79 9.63 
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Once the initial pairwise matrix is constructed, it is normalized 

to ensure consistency and to allow for proper weighting. The 

matrix is normalized by dividing each entry in a given column 

by the sum of that column, transforming the original elements 

into relative proportions. The normalized matrix reflects the 

proportional importance of each criterion relative to every other 

criterion in the set. 

Then the weight of each criterion is extracted by computing the 

mean value of each row in the normalized matrix. This average 

quantifies the overall relative importance of each criterion, 

aggregating its normalized influence across all pairwise 

comparisons. The vector of these row means represents the 

initial set of crisp (precise) weights, which together sum to one, 

ensuring a proper probability distribution over the criteria. 

 

Figure 15. Fuzzified AHP Criteria Weights. 

Instead of considering each crisp weight, they are converted to 

fuzzified values by constructing a Triangular Fuzzy Number 

(TFN) centered on the crisp value but allowing for a range of 

uncertainty. Specifically, for each weight w, a TFN is defined 

as (0.9w, w, 1.1w), thereby incorporating a ±10% spread 

around the nominal value. This fuzzification step captures the 

ambiguity and lack of perfect precision, making the criteria 

weighting process more realistic and defensible. 

The fuzzified AHP weights are presented in the figure 16 above 

from highest to lowest. The highest weights were assigned to 

variance reduction and RMSE, while the lowest weights were 

assigned to the mean absolute deviation and time complexity. 

6.1.3 Fuzzification of decision criteria 
After defining and calculating all criteria and their fuzzified 

weights, the next step was to convert the criteria to fuzzy 

numbers, using Triangular Fuzzy Number (TFN), denoted by 

three points: lower bound 𝑙, modal value 𝑚, and upper bound 

𝑢 [48]. If a criterion has an observed value v, fuzzification is 

defined as: 

(𝑙, 𝑚, 𝑢) = (𝑣 × (1 − δ), 𝑣, 𝑣 × (1 + δ) (37) 

where δ is the fuzziness factor capturing measurement 

ambiguity. Here, l reflects a pessimistic scenario, m the most 

likely estimate, and u an optimistic evaluation. By constructing 

the decision matrix with TFNs, the analysis formally 

incorporates uncertainty into subsequent steps. 

Next, the fuzzy decision matrix is normalized to eliminate scale 

effects. For benefit-type criteria (e.g., Sharpe ratio, variance 

reduction), normalization ensures that larger values map closer 

to unity, while for cost-type criteria (e.g., RMSE, MAD, time 

complexity), values are inverted such that smaller values are 

preferable. This guarantees comparability across 

heterogeneous metrics. 

Following normalization, the weighted normalized fuzzy 

matrix is constructed. Each normalized TFN is multiplied by its 

fuzzified weight, ensuring that more critical criteria exert 

proportionally stronger influence. The weighted decision 

matrix thus integrates both the intrinsic fuzziness of data and 

the subjective prioritization of criteria. 

The next step identifies Positive Ideal Solutions (PIS) and 

Negative Ideal Solutions (NIS). For each criterion, the PIS 

represents the most favorable TFN (highest benefit or lowest 

cost), while the NIS captures the least favorable scenario [49]. 

Each model’s desirability is then determined by computing its 

Euclidean distance to the PIS and NIS. For TFNs, the distance 

between two fuzzy numbers (𝑙1, 𝑚1, 𝑢1) and (𝑙2, 𝑚2, 𝑢2) is 

expressed as: 

𝑑

=  √
1

3
[(𝑙1 − 𝑙2)2 + (𝑚 − 𝑚2)2 + (𝑢1 − 𝑢2)2] 

 

 

(38) 

Finally, the closeness coefficient (CC) is derived as: 

𝐶𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
+ + 𝐷𝑖

− 
 

(39) 

where 𝐷𝑖
+ is the distance of model 𝑖 from the PIS and 𝐷𝑖

−its 

distance from the NIS. The closeness coefficient, bounded 

between 0 and 1, serves as a scalar indicator of how closely 

each model approximates the ideal benchmark [50]. 
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Figure 16. Model Ranking by Fuzzy TOPSIS. 

Figure 17 presents the resulting ranking. The FT-Net Hybrid 

model achieves the highest coefficient (0.444), narrowly 

outperforming the LSTM–CNN Hybrid (0.425). In contrast, 

econometric benchmarks lag significantly, with DCC-GARCH 

(0.336) and Copula GARCH (0.309). These ranking 

underscores two insights: (i) deep learning hybrids better 

capture nonlinear dynamics and structural breaks in financial 

time series, and (ii) integrating temporal and frequency-domain 

features (as in FT-Net) provides a marginal but meaningful 

edge over purely sequential architectures. 

The results demonstrate that fuzzy TOPSIS offers a 

transparent, multidimensional, and uncertainty-aware 

evaluation of hedging performance. Through joint 

consideration of risk minimization, predictive accuracy, 

profitability, tail risk management, and computational cost, 

while embedding fuzziness into every step, the methodology 

ensures robustness to both statistical noise and subjective 

judgment. 

6.2 The Composite Efficiency Index (CEI) 
This paper further extends the comparative analysis by 

incorporating the Composite Efficiency Index (CEI), a metric 

historically employed in efficiency-based assessments [51]. 

Building upon the fuzzy TOPSIS methodology, the CEI is 

derived from the closeness coefficients, providing a 

complementary perspective on model performance. While the 

fuzzy TOPSIS coefficient measures each model’s absolute 

proximity to the ideal solution, the CEI translates these values 

into relative efficiency shares, thereby revealing the 

proportional contribution of each model to the overall decision-

making efficiency. By normalizing performance across all 

models, the CEI not only enhances interpretability but also 

facilitates a more intuitive and quantitative comparison of 

multicriteria outcomes. 

6.2.1 Implementation 
To synthesize the multi-criteria evaluation results into a single 

interpretable metric, the CEI was constructed based on the 

fuzzy TOPSIS closeness coefficients. The CEI quantifies the 

relative efficiency of each model as a normalized share of the 

total system performance, ensuring both comparability and 

scale independence. Formally, the CEI for model 𝑖is defined in 

equation 40 as: 

𝐶𝐸𝐼𝑖 =
𝐶𝐶𝑖

∑ 𝐶𝐶𝑗

𝑛

𝑗=1

 
 

(40) 

Where 𝐶𝐶𝑖  denotes the fuzzy TOPSIS closeness coefficient of 

model 𝑖, and 𝑛 represents the total number of candidate models. 

The resulting CEI values (figure 18) indicate that the FT-Net 

Hybrid model achieves the highest composite efficiency 

(0.293), followed closely by the LSTM–CNN Hybrid (0.281). 

Together, these deep learning hybrid models account for 

approximately 57% of the total efficiency, significantly 

outperforming the econometric baselines: DCC-GARCH 

(0.222) and Copula-GARCH (0.204). These findings confirm 

that hybrid architectures, which integrate temporal and 

frequency-domain representations, deliver more robust and 

adaptive hedging performance in volatile equity markets. 

 
Figure 18. Model Ranking by CEI. 

7. STATISTICAL ARBITRAGE 

ANALYSIS 
Statistical arbitrage refers to a class of trading strategies that 

use statistical, mathematical and computational methods to 

exploit pricing inefficiencies between financial instruments 

[52]. Statistical arbitrage is widely understood as a high-

volume, short-term trading strategy. Unlike traditional 

arbitrage, which exploits mispricing between identical or 

related securities for risk-free profits, statistical arbitrage 

distinguishes itself by assuming such mispricing is subtle, 

short-lived, and revealed only by complex analysis. Statistical 

arbitrage involves taking advantage of mutual relationships, for 
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example, mean reversion, cointegration or other statistical 

properties. These relationships must last long enough to be 

traded systematically, regardless of the noise of the market or 

frictions [53] [54]. 

Statistical arbitrage is based on the idea that the prices of related 

financial assets are not always perfectly in sync or adjust 

instantaneously, thus giving rise to a temporary deviation from 

their equilibrium relation. These deviations arise due to various 

reasons like liquidity shock, investor reaction and information 

lag and so on. They open up arbitrage opportunities if they can 

be detected and acted on before prices revert to normal co-

movement. It’s worthwhile noting that signals based on 

statistical patterns can affect prices themselves. A similar point 

can be made regarding time-series based strategies. Statistical 

arbitrageurs use quantitative techniques for creating trading 

signals, managing risk, and executing trades either at high 

frequency or in a disciplined, repeatable manner [55]. They rely 

on the law of large numbers, and diversification across many 

trades to secure consistent returns. 

In the context of equity futures market, the use of statistical 

arbitrage strategies has become relevant due to the high 

liquidity, transparency and standardization of contracts making 

systematic trading possible.  Equity futures like the ones on 

broad-based indices exhibit strong statistical relationships with 

their underlying cash indices as they are arbitraged to link the 

spot and futures price. Nevertheless, due to market 

microstructure effects, varying levels of liquidity, rolling 

contract dynamics, and short-term supply-demand imbalances, 

temporary mispricing between the futures and their respective 

underlying indices do occur. These transitory departures from 

theoretical pricing models, such as the cost-of-carry model, 

create an environment in which statistical arbitrage strategies 

can thrive. 

The practical execution of statistical arbitrage strategies makes 

a powerful analytical technique that converts the raw data 

provided by the market into powerful trading signals. In this 

research, statistical arbitrage is grounded on the dynamic 

modelling of hedge ratios, calculation of hedged returns, 

generation of signals using rolling statistics and statistical 

properties like stationarity along with others are usefully 

checked to make inference.  Each stage in this framework is 

designed to maximize both the interpretability and the 

effectiveness of the arbitrage signals, ensuring that the trading 

opportunities identified are both statistically valid and 

economically meaningful. 

7.1 Construction of Hedged Return Series 
At its core statistical arbitrage methodology is the construction 

of the hedged return series, which forms the primary spread to 

be analyzed and traded. In financial markets, the concept of a 

“spread” refers to the difference between two related financial 

quantities—most commonly, the prices or returns of assets that 

are expected to move together due to fundamental or statistical 

relationships [56]. In the context of this research, the spread is 

specifically defined as the return on a dynamically hedged 

portfolio comprising a position in the KSE 30 index (the spot 

asset) and an offsetting position in the corresponding futures 

contract. The central idea is that, by carefully calibrating the 

exposure to the futures contract, it is possible to reduce or 

neutralize the risk arising from movements in the spot market. 

The formula used to calculate the hedged return at each time 

step t is mentioned in equation 7. The hedge ratio 𝛽̂𝑡 quantifies 

the degree to which the futures position offsets the risk of the 

spot position. The value of 𝛽̂𝑡 is not static but is recalculated at 

each time point using sophisticated models, such as DCC-

GARCH, Copula-GARCH, LSTM-CNN, or FT-Net Hybrid, so 

as to capture changing market conditions and correlations. 

The resulting hedged return series, 𝑅̂ℎ𝑒𝑑𝑔𝑒𝑑,𝑡, can be interpreted 

as the “residual risk” or “spread” that remains after applying 

the hedge. Ideally, if the hedge were perfect and all market 

movements were fully anticipated by the model, the hedged 

return would be close to zero [6]. However, in reality, due to 

estimation errors, market frictions, and the inherent 

unpredictability of financial markets, the spread will exhibit 

variability and, importantly for statistical arbitrage, may 

display patterns of mean reversion or deviation from 

equilibrium. By focusing on this spread, the statistical arbitrage 

methodology is able to detect and systematically exploit these 

temporary dislocations for profit. 

7.2 Rolling Statistics and Z-Score 

Normalization 
Next steps after computing the hedged return series, or spread, 

are to track how this spread behaves over time to get actionable 

trading signals.  The primary tool used for this analysis is the 

calculation of rolling statistics, which ensure that abnormal 

deviations are detected with respect to most of the recent 

history rather than a fixed mean or standard deviation. This is 

essential in financial markets where statistical properties may 

evolve over time due to regime changes, volatility clustering, 

or shifts in investor sentiment. 

The rolling mean and rolling standard deviation are defined 

mathematically as follows (equation 41) for a window of size 

𝑤: 

𝜇𝑡 =
1

𝑤
∑ 𝑅̂ℎ𝑒𝑑𝑔𝑒𝑑,𝑡

𝑡

𝑖=𝑡−𝑤+1

 
 

(41) 

𝜎 = √
1

𝑤 − 1
∑ (𝑅̂ℎ𝑒𝑑𝑔𝑒𝑑,𝑡 − 𝜇𝑡)

𝑡

𝑖=𝑡−𝑤+1

 

 

(42) 

where 𝜇𝑡 represents the rolling mean of the hedged return at 

time 𝑡, and 𝜎 denotes the rolling standard deviation over the 

same window. By recalculating these statistics at each time 

step, the method adapts to evolving market conditions and 

ensures that the detection of anomalies is contextually relevant. 

To further standardize the detection of trading opportunities, 

the spread is normalized into a z-score (see equation 43), which 

expresses the current hedged return in terms of its distance from 

the rolling mean, scaled by the rolling standard deviation: 

𝑧𝑡 =
𝑅̂ℎ𝑒𝑑𝑔𝑒𝑑,𝑡 − 𝜇𝑡

𝜎𝑡
 

(43) 

The z-score, 𝑧𝑡, provides a dimensionless measure of 

extremity: values close to zero indicate that the spread is near 

its recent average, while large positive or negative values 

signify abnormal deviations. In the context of statistical 

arbitrage, these z-score thresholds form the basis for generating 

entry and exit signals. For example, when the z-score exceeds 

a certain positive threshold, the spread is considered 

“overbought” and likely to mean-revert downwards, triggering 

a short position. Conversely, when the z-score falls below a 
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negative threshold, the spread is “oversold” and expected to 

revert upwards, prompting a long position. This approach 

leverages the inherent tendency of mean-reverting series to 

oscillate around a stable equilibrium, thus enabling the 

systematic exploitation of temporary mispricing. 

7.3 Stationarity Testing and Justification 
The effectiveness and validity of any statistical arbitrage 

strategy is largely dependent on whether the hedged return 

series is stationary. Statistical features that enable time series 

analysis are often gathered at regular intervals, making the 

time-series analysis of stationary data important. Stationarity 

implies that history matters for what may happen in the future. 

This is exactly the assumption behind repeated arbitrage 

opportunities. If the spread is not constant over time, then any 

movement away from the average could be permanent, which 

would render any trading strategy based on the idea of moving 

back towards the average too erratic to implement or too 

dangerous to implement. 

To formally test for stationarity, the Augmented Dickey-Fuller 

(ADF) test is employed [57]. The ADF test is a statistical 

hypothesis test in which the null hypothesis is that a unit root is 

present in the time series, indicating non-stationarity. The test 

is based on estimating the regression shown in equation 44: 

𝛥𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 + ∑ 𝛿𝛥𝑦𝑡−𝑖 + 𝜀𝑡

𝑝

𝑖=1

 

 

(44) 

where 𝑦𝑡 is the value of the spread (here, 𝑅̂ℎ𝑒𝑑𝑔𝑒𝑑,𝑡), 𝛥𝑦𝑡 

denotes the first difference of 𝑦𝑡, 𝑡 is a time trend, 𝑝 is the 

number of lagged differences included to account for 

autocorrelation, and 𝜀𝑡 is the error term. The key parameter of 

interest is 𝛾 is significantly less than zero, the null hypothesis 

of a unit root is rejected, indicating stationarity. 

The outcome of the ADF test includes the test statistic, critical 

values at standard significance levels, and the p-value. A 

sufficiently negative test statistic, or a p-value below the chosen 

significance threshold (typically 0.05), provides statistical 

evidence that the series is stationary. In the context of this 

research, the application of the ADF test to the hedged return 

series ensures that the mean-reversion signals generated by the 

z-score normalization are grounded in sound statistical 

properties, rather than being artifacts of a trending or random-

walk process. This will not only make the arbitrage signals 

more reliable but also protect against model failure or false 

positive signal in the live trading environment. 

7.4 Mean-Reversion Signal Design 
The detection of deviations forms the basis for generating 

actionable trading signals. In implementation, the strategy uses 

the previously calculated z-score. This z-score tells us how 

many standard deviations the current value of the spread is 

from its rolling mean [58]. 

Hedged return also called a spread at time taken equal to the 

rolling mean over rolling standard deviation over a window 

equal 𝜇𝑡 and 𝜎𝑡 respectively. A z-score converts the spread into 

a standardized measure, which allows comparing offsets today 

directly, regardless of changes in its volatility or average level 

over time. 

Trading signals are produced by determining an entry threshold 

(𝑧𝑒𝑛𝑡𝑟𝑦) and an exit threshold (𝑧𝑒𝑥𝑖𝑡). The thresholds are 

statistical cutoffs that determine what deviations away from the 

mean are significant and what level of reversion will be 

sufficient to close a trade. The entry and exit conditions for 

trading is mathematically defined as follows: 

1. Long Entry (Buy Spread): When the z-score falls 

below the negative of the entry threshold, i.e., 𝑧𝑡< 

−𝑧𝑒𝑛𝑡𝑟𝑦 , this signals that the spread is abnormally 

low and likely to mean-revert upwards. A long 

position is initiated, betting on an increase in the 

spread. 

2. Short Entry (Sell Spread): Conversely, when the z-

score rises above the positive entry threshold, i.e., 𝑧𝑡 

> 𝑧𝑒𝑛𝑡𝑟𝑦, the spread is deemed abnormally high and 

expected to revert downwards. A short position is 

initiated. 

3. Exit Signal (Close Position): Regardless of the initial 

direction, when the absolute value of the z-score 

returns below the exit threshold, i.e., |𝑧𝑡| <  𝑧𝑒𝑥𝑖𝑡, it 

indicates that the spread has normalized, and the 

trade should be closed to realize profits and mitigate 

the risk of reversal. 

These rules can be mathematically summarized as in equation 

45: 

𝛥𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = {

1 𝑖𝑓𝑧𝑡 <  −𝑧𝑒𝑛𝑡𝑟𝑦 

−1 𝑖𝑓𝑧𝑡  >  𝑧𝑒𝑛𝑡𝑟𝑦 

0 𝑖𝑓 |𝑧𝑡| <  𝑧𝑒𝑥𝑖𝑡

 

 

(45) 

This systematic approach increases the likelihood of making 

profitable trades or closing out losing trades. They are opened 

once confirmed deviations and closed when the deviation is 

gone. Using z-scores rather than absolute values, it provides an 

adaptive strategy that responds to market conditions and 

volatility regimes. 

7.5  Trade Position Management 
The management of trading positions in a statistical arbitrage 

strategy is governed by the signals described above, with 

explicit rules dictating when to enter, hold, or exit trades. At 

any given time, the strategy can be in one of three possible 

states: long, short, or flat (no position). 

A long position is taken when the spread is judged to be 

excessively low, based on the z-score dropping below the 

negative entry threshold. In practical terms, this involves 

buying the spot index and selling the corresponding number of 

futures contracts as specified by the hedge ratio, with the 

expectation that the spread will rise. Conversely, a short 

position is initiated when the z-score exceeds the positive entry 

threshold, indicating the spread is excessively high; this entails 

selling the spot index and buying futures contracts, profiting 

from a decline in the spread. 

Trade transitions are managed through a straightforward 

process. When the z-score signal triggers a new position (long 

or short) and the strategy is currently flat, the position is opened 

accordingly. If a position is already open and the z-score 

crosses the exit threshold in the direction of normalization, the 

position is closed, returning the strategy to a flat state. 

Importantly, the system is designed to avoid simultaneous long 

and short positions; at most, only one direction is active at any 

time. If the signal reverses before the exit threshold is hit (for 

example, from long entry to short entry without normalization), 
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the previous position is first closed before the new position is 

opened, ensuring clear transitions and accurate accounting of 

profits and losses. 

This position management logic ensures discipline, prevents 

overtrading, and allows for clean measurement of individual 

trade performance. The sequence of position changes is directly 

mapped to the time series of z-score signals, making the 

strategy transparent and auditable. 

7.6 Parameter Optimization 
The performance of statistical arbitrage hinges significantly on 

the selection and tuning of key parameters; namely, the rolling 

window size used for computing statistics, and the entry and 

exit z-score threshold values. How often and how profitably a 

trading strategy might trade is determined by these parameters, 

as is how robust the strategy is to various situations. 

The size of the rolling window (𝑤) affects the mean and 

standard deviation of the spread.  When a window is smaller in 

size. The strategy will respond to the latest change effectively. 

But, it can miss on big trends. On the other hand, if you have a 

bigger window, you will smooth short-term variations and 

perhaps prevent overfitting, but you can be slow to react to real 

regime changes. Choosing a window size is, therefore, a trade-

off between sensitivity and stability. Using out-of-sample back 

testing and validation for empirical testing helps find the 

optimal window to balance these competing concerns 

specifically for the KSE 30 futures market. 

Changes to the entry z-score threshold (𝑧𝑒𝑛𝑡𝑟𝑦) and exit z-score 

threshold (𝑧𝑒𝑥𝑖𝑡) will affect the responsiveness of the strategy. 

When entry thresholds are lower, traders trade frequently as 

signals are triggered with even small deviations from the mean. 

Although this may lead to greater opportunities, it also 

increases the chances of a false positive and transaction costs. 

When the thresholds are high, the strategy will only activate 

when conditions are extraordinary. The idea is that the quality 

of trades will be superior on average. However, it will also 

activate far less often. Thus, total profitability might be lowered 

due to fewer returns and trades. The exit threshold controls how 

tightly anyone control trades. A tighter exit locks in the profit 

quickly and limits the drawdown. A looser exit will allow us to 

capture more profit but increases the odds of a reversal. 

Usually, the optimization of parameters is done through in-

depth back testing of a grid of parameters. Then the raw return, 

risk-adjusted return (Sharpe ratio), drawdown, and number of 

trades are measured. The choice of final parameters is done to 

balance profitability and risk and operational suitability. The 

optimized strategy should not rely heavily on any specific 

period or historical regime. Thus, a sensitivity analysis must be 

conducted to test the results across different market conditions. 

7.7 Empirical Results and Visualization 

7.7.1 Model-by-Model Strategy Performance 
Upon executing the statistical arbitrage strategy testing 

interface, seen in figure 19, the analysis was conducted with a 

rolling window of 60 days, an entry z-score threshold of 2.0, 

and an exit z-score threshold of 0.5. The empirical evaluation 

covers four distinct models for hedge ratio estimation: Copula-

GARCH, DCC-GARCH, LSTM–CNN Hybrid, and FT-Net 

Hybrid. Each model file encapsulates daily returns data for the 

KSE 30 index and its futures contract, along with the 

dynamically computed hedge ratio and the resulting hedged 

return series. Figure 18 also shows the GUI developed to assess 

the statistical arbitrage effectiveness. A summary of the 

performance metrics for each model is provided in Table 4 

below. These metrics include total return, annualized return, 

annualized volatility, Sharpe ratio, maximum drawdown, 

number of trades executed, and results of the Augmented 

Dickey-Fuller (ADF) stationarity test. The Sharpe ratio, which 

measures risk-adjusted performance, is used as the principal 

comparative criterion for determining the best performing 

strategy. 

 

Figure 19. Graphical User Interface (GUI) for Statistical 

Arbitrage. 

Table 4. Statistical Arbitrage Performance Metrics by Model. 

 

 The FT-Net Hybrid model marginally outperformed all other 

models in terms of Sharpe ratio, closely followed by the 

LSTM–CNN Hybrid. Both advanced deep learning models 

produced higher total and annualized returns than the 

Model 
Total 

Return 

Annual 

Return 

Annual 

Volatility 

Sharpe 

Ratio 

Max 

Drawdown 
Trades 

ADF 

Statistic 

ADF p-

value 
Crit 5% 

Copula 

GARCH 
0.056 0.011 0.012 0.864 -0.015 54 -13.003 0.000 -2.864 

DCC 

GARCH 
0.059 0.011 0.012 0.951 -0.014 54 -13.020 0.000 -2.864 

LSTM-

CNN 

Hybrid 

0.066 0.013 0.012 1.074 -0.015 52 -39.123 0.000 -2.864 

FT-NET 

Hybrid 
0.066 0.013 0.012 1.077 -0.015 52 -38.939 0.000 -2.864 
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econometric Copula-GARCH and DCC-GARCH models, 

while maintaining comparable volatility and drawdown 

characteristics. The strong negative ADF statistics and zero p-

values confirm robust stationarity in the hedged return series 

for all models, substantiating the statistical basis for mean-

reversion-based arbitrage. 

7.7.2 Visualization of Hedged Spread Dynamics 
The dynamic behavior of the hedged return (spread) for each 

model is visualized in figures 20-23. Each graph plots the time 

series of hedged returns along with its rolling mean, entry bands 

(±2.0 standard deviations), and exit bands (±0.5 standard 

deviations) over the entire sample period from 2019 to 2024. 

The hedged return series produced by the Copula-GARCH 

model oscillates around the rolling mean, with most values 

contained within the entry bands. Periodic spikes represent 

significant short-term dislocations, often coinciding with 

market stress or contract rollover periods. The rolling mean 

remains stable near zero, validating the effectiveness of the 

hedge. The width of the entry and exit bands adapts 

dynamically with volatility, expanding during turbulent periods 

and narrowing during tranquil market regimes. 

The DCC-GARCH model’s hedged return dynamics shows 

patterns broadly similar to the Copula-GARCH model. The 

frequency and magnitude of excursions beyond the entry bands 

are slightly higher during high volatility episodes, yet the 

spread consistently reverts to the mean. This mean-reversion 

property is essential for arbitrage, as it allows repeated entry 

and exit opportunities throughout the sample. 

Next comes the LSTM–CNN Hybrid model’s hedged return 

series. This model exhibits a slightly tighter clustering of 

returns around the mean, with fewer extreme outliers. The 

dynamic entry and exit bands provide a visual cue for when the 

arbitrage strategy is likely to activate trading signals. The 

persistently mean-reverting behavior is evident, reinforcing the 

statistical foundation of the arbitrage approach. 

The FT-Net Hybrid model’s spread demonstrates exceptional 

mean-reverting tendencies, with the vast majority of values 

remaining within the rolling bands. The spectral features 

incorporated by this model appear to enhance the stability and 

predictability of the spread, reducing the occurrence of 

unprofitable outliers. The visual compactness and symmetry of 

the hedged returns suggest robust risk control. 

 
Figure 20. Spreads and Bands – Copula DCC GARCH. 

 
Figure 21. Spreads and Bands –DCC GARCH. 
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Figure 22. Spreads and Bands – FTNET Hybrid. 

 

Figure 23. Spreads and Bands – LSTM-CNN 

7.7.3 Equity Curve and Comparative Performance 
To evaluate actual trading performance, Figures 24 – 27 plots 

the accumulated profit-and-loss (PnL) curves and entries of all 

the individual trades for the model. Accumulated PnL 

represents the total impact of each arbitrage trade, signed based 

on the s-z-score before its entry and exit decision.  

The equity curve of the Copula-GARCH model demonstrates a 

stable rising tendency with a moderate number of drawdowns 

in the early sample. Each trade is marked to facilitate 

understanding, clearly demonstrating that participating in long 

and short trades both contribute to the increased profitability of 

both parties. 

 

Figure 24. Strategy Equity Curve – Copula DCC GARCH. 

The DCC-GARCH model also follows a comparable trend, 

albeit with a smoother evolution and lesser drawdown 

episodes.  The gradual changes in the equity curve show that 

the model can deal with changing volatility conditions and 

achieve consistent performance. 

 

Figure 25. Strategy Equity Curve – DCC GARCH. 

The LSTM-CNN Hybrid model has seen an increase in total 

PnL, with a longer rising equity curve and small drawdowns. 

The model’s adaptive learning mechanism determines when to 

go long or short and helps the investor earn a higher 

compounded return than competing econometric models. 

 

Figure 26. Strategy Equity Curve – LSTM-CNN 

FT-Net Hybrid has the highest cumulative return among all 

models in terms of equity curve. The equity curve shows a 

generally upward direction, especially in the later sample years, 

with few reversals. The FT-Net Hybrid model is the number 

one model by Sharpe ratio. This is due to its robust and 

consistent execution of trade. 
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Figure 27. Strategy Equity Curve – FTNET Hybrid. 

Finally, figure 27 overlays the cumulative PnL curves for all 

four models, providing a direct visual comparison of strategy 

performance over time. This comparative equity curve reveals 

the relative strengths and weaknesses of each model. While all 

models demonstrate positive growth and mean-reversion-

driven profitability, the FT-Net Hybrid and LSTM–CNN 

Hybrid models consistently outperform the econometric 

alternatives, both in terms of total return and in the smoothness 

of the equity curve. The absence of large, persistent drawdowns 

further confirms the statistical robustness and practical viability 

of the deep learning approaches. 

 
Figure 28. Cumulative PnL Comparison Across Models. 

7.8 Interpretation  
The comparative analysis of model performance is grounded in 

a comprehensive suite of quantitative metrics and visual 

diagnostics. Across all four tested models—Copula-GARCH, 

DCC-GARCH, LSTM–CNN Hybrid, and FT-Net Hybrid—the 

results consistently indicate that advanced deep learning 

architectures, specifically the FT-Net Hybrid and LSTM–CNN 

Hybrid, offer a superior edge in the detection and exploitation 

of statistical arbitrage opportunities. 

The FT-Net Hybrid model emerges as the most effective, as 

evidenced by its highest Sharpe ratio of 1.07680 and a total 

return nearly identical to that of the LSTM–CNN Hybrid. Both 

models deliver not only higher absolute and risk-adjusted 

returns but also demonstrate more consistent equity curve 

progression, marked by persistent upward momentum and 

limited drawdowns throughout the out-of-sample evaluation 

period. The econometric models, while still profitable and 

statistically significant, underperform relative to their deep 

learning counterparts both in terms of total returns and risk-

adjusted metrics. 

Figures 24 - 27 depicting the cumulative profit and loss 

trajectory underscore this conclusion visually: the FT-Net 

Hybrid’s equity curve is not only smoother and less volatile but 

also achieves the highest terminal value over the full testing 

horizon. The hedged return spread associated with this model 

is characterized by a strong mean-reverting tendency, fewer 

extreme outliers, and more predictable band crossings, all of 

which translate to high-quality arbitrage signals. Furthermore, 

the ADF test statistics for all models are strongly significant, 

but the FT-Net Hybrid and LSTM–CNN Hybrid models exhibit 

the most pronounced levels of stationarity in their spreads, 

further cementing the statistical reliability of the arbitrage 

process. 

8. CONCLUSION 
This study delivers a comprehensive examination of dynamic 

hedging in equity futures and statistical arbitrage detection, 

comparing traditional econometric frameworks with advanced 

deep learning architectures on the KSE-30 Index and its 

futures. Core contributions include implementing and 

empirically evaluating models under realistic market 

constraints, applying rigorous multi-criteria performance 

metrics, and integrating arbitrage-based trading analysis. A key 

preprocessing challenge, like contract rollover discontinuities, 

was resolved through a mean-reverting adjustment, aligning 

new contract prices with expiring series to eliminate artificial 

jumps and preserve hedge ratio integrity. Missing interest rate 

data was imputed using a Random Forest regressor, achieving 

strong R² and RMSE scores, ensuring a reliable dataset. 

Econometric models, DCC-GARCH and its Student-t Copula 

extension, were statistically validated via ADF and ARCH-LM 

tests, confirming stationarity and conditional heteroscedasticity 

suitability. DCC-GARCH captured volatility clustering and 

leverage effects, while Copula DCC-GARCH modeled 

symmetric tail dependence, improving extreme co-movement 

representation. Parallelly, two hybrid deep learning models 

were developed. The LSTM–CNN combined convolutional 

feature extraction with recurrent sequence modeling, adapting 

to short- and long-term dependencies in noisy returns. The 

novel FT-Net hybrid incorporated Fourier spectral 

decomposition with temporal convolutional and recurrent 

layers, exploiting hidden cyclical patterns and structural shifts 

often missed in time-domain approaches. Post-model 

diagnostics confirmed that all models produced stationary, 

homoscedastic, and autocorrelation-free residuals, validating 

them for comparative hedging analysis. 

Performance evaluation via Fuzzy TOPSIS ranked models 

across nine criteria, variance reduction, RMSE, Sharpe ratio, 

hedged return, directional accuracy, MAD, time complexity, 

and tail risk metrics (VaR, CVaR). The FT-Net hybrid 

consistently ranked first in both in-sample and out-of-sample 

testing, achieving the largest variance reduction, lowest 

forecast RMSE, highest directional accusracy, and superior 

Sharpe ratios, while mitigating extreme tail risks more 

effectively than all competitors. Copula DCC-GARCH showed 

resilience in stress periods but lacked adaptability under rapid 

volatility shifts, and LSTM–CNN, while robust, delivered 

slightly lower hedged returns than FT-Net. In statistical 

arbitrage testing, FT-Net’s hedge ratio-derived spread signals 

displayed strong mean reversion, enabling profitable long-short 

strategies with economically significant returns. 

Overall, the findings underscore the dominance of hybrid deep 

learning, particularly FT-Net Hybrid, in dynamically 

estimating hedge ratios, reducing portfolio risk, and uncovering 

actionable arbitrage opportunities. Its capacity to integrate 

spectral–temporal features with sequential modeling positions 

it as a scalable, high-performance alternative to traditional 

econometric models in modern financial markets. 

8.1 Recommendations for Future Work 
Although the current study contributes to the understanding of 

dynamic hedge effectiveness and statistical arbitrage based on 

econometric and deep learning models, there are still multiple 

roads to pursue in the future. Generalizing the framework to a 

multivariate asset context where a portfolio of hedge ratios is 

estimated as opposed to on a single index, in the authors view 
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this would enable the future researchers to collect cross-asset 

correlations, sectoral connectivity, and non-linear 

interdependencies in a portfolio. This can be done by using 

multivariate DCC-GARCH, vine copulas or transformer-based 

architectures with attention mechanisms all of which have the 

potential to model inter-process dynamics more richly. 

Other critical developments include using the higher frequency 

data. Although this work dealt with daily horizons on the basis 

of liquidity and availability considerations, more detailed 

analysis of volatility clustering, structural breaks and arbitrage 

opportunities could be done with intraday or tick-level 

modeling. Integrating these types of datasets with deep 

reinforcement learning or hybrid neural networks could help 

increase flexibility in high-frequency trading contexts, though 

it would demand ultra-low-latency data pipelines, strong noise 

filtering, and compute scaling. 

Another area that should be looked into in the future is 

integration of macroeconomic indicators. GDP, inflation and 

policy rates may be added to this and also including wider 

domestic and global indicators would enrich the contextual 

interpretation of hedge ratio behaviors, e.g. industrial 

production, fiscal balances, foreign reserves, crude oil prices, 

U.S Treasury yields, and volatility indices. More advanced 

time-varying parameter models, Bayesian hierarchal models or 

interpretable models like Temporal Fusion Transformers might 

enhance regime detection and result in a more stable forecast 

over changing macro-financial conditions. 

Lastly, it is also important to improve the transaction cost 

modeling. Instead of the fixed costs assumption, dynamic cost 

structures based on liquidity situations, bid ask spreads, 

slippage and execution lag would provide more realistic 

evaluation of strategy feasibility- especially in young or thin 

markets. Adding regulatory constraints, including restrictions 

on leverage (as in Dosdd-Frank), short-sale restrictions, and 

margin requirements would make results closer to those 

experienced in the real-world trading environments. 

Practically, the creation of modular, open-source APIs or code 

libraries around the hedging and arbitrage models, described 

here, would become an important benefit toward cross-market 

validation, model reproducibility, and ongoing model re-

training via re-deployable, real-time, cloud-based architecture. 

By making these additions, not only would one widen the field 

of this work, but one would also fill the gap between academic 

modeling and the deployable, adaptive risk management 

systems in the changing global markets. 
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