
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.56, November 2025

61

Adaptive Risk-based Enforcement using SBOM

Automation for Secure Software Supply Chains

Sri Sowmya Nemani
Independent Cybersecurity Researcher

San Jose, California

ABSTRACT

Nowadays, many developers rely on third-party and open-

source libraries that integrate directly into production software.

However, it is critical to understand what is being integrated

and who maintains it. The hidden security and governance risks

within unmanaged dependencies continue to expose

organizations to software supply chain attacks and compliance

violations. Software Bills of Materials (SBOMs) in formats

such as SPDX and CycloneDX — provide visibility into third-

party components. This paper discusses how SBOMs can be

automatically generated from development code and integrated

into CI/CD pipelines for continuous risk assessment. The

model proposed in this study ensures that every building

produces an auditable SBOM, allowing the security team to

continuously review, mitigate, or apply compensating controls

for identified risks.

Keywords

Software Bill of Materials (SBOM), Supply Chain Security,

CI/CD, DevSecOps, Risk Mitigation, CMDB, Infrastructure as

Code (IaC)

1. INTRODUCTION
The goal of this paper is to integrate an Adaptive SBOM Model

within CI/CD pipelines to identify third-party risks early in the

development lifecycle and take context-based actions such as

applying compensating controls or enforcing automatic

mitigation.

This study presents a practical implementation model

developed by the author, using open-source tools for SBOM

generation and integration with Configuration Management

Databases (CMDB) and Infrastructure as Code (IaC) systems.

This enables full traceability of software components, version

changes, and risk posture across the lifecycle of each building.

2. RESEARCH QUESTIONS
The rapid adoption of open-source and third-party packages has

accelerated software innovation but simultaneously increased

the risk of supply chain compromise. From SolarWinds to

NPM. To address these risks, organizations are increasingly

adopting the Software Bill of Materials (SBOM), a

comprehensive inventory that lists all components, versions,

and licenses used in a software system. However, in most

organizations, SBOMs are generated manually or post-release,

limiting their usefulness for real-time risk mitigation. To

support shift left and identify if the organization is affected, it

is important to have the SBOM inventory generated in the non-

production environment. Research Question: How can

automated SBOM generation and adaptive enforcement within

CI/CD pipelines enhance visibility, reduce supply chain risks,

and support continuous compliance across software systems?

2.1 EXAMPLES
A very recent incident in the JavaScript ecosystem about the

npm supply chain attack started with a phishing attack and

escalated to a supply chain attack affecting millions of

developers and cloud environments that rely on these libraries.

[1][8] Similarly, SolarWinds was hacked, and a total of 18,000

customers and businesses were impacted. The attack was traced

back to a malicious software update added to SolarWinds’

Orion software, demonstrating the importance of secure

software updates in the supply chain.[2][9]

3.METHODOLOGY
The methodology adopted in this research follows a practical

implementation model based on the open-source project

“Secure OSS Compliance Release Automation Pipeline” [3].

The model integrates automated Software Bill of Materials

(SBOM) generation, vulnerability assessment, and license-

based policy enforcement within a Continuous

Integration/Continuous Deployment (CI/CD) environment.

This approach enables adaptive security enforcement and

continuous compliance monitoring across every stage of the

software build lifecycle. [3][10]

3.1 EXPERIMENTAL ENVIRONMENT

AND SETUP
The experimental setup utilized containerized environments

orchestrated through GitHub Actions for reproducible CI/CD

workflows. Test data consisted of 50 open-source software
repositories written in Python, JavaScript, and Go, representing

diverse dependency ecosystems. Each repository was

automatically built, scanned, and analyzed to generate SBOMs

and vulnerability reports. The environment included the

following major tools and components:

TOOL PURPOSE OUTPUT VERSIO

N

syft SBOM

generation

SPDX/

CycloneD

X

v.0.94.0

Trivy Vulnerability

and License

scanning

JSON/

Table

v.0.56.2

Semgre

p

Static Analysis

(SAST)

JSON V 8.20

ZAP Dynamis testing

(DAST)

HTML/X

ML

V 2.14

Confte

st

PolicyEnforcem

ent

Rego

Rules

V 0.51

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.56, November 2025

62

3.2 SBOM GENERATION WORKFLOW
The workflow begins once a developer commits code to the

repository. The CI/CD pipeline automatically initiates a series

of build jobs that generate and analyze SBOM data. Using Syft,
an SBOM is created from both the application source code and

the resulting container image. The output is exported in

CycloneDX JSON format, providing a machine-readable

inventory of components, versions, and licenses.

3.3 PIPELINE ARCHITECTURE
The automated pipeline consists of three main phases:

1. Static Analysis Phase – Runs Semgrep and Gitleaks

to identify hardcoded secrets and insecure coding

patterns.

2. Build and SBOM Phase – Generates SBOMs using

Syft, followed by Trivy scans for vulnerabilities and

license compliance.

3. Dynamic and Enforcement Phase – Executes

OWASP ZAP for dynamic testing and applies OPA

policies for adaptive enforcement.

3.4 LIMITATIONS
While the proposed system effectively automates risk

detection, certain limitations exist. The analysis currently

focuses on open-source components and may not capture

closed-source or proprietary dependencies. Additionally,

dependency graphs generated by Syft may vary across

ecosystems, leading to inconsistent depth of component

mapping. Future versions aim to integrate machine-learning-

based anomaly detection to dynamically adjust enforcement

thresholds and minimize false positives.

Fig 1: SBOM Workflow

4.CMDB AND IAC
Many organizations still treat SBOMs as passive inventories.

This research seeks to close that gap by operationalizing

SBOMs into adaptive enforcement pipelines. One of the critical

outcomes of the proposed model is linking the SBOM data to

enterprise asset management and configuration systems—

specifically, the Configuration Management Database

(CMDB) and Infrastructure-as-Code (IaC) repositories

5. SOFTWARE AS A SERVICE BILL OF

MATERIALS (SaaSBOM)
SaaSBOMs provide an inventory of services, endpoints, and

data flows and classifications that power cloud-native

applications. SBOMs primarily describe the open-source and

third-party software components integrated within an

application’s source code or build artifacts. However,

SaaSBOM provides an inventory of all cloud and service

dependencies that power an application. As it includes Services

and microservices, Endpoint URL, etc. [7]

SaaSBOMs complement SBOMs and IaC by bridging

application-level transparency and service-level dependency

management, enabling comprehensive risk governance for

DevSecOps pipelines.

6. DISCUSSIONS
The results of this study demonstrate that automating SBOM

generation and enforcement within CI/CD pipelines

substantially improves software supply chain visibility and

reduces dependency risk. Unlike static vulnerability

assessments performed post-release, the proposed adaptive

model allows organizations to detect and mitigate risks early in

the software development lifecycle (SDLC)

By integrating open-source tools such as Syft and Trivy, this

approach aligns with modern DevSecOps principles, enabling

a “shift-left” security posture that treats compliance and

vulnerability checks as continuous and automated.

However, Strict enforcement may introduce business

interruptions when the pipeline blocks build due to critical

vulnerabilities or license conflicts, and Adaptive enforcement

policies, where the build system differentiates between

critical, medium, and low-risk issues, help mitigate this

tension.

7. CONCLUSIONS
This paper presented an Adaptive SBOM Enforcement Model

designed to integrate with CI/CD pipelines for real-time

security and compliance validation. Using open-source tools

and automation, the model generates both SBOMs (software-

level visibility) and SaaSBOMs (service-level visibility),

performs vulnerability and license checks, and applies policy-

driven enforcement.

8. LITERATURE REVIEW
Search Strategy: The literature search included peer-reviewed

articles, industry white papers, and government advisories

focused on SBOMs, software supply-chain security, and CI/CD

automation. Databases searched included SpringerLink,

ResearchGate, OWASP guides, and CISA advisories (2020–

2025).Towards a More Secure Ecosystem: Implications for

Cybersecurity Labels and SBOMs: This paper targets two

related efforts to create more transparency in the global

software supply chain: labels and Software Bills of

Materials.[5] The Impact of SBOM Generators on

Vulnerability Assessment in Python: A Comparison and a

Novel Approach : This paper talks about the SBOM inventory

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.56, November 2025

63

vulnerability assessment, the first security analysis on the

vulnerability detection capabilities of tools receiving SBOMs

as input. We comprehensively evaluate SBOM generation tools

by providing their outputs to vulnerability identification

software. [6]

Future work will focus on scaling this model across multi-cloud

and enterprise-grade CI/CD environments while integrating AI-
driven anomaly detection and predictive analytics for risk

scoring. Additional studies using diverse datasets and

programming ecosystems will further validate the

generalizability and performance of the adaptive SBOM

framework.

9. REFERENCES
[1] Palo Alto Networks, “NPM Supply-Chain Attack,” Cloud

Security Blog, 2025.

[2] SolarWinds, “An Investigative Update of the Cyberattack,”

Technical Report, 2025.

[3] Nemani, S., “Secure OSS Compliance Release Automation

Pipeline,” GitHub Repository, 2025.

[4] Anchore, “How Syft Scans Software to Generate SBOMs,”

Technical White Paper, 2024.

[5] Camp, L., “Towards a More Secure Ecosystem:

Implications for Cybersecurity Labels and SBOMs,”

ResearchGate, 2023.

[6] Springer, S., “The Impact of SBOM Generators on
Vulnerability Assessment in Python,” Springer LNCS,

2024.

[7] OWASP Foundation, “CycloneDX Authoritative Guide to
SBOM,” 2024.

[8] Cybersecurity and Infrastructure Security Agency (CISA),

“Widespread Supply Chain Compromise Impacting NPM
Ecosystem,” Alert Bulletin, 2025.

[9] Center for Internet Security (CIS), “SolarWinds Incident
Overview,” 2025.

[10] Secure by Design, “CI/CD Hardening Guide,”

Implementation Handbook, 2024.

IJCATM : www.ijcaonline.org

