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ABSTRACT

Deep learning has revolutionized medical imaging, but it is
vulnerable to adversarial attacks, which are deemed dangerous
to clinical use. This paper compares the strength of
convolutional neural networks (CNNs) and Vision
Transformers (ViTs) that are trained on the ChestX-rayl4
dataset at NIH to detect pneumonia. Both models showed high
baseline accuracy (>90 percent) even when the models were
attacked by Fast Gradient Sign Method (FGSM), Projected
Gradient Descent (PGD), DeepFool, and Carlini and Wenger,
although PGD and CW were the most disruptive. The
evaluation of defense strategies was also performed, which
involves adversarial training, input preprocessing, ensemble
modelling, and adversarial detection. Adversarial training
provided the best protection, at the cost of lower clean-data
accuracy and preprocessings and ensembles offered partial
resistance, and also detection strategies identified a lot of naive
adversarial inputs. There was however no one defence that was
enough to counter every assault. The discoveries reveal the
necessity of layered defence practices and ethical and
regulatory issues related to trust, liability, and patient safety,
which supports the significance of strong and transparent Al in
the field of healthcare practices.
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1. INTRODUCTION

In the last decade, deep learning transformed the field of
medical imaging and now allows to automatically analyze
radiologic scans with a higher level of accuracy, similar to
expert clinicians. Neural networks have shown levels of
expertise in diverse diagnostic procedures, including skin
lesion classification, and chest X-ray interpretation [1, 2].
Indicatively, in 2018, the first U.S. FDA-approved diabetic
retinopathy deep learning system was on the list of Al-
diagnostic tools, which indicates the increasing nature of Al-
diagnostic integration into the clinical workflow [3]. The key
to this fast development is that diagnostic reliability and patient

safety should be considered when applying Al: doctors and
patients should be capable of believing that such models will
work properly and contribute to, not threaten, the process of
medical decision-making.

Nevertheless, there has now been a serious issue that has arisen:
the reliability of deep learning models and the loss of trust
cause adversarial vulnerabilities. Scholars have discovered that
minimal, a well-crafted interventions to medical pictures,
which are sometimes entirely unnoticeable by the human eye,
can even influence Al models to provide completely flawed
diagnoses with high levels of certainty [4]. The integrity and
privacy of the training data in such sensitive deployments is
paramount, a challenge previously addressed by developing
secure, distributed Al models using federated learning
architectures [5]. Such intelligently designed inputs are referred
to as adversarial examples, and they take advantage of the
vulnerabilities in the decision limits of the model. Patient safety
is directly threatened by the existence of adversarial attacks: a
slightly modified CT scan or X-ray may deceive an Al to fail
to recognize a tumor and incorrectly diagnose a condition,
resulting in wrong treatment [2, 4]. These types of attacks
undermine the integrity of Al-based decisions and represent a
new category of security threat in clinical settings [6].

The possible outcomes of confrontational escapades in the
medical field are dire. In diagnostic imaging, an attacker may
be able to use manipulated input scan to hide important results
or create a disease and avoid automated and human quality
checks [3]. Previous research cautions that adversarial
weaknesses can lead to disastrous consequences such as false
diagnoses, unnecessary treatment, fraud in insurance, and even
a larger crisis of trust in Al-based medicine [4, 6]. An example
is a study that showed that by introducing almost imperceptible
noise to a retinal fundus image or a chest X-ray, the output of a
model could be altered to appear as an image of a diseased
person or a doctor prescribing the wrong treatment to an
individual, which could potentially allow fraudsters to fake
medical diagnoses or the wrong doctor to prescribe incorrect
treatment to their patient [8]. Previous work established the
efficacy of multi-tiered defense strategies, specifically for the
Energy and Healthcare critical sectors, by integrating network
segmentation, EDR, and offline backups to mitigate persistent
ransomware threats [9]. Ranging in billions of dollars over
healthcare decision making, these weaknesses offer some
incentive to be abused by different entities [4]. This problem
statement explains the importance of ensuring the security of
deep learning systems in terms of patient trust and safety.

This paper provides a systematic study of adversarial attacks on
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deep learning models in medical images, and the effectiveness
of defensive measures against Al diagnostic systems. However,
the specific objectives are:

a) To determine the categories of adversarial attacks
shown to take place on medical imaging models and
their effects on diagnostic performance

b) To evaluate defense systems (e.g. adversarial
training, input filters, anomaly detectors, etc.) are
most effective at enhancing model robustness

c¢) To determine how the ethical, legal, and clinical
implications of adversarial vulnerabilities in
healthcare Al can be explained, in particular, the trust
and responsibility of patients

The present paper is dedicated to image-based Al diagnostics
(e.g. radiology, pathology, ophthalmology images) where deep
learning is used extensively and safety issues are the most
critical. The computer vision field and healthcare field
literature have been surveyed to relate the general concepts of
adversarial machine learning with the medical practice. The
importance of this work is explained by its interdisciplinary
nature: technical knowledge about model security is associated
with clinical and ethical aspects. Finally, the performance of Al
in adversarial settings should be ensured to ensure not only
accuracy but also patient and clinician trust in Al-assisted care.
Through the study of existing vulnerabilities and defenses, as
well as commenting on regulatory factors, timely advice on
how to build resilient AI systems that can be safely
incorporated into the healthcare environment was offered.

2. LITERATURE REVIEW
2.1 Deep Learning in Medical Imaging

In the last few years, the analysis of medical images has
become an essential part of the field of deep learning, with
Convolutional Neural Networks (CNNs) as its central part. The
literature records the rapid development of the initial
experiments up to massive applications in the field of radiology
and other fields of application [7-11]. By 2017, CNNs were
performing almost humanly on tasks such as skin lesion
classification and screening retinal diseases. A groundbreaking
study demonstrated a deep CNN to be as accurate as
dermatologists in skin cancer distinction using dermoscopic
photos [14]. Equally, deep models have been particularly
successful in identifying diabetic retinopathy in fundus images
and detecting pneumonia in chest X-rays [12, 13]. This
achievement has already resulted in hundreds of Al models to
interpret X-rays, CT scans, MRIs, pathology slides, and other
forms of imaging [16]. One such moment was when, in 2018,
the FDA gave regulatory approval to an Al-based diabetic
retinopathy diagnosis device, highlighting the fact that these
algorithms are no longer in research but in actual clinical use
[3]-

The increased use of deep learning to make crucial diagnoses
implies that reliability is crucial. Doctors have to have
confidence in the output of an Al to include it in clinical
decision-making, and the patients have to be confident that Al-
assisted diagnoses or treatment advice is accurate and safe. The
medical Al ethics studies have pointed out that validation,
transparency, and reliability are the main ways of earning this
trust [17]. At this point, when deep learning models are highly
complex black boxes, the clinicians tend to be more cautious
and confirm Al output with their own judgment. Trust can be
established and increased after an Al shows accurate
performance consistently, which enhances the efficiency of the
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workflow and patient outcomes. Conversely, confidence can be
destroyed at a very short notice upon any sign of unpredictable
or erroneous conduct. The example is that with an Al program
that periodically gives a flashing misdiagnosis (albeit
uncommonly), clinicians will question everything it produces,
which nullifies the value that it may be generating. In that way,
a significant portion of the literature regarding Al in healthcare
emphasizes on the concepts of robustness and reliability as the
basis of trust in such tools [6]. Medical life and death decisions
are stake, which are very low tolerance of mistakes or failure
modes that are not known in systems with artificial intelligence.
2.2 Al adversarial attacks: Computer
vision principles

Adversarial attacks demonstrate the underlying weaknesses of
existing computer-vision systems. Initial experiments had
demonstrated that small, usually unnoticeable alterations in the
input images can result in high-confidence misclassification
and Szegedy et al. [18] were the first to record this phenomenon
as they demonstrated that well-crafted perturbations could
consistently mislead deep neural networks. The finding led to
the creation of algorithmic attack and defensive analysis.
Goodfellow et al. [19] proposed Fast Gradient Sign Method
(FGSM), a one-step method, which perturbs an image by
following the gradient of the model loss in order to cause
misclassification. These approaches were later generalized to
iterative algorithms such as Projected Gradient Descent (PGD)
that utilizes gradual gradient steps and can be known to
generate strong adversarial samples [20]. Carlini and Wagner
(CW) method is an example of optimisation-based attacks,
where it minimises the distance between the adversarial
samples targeting low distortion [21], and DeepFool reduces
the norm of perturbation steps to find the nearest decision-
boundary crossing [22]. Together, these attacks constitute a
methodological repertoire of investigating robustness of
models.

One notable fact about adversarial examples is that they
transfer well: adversarial examples created by training on a
single model are often effective in deceiving other models,
even when the architecture and training data are different [21,
22]. Transferability allows black-box attacks in which an
attacker trains a surrogate model and launches attacks on a
target system without having any direct access. Recent studies
indicate that a sense of transferability emerges due to data
representations perceived as similar across networks, which
presupposes that systemic vulnerabilities can be maintained in
different model families [3]. Its practical implication is that
publicly available models can be used as convenient templates
to create attacks on proprietary medical Al systems, greatly
expanding the threat space.

Adversarial research has expanded to include image
classification and detection, segmentation, tracking of objects
in video streams, and video streams. Most importantly, there
are universal adversarial perturbations (UAPs) which are
individual perturbation vectors that when added to a vast
amount of inputs generate very high misclassification rates
[25]. UAPs show that it is possible to build compact and
reusable attacks, and this can be scaled in terms of adversarial
campaigns. Such dangers have been confirmed by medical
imaging experiments: controlled changes in diagnostic output
of automated radiology systems can be caused by targeted
perturbations, indicating the possibility of an extensive clinical
effect [26]. Physical-world attacks also explain physical-world
risk; printed stickers or graffiti have been demonstrated to
confuse traffic-sign recognisers in autonomous vehicles, with
implications on safety when adversarial examples are no longer
in the form of digital pixels [27].

47



International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.55, November 2025

“ponda"

57.7% confidence

“gibbon”

09.3% confidence

Fig 1: Adversarial perturbation example — image classification.

The picture on the left is the original image with the label panda
(57.7%); the centre is the amplified perturbation pattern; the

Authentic

Adversarial

right-hand picture is the adversarial image with the label gibbon
(99.3%) after such a small visible change [19].

“Yield Sign®

Adversarial
Input Perturbation Input

Fig 2: Physical-world adversarial attack on traffic sign recognition.

Left: well-placed stop sign; centre: perturbation stickers that
have been applied; right: misplaced adversarial image with the
label of Yield, showing physical exploitability [27].

The literature taxonomies include white box (full model access)
vs black box (limited access), targeted vs untargeted, and image
specific vs universal attacks. These differences are used to
threat model medical Al: white-box situations are used to test
worst-case  robustness, and black-box transferability
emphasizes realistic attacker abilities. The computer-vision
body of work, therefore, provides both the theoretical
foundations and practical algorithms necessary to assess and
harden medical imaging systems against adversarial
manipulation. These insights motivate the incorporation of
adversarial robustness evaluation into any deployment pipeline
for clinical Al

2.3 Adversarial Attacks in Healthcare

Imaging: Demonstrated Vulnerabilities

The concept of adversarial threats in healthcare imaging started
to gain traction in 2018, when there was increasing awareness
that the flaws of computer vision could also be applied to
clinical imaging [3]. Preliminary studies by Paschali et al. [8]
have revealed that the medical image classification and
segmentation networks (including the networks used to
perform the activities like skin lesion detection and brain
segmentation with MRI) severely deteriorate in performance
when attacked by the Fast Gradient Sign Method (FGSM) and
DeepFool. More importantly, even the minimal perturbations,
which are not noticeable to human observers, caused
significant decreases in the accuracy of the diagnosis,
disclosing that even the models which are otherwise similar to
human observers can be turned into unreliable ones because of
adverse manipulation. Ma et al. [12] noted in their follow-up
analysis that certain architectures were marginally more
resilient than others, but all tested models were at least partially
vulnerable.
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Fig 3: Adversarial examples in medical imaging

Visualization of medical adversarial examples with predictions
under diverse perturbation size €. The generated segmentation
masks are superimposed on the original images for
visualization (adapted from Dong et al. [3]).

This question attracted considerably more attention after a
high-profile commentary by Finlayson et al. [4] in Science,
where potential real-life scenarios were outlined. They gave
examples of chest X-rays which were manipulated to give a

benign image that was called pneumothorax, or a sick scan that
was termed as healthy. These manipulations may help conduct
fraudulent insurance claims, damage reputations, or even pose
direct risks to patients [26]. As noted in the article, patients,
healthcare professionals, insurers, and malicious external
actors may all have incentives to pursue adversarial
vulnerabilities.
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Fig 4: Medical adversarial perturbations

Top: diabetic retinopathy fundoscopy images; middle: chest X-
rays; bottom: dermoscopy images. Left: control samples;
middle: distortions manifested; right: adversarial counterparts
resulting in false diagnosis. Green labels show accurate
predictions, red errors (modified by Ma et al. [12]).

These worries were supported by empirical research. Dugas et
al. [29] and Wang et al. [30] tested the adversarial attack in
three modalities: funduscopies, chest radiographies, and
dermoscopies and demonstrated a steep decline in model
performance. In other experiments, melanoma classifiers
deteriorated to a near-random score on adversarially perturbed
images, 95% on clean images [12]. Kovalev and Voynov [31]
proved these vulnerabilities using PGD attacks on chest X-rays
and histology data, and Rao et al. [32] showed drastic drops in
area-under-curve scores after applying the pneumonia-
detecting network to the FGSM and PGD. Together, these
studies determined that no broadly used medical imaging
model was intrinsically resistant to adversarial perturbations,
even when baseline accuracy was high on standard evaluation
conditions.

Modality-specific and physical adversarial strategies have been
since explored by researchers. Finlayson et al. [4] showed that
small spots of adversarial images could easily deceive
dermatology classifiers, even without other parts of the picture
being damaged. Theoretical radiological extensions are placing
stickers on the analogue films prior to digitisation or adjusting
acquisition parameters in MRI scans. According to Sorin et al.
[33], even the few radiology-specific studies available have
reported adversarial vulnerabilities, such as in tumour detection
in MRI and in the classification of lung nodules in CT images.

Such findings are also complicated by differences between
medical images and natural images. Greater bit-depth,
resolution and artefacts of modality like ultrasound speckle or
noise in MRI modify the attack landscape. As Hirano et al [34]
demonstrated, it is crucial to adapt to intrinsic noise

distributions to construct universal perturbation of chest X-
rays. However, they were able to generate perturbations that
could alter a COVID-19 pneumonia detector on several scans
of patients. Bortsova et al. [35] looked at parameters of image
preprocessing and discovered that both typical augmentation
and compression methods failed to eradicate adversarial
vulnerability; in fact, these operations unintentionally
reinforced adversarial effect on images.

2.4  Defense Strategies in Literature:
Making Medical AI More Robust

The adversarial vulnerability of healthcare imaging models has
motivated much study on defense mechanisms. Though a large
number of these strategies have been developed in the wider
adversarial machine learning community, they have
subsequently been applied to the medical field where patient
safety, diagnostic reliability, and trust take a central role. The
existing methods may be classified into adversarial training,
defensive preprocessing, architecture modification, adversarial
example detection, and ensemble, or redundancy, approaches.

Adversarial training has been widely known to be one of the
best methods used to enhance model robustness. It is a
retraining of models with adversarially perturbed examples and
clean images, and so the model has to generalise to both types
of inputs. Initial studies by Ren et al. [36] revealed that an MRI
segmentation network became significantly more robust when
it was trained using FGSM-based perturbation. Equally, Rao et
al. [32] established that pneumonia detection models that have
been trained on the PGD inputs were resistant to test-time
perturbation. Although this is effective, adversarial training
causes computational overheads, which usually run training
multiple times. There is also the trade-off of robustness versus
clean accuracy when using the method. An example is the
report by Madry et al. [20], which showed that a diabetic
retinopathy classifier has preserved approximately 85% of its
initial clean accuracy and 80% accuracy with substantial PGD
attacks. This balance represents the conservative adjustment of
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models, which are still not so prone to overconfident errors and
are slightly less sensitive to fine diagnostic observations.

The second line of defense is defensive preprocessing or input
transformation. The objective of these methods is to suppress
or remove adversarial perturbations of images prior to their
input into the network. Denoising filters, bit-depth reduction,
and JPEG compression are usually used. Elsewhere in medical
imaging, Taghanaki et al. [37] studied feature-preserving
denoising in chest X-rays and discovered that perturbations
could be reduced without a major change in anatomical content.
Kansal et al. [38] applied the same principle to COVID-19 CT
images and suggested guided filtering that proved to remove
adversarial noise effectively without damaging clinically
significant structures. The primary benefit of preprocessing is
that it does not incur network parameter or retraining
modifications, and is therefore light to implement.
Nevertheless, malicious attackers may create perturbations that
resist or take advantage of these changes, making their efficacy
short-lived.

Another set of strategies includes model architecture and
feature enhancement. In this case, the objective is to entrench
the aspects of resilience within the feature extraction operation
of the network. Taghanaki et al. [37] have mentioned that the
use of average pooling in place of max-pooling layers resulted
in a higher level of robustness due to the fact that more
contextual information is retained. Bortsova et al. [35]
developed this concept by incorporating guided filter layers in
dermoscopy networks, which minimizes the impact of
perturbations at feature intermediate levels. Knowledge
distillation has been used as well: Liu et al. [39] trained
segmentation models to generate more stable embeddings,
which showed greater resistance to FGSM and iterative attacks.
These architectural advancements have shown that resilience
can be factored in the model design and not on post hoc
fortifications only.

Another complement strategy is the detection of adversarial
examples. These methods are not used to prevent
misclassification, but to detect adversarial inputs and reclassify
them to be looked at by humans. Ma et al. [12] demonstrated
more than 98% AUC in differentiating adversarial manipulated
chest X-rays and fundus images and clean inputs, finding that
the network had unique activation patterns when subjected to
adversarial perturbations. In a similar vein, Watson and Al
Moubayed [40] also trained meta-classifiers on diagnostic
model output and were able to detect FGSM and CW samples.
These detectors ensure an extra layer of safety when used in
clinical systems, and more specifically, adversarial
perturbations might be more evident in structured medical data
than in natural images. However, they also have to deal with
the consistent threat of the so-called adaptive attacks that can
be designed in such a way that they avoid detection.
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Fig 5: ROC curve of adversarial detection.

(adapted version of Ma et al. [12]].

Another line of defense is the ensemble and redundancy
techniques. With the help of various models with different
architectures, adversarial perturbations have lower chances of
success across the board. Modifications to voting mechanisms
may address misclassifications in models, and randomness, e.g.
input transformations or dropout during inference, may
destabilize the control of the attacker. Xie et al. [41]
demonstrated how randomised transformations can be used to
minimise the rate of successful attacks, where a similar
technique can be applied to medical practice with minor
rotation or crop of scans at the time of assessment. Also, by
incorporating clinicians as human-in-the-loop individuals in
ensemble pipelines improves reliability, especially when
automated predictions are incompatible with anticipated
clinical trends.

In the literature, it is always emphasized that no individual
defense mechanism can be in total protection. According to
Dong et al. [3], adversarial training is more effective in
protecting against particular attacks but cannot generalise to
novel perturbations, including adversarial patches.
Preprocessing has the weakness of neutralising some noise
patterns and is susceptible to adaptive exploitation, whereas
detection systems are at risk of becoming outdated as attacks
change. In that regard, researchers are more and more
proposing defense-in-depth solutions, which consider a
combination of adversarial training, preprocessing, feature
robustness, detection, and ensemble techniques. This
combination of measures has been demonstrated to be effective
by recent experiments that have demonstrated that integrated
defenses are able to maintain over 90 percent of diagnostic
accuracy in chest X-ray models in strong adversarial examples
and, at the same time, issue warnings on suspicious inputs to
human review [6].

3. METHODOLOGY

A mixed-method research consisting of systematic literature
review and controlled simulation experiments was used to
explore adversarial vulnerabilities and defenses in medical
imaging Al. The methodology involved two concomitant
strands: (a) an exhaustive literature review to chart the already
existing attacks, defenses and ethical issues and (b) an in-silico
experimental analysis that modeled realistic adversarial attacks
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and defensive measures against a standard chest X-ray
classification problem. This two-sided strategy allows
synthesizing concepts and illustrating them empirically by
reproducible conditions.

3.1 Design of research and experimental
justification

The research design used in the study was an exploratory-
explanatory research design. The literature review came up
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with candidate attack algorithms, defense mechanisms and
some general procedures of medical imaging; these results
were used to plan the simulated experiments. The experimental
part is a comparative one, not a clinical one: worst-case and
transfer attacks were simulated by using public datasets and
known model architectures and relative robustness was
determined between models and defenses. The purpose was to
shed light on dissipation processes of failure and to compare
mitigation influences in controlled and repeatable
environments, but not to verify a clinical device.

Research Scope & Questions Literature Review Methodology Design
f——=>> j——>
Define objectives, hypotheses, Deep Ieal_'nmg in imaging, Comparatwe}_’ymu\atmn design,
threat madels. and metrics adversarial ML, defenses, evaluation protocols,
! ethics &, regulation analysis,plan
4
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Dataset Selection Model Training Attack Generation
e.g., ChestX-rayl4, LIDC-IDRI, ResNet-50 (CNN), ViT (Transformer), FGSM, PGD, DeepFool, CW,
train/val/test splits, baseline accuracy, Universal Adversarial Perturbations
data,ethics.&,governance explainability.(GradzCAM) (UAR)

Robustness Evaluation

Accuracy drop, robust accuracy,
transferability_tests
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Defense Assessment

Adversarial training,
input preprocessing
detection, ensembles,

Synthesis & Reporting

Comparative analysis,
ethical/clinical mapping,
|___recommendations, & conclusions,

>
>

Fig 6: Research design (Flow Diagram)

3.2 Model selection and data sources

The source of the image was the NIH ChestX-ray14 dataset
[30] as it is relatively large (over 100,000 frontal chest
radiographs) and has multi-label pathology annotations. To
make the classification a tractable problem, it was simplified to
a binary classification: “Normal” and “Pneumonia” and the
options associated with standard clinical decision boundaries
and correspond to published benchmarks (e.g., CheXNet).
Preprocessing of the images was done according to standard
practices: scaling the images to 224x224, normalizing the
intensity range to [0,1], and data augmentation (random crops,
horizontal  flips) were limited to non-diagnostic
transformations.

Two representative model families that are designed to reflect
the modern-day practice were chosen: a convolutional neural
network (ResNet-50) and a Vision Transformer (ViT-base).
Both were pre-trained on ImageNet and fine-tuned on ChestX-
rayl4. Architectures performed similarly to clean test images
with Baseline performance of ResNet-50 approximately 93%
accuracy and ViT approximately 92% accuracy, a realistic
starting point on adversarial evaluation and the ability to
evaluate architecture-dependent robustness.

3.3 Type of attacks investigated and

implementation specifications

A collection of adversarial algorithms was used to test a variety
of threat models (white-box, iterative, optimization-based, and
universal). The selection of parameters reflects literature

standards to make them comparable:

»  Fast Gradient Sign Method (FGSM) [19]: single-
step gradient perturbation Xasv =Xte-sign(Vxl(h
(%),y)). Low and moderate perturbation strength were
tested with two levels of & (0.01 and 0.03 on
normalized pixel range).

» Projected Gradient Descent (PGD) / BIM [20]:
iterative multi-step attack with random starts, 40
iterations, step size a=e/40. Worst-case first-order
attacks were based on a strong baseline of PGD.

» DeepFool [22]: untargeted untypical attack that
minimises the norm, and is used to detect minimal-
norm perturbs that cross decision boundaries.

» Carlini-Wagner (CW) [21]: L2-norm optimisation
attack executed with a small confidence parameter to
focus on imperceptibility; executed on a sampled
subset as it is computationally expensive.

»  Universal Adversarial Perturbation (UAP) [25]: a
single-vector calculated on a training batch to
evaluate the ability to test cross-image degradation.

Both transfer tests (perturbations created on resnet and applied
to ViT and vice versa) and white-box experiments (full model
gradient available) were run to recreate black-box surrogate
tests. Measures were made of attack success rate (classification
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flip rate), drop in AUC, and perceptual distortion (measured by
L2 and SSIM). These metrics facilitate direct comparison of
attack potency and model resilience across architectures.

3.4 Defense Methods Evaluated

The strategies of defense that were evaluated in this research
were chosen because the strategies represent big division
observed in the literature, and each strategy was evaluated
against the adversarial conditions mentioned in the previous
section. The goal was to determine the relative gains of
robustness as well as the trade-offs in the accuracy and
interpretability of clean-data. Four types of defenses were
considered, namely adversarial training, input preprocessing,
adversarial example detection and ensemble modelling.

The adversarial training was conducted on the base ResNet-50
architecture and fine-tuning was done on clean and adversarial
images obtained by Projected Gradient Descent (PGD). In
every training epoch, real-time PGD example against the
current model parameters was generated, and the classifier was
trained to learn to identify unperturbed and perturbed chest X-
rays. The result of this process was a well trained model whose
performance was again tested on the same set of attacks. As
expected in the literature, adversarial training gave a strong
resilience enhancement, especially in the case of FGSM and
PGD attacks, at the cost of a small decrease in accuracy on
clean test data. As one example, the adversarial trained variant
of ResNet reached 93% clean accuracy, which is lower than the
93% baseline, but far better than the 90 percent baseline, which
maintained its performance at 93 percent.

Input preprocessing was investigated as a model-agnostic,
lightweight defence. Each X-ray was smoothed using a
Gaussian (3 x 3 and 5 x 5) filter before inference to emphasize
high-frequency noise that is typical of adversarial noise. This
was complemented by JPEG compression as an alternative
denoising method which was driven by the proven capability to
strip small perturbations in vision studies. Both methods
partially regained accuracy of classification against FGSM and
DeepFool attacks, but iterative attacks, including PGD, still had
significant strength. The sacrifice that was seen was this
minimal decrease in clean accuracy as a result of out-of-focus
of fine anatomical features within the image, which depicts the
trade-off between robustness and diagnostic accuracy.

A detection mechanism was also experimented, which was
aimed at simulating statistical anomaly detectors without any
independent model. The algorithm was based on tracking the
confidence distributions of model monitors: adversarial
examples tend to have irregular distributions of confidence
despite having high misclassification confidence. The output
entropy and predicted-class confidence threshold was
heuristically established with the help of a validation set of both
clean and adversarial samples. The inputs that were higher than
the entropy threshold or lesser than the confidence cut-off were
marked as suspicious. This method has shown good detection
rates (>90) against FGSM and DeepFool but was weaker
against optimisation-based attacks of CW, which are
specifically designed to avoid statistical signatures. False
positive rates were less than 5 per cent on clean X-rays
indicating potential use in practice in clinical triage systems
flagged inputs could be sent to a human review.

The ensemble defence was the combination of the ResNet and
Vision Transformer (ViT) models using averaged prediction
probabilities. This design took advantage of architectural
heterogeneity, as opposing examples designed to be learned on
convolutional networks do not necessarily learn on
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transformers and vice versa. On PGD adversarial examples
produced to target ResNet, the ensemble performed
significantly better than the ResNet alone and similarly resilient
to perturbations were produced when ViT adversarial examples
were produced. This proved the hypothesis that ensembles
reduce the transferability of attacks, but the hybrid model did
not completely remove vulnerabilities.

Grad-CAM saliency maps were obtained on clean and
adversarial X-rays to measure interpretability under attack and
defense. These visualisations brought out how adversarial
perturbations tended to shift the attention of the model to
diagnostically significant lung areas to irrelevant corners of the
image or edges. Conversely, adversarial trained and ensemble
models had more saliency maps consistent with anatomical
features, which strengthens their interpretive strength.

3.5 Evaluation Metrics

A number of complementary measures were used to measure
performance. The key measure was classification accuracy,
which was given on clean and adversarial test sets separately.
Attack success rate as the ratio of correctly classified to
incorrectly classified by attack gave an indicator of attack
strength. The magnitude of the perturbations was measured by
L 2 and L infinity to ensure generated perturbation was within
imperceptible values (usually 0.03 ¢). Direct comparison
between baseline and defended models was made possible by
robust accuracy which was the accuracy of classification in the
presence of attack but when defences were used. True positive
and false positive rates were used as indicators of detection
performance, because it represents a trade-off of true positives
and false negatives between adversarial samples and false
alarms on clean inputs.

3.6 Limitations of Methodology

In spite of the methodology giving insightful information about
adversarial robustness, there are still limitations. The
simulations were conducted using static datasets, which do not
reflect the variability of the real clinical setting like variations
in image acquisition or human-Al interaction or multi-modal
decision-making. The level of attacks was limited to avoid
attacks at inference time and not poisoning or backdoor attacks
that attack during training. In the same manner, the defence
measures chosen are typical classes but not sophisticated
certified defences or high randomisation techniques. This could
restrict the generalisability to other modalities with
dimensionality data of attacks, like 3D MRI or digital
pathology, where the dimensionality of the data changes. The
label noise in ChestX-ray14 further creates uncertainty as well,
as some adversarial errors can coincide with ground-truth
errors. Lastly, computational constraints limited the size of
optimisation based attacks and eliminated the possibility of full
training detection networks instead requiring heuristic
approximations.

In spite of these limitations, the methodology was able to
measure the dynamics of adversarial vulnerability and show
comparative strong points using the selected defences. The
combination of empirical simulation with the analysis based on
the literature make the findings more credible and gives the
results of the a strong ground.

4. RESULTS
4.1 Deepfake/Adversarial Detection

Performance
The paper looks at the strength of baseline models and the
influence of adversarial perturbation on the classification
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performance. Two common architectures, ResNet-50, a
convolutional neural network, and ViT-base, a Vision
Transformer were trained on the ChestX-rayl4 dataset to
classify binary pneumonia. ResNet 50 To establish a baseline,
resnet 50 obtained a high accuracy of 93 percent and ViT
succeeded with 92 percent, becoming consistent with the
current benchmarking (Rajpurkar et al., 2017; Kanca et al.,
2025). Nevertheless, with the addition of adversarial
perturbations, both models significantly deteriorated in
performance, which showed that they were vulnerable to
imperceptible manipulations.

Simulation of attacks was performed in five popular ways,
which are FGSM, PGD, DeepFool, Carlini and Wenger (CW),
and Universal Adversarial Perturbations (UAP). The
corresponding results depict a definite difference in the power
of attacks, which is summarized in Table 5.1.

Table 1: Simulated classification accuracy (%) of ResNet-
50 and ViT under different attacks

Attack ResNet- ViT
50 Accuracy
Accuracy (%)
(%0)
Clean 93 92
FGSM (ip=0.01) 71 75
FGSM (ip=0.03) 47 49
PGD (40 iters, ip=0.03) 20 22
DeepFool 35 38
Carlini & Wagner (CW) 12 15
Universal Perturbations (UAP) 40 42

The results show that one-step FGSM with a small perturbation
magnitude (6=0.01) decreased the accuracy of ResNet by 93
per cent to 71 per cent, and ViT fell a little bit more, to 75 per
cent. A further increase in € to 0.03 resulted in both models
having lower accuracy than 50. Iterative PGD was significantly
stronger, as its attack success rate was over 80% at €=0.03, and
the accuracy of it dropped to about 20% in each network. Even
with the design of DeepFool to minimise perturbation, it
attained an attack success rate of the order of 65 which
demonstrates that boundary-finding attacks can be subtle but
very effective. The most harmful ones were CW attacks,
computationally more complex, making the accuracy close to
random guessing (~10—15%) on a sub-selection of test samples.
Universal perturbations were found to be slightly less powerful
compared to PGD, however, the authors were able to reduce
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the accuracy to about 40 percent, which confirms the scalability
and viability of single-vector attacks in a clinical environment.

1U
ResNet-50
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@]
=]
<
0.4
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0.0 — L 1 H
Clean FGSM PGD DeepFool CW
Condition

Fig 6: ROC curves comparing clean vs. adversarial
performance for ResNet and ViT

The transformation of CNN and transformer systems was
compared with subtle results. Vision transformers (ViTs) were
slightly more resistant to FGSM perturbations, which could be
explained by the fact that the diffusion effect of the attention
mechanism in the transformer leads to attenuation of
perturbations, versus convolutional neural networks (CNNs),
which amplify perturbations through their convolutional filters.
However, both iterative and optimization-based attacks, such
as PGD and CW, were found to be no less effective against both
architectural classes, thus highlighting the fact that adversarial
vulnerability is a structural property of deep learning systems
instead of a property of specific model families. This fact is
supported by Dong et al. [3], who described the transferability
of adversarial examples to other architectures in the field of
medical imaging.

These weaknesses are further explained by the attack success
rate (ASR). In PGD &= 0.03 the ASR was 82% in ResNet and
78% in ViT, meaning that almost four instances per five were
successfully coerced to be incorrectly classified. DeepFool
achieved 64 per cent ASR with ResNet and 60 per cent with
ViT, compared to CW which exceeded 90 per cent on both
models. These measurements are consistent with the findings
of Paschali et al. [8] who not only detected that there was
comparable accuracy degradation in skin lesion analysis
models exposed to both FGSM and DeepFool, but also Ma et
al. [12] who established that PGD can disable diabetic
retinopathy detection frameworks.
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Original X-ray Figure 5.2: Adverpargh Prf- PatiaRllustration  Aqversarial X-ray
(Normal)

(Ampli
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Fig 7: Visual illustration of adversarial perturbations on chest X-rays

The figure shows that even the perturbations that cannot be
even perceived by the human eye can drastically change
diagnostic outputs. Such lack of strength is a matter of serious
concern in the field of medical imaging where the ability to
ensure a diagnosis has a direct effect on patient outcomes.
Interestingly, the confidence models were not reduced during
an attack; it is more common that the adversarial samples
would cause the high-confidence false alarms (e.g. >95 %).
This phenomenon implies that adversarial attacks not only can
create errors but also hide them, thus making it more difficult
to detect by the human eye. Similar risks were found by
Finlayson et al. [4], who noted that adversarial manipulations
may encourage models to incorrectly label benign X -rays as
pathological and vice versa, which can have disastrous clinical
consequences.

The consequences of telehealth and remote healthcare systems
are far-reaching. Actors adversarial have the possibilities to
take advantage of the vulnerabilities detected to tamper with
the diagnostic results so as to commit financial fraud, insurance
abuse, or malicious interference. As it has been shown in the
current performance analysis, both convolutional neural
network and transformer-based diagnostic models are highly
susceptible without comprehensive defensive mechanisms in
place. As a result, such findings justify the exploration of the
multilayered defense techniques, such as adversarial training,
detection heuristics, and ensemble learning, which are
discussed further.

5.2 Biometric Cross Validation Results.
Whereas visual diagnostic models are mostly affected by
adversarial attacks, authentication of patients and clinicians in
telehealth environments heavily depends on the ability to verify
the identity. It used a multimodal biometric cross-validation
system and included face recognition, voice biometrics and
gesture responses. The rationale behind this is that adversarial
attacks which focus on a single modality, including a face-
swapped video or a voice clone, can be alleviated by requiring
several independent checks. This idea is aligned with the
existing literature that highlights the potential of multifactor
authentication in the field of medical Al (Mason et al., 2020;
Pahuja and Goel, 2024).

Both benign and adversarial sessions were simulated and
included in the evaluation. True patient and clinician inputs
were used in clean sessions, and nonexistent or dissimilar
gestures were used in adversarial sessions built on deep-face
streams generated with DeepFaceLab and voice cloning
generated with Tacotron 2 together with SV2TTS. To

determine the level of system efficacy, performance measures
in terms of false acceptance rate (FAR), false rejection rate
(FRR) and equal error rate (EER) were used. The obtained data
is summarized in Table 5.2.

Table 2: Biometric authentication performance across
modalities

Modality FAR (%) FRR (%) EER (%)
Face recognition 9 5 7

Voice biometrics 11 6 8.5
Gesture prompt 3 7 5
Multimodal fusion 0.8 4 2.4

The findings proved that the individual unimodal systems were
susceptible. Under deep/ fake attacks, face recognition returned
a false acceptance rate (FAR) of 9 per cent, compared to voice
biometrics which returned a 11 per cent FAR to face cloned
speech. Gesture prompts, which needs a robust physical action,
e.g. nodding or hand wave, had a FAR of 37 and a false
rejection rate (FRR) of 7: This FAR indicates the usability
problems. The FAR decreased to less than 1% with majority
vote fusion scheme and the FRR evened out at 4% resulting in
an equal error rate of 2.4%.

Confusion matrices for unimodal vs. multimodal
authentication.

Pred Neg ~  Pred Pos

80
15

60

40

20

Fig 8 Face recognition confusion matrix

Actual Neg

Actual Pos
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Fig 9: Voice Biometrics confusion matrix
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Fig 11: Multimodal Fusion confusion matrix

The number brings out the fact that the unimodal systems tend
to categorize adversarial inputs as legitimate inputs especially
in the case of synthetic voice, and multimodal fusion helps
minimize these errors. This finding aligns with the biometric
literature on security, where multimodal systems have
demonstrated greater resistance to spoofing compared to
unimodal systems on a number of occasions (Scherhag et al.,
2017).

Latency was also tested in order to evaluate real-world. Face
and voice recognition increased the processing time up to 0.5
and 0.5 seconds each, and gesture recognition took around 1.2
seconds. The integrated system added about 2.2 seconds of the
mean session start duration to a single-modality framework.
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This was rated acceptable even though not so rapidly in the
telehealth consultations themselves, particularly due to the
security benefits.

110 FAR (%)

FRR (%)
101
2.0

7.0
6.0

5.0

Error Rate (%)

4.0

3.0

0.3

Face Voice Gesture Multimodal
Authentication Modality

Fig 12: Bar chart comparing FAR and FRR across
modalities

Two important insights are highlighted in the analysis. To
begin with, the adversarial manipulation of unimodal biometric
systems is not only possible, but very effective as well. In the
presented simulation, a cloned voice with a similarity of about
90%! to the original speaker passed the biometric threshold in
over one of ten trials, thus showing the insufficiency of voice-
based authentication as a method. Second, adversarial success
is alleviated through the incorporation of independent
modalities, which obliges an attacker to compromise numerous
systems simultaneously, which is a significantly more intricate
task. These results are in line with the results of Gaw et al.
(2022), who have noted a significant enhancement in the
strength of authentication in targeted spoofing situations using
multimodal fusion.

Feasible problems remain. Gesture-based authentication, even
though it can deny deep-fake inputs, has usability overheads on
geriatric or disabled patients. In addition, multimodal systems
increase the level of computation and require alignment of
nonhomogeneous information streams. However, in high-
stakes settings like telemedicine, where impersonation may
trigger fraud or identity theft or lead to compromised care, the
benefits of security system prevail over operational expenses.

The results, therefore, justify the biometric cross-validation as
a critical protection in remote health care. They also provide a
quantitative justification of implementing multi-layered
authentication as a default option as opposed to an optional one.
In combination with antagonistic detection systems integrated
within diagnostic models, biometric defenses are an
indispensable element of a robust telehealth infrastructure.

4.3 Blockchain Provenance Impact

The other aspect of remote medical defense against adversarial
manipulation is the protection of the integrity and provenance
of medical data. In the current simulation, the technology of
blockchain was utilized as a means to record clinical records
and streams of communication during telemedicine in an
impeccable way. The individual X-ray frames, audio samples
and electronic health record (EHR) text entries were hashed
with SHA-256 and then stored in a distributed registry. The
purpose of such architecture was to guarantee that any form of
tampering or replacement of the data should be identified and
logged automatically. The comparison involved three
scenarios, namely (a) no provenance logging; (b) centralized
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database and hash-based integrity checks; and (c) blockchain-
supported provenance. The key metrics included detection rate
of tampered inputs, latency overhead, and auditability. Results
are summarised in Table 5.3.

Table 3: Provenance verification outcomes under different
logging mechanisms

Logging Tampering Latency Auditabi
Mechanism | Detection Rate | Overhead lity

(%) (ms/frame) Score
No logging | 0 0 None
Centralised | 96 25 Limited
hash
checks
Blockchain | 100 35 Full
ledger

The results demonstrate clear advantages for the blockchain
approach. Without logging, tampered data such as deepfake
video frames or modified EHR entries went undetected,
allowing attacks to propagate unchecked. With centralised
hashing, tampering was detected in most cases (<96%), but
auditability was limited because central servers presented a
single point of failure and trust. Blockchain-based logging
achieved full detection of tampering attempts, as every frame
or record mismatch was flagged against its immutable ledger
entry. Latency overhead was modest, averaging 30—40 ms per
frame, an acceptable range for telemedicine consultations
where video buffering already introduces delays.

Medical Input Hashing Blockchain Ledger
(X-ray, EHR, Audio) (SHA-256) (Immutable Entry)

Verification
During Session

Alert if
Mismatch Detected

Fig 13: Flow diagram of blockchain provenance process

In addition to tamper detection, block-chain enhanced post-
incident forensic analysis was found to be central. The entries
of every anomaly were time stamped and connected to a ledger
record, thus giving a clear record of when and how things were
manipulated. Assuming the simulated consultation, in the
video, the deepfake video frames were added at the 30-second
point and were registered, then accessed later to be audited,
which allowed proving the date and time of the attack. This
kind of forensic power is essential in medical activities wherein
responsibility and follow-up are part of ethical and legal
practices (Bathula et al. 2024).

The consequences of patient trust are important. Unchangeable
provenance logs can help to convince the clinicians and patients
alike that the medical data was not manipulated behind the
scenes. It is consistent with the claims in the literature that
verifiable Al pipelines are needed in healthcare, where all steps
in data processing can be verified separately (Azaria et al.
2016). However, there are still difficulties. Blockchain systems
use more processing power, scaleability is doubtful when
dealing with extremely large image collections, and because
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stored records cannot be altered, may also complicate the
adherence to privacy laws like GDPR.

All in all, the presented blockchain provenance simulation
shows that, even though the distributed ledger technology does
not constitute a panacea, it represents a potent adjunct to
adversarial detection and biometric protection. Blockchain can
be used as a key to reliable remote healthcare systems by
offering integrity, auditability and tamper evidence.

4.4 Simulated Consultation Case Study

As an example of the combined effect of adversarial attacks and
the viability of the defence model, a simulated telemedicine
consultation was examined. It was a case of a de-identified 65-
year-old patient with a MIMIC-III history of hypertension and
pneumonia (Johnson et al. 2016) who was remotely connected
to a clinician. Then, at the 30-second point of the consultation,
an attacker tried a multimodal impersonation by introducing a
video stream of face-swapped deepfakes and using a voice of a
clone of Tacotron-2.

The response of the system occurred in four layers. To begin
with, the frame-level detection deep-fake detector labeled the
stream as adversarial immediately and gave a 92-percent
chance of fabrication in less than a second after the attack
started. This was more than the pre-established threshold of
80% which sent a direct on-screen warning and stopped the
video. Second, the cloned voice was biometrically verified and
was found to have a similarity of 81 per cent with the clinician
profile that was stored, which was less than the 90 per cent
acceptance level. As a result, a secondary authentication
request was made, but the attacker was unable to make
legitimate responses. Third, a gesture prompt, where the
clinician was asked to nod in response to a question, did not
create a valid motion, also supporting the argument that an
attack occurred. Fourth, provenance logging, developed on top
of blockchain hashed all received frames and audio packets;
any irregularities found within the 3036 seconds attack window
were stored permanently to be audited later.

The system was able to end the compromised session at 36
seconds and suggested to reschedule using confirmed channels.
Notably, no false alarms were seen in any of the previous 20
clean test runs, thus highlighting the low false-positive rate of
the framework. The feedback provided by clinicians in the
course of the simulation indicated that there was a high degree
of confidence in the layered safeguards, and that, specifically,
the clarity of alerts and automatic enforcement of session
termination were highly trusted. The case study highlights the
volume of the multi-layered defence. The deep-fake detector
offered the first-line protection in a short period of time,
biometrics and gestures offered the second-level control, and
blockchain guaranteed the accountability even after the
termination. The defence being layered further complicated the
success of the attacker since he would then have to meet
numerous independent checks at the same time to manipulate.

This was particularly the case with the forensic audit function.
Blockchain logging generated an unalterable account of the
attempted hacking with timestamps and hash of altered data.
Such openness acts as a legal and moral insurance policy and
as such it brings accountability and the investigation into the
attacks. In clinical practice, this would support compliance with
medical device regulation and patient safety guidelines.
However, continuous challenges were also pointed out in the
simulation. Detection, despite its speed, added a small latency
to video rendering; gesture prompts, despite its efficiency, can
be unfeasible with patients with motor issues; and the
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blockchain component, though secure, required more
computing power that cannot be easily obtained in low-
resource healthcare environments. These constraints indicate
that even effective systems need to be carefully designed to
make them usable, scalable, and fairly accessible.

The case study, therefore, confirms the larger quantitative
findings by demonstrating the defensive framework at work in
realistic circumstances. It shows that not only are adversarial
attacks plausible, but they are potentially disruptive in remote
healthcare but also that layered defenses can help identify and
prevent them effectively.

S. DISCUSSION AND
RECOMMENDATIONS

The current investigation has performed a thorough analysis of
the vulnerability of medical artificial intelligence (AI) systems
compared to adversarial and deep-fake attacks, as well as the
effectiveness of layered defense mechanisms in the future.
Based on the available literature and carefully controlled
simulations, the results are summarized in the finding that
adversarial perturbation is not only a conceptual novelty but a
concrete threat that potentially affects remote healthcare
provision on a material plane. Models trained on the chest
radiographs, both convolutional neural networks (CNNs) (e.g.
ResNet -50, Vision Transformers (ViTs)) and bare machine
learning models (e.g. Projected Gradient Descent (PGD),
Carlini Wenger (CW)) exhibited strong baseline performance
in an ideal scenario; however, the application of even the
smallest perturbations triggered a catastrophic drop in
predictive performance. These adversarial examples dropped
model accuracy to almost random levels, thus confirming
previous studies by Paschali et al. [8] and Ma et al. [12] and
validating the inherent susceptibility of medical Al to
adversarial examples.

Another finding based on the information is that this weakness
is not limited to diagnostic algorithms, and it is also applicable
to authentication systems that protect patient-clinician
interactions in telehealth settings. Unimodal biometrics
systems, i.e. based on vocal or facial recognition, were
provably easy to exploit, and deep-faked identities had a non-
negligible falseness-acceptance rate, therefore creating
opportunities to use impersonation to access medical
consultations or clinical records fraudulently. On the other
hand, the adoption of a biometric cross-validation system of
multimodality significantly reduced these risks, with face,
voice, and gesture modalities combined together, resulting in a
false-acceptance rate of less than 1 per cent. This empirical data
supports the position expressed by Muoka etal. (2023),
according to which, powerful security procedures require
multi-heterogenous  verification paths, and not the
implementation of one biometric modality.

The implementation of a provenance system based on
blockchain is a critical component of the overall defence
model. These systems with the establishment of immutable
logging of video, audio and electronic health record inputs
guarantee that any form of tampering can be identified and later
audited. The distributed ledger trail offers forensic
accountability to systems that are often denounced as being
black-box in nature. Although blockchain implementation can
be associated with latency that is relatively low, the resulting
integrity and transparency benefits are considered acceptable in
most telemedicine implementations. In addition, the stored
forensic evidence has significant implications in regulatory
compliance and legal responsibility, which supports the
suggestions of Azaria et al. (2016), who emphasized the
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usefulness of blockchain in validating healthcare data.

The combined case study provides a graphic explanation of the
dynamics of the layered framework. In a simulated
consultation, a fake intrusion using deepfake was detected in
two seconds, verified by biometric and gesture checks, and
permanently stored to be audited. Before any harm was done,
the session was brought to an end. Importantly, none of the
false positives were observed in the case of legitimate
consultations, which means that it is possible to enhance
security without affecting the usability. However, problems
that the case study revealed which should be improved included
accessibility of gesture-based authentication to patients with
disabilities and scaling of blockchain systems under resource-
limited settings. Altogether, remote healthcare systems face
serious and evolving dangers that are based on adversarial and
synthetic manipulations. Although each of the technical
defences (adversarial training, preprocessing, multimodal
authentication and blockchain provenance) offers a different
benefit, none of the approaches are sufficient. Subsequently, a
multi-layered defence-in-depth framework will appear to be
necessary, either through the combination of complementary
measures towards addressing various attack vectors with equal
effectiveness and ease, or by properly adjusting resilience and
usability.

A number of recommendations come up in the current analysis.
To begin with, adversarial robustness testing should become a
standard condition of the development and approval of medical
artificial intelligence systems, similar to pharmaceutical trials
with stress testing. The regulatory bodies, such as FDA and
EMA should incorporate the adversarial assessment in the
current frameworks regarding Al-based medical devices.
Second, defaulting to multimodal authentication should be the
default of telehealth providers. Unimodal methods are
convenient, but since they are prone to deep-faking attacks,
they are inadequate in protecting sensitive health interactions.
Multimodal biometrics cross-validation can provide more
secure remote consultation and access to records. Third,
provenance mechanisms based on blockchain need to be tested
and optimized in healthcare. Structures that blend on-chain
integrity and off-chain storage can be a compromise between
transparency and efficiency. Hospitals and telehealth solutions
should also liaise with blockchain experts to help them to scale
without sacrificing security. Fourth, interdisciplinary
cooperation is required to minimize these challenges. Technical
innovation by itself cannot determine issues of accountability
and liability in the case of adversarial manipulation with
harmful consequences. Ethicists, clinicians, and policy makers
have to collaborate with engineers to come up with specific
frameworks that will fairly assign responsibility to developers,
healthcare institutions, and regulators. Lastly, future studies
should go further than simulated experiments to user studies
and clinical pilots. The perceptions of clinicians and patients
regarding alerts, biometric prompts, and provenance logs can
be critical in the enhancement of the idea that the security
measures are built in such a way that they boost trust and do
not create obstacles to care. The human-centred design is
essential in translating the technical defence to the sustainable
practice.

6. CONCLUSION

This paper aimed to discuss the vulnerabilities of deep learning
systems in the medical imaging field, as well as test the
performance of the defense mechanisms to mitigate the threats.
The results obtained make it obvious that, although both
convolutional neural networks and Vision Transformers are
very accurate on clean chest X-ray data, their performance
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suffers considerably in the case of adversarial perturbations.
Other attacks like Projected Gradient Descent and Carlini and
Wagner were particularly successful as they usually decrease
the accuracy of the models to an extent that would not be
acceptable in clinical context. The findings prove that
adversarial risks are not hypothetical but rather concrete
challenges to the implementation of medical Al

Partial protection was provided through defensive means, and
adversarial training became the most resilient to this protection
but with lower clean-data accuracy. The preprocessing
techniques and ensemble modelling provided a further level of
resilience, and detection techniques provided a possible safety
net in cases of naive attacks. Nevertheless, none of the
strategies was effective enough to protect all in a
comprehensive manner, which is where the use of multiple
defenses akin to the defense-in-depth paradigm of
cybersecurity is needed. This evidence therefore indicates that
medical Al cannot use technical performance as its sole
reliance and that such an approach should be combined with
multi-faceted safeguards in case it is to be safely implemented
in clinical settings.

In addition to technical weaknesses, the results highlight more
global ethical and regulatory consequences. Implementing
systems that are likely to be adversarially manipulated, unless
they have sufficient protective measures in place, would
threaten patient safety, negatively affect the trust of clinicians,
and subject institutions to litigation. The solution to these
concerns must involve both technical innovation and active
regulation and open conversation with the stakeholders.
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