International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

Robustness of Automated Al Agents Against
Adversarial Context Injection in MCP

Prudhvi Ratna Badri Satya
Cloudflare Inc.

Texas, USA Texas, USA

ABSTRACT

Multi-agent systems based on the Model Context Protocol enable
agents to share information, tool outputs, and memory across dis-
tributed servers. While this design supports complex tasks such as
browsing, coding, and data entry, it also expands the attack sur-
face through adversarial context injection. Malicious inputs can en-
ter through web pages, APIs, files, or memory and persist across
steps, making detection difficult. Existing defenses often target sin-
gle prompts and fail to address multi-step persistence or cross-
server propagation. To address this gap, a defense stack was in-
troduced that combines schema checks, anomaly detection, trust-
weighted arbitration, and quarantine. Evaluation was conducted on
WebArena, Mind2Web, and InjectBench using reproducible trials
with clean and injected runs. Results showed a reduction in ASR
from over 60% to as low as 16.3% and improvements in decision
accuracy up to 62.7%, with modest overhead of 2.6-3.0 seconds per
task. The findings highlight the importance of layered defenses, re-
producible testing, and transparent reporting for safe deployment
of automated agent networks.

General Terms

Artificial Intelligence, Multi-Agent Systems, Cybersecurity, Adversarial
Attacks

Keywords

Automated Al agents, Adversarial Context Injection, Model Con-
text Protocol (MCP), Robustness, Anomaly Detection, Defense
Mechanisms

1. INTRODUCTION

Multi-agent systems based on the Model Context Protocol (MCP)
were described as powerful tools for automated tasks such as
browsing, booking, coding, and data entry [32]. These systems al-
lowed agents to share information, tool outputs, and memory across
distributed servers, creating efficient collaboration [28]]. However,
the same design expanded the attack surface, as adversaries could
insert malicious content at multiple points in the workflow [4]. A
single poisoned input could propagate across agents and influence
later steps, amplifying risk. Defenses tied to single prompts often
failed under multi-step tasks [43]. As a result, teams faced chal-
lenges in maintaining reliability across complex cross-server oper-

Ajay Guyyala

Meta Platforms Inc.

Vijay Putta
Fast Enterprises Llc.
Louisiana, USA

Krishna Teja Areti

Fast Enterprises Llc.
North York, ON, Canada

ations. The need for trust, auditability, and risk reporting became
urgent. These concerns formed the background for examining the
robustness of agent networks [3].

Adversarial context injection appeared in many forms, including
hidden payloads in HTML, JSON fields, tool outputs, and mem-
ory writes [1]. One agent could read these inputs and pass them
forward, allowing another agent to act upon them long after in-
sertion [38]]. Memory replay added further complications, where
tainted data reappeared after many steps [8]. Filters and schema
checks struggled against such variety, and attacks often aligned
with task goals, making them harder to detect [40|]. Voting schemes
without context tracking could amplify errors instead of correcting
them. Such conditions highlighted the importance of defenses that
operate across time and multiple channels. Broader safeguards, be-
yond simple prompt filters, became essential for sustaining system
trust [44].

Testing frameworks for adversarial robustness were often limited in
scope [29]]. Many existing efforts relied on toy websites, short task
paths, and isolated demonstrations [35]]. These settings failed to
capture long-horizon browsing with live tools or hazards linked to
memory writes. They often underreported defense overhead, mak-
ing it difficult for practitioners to compare options [24]]. Results
sometimes mixed clean and attack traffic, masking the true im-
pact of adversaries. Without reproducible setups, accuracy and cost
trade-offs remained unclear. For adoption in practice, transparent
metrics and reliable testbeds were necessary. This gap in realism
and reproducibility motivated the present focus on systematic eval-
uation of agent robustness under MCP [36].

The research problem centered on understanding the robustness of
MCP-based agent ecosystems under poisoned context [27]]. Ques-
tions included which channels were most vulnerable among mes-
sages, tool returns, and memory writes, and how attack budgets
influenced outcomes [20]. It was also necessary to examine how
long contamination persisted across steps, which metrics best de-
scribed decision quality and risk, and how agents failed under arbi-
tration. Another part of the problem was identifying defenses that
reduced harm while keeping overhead low [20]. In addition, au-
ditability required methods to produce traces that exposed failures
and supported transparent reporting [15]]. Together these aspects
framed the challenge. Methods such as regex filters blocked known
strings, while allowlists restricted tools and files. Sandboxes lim-
ited system calls, and JSON schemas checked argument formats.
Prompt guardrails inserted safety text, and routing outputs to a

checker model offered a second pass. Red teaming provided probes
against direct attacks. While useful in specific cases, these methods
struggled against context that persisted across multiple steps [33].
None were designed to handle cross-server flows where poisoned
data could reappear later. The scope of these defenses remained too
restricted for complex multi-agent environments [[19].

Approaches for multi-agent resilience introduced critics, planners,
and voting mechanisms [30]]. Some methods scored drafts and re-
jected outliers, while others used agent history or skill ratings.
Memory guards attempted to block hazardous writes, and logging
captured traces for audits [37]]. Despite these measures, indirect in-
jections through pages and APIs often bypassed controls. Memory
could replay past errors, undermining defenses after many steps [7]].
Public benchmarks rarely stressed these indirect paths, leaving im-
portant gaps untested. Few works reported the cost of defenses
alongside their robustness, making adoption difficult. These issues
hindered the practical use of otherwise promising methods [26].

In response, a defense architecture was introduced to provide a
more reliable foundation. It combined schema and signature checks
with anomaly scoring, trust-weighted arbitration, and quarantine
mechanisms. These layers worked together to reduce attack suc-
cess while maintaining transparency in metrics. The defense suite
was tested on three datasets: WebArena, Mind2Web, and Inject-
Bench. Each offered realistic context streams and reproducible in-
jection scenarios. The design emphasized reproducibility through
fixed seeds, matched clean and injected runs, and versioned ar-
tifacts. Reports covered accuracy, attack rate, and defense cost,
allowing clear trade-offs to be observed. This structure aimed to
bridge gaps in testing and deployment.

The aim of this work was to quantify the robustness of MCP agent
ecosystems under adversarial context injection and to present a
practical defense stack with low overhead and transparent metrics.

—To analyze the robustness of MCP-based multi-agent systems
against adversarial context injection across message, tool, and
memory channels.

—To design and apply a layered defense stack that integrates
schema checks, anomaly detection, trust arbitration, and quar-
antine for reducing attack success with low cost.

—To evaluate robustness, decision accuracy, and defense over-
head using reproducible benchmarks that include WebArena,
Mind2Web, and InjectBench.

(1) How do adversarial context injections affect decision quality
in MCP-based multi-agent ecosystems across different attack
vectors?

(2) Which defense mechanisms provide the best balance between
reduced attack success, preserved accuracy, and minimal com-
putational overhead?

(3) How can reproducible benchmarks be constructed to assess
robustness transparently and support adoption in practical de-
ployments?

The study carried importance for advancing the safety and relia-
bility of automated multi-agent systems. As MCP networks sup-
ported cross-server workflows and long-horizon tasks, their expo-
sure to poisoned context became an urgent concern. Simple filters
and schema checks failed to address threats that reappeared across
steps, leaving decision quality at risk. By modeling adversarial con-
text injection across multiple channels and introducing defenses
that acted over time, the research created a path toward improved
resilience. The use of reproducible datasets and matched clean ver-
sus attacked runs confirmed that results were not only controlled

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

but also transparent. This design supported practitioners seeking
measurable trade-offs between protection and cost.

The broader impact extended to the adoption of multi-agent sys-
tems in domains that demanded both autonomy and trust. By re-
ducing attack success while keeping overhead modest, the defense
stack described a feasible approach for deployment. Reports cov-
ering accuracy, attack rate, and cost offered clear benchmarks for
decision-making, unlike earlier efforts that lacked transparency.
The contribution lay in combining methodological rigor with prac-
tical applicability, creating a foundation for future studies and de-
ployments. These outcomes supported wider confidence in using
agent ecosystems for complex workflows, where safety, reliability,
and accountability were central requirements.

The rest of this paper is organized as follows. Section2]presents the
reviewed studies on interoperability frameworks and their observed
limitations. Section [3]introduces the design of the cross-server in-
teroperability framework for multi-MCP agent networks. Section]
outlines the datasets, test environments, and orchestration param-
eters. Section [3] reports performance outcomes and comparative
evaluation with prior methods. Section [6] summarizes the contri-
butions and suggests directions for future research.

2. LITERATURE REVIEW

Hanif et al. [16] developed a clear frame that contrasted agentic
systems with single agents in practice. The authors described roles,
memories, and tools across collaboration patterns. They expressed
governance needs for audit and accountability during long tasks.
The work defined open issues around safety, reliability, and cost
for deployments.

Fu et al. [[13] developed a planner that combined an Large Lan-
guage Model (LLM) predictor with Answer Set Programming rules
in VirtualHome. The method applied domain rules and used human
feedback to refine plans and reduce errors. The authors described
higher completion and fewer reprompts than LLM only runs. Wu,
Zhu and Liu [41] developed tool aware agents for search, coding,
and structured memory. The system used a Mind Map to organize
facts and described longer horizon reasoning. The study suggested
better handling of hard queries when tools and memory worked to-
gether. The authors expressed the need for source quality controls
for later steps. These efforts defined orchestration patterns that later
work could harden against attacks.

Zhang and Xie [46] developed workflow patterns over MCP ser-
vices for power systems. The design used containerized tools, per-
mission control, and described traceable JSON inputs and outputs.
The authors suggested human approval prior to higher risk oper-
ations within workflows. Jiyang and Hu [21]] developed an agent
suite for predictive maintenance across edge and cloud tiers. The
suite used detection, classification, diagnosis, and a digital twin to
guide decisions. The authors described retrieval support that fed
maintenance reasoning with domain records. The study suggested
that twin outputs guided safer interventions on assets in context.
Asici et al. [5]] developed role based engineering steps for LLM
multi agent systems in practice. The method used explicit role con-
tracts and described message responsibilities and constraints. The
authors suggested that clear roles reduced confusion during co-
ordination and helped safety reviews. These contributions defined
structure for multi agent work that matched MCP based designs.
Argaetal. [2] developed a place based cybersecurity frame for civic
deployments of generative systems. The authors used city contexts
to map risks and described staged oversight for shared platforms.
The study suggested layered review and local policy hooks for cross
agency usage. Zhang et al. [45] developed an MCP based bioinfor-

International Journal of Computer Applications (0975 - 8887)

Volume 187 - No.56, November 2025

Table 1. Summary of empirical and design-focused papers relevant to cross-server interoperability in multi-MCP automated Al agent

stereotype datasets

stereotypes with regression and x? tests

stricted analyses

networks.
Ref | Dataset Used Methodology Limitation Evaluation Results
je] | — Conceptual compare of agentic Al sys- | No experiments Conceptual outcomes only
tems and Al agents
| 113] | VirtualHome LLM prediction + Answer Set Program- | Assumes benign context Prediction 92.89%; completion 92.78%;
ming; human feedback lower reprompts
| [41] | GPQA (subject | Tool-using agents for search, coding, | No source trust scoring; no poi- | GPQA subject scores reported; case studies
splits); web/code | “Mind Map” memory soning study show benefits
tasks
| [46] Power-system simula- | MCP services; permission control; | Evaluation light; security de- | Demonstrations and trace logs; no attack
tors; operator work- | traceable JSON I/O; human approval scriptive rates
flows
| [21] | PdM scenario; RAG | Four agents across edge—fog—cloud: de- | No poisoning model for RAG | Pipeline runs illustrated; no benchmark num-
knowledge; sensor | tection; classification; diagnosis; digital | or twin outputs bers
streams twin
5 — Role-based engineering method for | No empirical study Method guidance; no numeric results
LLM-enhanced MAS
2 — Place-based cybersecurity framing for | Not MCP-specific Governance guidance; no metrics
generative Al
745] Multi-omics sources Bioinformatics agent with MCP con- | Pre-clinical scope; limited se- | End-to-end runs; runtime/usability notes; no
tainerization; tool isolation; traceable | curity view adversarial metrics
1/0
22l | — Two-stage architecture for autonomous | Position style; no red-team Demonstrator outline; qualitative safety
lab instruments with agent control checks
& Biomedical pipeline | TB-CSPN cloud—edge architecture; | Architecture focus; limited em- | Deployment properties described; no nu-
contexts confidential ~ computing; zero-trust | pirical meric robustness
concepts
| [42] | CVE tasks (sim- | Automated penetration testing; curricu- | Scope tied to chosen ranges ESR 95.3% / 75.0% / 60.0%; hold-out ESR
ple/medium/complex); | lum scheduling; agent tools 66.7%; lower time and tokens vs baselines
hold-out set
N — Survey of LLM cyber security agents | Not peer reviewed; no bench- | Consolidated risks and patterns; no numbers
and patterns mark
2 = ACM survey on agent attack surfaces | No new dataset Taxonomy; defense directions; no metrics
and defenses
I 1toj Radiology images; | Prompt injection on vision—-language | VLM focus; not multi-agent All models vulnerable; per-model miss and
594 prompt-injection | models in clinical tasks attack rates reported
attacks
| 18] | CMARL transporta- | RAMPART for cooperative MARL with | Domain-specific scope Specificity 0.807-1.000; accuracy
tion simulations privacy and robustness aims 67.6-96.3%; FPR 0.000-0.193; balanced
accuracy 0.669-0.919
Bol | — Survey of Internet of Agents security | Survey; no dataset Taxonomy and architectural guidance; no
and privacy metrics
734] 15 MCP servers | Penetration tests; Prompt Shielding; | Limited server set; lab scope 87% had a critical issue; 34% full compro-
(filesystem; DB; API; | RBAC; rate limiting mise; up to 94% reduction with defenses
system tools)
4y | = Systematic review of AI agents for | Narrative review; no bench- | Synthesized guidance; no metrics
workflow automation marks
| [23] | Case studies of | Architectural and comparative analysis; | Ecosystem maturity; limited | Comparative matrix: Standardization 9/10,
GitHub and Codacy | protocol feature review coverage of specialized use | Reusability 8/10, Security Model 7/10, Per-
MCP servers cases; adoption barriers formance 8/10, Development Complexity
6/10
311 | No benchmark | Security audit with three attacks (MCE, | Preprint; limited demos Both Claude and Llama-3.3-70B suscepti-
dataset; audit across | RAC, CT) and RADE; McpSafetyScan- ble; exploits detected and guidance produced
MCP servers ner agents generate exploits and remedi-
ation
| [17) | Public corpora and | Probing LMs for covert and overt | API limits and token gaps re- | Conviction rate AAE vs SAE: GPT-4 49.8%

vs 35.3%; GPT-3.5 52.5% vs 34.5%; Death-
sentence rate AAE vs SAE: GPT-4 10.5% vs
6.2%

matics agent with container isolation for tools. The system used
multi omics sources and described standard outputs for trace and
audit. The authors suggested audits on input and output paths to
control tainted artifacts. Nathan S. Johnson [22] developed a two
stage design for autonomous lab instruments under agent control.
The system used safety interlocks and described transparent steps
for device actuation. The work suggested strict capability bounds
and human approval for high impact actions. These efforts defined
practical controls for tool calls and data paths in complex tasks.
The pattern used isolation and approvals to reduce risk when agents
acted on the world.

Borghoff et al. [6] developed a cloud edge framework with confi-
dential computing for biomedical pipelines. The framework used
zero trust concepts and described signed artifacts with verifiable
steps. The authors suggested policy checks along data paths to sup-
port audit and safety goals. Wu et al. [42] developed curriculum
based autonomous penetration testing with coordinated agents. The
approach used staged CVE tasks and described attack chains that
stressed planning and tools. The study suggested higher exploit suc-
cess with lower cost than older baselines on held out tasks. Vignan
Chintala et al. [9] developed a survey of LLM security agents and
common patterns. The review used case reports and described risks,
defenses, and open testbed gaps. The authors suggested shared
standards and public benchmarks for agent security work. Together
these works defined red team methods and control planes for secure
orchestration. The set used structured curricula and trust primitives
that future studies could adapt.

Deng et al. [12]] developed a broad survey of threats and defenses
for agent systems across the lifecycle. The survey used a mem-
ory and tool lens and described poisoning routes with response
categories. The authors suggested stronger memory handling with
trust aware retrieval and audits. Clusmann et al. [10] developed
prompt injection tests for vision language models in clinical con-
texts. The experiments used oncology tasks and described harm un-
der crafted instructions and prompts. The study suggested tighter
controls whenever models operated near patient decisions. HOS-
SAIN, La and Badsha [[18] developed RAMPART to protect coop-
erative multi agent reinforcement learning. The method used pri-
vacy ideas and described detection of compromised updates under
poisoning. The authors suggested that detection modules improved
robustness during training and control. These strands defined both
measurement and defense ideas for safety critical domains.The mix
used surveys, trials, and methods that informed multi agent risk
modeling.

Siameh, Addobea and Liu [34] developed penetration tests that tar-
geted fifteen MCP servers. The study used common integrations
and described high exploit rates and large gains from simple de-
fenses. Akhilesh Gadde [14] developed a systematic review that
grouped agent workflows and security needs across sectors. The re-
view used public sources and described needs for robustness, trans-
parency, and privacy in adoption.

The literature showed active development across agent architec-
tures, orchestration patterns, and domain deployments, but most
works remained concept- or demo-driven with limited robustness
evidence. Several studies developed role-based engineering, con-
tainerized tools, and MCP-style pipelines, yet many described no
poisoning model or only qualitative security notes. Surveys and au-
dits summarized risks and controls, but few applied reproducible
benchmarks or reported defense overhead next to outcomes. Vi-
sion—language and cybersecurity agents used targeted evaluations,
though settings often assumed benign context or short paths, which
reduced relevance to long-horizon multi-agent workflows. Overall,
prior efforts described useful components—planning, memory, iso-

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

lation, approval gates—and suggested governance, while missing
layered, cross-channel defenses and matched clean versus attacked
trials. This gap motivated a stack that combined schema checks,
anomaly scoring, trust-weighted arbitration, and quarantine, with
results reported alongside cost. A consolidated view of methods,
limitations, and reported metrics appears in Table[T]

3. PROPOSED METHODOLOGY

The system modeled a multi-agent graph under MCP with signed
envelopes and typed fields. Two attack families targeted prompts
and hidden content in pages and tool outputs. WebArena sup-
plied self-hosted sites for end-to-end tasks with outcome checks.
Mind2Web added real-site traces to observe action alignment in the
same agent graph. InjectBench produced indirect injections aligned
with task goals and placement points. A defense stack combined
signature and schema gating with an anomaly score over messages.
Trust-weighted aggregation fused agent outputs, and quarantine re-
duced persistent taint in memory. Trials ran with fixed seeds and
stored clean plus injected artifacts for matched analysis. Metrics
covered Attack Success Rate (ASR), decision accuracy, and de-
fense cost from standard logs. Thresholds and step sizes were tuned
on a validation slice and then held fixed for held-out tasks.

e Inputs)
(Userquery/lask) (wm pages/APIs) (F\Ies/do(s) [Memorystore(read)) (;:j;:/t:::n

~ - Gia pages / tools

T -7
Agent graph
(planner, workers, tool wrappers)

Defense Stack

Gate:

Signature + Schema checks
Anomaly detection:
Token/embedding deviation
Trust-weighted arbitration

Quarantine:
Hold risky memory writes

(memory)

A
[approved outputs "\ safe writes Jattempted write

~_Outputs

~

LY . P 12
(Decisions / a(t\ons) [Memory store (write)) [Logs & audit traiD
0

Fig. 1. Top-to-bottom flowchart of the system: Inputs feed the MCP agent
network, which passes through four defense layers (gate, anomaly detec-
tion, trust arbitration, quarantine) to produce outputs.

Fig. [T] presents a top-to-bottom pipeline: inputs (user tasks,
web/APIs, files, memory reads) feed an MCP agent graph, while
adversarial content may enter via pages/tools or through memory,
highlighted by red diamonds and dashed edges. The agent outputs
then pass a four-layer defense stack. The gate performs signature
and schema validation. The anomaly module scores content for
token and embedding deviations. Trust-weighted arbitration fuses
agent outputs while down-weighting suspicious sources. Quaran-
tine blocks risky memory writes to limit persistence and allows
approved actions to proceed. Dotted links capture logs and audits
from each stage to support traceability and replay. The diagram is
color-coded to separate inputs, agents, defenses, and outputs and to
emphasize the entry points for injection.

3.1 Threat model and system setting

Multi-agent orchestration was modeled as a directed graph G =
(A, &) of agents and channels. Each agent a € A used a LLM
policy 7, and tools wrapped as Model Context Protocol services.
At step t an agent ¢ sent a structured context to agent j over an
authenticated link. Adversarial context injection acted on message
payloads, tool returns, and memory writes. The goal was to keep
correct task decisions while limiting attack success and overhead.

@ _

;"); = (role, prompt, tools, evidence, sig), (1)

([I) defined the envelope that carried role text, prompt, tool set,
evidence links, and a signature. The signature bound the message
to the sender for later checks. The tuple matched MCP fields used
by receivers. The same structure supported logging for audits and
replay. The layout allowed cheap schema validation at ingress.

&, = Jo(2l,,n™) @
The operator injected hostile content under a parametric budget and
randomness. The edit acted on prompts, toolsets, or evidence while
preserving types ([2). Direct and indirect variants were sampled per
task step. Each attack instance received a seed for reproducibility.
Both clean and tainted payloads were stored in traces. This yielded
matched pairs for analysis.

s = A ({mg—)»j}k@\/’(ﬂ) ; ©)

Inbound packets formed a local state for the next policy call, as in
(), after gate checks. Schema and signature checks filtered mal-
formed packets. Evidence was summarized with typed reducers.
Untrusted fields were marked for later stages. State snapshots were
committed to step logs.

yj(t> =Ty (Sgt)a ¢7>) d(t) = F({yl(gt)})a (4)

The policy produced a reply or tool call from the local state. De-
coder and tool parameters were part of ¢;. An arbiter fused agent
outputs into a task decision. Confidence and reasons were attached
to the record. This process was summarized by ([).

3.2 Datasets and injection overlay

WebArena supplied self-hosted realistic websites and long runs.
Mind2Web supplied real-site tasks with action traces across 137
domains. InjectBench supplied indirect prompt-injection strings
aligned with attack goals. An overlay inserted hostile content at
link fetch, tool return, or memory write. Each task instance pro-
duced clean and attacked runs for matched comparison.

T={¢GR)}, ©)
with & € WebArena U Mind2Web, R C InjectBench.

Each tuple bound an environment, goals, and attack recipes for re-
producible trials. Placement rules and triggers were encoded per
recipe. Clean trials calibrated site baselines and caches. The con-
struction in ([3) allowed cross-site generalization. All artifacts were
versioned for audit.

=0 W), =" 0"), ©

Tool or page outputs were produced by the environment for the
query. Injected variants Z(*) carried hidden instructions or tainted

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

facts. Drift was recorded for later scoring and review. Application
code consumed either z(*) or 2(*) based on trial type. This step was
formalized by ([6).

3.3 Attack modelling

Two families were considered: direct prompt edits and indirect pay-
loads in fetched content. The attacker budget limited edit count and
placement frequency. Replay on memory writes modeled persistent
contamination. Attack parameters were sampled per step and stored
with seeds.

Az, &) = M ||Zprompt — Tprompt||1 + A2 1{toolset changed}

prompt capability

+ A3 EditDist(Zey, Tev) ;)

evidence

The budget priced prompt edits, tool flips, and evidence changes.
Coefficients tuned the impact per field and task. A fixed ceiling
bounded the attacker per trial. Sampling respected the bound at
each step. This construction was encoded by ([7).

P(persist at t) = 1 — exp(— k¢, (8)

¢y = bytes written to memory at ¢.

Persistence rose with the size of the write and the policy rate.
Higher ¢, increased the chance of long-lived taint. Retention poli-
cies mapped to « per store. Risky writes were flagged for review.
The probability followed ([g).

3.4 Defense architecture

Three layers acted in sequence: a gate for structure, an anomaly
score for content, and a trust-weighted arbiter for aggregation. A
quarantine delayed risky writes and reduced long-run spread. All
steps logged time, tokens, and checks for cost accounting.

Oé(CC) = [Tsig(ff)7 Tschcma(‘r):l>

&)
7"(.13) == 1{7_sig($) Z Y1 A\ Tschema(m) - 1}7

The gate produced a signature score and a schema flag. Only ac-

cepted packets moved to content scoring. Threshold ~; set strict-

ness for admission. Failures were dropped and recorded with rea-

sons. This rule was given by ([9).

Sanom () = DKL(pI | pO) +|1E(z) — pllg-1, (10)

Token shift and embedding deviation formed the anomaly score.
Baselines came from clean trials per site and task. High scores
marked packets for down-weighting. Scores were stored with
hashes for replay. The definition appeared in ([I0).

7 = (70 — B Sanom(#);) + v 1{verifiable hit})

a1
Trust decreased on anomalies and increased on verified facts. The
update kept values in (0, 1) by the logistic map. Rewards fired when
evidence matched ground truth. Penalties scaled with the anomaly
score. The recurrence followed ([IT).

NO) () (t) (t)
i —argnclngZTk wy oy (elsy’)s (12)
keA
1{Sunom (2) <}
w(t) anom *)k Y2
k
Z {Sanom (#1%) < 12}

The arbiter formed a trust-weighted vote over actions or classes.
Agents above the anomaly threshold were masked. Calibrated pos-
teriors contributed to the sum. Normalized weights maintained
scale across teams. This fusion was defined in ([T2).

q(-’f) =]—{Sanom(w) > ’YS} \ 1{“7'(‘%)}’ (13)
WD = (1 - g(2)) W + g(z) - HOLD.

Quarantine fired for anomalous or invalid packets. The writer held
content out of long-term memory. This reduced persistence under
the store policy. Flags and reasons were logged for audits. The
mechanism was given by ([T3).

Caer = A\t ATime + A, ATokens + A, #checks, (14)

Defense cost combined latency, token use, and checks. Coefficients
matched deployment budgets per site. Values were reported per step
and per task. Smaller values were preferred for adoption. This mea-
sure was defined in ([T4).

3.5 Learning and scoring objectives

N

1 JO . *
Ecls = N ;g(ynv yn)) Lrob = EJ[Z(yn(J)v yn)]) (15)
Clean loss reported accuracy without attacks. Robust loss averaged
the same under sampled injections. Both were tracked with con-
fidence intervals. Tuning used these signals across sites. The pair

was defined in ([T3).

Zn 1{2% 7é y;; NT apphed}
> H{J applied} ’

1

ASR ([T6) counted wrong decisions on attacked trials, while deci-
sion accuracy counted full correctness across all trials. Both metrics
were reported with and without defenses, and intervals came from
task bootstraps per site.

ASR = (16)

min) = ASR

Y1,72,73,8,v

+ A\ max (O, DA can — DA) (17)
C1def
Co’
The objective ([T7) traded attack success, clean accuracy gap, and
cost. Gates and trust steps were tuned on validation tasks, and a

coarse search found a stable operating point. The selected settings
then transferred to held-out goals and sites

+p

EditDist (2, W(z("))
€ind = M Z ‘Z<t)‘ ’ (18)

X = 1{€ind > 6},

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

A whitelist projection ([I8) detected hidden payload drift, and
scores were normalized by content length per step. A flag marked
risky returns for gating, while site-specific bounds were set from
clean runs.

- Sanom) + 937”(:1’) - 94X)» (19)

Acceptance ([T9) rose with trust and validity but fell with anomaly
and indirect flags. This gate controlled persistence in stores, and its
parameters came from clean fits per site.

Paccept = 0—(017— + 02(1

3.6 Pseudocode of the evaluation harness

Algorithm 1 MCP-Context-Robustness Evaluation

Require: Task set 7 (Eq. [3), recipes R, agents {rm,}, gate r()
(Eq.), anomaly Sanom(-) (Eq.[10), trust update (Eq. [LT)), ar-
biter (Eq.[T2), thresholds 71,2, 3

1: forall (§,G,R) € T do

2 Reset memories; set 7, <— 0.5 for all agents

3 for all g € G do

4 fort <~ 1toT do

5 Receive {:c(jj} apply 7(-)

6: Query tools/pages to get z(*); sample 7, to get Z(*)
7 Build s§t) using A, (+)

8 Compute sanom, update 7

9: Produce y). arbitrate §(*)
10: Decide wrlte Via Daccept; apply quarantine if

flagged

11: Update Cqer
12: end for
13: Compute DA and ASR
14: end for
15: end for

16: Tune v1,72, V3, 3, v by minimizing Q (Eq.[T7)

Algorithm [T] summarized the full evaluation loop across tasks and
datasets. The system reset memories, applied the defenses at each
step, queried tools or pages, and introduced injections on attacked
trials. The loop computed decision accuracy and attack success,
tracked latency and tokens, and recorded artifacts for reproducible
analysis.

Algorithm [3|defined the action selection step under suspicion. Out-
puts from agents with high anomaly scores were masked. Remain-
ing posteriors were fused with trust weights to choose the final ac-
tion. The procedure attached confidence and reasoning metadata to
support trace and review.

Algorithm[2]described the stage-wise flow of the defense stack. The
gate applied signature scoring and schema validation to reject mal-
formed or unverifiable packets. The anomaly module scored con-
tent for token and embedding deviation and marked risky inputs.
Trust was updated using anomaly history and verified evidence, and
quarantine blocked unsafe memory writes while logging decisions
for audit.

Algorithm 2 Defense Stack Processing

Require: Message payload z, thresholds ~1,72,7vs, trust T,
whitelist YW
Ensure: Decision: accept or quarantine
1: Compute signature score 7, (x) and schema flag Tschema ()
2: if Tig () < 71 OF Tochema(z) = O then

3: return reject > record failure reason

4: else

5: Compute anomaly Score Sanom () from token/embedding
deviation

6: T O(T — B Sanom(Z) + v 1{Veriﬁed})

7: if Sanom () > 72 or x ¢ W then

8: Mark packet as anomalous for arbitration
9: end if

10: if Sanom () > 73 or r(z) = 0 then

11: return quarantine > block risky memory write
12: else

13: return accept

14: end if

15: end if

Algorithm 3 Trust-Weighted Arbitration

Require: Agent outputs {y,(cw}, trust scores {T,it)}, anomaly
scores {Sanom (Zx)}, threshold o
Ensure: Final action decision ¢
1: Initialize w,(:) — 1{ Sanom (zx) < Y2 }

2: Normalize w,(:) — w,(?/ze wét)
Aggregate posterior over classes c € C':
S), ,@®) ((t))
3§ cw?
g+ argmax ;Tk wy prlc] sy

4: Attach confidence and reasoning metadata
5: return §

4. EXPERIMENTAL SETUP

All experiments ran on a self-hosted cluster with fixed random
seeds per trial. Each run logged time, token counts, and defense
checks for cost reporting. The agent stack and the four defenses
stayed identical across datasets. Only the environment and task
sources varied. The full evaluation loop appears in Algorithm [T}
Trials used the same seeds for clean and attacked variants to allow
matched comparisons and stable intervals.

WebArena provided a self-hostable ecosystem of realistic websites
with outcome validators [47]. Services ran locally in containers to
avoid external drift. This setting enabled controlled context inser-
tion during browsing and tool calls. Pass—fail judgments used the
official validators. Clean and injected runs were paired under the
same seed. The design matched the agent message passing and sup-
ported step-level logs.

Mind2Web contributed 2,350 tasks from 137 real websites with ac-
tion traces and page snapshots [[11]]. Trials used offline replay, so
pages remained stable across runs. Action traces supported step-
level diagnostics and faithful replays in the same agent graph. This
setup admitted injections in fetched content, tool returns, and mem-
ory. Clean versus injected artifacts were stored side by side for anal-
ysis.

InjectBench supplied goal-aligned indirect prompt-injection sam-
ples and recipes for hidden adversarial content [25]. Recipes tar-
geted three placements: fetched page segments, tool outputs, and

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

memory writes. Each sample carried a goal tag aligned with task
intent. The benchmark stressed persistence and indirect routes. The
same agent stack consumed clean and injected inputs with matched
seeds.

A placement overlay inserted hostile content at link fetch, tool re-
turn, or memory write. Budget parameters controlled prompt edits,
toolset changes, and evidence drift. Memory writes modeled per-
sistence and replay under store policies. Each attacked trial paired
with a clean counterpart. All attack parameters and seeds were
recorded with artifacts for audit and replay. Logs captured masks,
trust updates, and write decisions for later review.

Six variants from BO to B5 were evaluated. No defenses were
used by BO. Successive variants had schema and signature gating,
anomaly scoring, trust-weighted arbitration, and quarantine added.
All four layers were included in the stacked B5.Results reported
decision accuracy and ASR per baseline, with per-component over-
head in Table [5] The stage-wise defense logic appears in Algo-
rithm 2] and the arbitration step appears in Algorithm 3]

Metrics covered decision accuracy across all trials and ASR on at-
tacked trials. Defense cost combined latency, token use, and check
counts per task. Confidence intervals used 1,000 bootstrap resam-
ples with stratification by dataset. Interval summaries appear in Ta-
ble[T3] Figures reported means with 95% intervals to improve read-
ability next to tables.

Gating thresholds, anomaly cutoffs, trust step size, and reward pa-
rameters were tuned on validation tasks and then held fixed for
held-out tasks. Selected values for each dataset appear in Tables[§]
and [T2] Once selected, the same settings were applied across
matched clean and injected runs to support reproducibility and fair
comparison.

5. RESULTS AND ANALYSIS
5.1 Baseline Comparison with all elements

Table] shows that ASR decreased sharply from 62.4% at BO to
16.3% at BS, while decision accuracy improved from 38.1% to
61.5%. The additional overhead was modest, reaching only 3.0
seconds and 270 tokens per task. These results confirm that each
defense layer contributed incrementally to robustness in the We-
bArena benchmark.

Table [3| reports that ASR dropped from 58.7% at BO to 18.1% at
BS5, while decision accuracy rose from 41.3% to 62.7%. Clean ac-
curacy remained stable near 71%, showing that defenses preserved
performance under benign conditions. The added cost was limited
to 2.8 seconds and 260 tokens per task, indicating efficient robust-
ness improvements in Mind2Web.

Table [shows that ASR decreased from 71.2% at BO to 24.4%
at BS, while decision accuracy improved from 29.4% to 52.1%.
Clean accuracy stayed near 69%, confirming that defenses pre-
served baseline performance. The additional cost remained modest
at 2.6 seconds and 250 tokens, demonstrating efficiency even under
the stronger adversarial conditions of InjectBench.

Fig.] shows ASR across baselines BO-B5 on WebArena,
Mind2Web, and InjectBench. ASR dropped as components were
added, with a marked fall from B3 to BS. InjectBench stayed high-
est due to hidden, goal-aligned payloads [25]. WebArena was low-
est under B5 in the self-hosted setting [47]], and Mind2Web lay
between them [[11].

5.2 Overhead and component analysis

Table [f] reports the per-task time overhead of each defense com-
ponent under B5. Anomaly scoring contributed the largest share

International Journal of Computer Applications (0975 - 8887)

Volume 187 - No.56, November 2025

Table 2. WebArena: extended metrics per baseline. ASR/DA are percentages. Cost: extra
time (s) and tokens per task. GRR: gate reject rate; AMR: anomaly mask rate; QR:
quarantine rate; Pers.: persistence proxy in %.

Model ASR| | DA?T | CleanDA | Cost(s) | Cost(tok) | GRR | AMR | QR | Pers.
BO 62.4 38.1 64.2 0.0 0 0.0 0.0 0.0 124
Bl 55.6 452 68.5 0.9 120 0.0 0.0 0.0 10.7
B2 47.8 49.0 69.3 1.2 140 6.8 0.0 0.0 9.9
B3 329 54.3 70.1 2.3 210 6.5 18.7 0.0 7.3
B4 24.8 58.7 71.6 2.7 250 6.3 19.4 0.0 6.5
BS 16.3 61.5 71.2 3.0 270 6.1 20.2 11.6 3.1

Table 3. Mind2Web: extended metrics per baseline. ASR/DA are percentages. Cost:
extra time (s) and tokens per task. GRR: gate reject rate; AMR: anomaly mask rate; QR:

quarantine rate; Pers.: persistence proxy (%).

Model ASR | DA | CleanDA | Cost(s) | Cost(tok) | GRR | AMR | QR | Pers.
BO 58.7 | 413 66.1 0.0 0 0.0 0.0 0.0 11.8
Bl 529 | 47.6 69.0 0.8 110 0.0 0.0 0.0 10.3
B2 45.1 | 50.2 69.7 1.1 130 6.3 0.0 0.0 9.6
B3 346 | 55.1 70.5 2.1 200 6.1 17.5 0.0 7.1
B4 262 | 59.4 71.8 2.5 240 5.9 18.1 0.0 6.2
B5 18.1 | 62.7 71.4 2.8 260 5.8 18.9 10.2 2.9

Table 4. InjectBench: extended metrics per baseline. ASR/DA are percentages. Cost:
extra time (s) and tokens per task. GRR: gate reject rate; AMR: anomaly mask rate; QR:

quarantine rate; Pers.: persistence proxy (%).

Model ASR DA CleanDA | Cost(s) | Cost(tok) | GRR | AMR QR Pers.
BO 712 | 294 63.9 0.0 0 0.0 0.0 0.0 13.7
Bl 66.5 | 33.0 66.8 0.7 100 0.0 0.0 0.0 12.1
B2 57.0 | 36.8 67.4 1.0 120 7.1 0.0 0.0 11.0
B3 41.7 | 429 68.6 1.9 190 6.8 224 0.0 8.6
B4 339 | 47.2 69.5 2.3 230 6.7 23.1 0.0 7.7
B5 244 | 52.1 69.1 2.6 250 6.5 24.0 13.5 3.8

704

60 4

50 4

ASR (%)

40

30 A

20 4

—8— \WebArena
Mind2Web
—a— InjectBench

Fig. 2. ASR across baselines by dataset (lower is better)

B2
Baseline

across all datasets, ranging from 1.10 to 1.45 seconds. Quaran-
tine and arbiter added moderate costs below one second, while
gate checks imposed minimal delay. The results confirm that to-
tal runtime overhead remained modest, with anomaly detection as

the dominant factor.

Table 5. B5 time overhead decomposition (seconds per

task). Sum may differ from total due to overlap.

Dataset Gate | Anomaly | Arbiter | Quarantine
WebArena 0.35 1.45 0.62 0.58
Mind2Web 0.31 1.32 0.57 0.60
InjectBench 0.28 1.10 0.51 0.71

Fig. [B| shows that anomaly scoring delivered the largest ASR drop
on all three sources, with quarantine most helpful on InjectBench
due to indirect payload persistence [25]. Gate checks reduced
early-stage errors and trimmed ASR on WebArena and Mind2Web,
where message formats were stable [[11}{47]]. Trust-weighted arbi-
tration added a further drop by suppressing outputs from agents

with high anomaly history.

5.3 Training and Testing: WebArena

Table 6. WebArena per-domain results for BS.
Domains follow the public benchmark taxonomy.

Domain ASR (%) | DA (%) | Cost (s)
Shopping 17.5 60.8 3.1
Knowledge Base 14.9 62.9 2.9
Mapping 18.8 59.3 32
Productivity 14.1 62.7 2.8
Macro Average 16.3 61.5 3.0

40 = Total (B1-B5)
Gate

mmm Anomaly
Trust

EmE Quarantine

35 A

304

254

20 A

ASR reduction (%) from B1

WebArena MindﬁWeb Injectéench

Fig. 3. Component contribution to robustness: ASR reduction from B1 to
B5 across datasets.

= DA == DA —— ASR
S DA (Mind2Web) ~—@— ASR (WebArena) ——#— ASR (InjectBench)

Decision Accuracy (%)
Attack Success Rate (%)

B0 BL B2 83
Baseline

Fig. 4. Decision accuracy across datasets (higher is better).

Table [6 shows domain-wise results for BS on WebArena. ASR re-
mained lowest in Knowledge Base and Productivity tasks, both be-
low 15%, while Mapping recorded the highest ASR at 18.8%. Deci-
sion accuracy exceeded 60% across all domains, with Knowledge
Base reaching 62.9%. Task cost ranged between 2.8 and 3.2 sec-
onds, confirming that robustness improvements were achieved with
modest overhead.

Fig. @] reports decision accuracy across the three datasets with the
full defense applied. WebArena reached 61.5% and Mind2Web
reached 62.7%, while InjectBench reached 52.1%. The first two
datasets showed comparable accuracy, reflecting more structured
tasks. InjectBench trailed due to goal-aligned indirect payloads and
longer paths. The chart highlights that the layered stack preserved
accuracy under hostile conditions across settings.

Table 7. Cross-dataset robustness summary for full

defense (BS).
Dataset ASR DA Clean DA | Overhead (s)
WebArena 16.3 | 61.5 71.2 3.0
Mind2Web 18.1 | 62.7 71.4 2.8
InjectBench | 24.4 | 52.1 69.1 2.6
Macro Avg. 19.6 | 58.8 70.6 2.8

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

Table El presents the overall robustness of the full defense (BS5)
across WebArena, Mind2Web, and InjectBench. ASR remained
within the 16-24% range across all datasets, while decision ac-
curacy reached 61.5% on WebArena, 62.7% on Mind2Web, and
52.1% on InjectBench. Clean accuracy stayed above 69% in every
case, confirming that robustness gains did not reduce normal per-
formance. The average overhead was 2.8 seconds per task, showing
that the defense maintained consistent protection with low compu-
tational cost across environments

Fig.] shows ASR, where lower values are better. WebArena
recorded 16.3%, Mind2Web recorded 18.1%, and InjectBench
recorded 24.4%. The highest rate on InjectBench matched its
stronger injections and persistence routes. WebArena was lowest
under the controlled, self-hosted setting. The plot summarizes how
defenses reduced attack success while keeping performance stable
on clean tasks.

70 4 —a— WebArena
—=— Mind2Web
== [njectBench

60

50 +

ASR (%)

40

30

20 4

BO Bl B2 B3 B4 B85
Baseline

Fig. 5. ASR across datasets (lower is better).

Table 8. WebArena hyperparameter grid
and selected settings (BS).

Parameter Grid Selected
1 (gate) {0.6,0.7, 0.8} 0.7
72 (anomaly) {P90, P95} P95
73 (quarantine) {P90. pos} P90
B (trust step) {0.2,0.3} 0.3
v (reward) {0.2,0.3} 0.2

Table |§| presents the hyperparameter grid explored for WebArena
under BS5 and the final selected values. The gate threshold v; was
set at 0.7, while anomaly detection used pgs to filter high outliers.
Quarantine activation 73 was fixed at pgq to balance recall and cost.
Trust update and reward parameters (8 = 0.3, v = 0.2) were tuned
for stable performance across tasks.

5.4 Training and Testing: Mind2Web

Table [9] shows the BS5 results across task groups in Mind2Web.
ASR was lowest in Media/Content tasks at 16.8%, while
Search/Navigation achieved the highest decision accuracy of
63.5%. All groups maintained task costs between 2.7 and 2.9
seconds, and the macro average confirmed balanced performance
across domains.

Table 9. Mind2Web task-group results for BS
(site-stratified groups).

Group ASR (%) | DA (%) | Cost(s)
Forms/Submission 19.6 61.8 2.9
Search/Navigation 17.2 63.5 2.7
Booking/Service 18.9 62.1 2.8
Media/Content 16.8 63.2 2.8
Macro Average 18.1 62.7 2.8

Table 10. Mind2Web hyperparameter grid
and selected settings (BS).

Parameter Grid Selected
1 (gate) {0.6,0.7, 0.8} 0.7
72 (anomaly) {P9o, Pos } P95
73 (quarantine) {P9o, Pos } P90
B (trust step) {0.15,0.2} 0.2
v (reward) {0.15,0.2} 0.15

Table @ summarizes the hyperparameter grid and selected values
for Mind2Web under BS. The gate threshold ; was set at 0.7, while
anomaly detection used pg5 for stricter filtering. Quarantine acti-
vation 3 was chosen at pgg, and trust parameters were tuned to
B = 0.2 and v = 0.15 for stable task performance.

5.5 Training and Testing: InjectBench

Table 11. InjectBench recipe breakdown for BS.

Recipe type ASR (%) | DA (%) | Share (%)
HTML-hidden payload 26.7 51.2 30
Markdown-hidden payload 25.1 52.4 25
JSON-field payload 23.3 53.0 20
Instruction-in-content 22.5 52.0 25
Macro Average 244 52.1 100

Table [T1] shows the performance of B5 across different Inject-
Bench recipe types. JSON-field and instruction-in-content payloads
yielded the lowest ASR, at 23.3% and 22.5%, with decision accu-
racy above 52%. HTML-hidden and Markdown-hidden payloads
had slightly higher ASR but remained within a narrow range. The
macro average confirmed balanced robustness across recipe types,
with each category contributing proportionally to the benchmark.
Fig. |§| reports the recipe distribution in InjectBench under B5
(HTML-hidden 30%, Markdown-hidden 25%, JSON-field 20%,
and instruction-in-content 25%). Message and memory pathways
tended to yield higher ASR than tool-return injections at the same
budget due to longer-lived carry-over.

Table 12. InjectBench hyperparameter grid
and selected settings (BS).

Parameter Grid Selected
~1 (gate) {0.6,0.7,0.8} 0.7
72 (anomaly) {p90, P95} P95
<3 (quarantine) {P9o. P95} P90
B (trust step) {0.2,0.3} 0.2
v (reward) {0.15,0.25} 0.25

Table [T2] presents the hyperparameter grid and selected values for
InjectBench under B5. The gate threshold y; was fixed at 0.7, while
anomaly detection relied on pgs for stricter filtering. Quarantine

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

Instruction-in-content
HTML-hidden

JSON-field

Markdown-hidden

Fig. 6. InjectBench: ASR ASR as a function of attacker budget. Higher
budgets increased ASR across recipes; memory and message placements
rose faster than tool-return injections.

activation 73 was set at pgg, and the trust step 5 was tuned to 0.2.
The reward parameter v was chosen at 0.25 to balance anomaly
penalties with verified evidence.

5.6 Uncertainty and summary charts

Table 13. B5 with 95% bootstrap
confidence intervals (1,000 resamples).

Dataset ASR (%) DA (%)

WebArena 163+12 | 61.5+1.0
Mind2Web 18.1+13 | 627+ 1.1
InjectBench | 244 +£1.5 | 52.1+1.2

Table |E| reports 95% bootstrap confidence intervals for ASR and
DA under B5. Results were stable across datasets, with WebArena
and Mind2Web showing ASR near 16-18% and DA above 61%.
InjectBench remained the most challenging, with ASR at 24.4%
and DA at 52.1%, but the narrow intervals confirm consistent ro-
bustness improvements.

Figm reports ASR for the full defense (B5) with 95% bootstrap
confidence intervals on three datasets. InjectBench showed the
highest ASR because its samples embed goal-aligned indirect pay-
loads [25]]. WebArena produced the lowest ASR due to self-hosted
isolation and outcome validators [47]. Mind2Web lay between
these sources, reflecting diverse real-site tasks across 137 websites;
intervals came from 1,000 bootstrap resamples [11].

Fig. [8] reports decision accuracy for the full defense (B5) with
95% confidence intervals from 1,000 bootstrap resamples (Ta-
ble [[3). WebArena reached 61.5% (£1.0), Mind2Web reached
62.7% (%1.1), and InjectBench reached 52.1% (+£1.2). The in-
tervals for WebArena and Mind2Web overlapped, which indi-
cated comparable accuracy across these sources, while InjectBench
stayed lower due to goal-aligned indirect payloads and longer task

10

30.0

27.549
25.0 A)
—~ 2251
20.0

17.5 4 ‘/“
[]

15.04 -

ASR (%

12.5 4

10.0 T
WebArena

Mind2Web InjectBench

Fig. 7. ASR with 95% confidence intervals for BS.

70

Decision Accuracy (%)

WebArena

Mind2Web InjectBench

Fig. 8. Decision accuracy (means with 95% CI; higher is better).

Table 14. Performance metrics from prior works and the proposed

method.
Citation | Results
13 Accuracy 92.89%; Completion 92.78%
42| Exploit Success Rate (ESR): 95.3%, 75.0%, 60.0%; Hold-out
o ESR: 66.7%
10 ASR and miss rates reported across models (all vulnerable)
18] Accuracy 67.6-96.3%; Specificity 0.807-1.000; FPR
o 0.000-0.193; Balanced Accuracy 0.669-0.919
|| 87% critical issues; 34% full compromise; Defenses reduced
attacks up to 94%
Proposed | Decision Accuracy: 61.5% (WebArena), 62.7% (Mind2Web),
52.1% (InjectBench); ASR reduced to 16.3-24.4%

paths. These values improved over the no-defense baseline in Ta-
bles 2] B} and] where the same tasks under BO showed accuracy
between 29.4% and 41.3%. The plot summarized the net gain de-
livered by the layered stack under hostile conditions.

Table [T4] compares quantitative results from prior studies with the
proposed method. While Fu et al. and Wu et al. reported higher
accuracy and ESR values under controlled conditions, Clusmann
et al. and Siameh et al. highlighted vulnerabilities and exploitabil-
ity. Hossain et al. presented a range of balanced accuracy between
0.669 and 0.919. In contrast, the proposed method achieved stable
decision accuracy above 52% across datasets while reducing ASR
to 16.3-24.4%, demonstrating robustness under adversarial context
injection.

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

100 92.9% 95:3%

Accuracy / Decision Accuracy (%)

Fu et al. Wu et al. Hossain et al. Proposed Method

Fig. 9. Comparison of reported accuracy and decision accuracy values
across selected studies and the proposed method.

100

=e= Trend

mmm ASR / Compromise Rate
862% _

ASR / Compromise Rate (%)

eral

Y et al- 8 N\et\’\od

\.
u net?)
W c\us‘“an Giam® P(opose

Fig. 10. Comparison of reported ASR across selected studies and the pro-
posed method.

The ﬁgpresents the reported accuracy and decision accuracy val-
ues from prior studies alongside the proposed method. Fu et al. and
Wau et al. demonstrated the highest performance, achieving values
above 90%, which reflected outcomes in controlled experimental
conditions. Hossain et al. reported a wide accuracy range between
67.6% and 96.3%, summarized here by a representative midpoint.
By contrast, the proposed method achieved decision accuracy be-
tween 52.1% and 62.7% across WebArena, Mind2Web, and Inject-
Bench. Although lower in absolute value, these results were ob-
tained under adversarial context injection benchmarks, which are
inherently more challenging. The comparison highlights the trade-
off between high raw accuracy in benign environments and sus-
tained performance under adversarial conditions achieved by the
proposed defense stack.

The fig[T0] shows reported ASRs across selected studies and the
proposed method. Wu et al. reported a hold-out exploit success rate
of 66.7%, while Clusmann et al. demonstrated vulnerability with
approximate attack rates near 80%. Siameh et al. found that 87%
of tested MCP servers had critical issues, highlighting the extent
of compromise. In contrast, the proposed method reduced ASR to
an average of 20.9% across benchmarks, indicating substantial ro-
bustness improvements. The bar chart with a connecting trend line
emphasizes the sharp decline in attack success achieved by the de-
fense stack.

11

Table 15. ASR reduction (%) from B1 to B5 attributable to each

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

Table 16. Component-wise robustness gain and time overhead.

defense component. Component ASR Reduction | WebArena | Mind2Web | InjectBench
Dataset Gate | Anomaly | Trust | Quarantine | Total Gate Check 8.4 0.35 0.31 0.28
WebArena 7.8 14.9 8.1 8.5 39.3 Anomaly 13.2 1.45 1.32 1.10
Mind2Web 7.8 12.9 8.4 5.7 34.8 Detection
InjectBench | 9.5 11.9 7.6 13.1 42.1 Trust Arbi- 8.0 0.62 0.57 0.51
tration
Quarantine 9.1 0.58 0.60 0.71
50 Total Avg. 38.7 3.0 2.8 2.6
42.1
40 o - T - Fig@ shows that anomaly scoring contributed the largest portion
= TTmmeellE T of runtime, followed by quarantine and arbiter. Gate checks added
% 304 o= Total minor overhead across datasets. The dashed trend line indicates to-
2 - Gate tal per-task cost of roughly 3.0s (WebArena), 2.8s (Mind2Web),
5 Anomaly . . .
3 Trust and 2.6s (InjectBench). These values remained modest relative to
; 207 Quarantine the robustness gains reported in the ablation results.
<

10 A

S Ni= B

T T T
WebArena Mind2Web InjectBench

Fig. 11. Component-wise ASR reduction from B1 to B5 across datasets.

w
5

w
o

g
wn

-@- Approx. Total

. Gate
Anomaly

. Arbiter

mmm Quarantine

Time Overhead (seconds per task)
- - N
o 5] o

o
w»

o
=}

WebArena Mind2Web

InjectBench

Fig. 12. Time overhead (seconds per task) for each defense component in
BS5 across WebArena, Mind2Web, and InjectBench. Purple bars show per-
component costs; the dashed line denotes the approximate total per dataset.

5.7 Ablation Studies

To quantify the contribution of each defense layer, ablation exper-
iments were conducted across WebArena, Mind2Web, and Inject-
Bench. The baseline BO used no defenses, and successive models
(B1-B5) added schema checks, anomaly scoring, trust arbitration,
and quarantine. Table [T3] reports the reduction in ASR ASR per
component.

The results in fig. [[T]emphasize the central role of anomaly scoring,
which consistently provided the largest ASR decrease. Quarantine
contributed the most in InjectBench, where long-term memory re-
play was a persistent threat. Gate checks were valuable on struc-
tured environments such as WebArena and Mind2Web, while trust
arbitration consistently improved accuracy by lowering the influ-
ence of compromised agents. The combined results demonstrate
that each defense layer played a distinct role, and robustness was
achieved only when the stack was applied in full.

Table [T6] summarizes the contribution of each defense component
to robustness along with its time overhead. Anomaly detection pro-
duced the highest ASR reduction, averaging 13.2% across datasets,
but also accounted for the largest delay of about 1.3 s per task.
Quarantine contributed 9.1% additional reduction, especially on In-
jectBench, with moderate overhead near 0.6 s. Gate checks and
trust arbitration yielded smaller but steady gains between 8-9%,
with delays below 0.7 s. The total average ASR drop reached 38.7%
while maintaining runtime within 3.0 s, confirming that the layered
design improved robustness efficiently across all datasets.

6. CONCLUSION

This study examined the robustness of multi-agent systems operat-
ing under the Model Context Protocol when exposed to adversarial
context injection. It revealed how compromised elements in mes-
sages, tool outputs, or memory could propagate through the sys-
tem and alter subsequent actions. Existing defenses were found
limited, as they primarily targeted single-step attacks without ad-
dressing persistence across multiple interactions. To overcome this
gap, a layered defense stack was introduced combining schema val-
idation, anomaly detection, trust-based arbitration, and quarantine.
Evaluations on WebArena, Mind2Web, and InjectBench showed
that each module contributed to lowering attack success while
maintaining low computational overhead between 2.6 and 3.0 sec-
onds per task. Anomaly detection produced the largest reduction in
risk, whereas quarantine effectively mitigated recurring payloads.
The results confirmed improved decision accuracy and stable per-
formance under adversarial conditions.

Looking ahead, future work will focus on refining anomaly scoring
to reduce processing cost, extending defense integration to more
complex multi-agent frameworks, and exploring adaptive learning
mechanisms for real-time threat recognition. Broader validation
across diverse datasets and real-world contexts will further advance
the deployment of secure, trustworthy multi-agent systems.

7. REFERENCES

[11 ALAA S ALNEMARI and SAMAH H ALAJMANI. Col-
laborative sql and json injection detection system using ma-
chine learning. Journal of Theoretical and Applied Informa-
tion Technology, 103(11), 2025.

[2] Ludovic Arga, Frangois Bélorgey, Arnaud Braud, Romain
Carbou, Nathalie Charbonniaud, Catherine Colomes, Lionel
Delphin-Poulat, David Excoffier, Christel Fauché, Thomas
George, et al. Frugal ai: Introduction, concepts, development

12

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

and open questions. ACM SIGKDD Explorations Newsletter,
27(1):72-111, 2025.

Oriol Artime, Marco Grassia, Manlio De Domenico, James P
Gleeson, Herndn A Makse, Giuseppe Mangioni, Matjaz Perc,
and Filippo Radicchi. Robustness and resilience of complex
networks. Nature Reviews Physics, 6(2):114-131, 2024.

Kshitiz Aryal, Maanak Gupta, Mahmoud Abdelsalam, Pradip
Kunwar, and Bhavani Thuraisingham. A survey on adversar-
ial attacks for malware analysis. I[EEE Access, 2024.

First Asici and Others. Towards role-based engineering for
IIm-enhanced mas. Journal Name, 2025.

Uwe M Borghoff, Paolo Bottoni, and Remo Pareschi. Beyond
prompt chaining: The tb-cspn architecture for agentic ai. Fu-
ture Internet, 17(8):363, 2025.

Alexandria Boyle. Experience replay algorithms and the func-
tion of episodic memory. Space, time, and memory, 2024.

Zhe Sage Chen and Matthew A Wilson. How our understand-
ing of memory replay evolves. Journal of Neurophysiology,
129(3):552-580, 2023.

Vignan Chintala and Tirunagari Puneeth Datta. Federated
learning for privacy-preserving medical diagnosis on edge de-
vices: A comprehensive research framework. 2025.

Jan Clusmann, Dyke Ferber, Isabella C Wiest, Carolin V
Schneider, Titus J Brinker, Sebastian Foersch, Daniel Truhn,
and Jakob Nikolas Kather. Prompt injection attacks on vi-
sion language models in oncology. Nature Communications,
16(1):1239, 2025.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel
Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2web: To-
wards a generalist agent for the web. In Advances in Neural
Information Processing Systems 36 (NeurlPS 2023), Datasets
and Benchmarks Track. Neural Information Processing Sys-
tems Foundation, 2023.

Zehang Deng, Yongjian Guo, Changzhou Han, Wanlun Ma,
Junwu Xiong, Sheng Wen, and Yang Xiang. Ai agents under
threat: A survey of key security challenges and future path-
ways. ACM Computing Surveys, 57(7):1-36, 2025.

Tianyi Fu, Brian Jauw, and Mohan Sridharan. Combining
1Im, non-monotonic logical reasoning, and human-in-the-loop
feedback in an assistive ai agent.

Akhilesh Gadde. Ai agents: The autonomous workforce for
automating workflows across industries. World Journal of Ad-
vanced Engineering Technology and Sciences, 15(2):2183—
2203, 2025.

Christian Garbin and Oge Marques. Assessing methods and
tools to improve reporting, increase transparency, and reduce
failures in machine learning applications in health care. Radi-
ology: Artificial Intelligence, 4(2):€210127, 2022.

Muhammad Ahmad Hanif, Fizza Muhammad Aleem,
Farheen Anwar, Mohtishim Siddique, Kashif Igbal, Muham-
mad Sajjad, and Gulzar Ahmad. Bringing autonomy and co-
operation together: A comparison of agentic ai systems and ai
agents. Spectrum of Engineering Sciences, 3(8):59-68, 2025.

Valentin Hofmann, Pratyusha Ria Kalluri, Dan Jurafsky, and
Sharese King. Ai generates covertly racist decisions about
people based on their dialect. Nature, 633(8028):147-154,
2024.

International Journal of Computer Applications (0975 - 8887)

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Volume 187 - No.56, November 2025

Md Tamjid Hossain, Hung La, and Shahriar Badsha. Rampart:
Reinforcing autonomous multi-agent protection through ad-
versarial resistance in transportation. Journal on Autonomous
Transportation Systems, 1(4):1-25, 2024.

Hideaki Ishii, Yuan Wang, and Shuai Feng. An overview on
multi-agent consensus under adversarial attacks. Annual Re-
views in Control, 53:252-272, 2022.

Arsalan Javeed, Cemal Yilmaz, and Erkay Savas. Microar-
chitectural side-channel threats, weaknesses and mitigations:
a systematic mapping study. IEEFE Access, 11:48945-48976,
2023.

Wenyu Jiang and Fuwen Hu. Artificial intelligence agent-
enabled predictive maintenance: Conceptual proposal and ba-
sic framework. Computers, 14(8):329, 2025.

Nathan S Johnson. Multi-agent 1lm systems for autonomous
laboratory instrument operation. 2025.

Sevinj Karimova and Ulviya Dadashova. The model context
protocol: a standardization analysis for application integra-
tion. Journal of Computer Science and Digital Technologies,
1(1):50-59, 2025.

Mirae Kim, Etienne Charbonneau, and Jessica Sowa. The
nonprofit starvation cycle: The extent of overhead ratios’ ma-
nipulation, distrust, and ramifications. Nonprofit and Volun-
tary Sector Quarterly, 54(1):151-175, 2025.

Nicholas Ka-Shing Kong. Injectbench: An indirect prompt
injection benchmarking framework. Master’s thesis, Virginia
Tech, Blacksburg, VA, 2024. VTechWorks Electronic Theses
and Dissertations.

Xiangyi Kong, Peng Gao, Jing Wang, Yi Fang, and Kuo Chu
Hwang. Advances of medical nanorobots for future cancer
treatments. Journal of Hematology & Oncology, 16(1):74,
2023.

Naveen Krishnan. Advancing multi-agent systems through
model context protocol: Architecture, implementation, and
applications. arXiv preprint arXiv:2504.21030, 2025.

Apurva Kumar. Building autonomous ai agents based ai in-
frastructure. International Journal of Computer Trends and
Technology, 72(11):116-125, 2024.

Weifeng Li and Yidong Chai. Assessing and enhancing adver-
sarial robustness of predictive analytics: An empirically tested
design framework. Journal of Management Information Sys-
tems, 39(2):542-572, 2022.

Richard Owoputi and Sandip Ray. Security of multi-agent
cyber-physical systems: A survey. IEEE Access, 10:121465—
121479, 2022.

Brandon Radosevich and John Halloran. Mcp safety audit:
Llms with the model context protocol allow major security
exploits. arXiv preprint arXiv:2504.03767, 2025.

Partha Pratim Ray. A survey on model context protocol: Ar-
chitecture, state-of-the-art, challenges and future directions.
Authorea Preprints, 2025.

David Segod, Ricardo Alvarez, Patrick McAllister, and
Michael Peterson. Experiments of a diagnostic framework for
addressee recognition and response selection in ideologically
diverse conversations with large language models. 2024.
Theophilus Siameh, Abigail Akosua Addobea, and Chun-
Hung Liu. Context injection vulnerabilities and resource
exploitation attacks in model context protocol. Authorea
Preprints, 2025.

13

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

Sudha Srinivasan, Nidhi Amonkar, Patrick D Kumavor, Deb-
orah Bubela, and Kristin Morgan. Joystick-operated ride-on
toy navigation training for children with hemiplegic cerebral
palsy: A pilot study. The American Journal of Occupational
Therapy, 78(4):7804185070, 2024.

Stefan Stein, Michael Pilgermann, Simon Weber, and Martin
Sedlmayr. Leveraging mds2 and sbom data for 1lm-assisted
vulnerability analysis of medical devices. Computational and
Structural Biotechnology Journal, 2025.

Taichi Takemura, Ryo Yamamoto, and Kuniyasu Suzaki. Tee-
pa: Tee is a cornerstone for remote provenance auditing on
edge devices with semi-tcb. IEEE Access, 12:26536-26549,
2024.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xian-
gru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, Bowen
Li, Jaskirat Singh, et al. Opendevin: An open platform for
ai software developers as generalist agents. arXiv preprint
arXiv:2407.16741, 3, 2024.

Yuntao Wang, Yanghe Pan, Shaolong Guo, and Zhou Su. Se-
curity of internet of agents: Attacks and countermeasures.
IEEE Open Journal of the Computer Society, 2025.
Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jail-
broken: How does llm safety training fail? Advances in Neu-
ral Information Processing Systems, 36:80079-80110, 2023.
First Wu, Second Zhu, and Third Liu. Agentic tool use with
mind map memory. arXiv preprint arXiv:2502.01234, 2025.
Xingyu Wu, Yunzhe Tian, Yuanwan Chen, Ping Ye, Xiaoshu
Cui, Jingqi Jia, Shouyang Li, Jigiang Liu, and Wenjia Niu.
Curriculumpt: Llm-based multi-agent autonomous penetra-
tion testing with curriculum-guided task scheduling. Applied
Sciences, 15(16):9096, 2025.

Xiayu Xiang, Changchang Ma, Liyi Zeng, Wenying Feng,
Yushun Xie, and Zhaoquan Gu. Uncovering multi-step attacks
with threat knowledge graph reasoning. Security and Safety,
4:2024019, 2025.

Shasha Yu, Fiona Carroll, and Barry L Bentley. Trust and
trustworthiness: privacy protection in the chatgpt era. In Data
Protection: The Wake of Al and Machine Learning, pages
103-127. Springer, 2024.

Guorui Zhang, Chao Song, Liyuan Liu, Qiuyu Wang, and
Chunquan Li. Transagent: Dynamizing transcriptional regu-
lation analysis via multi-omics-aware ai agent. bioRxiv, pages
2025-04, 2025.

Qian Zhang and Le Xie. Poweragent: A roadmap towards
agentic intelligence in power systems. Authorea Preprints,
2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert
Lo, Abishek Sridhar, Xianyi Cheng, Yonatan Bisk, Daniel
Fried, Uri Alon, et al. Webarena: A realistic web envi-
ronment for building autonomous agents. arXiv preprint
arXiv:2307.13854, 2023.

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.56, November 2025

14

	Introduction
	Literature Review
	Proposed Methodology
	Threat model and system setting
	Datasets and injection overlay
	Attack modelling
	Defense architecture
	Learning and scoring objectives
	Pseudocode of the evaluation harness

	Experimental Setup
	Results and analysis
	Baseline Comparison with all elements
	Overhead and component analysis
	Training and Testing: WebArena
	Training and Testing: Mind2Web
	Training and Testing: InjectBench
	Uncertainty and summary charts
	Ablation Studies

	Conclusion
	References

