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ABSTRACT 

Deep learning has revolutionized medical imaging, but it is 

vulnerable to adversarial attacks, which are deemed dangerous 

to clinical use. This paper compares the strength of 

convolutional neural networks (CNNs) and Vision 

Transformers (ViTs) that are trained on the ChestX-ray14 

dataset at NIH to detect pneumonia. Both models showed high 

baseline accuracy (>90 percent) even when the models were 

attacked by Fast Gradient Sign Method (FGSM), Projected 

Gradient Descent (PGD), DeepFool, and Carlini and Wenger, 

although PGD and CW were the most disruptive. The 

evaluation of defense strategies was also performed, which 

involves adversarial training, input preprocessing, ensemble 

modelling, and adversarial detection. Adversarial training 

provided the best protection, at the cost of lower clean-data 

accuracy and preprocessings and ensembles offered partial 

resistance, and also detection strategies identified a lot of naive 

adversarial inputs. There was however no one defence that was 

enough to counter every assault. The discoveries reveal the 

necessity of layered defence practices and ethical and 

regulatory issues related to trust, liability, and patient safety, 

which supports the significance of strong and transparent AI in 

the field of healthcare practices. 
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1. INTRODUCTION 
In the last decade, deep learning transformed the field of 

medical imaging and now allows to automatically analyze 

radiologic scans with a higher level of accuracy, similar to 

expert clinicians. Neural networks have shown levels of 

expertise in diverse diagnostic procedures, including skin 

lesion classification, and chest X-ray interpretation [1, 2]. 

Indicatively, in 2018, the first U.S. FDA-approved diabetic 

retinopathy deep learning system was on the list of AI-

diagnostic tools, which indicates the increasing nature of AI-

diagnostic integration into the clinical workflow [3]. The key 

to this fast development is that diagnostic reliability and patient 

safety should be considered when applying AI: doctors and 

patients should be capable of believing that such models will 

work properly and contribute to, not threaten, the process of 

medical decision-making. 

Nevertheless, there has now been a serious issue that has arisen: 

the reliability of deep learning models and the loss of trust 

cause adversarial vulnerabilities. Scholars have discovered that 

minimal, a well-crafted interventions to medical pictures, 

which are sometimes entirely unnoticeable by the human eye, 

can even influence AI models to provide completely flawed 

diagnoses with high levels of certainty [4]. The integrity and 

privacy of the training data in such sensitive deployments is 

paramount, a challenge previously addressed by developing 

secure, distributed AI models using federated learning 

architectures [5]. Such intelligently designed inputs are referred 

to as adversarial examples, and they take advantage of the 

vulnerabilities in the decision limits of the model. Patient safety 

is directly threatened by the existence of adversarial attacks: a 

slightly modified CT scan or X-ray may deceive an AI to fail 

to recognize a tumor and incorrectly diagnose a condition, 

resulting in wrong treatment [2, 4]. These types of attacks 

undermine the integrity of AI-based decisions and represent a 

new category of security threat in clinical settings [6]. 

The possible outcomes of confrontational escapades in the 

medical field are dire. In diagnostic imaging, an attacker may 

be able to use manipulated input scan to hide important results 

or create a disease and avoid automated and human quality 

checks [3]. Previous research cautions that adversarial 

weaknesses can lead to disastrous consequences such as false 

diagnoses, unnecessary treatment, fraud in insurance, and even 

a larger crisis of trust in AI-based medicine [4, 6]. An example 

is a study that showed that by introducing almost imperceptible 

noise to a retinal fundus image or a chest X-ray, the output of a 

model could be altered to appear as an image of a diseased 

person or a doctor prescribing the wrong treatment to an 

individual, which could potentially allow fraudsters to fake 

medical diagnoses or the wrong doctor to prescribe incorrect 

treatment to their patient [8]. Previous work established the 

efficacy of multi-tiered defense strategies, specifically for the 

Energy and Healthcare critical sectors, by integrating network 

segmentation, EDR, and offline backups to mitigate persistent 

ransomware threats [9]. Ranging in billions of dollars over 

healthcare decision making, these weaknesses offer some 

incentive to be abused by different entities [4]. This problem 

statement explains the importance of ensuring the security of 

deep learning systems in terms of patient trust and safety. 

This paper provides a systematic study of adversarial attacks on 
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deep learning models in medical images, and the effectiveness 

of defensive measures against AI diagnostic systems. However, 

the specific objectives are:  

a) To determine the categories of adversarial attacks 

shown to take place on medical imaging models and 

their effects on diagnostic performance 

b) To evaluate defense systems (e.g. adversarial 

training, input filters, anomaly detectors, etc.) are 

most effective at enhancing model robustness   

c) To determine how the ethical, legal, and clinical 

implications of adversarial vulnerabilities in 

healthcare AI can be explained, in particular, the trust 

and responsibility of patients 

The present paper is dedicated to image-based AI diagnostics 

(e.g. radiology, pathology, ophthalmology images) where deep 

learning is used extensively and safety issues are the most 

critical. The computer vision field and healthcare field 

literature have been surveyed to relate the general concepts of 

adversarial machine learning with the medical practice. The 

importance of this work is explained by its interdisciplinary 

nature: technical knowledge about model security is associated 

with clinical and ethical aspects. Finally, the performance of AI 

in adversarial settings should be ensured to ensure not only 

accuracy but also patient and clinician trust in AI-assisted care. 

Through the study of existing vulnerabilities and defenses, as 

well as commenting on regulatory factors, timely advice on 

how to build resilient AI systems that can be safely 

incorporated into the healthcare environment was offered. 

 

2. LITERATURE REVIEW  

2.1 Deep Learning in Medical Imaging  
In the last few years, the analysis of medical images has 

become an essential part of the field of deep learning, with 

Convolutional Neural Networks (CNNs) as its central part. The 

literature records the rapid development of the initial 

experiments up to massive applications in the field of radiology 

and other fields of application [7-11]. By 2017, CNNs were 

performing almost humanly on tasks such as skin lesion 

classification and screening retinal diseases. A groundbreaking 

study demonstrated a deep CNN to be as accurate as 

dermatologists in skin cancer distinction using dermoscopic 

photos [14]. Equally, deep models have been particularly 

successful in identifying diabetic retinopathy in fundus images 

and detecting pneumonia in chest X-rays [12, 13]. This 

achievement has already resulted in hundreds of AI models to 

interpret X-rays, CT scans, MRIs, pathology slides, and other 

forms of imaging [16]. One such moment was when, in 2018, 

the FDA gave regulatory approval to an AI-based diabetic 

retinopathy diagnosis device, highlighting the fact that these 

algorithms are no longer in research but in actual clinical use 

[3]. 

The increased use of deep learning to make crucial diagnoses 

implies that reliability is crucial. Doctors have to have 

confidence in the output of an AI to include it in clinical 

decision-making, and the patients have to be confident that AI-

assisted diagnoses or treatment advice is accurate and safe. The 

medical AI ethics studies have pointed out that validation, 

transparency, and reliability are the main ways of earning this 

trust [17]. At this point, when deep learning models are highly 

complex black boxes, the clinicians tend to be more cautious 

and confirm AI output with their own judgment. Trust can be 

established and increased after an AI shows accurate 

performance consistently, which enhances the efficiency of the 

workflow and patient outcomes. Conversely, confidence can be 

destroyed at a very short notice upon any sign of unpredictable 

or erroneous conduct. The example is that with an AI program 

that periodically gives a flashing misdiagnosis (albeit 

uncommonly), clinicians will question everything it produces, 

which nullifies the value that it may be generating. In that way, 

a significant portion of the literature regarding AI in healthcare 

emphasizes on the concepts of robustness and reliability as the 

basis of trust in such tools [6]. Medical life and death decisions 

are stake, which are very low tolerance of mistakes or failure 

modes that are not known in systems with artificial intelligence. 

2.2 AI adversarial attacks: Computer 

vision principles 
Adversarial attacks demonstrate the underlying weaknesses of 

existing computer-vision systems. Initial experiments had 

demonstrated that small, usually unnoticeable alterations in the 

input images can result in high-confidence misclassification 

and Szegedy et al. [18] were the first to record this phenomenon 

as they demonstrated that well-crafted perturbations could 

consistently mislead deep neural networks. The finding led to 

the creation of algorithmic attack and defensive analysis. 

Goodfellow et al. [19] proposed Fast Gradient Sign Method 

(FGSM), a one-step method, which perturbs an image by 

following the gradient of the model loss in order to cause 

misclassification. These approaches were later generalized to 

iterative algorithms such as Projected Gradient Descent (PGD) 

that utilizes gradual gradient steps and can be known to 

generate strong adversarial samples [20]. Carlini and Wagner 

(CW) method is an example of optimisation-based attacks, 

where it minimises the distance between the adversarial 

samples targeting low distortion [21], and DeepFool reduces 

the norm of perturbation steps to find the nearest decision-

boundary crossing [22]. Together, these attacks constitute a 

methodological repertoire of investigating robustness of 

models. 

One notable fact about adversarial examples is that they 

transfer well: adversarial examples created by training on a 

single model are often effective in deceiving other models, 

even when the architecture and training data are different [21, 

22]. Transferability allows black-box attacks in which an 

attacker trains a surrogate model and launches attacks on a 

target system without having any direct access. Recent studies 

indicate that a sense of transferability emerges due to data 

representations perceived as similar across networks, which 

presupposes that systemic vulnerabilities can be maintained in 

different model families [3]. Its practical implication is that 

publicly available models can be used as convenient templates 

to create attacks on proprietary medical AI systems, greatly 

expanding the threat space. 

Adversarial research has expanded to include image 

classification and detection, segmentation, tracking of objects 

in video streams, and video streams. Most importantly, there 

are universal adversarial perturbations (UAPs) which are 

individual perturbation vectors that when added to a vast 

amount of inputs generate very high misclassification rates 

[25]. UAPs show that it is possible to build compact and 

reusable attacks, and this can be scaled in terms of adversarial 

campaigns. Such dangers have been confirmed by medical 

imaging experiments: controlled changes in diagnostic output 

of automated radiology systems can be caused by targeted 

perturbations, indicating the possibility of an extensive clinical 

effect [26]. Physical-world attacks also explain physical-world 

risk; printed stickers or graffiti have been demonstrated to 

confuse traffic-sign recognisers in autonomous vehicles, with 

implications on safety when adversarial examples are no longer 

in the form of digital pixels [27]. 
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Fig 1: Adversarial perturbation example — image classification. 

The picture on the left is the original image with the label panda 

(57.7%); the centre is the amplified perturbation pattern; the 

right-hand picture is the adversarial image with the label gibbon 

(99.3%) after such a small visible change [19]. 

 

Fig 2: Physical-world adversarial attack on traffic sign recognition. 

Left: well-placed stop sign; centre: perturbation stickers that 

have been applied; right: misplaced adversarial image with the 

label of Yield, showing physical exploitability [27]. 

The literature taxonomies include white box (full model access) 

vs black box (limited access), targeted vs untargeted, and image 

specific vs universal attacks. These differences are used to 

threat model medical AI: white-box situations are used to test 

worst-case robustness, and black-box transferability 

emphasizes realistic attacker abilities. The computer-vision 

body of work, therefore, provides both the theoretical 

foundations and practical algorithms necessary to assess and 

harden medical imaging systems against adversarial 

manipulation. These insights motivate the incorporation of 

adversarial robustness evaluation into any deployment pipeline 

for clinical AI. 

 

 

 

 

2.3 Adversarial Attacks in Healthcare 

Imaging: Demonstrated Vulnerabilities 
The concept of adversarial threats in healthcare imaging started 

to gain traction in 2018, when there was increasing awareness 

that the flaws of computer vision could also be applied to 

clinical imaging [3]. Preliminary studies by Paschali et al. [8] 

have revealed that the medical image classification and 

segmentation networks (including the networks used to 

perform the activities like skin lesion detection and brain 

segmentation with MRI) severely deteriorate in performance 

when attacked by the Fast Gradient Sign Method (FGSM) and 

DeepFool. More importantly, even the minimal perturbations, 

which are not noticeable to human observers, caused 

significant decreases in the accuracy of the diagnosis, 

disclosing that even the models which are otherwise similar to 

human observers can be turned into unreliable ones because of 

adverse manipulation. Ma et al. [12] noted in their follow-up 

analysis that certain architectures were marginally more 

resilient than others, but all tested models were at least partially 

vulnerable. 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.55, November 2025 

49 

 

Fig 3: Adversarial examples in medical imaging 

Visualization of medical adversarial examples with predictions 

under diverse perturbation size ϵ. The generated segmentation 

masks are superimposed on the original images for 

visualization (adapted from Dong et al. [3]). 

This question attracted considerably more attention after a 

high-profile commentary by Finlayson et al. [4] in Science, 

where potential real-life scenarios were outlined. They gave 

examples of chest X-rays which were manipulated to give a 

benign image that was called pneumothorax, or a sick scan that 

was termed as healthy. These manipulations may help conduct 

fraudulent insurance claims, damage reputations, or even pose 

direct risks to patients [26]. As noted in the article, patients, 

healthcare professionals, insurers, and malicious external 

actors may all have incentives to pursue adversarial 

vulnerabilities.
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Fig 4: Medical adversarial perturbations

Top: diabetic retinopathy fundoscopy images; middle: chest X-

rays; bottom: dermoscopy images. Left: control samples; 

middle: distortions manifested; right: adversarial counterparts 

resulting in false diagnosis. Green labels show accurate 

predictions, red errors (modified by Ma et al. [12]). 

These worries were supported by empirical research. Dugas et 

al. [29] and Wang et al. [30] tested the adversarial attack in 

three modalities: funduscopies, chest radiographies, and 

dermoscopies and demonstrated a steep decline in model 

performance. In other experiments, melanoma classifiers 

deteriorated to a near-random score on adversarially perturbed 

images, 95% on clean images [12]. Kovalev and Voynov [31] 

proved these vulnerabilities using PGD attacks on chest X-rays 

and histology data, and Rao et al. [32] showed drastic drops in 

area-under-curve scores after applying the pneumonia-

detecting network to the FGSM and PGD. Together, these 

studies determined that no broadly used medical imaging 

model was intrinsically resistant to adversarial perturbations, 

even when baseline accuracy was high on standard evaluation 

conditions. 

Modality-specific and physical adversarial strategies have been 

since explored by researchers. Finlayson et al. [4] showed that 

small spots of adversarial images could easily deceive 

dermatology classifiers, even without other parts of the picture 

being damaged. Theoretical radiological extensions are placing 

stickers on the analogue films prior to digitisation or adjusting 

acquisition parameters in MRI scans. According to Sorin et al. 

[33], even the few radiology-specific studies available have 

reported adversarial vulnerabilities, such as in tumour detection 

in MRI and in the classification of lung nodules in CT images. 

Such findings are also complicated by differences between 

medical images and natural images. Greater bit-depth, 

resolution and artefacts of modality like ultrasound speckle or 

noise in MRI modify the attack landscape. As Hirano et al [34] 

demonstrated, it is crucial to adapt to intrinsic noise 

distributions to construct universal perturbation of chest X-

rays. However, they were able to generate perturbations that 

could alter a COVID-19 pneumonia detector on several scans 

of patients. Bortsova et al. [35] looked at parameters of image 

preprocessing and discovered that both typical augmentation 

and compression methods failed to eradicate adversarial 

vulnerability; in fact, these operations unintentionally 

reinforced adversarial effect on images.  

2.4 Defense Strategies in Literature: 

Making Medical AI More Robust 
The adversarial vulnerability of healthcare imaging models has 

motivated much study on defense mechanisms. Though a large 

number of these strategies have been developed in the wider 

adversarial machine learning community, they have 

subsequently been applied to the medical field where patient 

safety, diagnostic reliability, and trust take a central role. The 

existing methods may be classified into adversarial training, 

defensive preprocessing, architecture modification, adversarial 

example detection, and ensemble, or redundancy, approaches. 

Adversarial training has been widely known to be one of the 

best methods used to enhance model robustness. It is a 

retraining of models with adversarially perturbed examples and 

clean images, and so the model has to generalise to both types 

of inputs. Initial studies by Ren et al. [36] revealed that an MRI 

segmentation network became significantly more robust when 

it was trained using FGSM-based perturbation. Equally, Rao et 

al. [32] established that pneumonia detection models that have 

been trained on the PGD inputs were resistant to test-time 

perturbation. Although this is effective, adversarial training 

causes computational overheads, which usually run training 

multiple times. There is also the trade-off of robustness versus 

clean accuracy when using the method. An example is the 

report by Madry et al. [20], which showed that a diabetic 

retinopathy classifier has preserved approximately 85% of its 

initial clean accuracy and 80% accuracy with substantial PGD 

attacks. This balance represents the conservative adjustment of 
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models, which are still not so prone to overconfident errors and 

are slightly less sensitive to fine diagnostic observations. 

The second line of defense is defensive preprocessing or input 

transformation. The objective of these methods is to suppress 

or remove adversarial perturbations of images prior to their 

input into the network. Denoising filters, bit-depth reduction, 

and JPEG compression are usually used. Elsewhere in medical 

imaging, Taghanaki et al. [37] studied feature-preserving 

denoising in chest X-rays and discovered that perturbations 

could be reduced without a major change in anatomical content. 

Kansal et al. [38] applied the same principle to COVID-19 CT 

images and suggested guided filtering that proved to remove 

adversarial noise effectively without damaging clinically 

significant structures. The primary benefit of preprocessing is 

that it does not incur network parameter or retraining 

modifications, and is therefore light to implement. 

Nevertheless, malicious attackers may create perturbations that 

resist or take advantage of these changes, making their efficacy 

short-lived. 

Another set of strategies includes model architecture and 

feature enhancement. In this case, the objective is to entrench 

the aspects of resilience within the feature extraction operation 

of the network. Taghanaki et al. [37] have mentioned that the 

use of average pooling in place of max-pooling layers resulted 

in a higher level of robustness due to the fact that more 

contextual information is retained. Bortsova et al. [35] 

developed this concept by incorporating guided filter layers in 

dermoscopy networks, which minimizes the impact of 

perturbations at feature intermediate levels. Knowledge 

distillation has been used as well: Liu et al. [39] trained 

segmentation models to generate more stable embeddings, 

which showed greater resistance to FGSM and iterative attacks. 

These architectural advancements have shown that resilience 

can be factored in the model design and not on post hoc 

fortifications only. 

Another complement strategy is the detection of adversarial 

examples. These methods are not used to prevent 

misclassification, but to detect adversarial inputs and reclassify 

them to be looked at by humans. Ma et al. [12] demonstrated 

more than 98% AUC in differentiating adversarial manipulated 

chest X-rays and fundus images and clean inputs, finding that 

the network had unique activation patterns when subjected to 

adversarial perturbations. In a similar vein, Watson and Al 

Moubayed [40] also trained meta-classifiers on diagnostic 

model output and were able to detect FGSM and CW samples. 

These detectors ensure an extra layer of safety when used in 

clinical systems, and more specifically, adversarial 

perturbations might be more evident in structured medical data 

than in natural images. However, they also have to deal with 

the consistent threat of the so-called adaptive attacks that can 

be designed in such a way that they avoid detection. 

 
Fig 5: ROC curve of adversarial detection. 

(adapted version of Ma et al. [12]]. 

Another line of defense is the ensemble and redundancy 

techniques. With the help of various models with different 

architectures, adversarial perturbations have lower chances of 

success across the board. Modifications to voting mechanisms 

may address misclassifications in models, and randomness, e.g. 

input transformations or dropout during inference, may 

destabilize the control of the attacker. Xie et al. [41] 

demonstrated how randomised transformations can be used to 

minimise the rate of successful attacks, where a similar 

technique can be applied to medical practice with minor 

rotation or crop of scans at the time of assessment. Also, by 

incorporating clinicians as human-in-the-loop individuals in 

ensemble pipelines improves reliability, especially when 

automated predictions are incompatible with anticipated 

clinical trends. 

In the literature, it is always emphasized that no individual 

defense mechanism can be in total protection. According to 

Dong et al. [3], adversarial training is more effective in 

protecting against particular attacks but cannot generalise to 

novel perturbations, including adversarial patches. 

Preprocessing has the weakness of neutralising some noise 

patterns and is susceptible to adaptive exploitation, whereas 

detection systems are at risk of becoming outdated as attacks 

change. In that regard, researchers are more and more 

proposing defense-in-depth solutions, which consider a 

combination of adversarial training, preprocessing, feature 

robustness, detection, and ensemble techniques. This 

combination of measures has been demonstrated to be effective 

by recent experiments that have demonstrated that integrated 

defenses are able to maintain over 90 percent of diagnostic 

accuracy in chest X-ray models in strong adversarial examples 

and, at the same time, issue warnings on suspicious inputs to 

human review [6]. 

3. METHODOLOGY 
A mixed-method research consisting of systematic literature 

review and controlled simulation experiments was used to 

explore adversarial vulnerabilities and defenses in medical 

imaging AI. The methodology involved two concomitant 

strands: (a) an exhaustive literature review to chart the already 

existing attacks, defenses and ethical issues and (b) an in-silico 

experimental analysis that modeled realistic adversarial attacks 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.55, November 2025 

52 

and defensive measures against a standard chest X-ray 

classification problem. This two-sided strategy allows 

synthesizing concepts and illustrating them empirically by 

reproducible conditions. 

3.1 Design of research and experimental 

justification 

The research design used in the study was an exploratory-

explanatory research design. The literature review came up 

with candidate attack algorithms, defense mechanisms and 

some general procedures of medical imaging; these results 

were used to plan the simulated experiments. The experimental 

part is a comparative one, not a clinical one: worst-case and 

transfer attacks were simulated by using public datasets and 

known model architectures and relative robustness was 

determined between models and defenses. The purpose was to 

shed light on dissipation processes of failure and to compare 

mitigation influences in controlled and repeatable 

environments, but not to verify a clinical device. 

 
Fig 6: Research design (Flow Diagram) 

3.2 Model selection and data sources 

The source of the image was the NIH ChestX-ray14 dataset 

[30] as it is relatively large (over 100,000 frontal chest 

radiographs) and has multi-label pathology annotations. To 

make the classification a tractable problem, it was simplified to 

a binary classification: “Normal” and “Pneumonia” and the 

options associated with standard clinical decision boundaries 

and correspond to published benchmarks (e.g., CheXNet). 

Preprocessing of the images was done according to standard 

practices: scaling the images to 224x224, normalizing the 

intensity range to [0,1], and data augmentation (random crops, 

horizontal flips) were limited to non-diagnostic 

transformations. 

Two representative model families that are designed to reflect 

the modern-day practice were chosen: a convolutional neural 

network (ResNet-50) and a Vision Transformer (ViT-base). 

Both were pre-trained on ImageNet and fine-tuned on ChestX-

ray14. Architectures performed similarly to clean test images 

with Baseline performance of ResNet-50 approximately 93% 

accuracy and ViT approximately 92% accuracy, a realistic 

starting point on adversarial evaluation and the ability to 

evaluate architecture-dependent robustness. 

3.3 Type of attacks investigated and 

implementation specifications 
A collection of adversarial algorithms was used to test a variety 

of threat models (white-box, iterative, optimization-based, and 

universal). The selection of parameters reflects literature 

standards to make them comparable: 

➢ Fast Gradient Sign Method (FGSM) [19]: single-

step gradient perturbation 𝐱adv =𝐱+ϵ⋅sign(∇𝐱ℓ(h

(𝐱),y)). Low and moderate perturbation strength were 

tested with two levels of ε (0.01 and 0.03 on 

normalized pixel range). 

➢ Projected Gradient Descent (PGD) / BIM [20]: 

iterative multi-step attack with random starts, 40 

iterations, step size α=ϵ/40. Worst-case first-order 

attacks were based on a strong baseline of PGD. 

➢ DeepFool [22]: untargeted untypical attack that 

minimises the norm, and is used to detect minimal-

norm perturbs that cross decision boundaries. 

➢ Carlini–Wagner (CW) [21]: L2-norm optimisation 

attack executed with a small confidence parameter to 

focus on imperceptibility; executed on a sampled 

subset as it is computationally expensive. 

➢ Universal Adversarial Perturbation (UAP) [25]: a 

single-vector calculated on a training batch to 

evaluate the ability to test cross-image degradation. 

Both transfer tests (perturbations created on resnet and applied 

to ViT and vice versa) and white-box experiments (full model 

gradient available) were run to recreate black-box surrogate 

tests. Measures were made of attack success rate (classification 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.55, November 2025 

53 

flip rate), drop in AUC, and perceptual distortion (measured by 

L2 and SSIM). These metrics facilitate direct comparison of 

attack potency and model resilience across architectures. 

3.4 Defense Methods Evaluated 

The strategies of defense that were evaluated in this research 

were chosen because the strategies represent big division 

observed in the literature, and each strategy was evaluated 

against the adversarial conditions mentioned in the previous 

section. The goal was to determine the relative gains of 

robustness as well as the trade-offs in the accuracy and 

interpretability of clean-data. Four types of defenses were 

considered, namely adversarial training, input preprocessing, 

adversarial example detection and ensemble modelling. 

The adversarial training was conducted on the base ResNet-50 

architecture and fine-tuning was done on clean and adversarial 

images obtained by Projected Gradient Descent (PGD). In 

every training epoch, real-time PGD example against the 

current model parameters was generated, and the classifier was 

trained to learn to identify unperturbed and perturbed chest X-

rays. The result of this process was a well trained model whose 

performance was again tested on the same set of attacks. As 

expected in the literature, adversarial training gave a strong 

resilience enhancement, especially in the case of FGSM and 

PGD attacks, at the cost of a small decrease in accuracy on 

clean test data. As one example, the adversarial trained variant 

of ResNet reached 93% clean accuracy, which is lower than the 

93% baseline, but far better than the 90 percent baseline, which 

maintained its performance at 93 percent. 

Input preprocessing was investigated as a model-agnostic, 

lightweight defence. Each X-ray was smoothed using a 

Gaussian (3 × 3 and 5 × 5) filter before inference to emphasize 

high-frequency noise that is typical of adversarial noise. This 

was complemented by JPEG compression as an alternative 

denoising method which was driven by the proven capability to 

strip small perturbations in vision studies. Both methods 

partially regained accuracy of classification against FGSM and 

DeepFool attacks, but iterative attacks, including PGD, still had 

significant strength. The sacrifice that was seen was this 

minimal decrease in clean accuracy as a result of out-of-focus 

of fine anatomical features within the image, which depicts the 

trade-off between robustness and diagnostic accuracy. 

A detection mechanism was also experimented, which was 

aimed at simulating statistical anomaly detectors without any 

independent model. The algorithm was based on tracking the 

confidence distributions of model monitors: adversarial 

examples tend to have irregular distributions of confidence 

despite having high misclassification confidence. The output 

entropy and predicted-class confidence threshold was 

heuristically established with the help of a validation set of both 

clean and adversarial samples. The inputs that were higher than 

the entropy threshold or lesser than the confidence cut-off were 

marked as suspicious. This method has shown good detection 

rates (>90) against FGSM and DeepFool but was weaker 

against optimisation-based attacks of CW, which are 

specifically designed to avoid statistical signatures. False 

positive rates were less than 5 per cent on clean X-rays 

indicating potential use in practice in clinical triage systems 

flagged inputs could be sent to a human review. 

The ensemble defence was the combination of the ResNet and 

Vision Transformer (ViT) models using averaged prediction 

probabilities. This design took advantage of architectural 

heterogeneity, as opposing examples designed to be learned on 

convolutional networks do not necessarily learn on 

transformers and vice versa. On PGD adversarial examples 

produced to target ResNet, the ensemble performed 

significantly better than the ResNet alone and similarly resilient 

to perturbations were produced when ViT adversarial examples 

were produced. This proved the hypothesis that ensembles 

reduce the transferability of attacks, but the hybrid model did 

not completely remove vulnerabilities. 

Grad-CAM saliency maps were obtained on clean and 

adversarial X-rays to measure interpretability under attack and 

defense. These visualisations brought out how adversarial 

perturbations tended to shift the attention of the model to 

diagnostically significant lung areas to irrelevant corners of the 

image or edges. Conversely, adversarial trained and ensemble 

models had more saliency maps consistent with anatomical 

features, which strengthens their interpretive strength. 

3.5 Evaluation Metrics 
A number of complementary measures were used to measure 

performance. The key measure was classification accuracy, 

which was given on clean and adversarial test sets separately. 

Attack success rate as the ratio of correctly classified to 

incorrectly classified by attack gave an indicator of attack 

strength. The magnitude of the perturbations was measured by 

L 2 and L infinity to ensure generated perturbation was within 

imperceptible values (usually 0.03 ε). Direct comparison 

between baseline and defended models was made possible by 

robust accuracy which was the accuracy of classification in the 

presence of attack but when defences were used. True positive 

and false positive rates were used as indicators of detection 

performance, because it represents a trade-off of true positives 

and false negatives between adversarial samples and false 

alarms on clean inputs. 

3.6 Limitations of Methodology 
In spite of the methodology giving insightful information about 

adversarial robustness, there are still limitations. The 

simulations were conducted using static datasets, which do not 

reflect the variability of the real clinical setting like variations 

in image acquisition or human-AI interaction or multi-modal 

decision-making. The level of attacks was limited to avoid 

attacks at inference time and not poisoning or backdoor attacks 

that attack during training. In the same manner, the defence 

measures chosen are typical classes but not sophisticated 

certified defences or high randomisation techniques. This could 

restrict the generalisability to other modalities with 

dimensionality data of attacks, like 3D MRI or digital 

pathology, where the dimensionality of the data changes. The 

label noise in ChestX-ray14 further creates uncertainty as well, 

as some adversarial errors can coincide with ground-truth 

errors. Lastly, computational constraints limited the size of 

optimisation based attacks and eliminated the possibility of full 

training detection networks instead requiring heuristic 

approximations. 

In spite of these limitations, the methodology was able to 

measure the dynamics of adversarial vulnerability and show 

comparative strong points using the selected defences. The 

combination of empirical simulation with the analysis based on 

the literature make the findings more credible and gives the 

results of the a strong ground. 

4. RESULTS 

4.1 Deepfake/Adversarial Detection 

Performance 
The paper looks at the strength of baseline models and the 

influence of adversarial perturbation on the classification 
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performance. Two common architectures, ResNet-50, a 

convolutional neural network, and ViT-base, a Vision 

Transformer were trained on the ChestX-ray14 dataset to 

classify binary pneumonia. ResNet 50 To establish a baseline, 

resnet 50 obtained a high accuracy of 93 percent and ViT 

succeeded with 92 percent, becoming consistent with the 

current benchmarking (Rajpurkar et al., 2017; Kanca et al., 

2025). Nevertheless, with the addition of adversarial 

perturbations, both models significantly deteriorated in 

performance, which showed that they were vulnerable to 

imperceptible manipulations. 

Simulation of attacks was performed in five popular ways, 

which are FGSM, PGD, DeepFool, Carlini and Wenger (CW), 

and Universal Adversarial Perturbations (UAP). The 

corresponding results depict a definite difference in the power 

of attacks, which is summarized in Table 5.1. 

Table 1: Simulated classification accuracy (%) of ResNet-

50 and ViT under different attacks 

Attack ResNet-

50 

Accuracy 

(%) 

ViT 

Accuracy 

(%) 

Clean 93 92 

FGSM (Îµ=0.01) 71 75 

FGSM (Îµ=0.03) 47 49 

PGD (40 iters, Îµ=0.03) 20 22 

DeepFool 35 38 

Carlini & Wagner (CW) 12 15 

Universal Perturbations (UAP) 40 42 

 

The results show that one-step FGSM with a small perturbation 

magnitude (ε=0.01) decreased the accuracy of ResNet by 93 

per cent to 71 per cent, and ViT fell a little bit more, to 75 per 

cent. A further increase in ε to 0.03 resulted in both models 

having lower accuracy than 50. Iterative PGD was significantly 

stronger, as its attack success rate was over 80% at ε=0.03, and 

the accuracy of it dropped to about 20% in each network. Even 

with the design of DeepFool to minimise perturbation, it 

attained an attack success rate of the order of 65 which 

demonstrates that boundary-finding attacks can be subtle but 

very effective. The most harmful ones were CW attacks, 

computationally more complex, making the accuracy close to 

random guessing (~10–15%) on a sub-selection of test samples. 

Universal perturbations were found to be slightly less powerful 

compared to PGD, however, the authors were able to reduce 

the accuracy to about 40 percent, which confirms the scalability 

and viability of single-vector attacks in a clinical environment. 

 

Fig 6: ROC curves comparing clean vs. adversarial 

performance for ResNet and ViT 

The transformation of CNN and transformer systems was 

compared with subtle results. Vision transformers (ViTs) were 

slightly more resistant to FGSM perturbations, which could be 

explained by the fact that the diffusion effect of the attention 

mechanism in the transformer leads to attenuation of 

perturbations, versus convolutional neural networks (CNNs), 

which amplify perturbations through their convolutional filters. 

However, both iterative and optimization-based attacks, such 

as PGD and CW, were found to be no less effective against both 

architectural classes, thus highlighting the fact that adversarial 

vulnerability is a structural property of deep learning systems 

instead of a property of specific model families. This fact is 

supported by Dong et al. [3], who described the transferability 

of adversarial examples to other architectures in the field of 

medical imaging. 

These weaknesses are further explained by the attack success 

rate (ASR). In PGD ε= 0.03 the ASR was 82% in ResNet and 

78% in ViT, meaning that almost four instances per five were 

successfully coerced to be incorrectly classified. DeepFool 

achieved 64 per cent ASR with ResNet and 60 per cent with 

ViT, compared to CW which exceeded 90 per cent on both 

models. These measurements are consistent with the findings 

of Paschali et al. [8] who not only detected that there was 

comparable accuracy degradation in skin lesion analysis 

models exposed to both FGSM and DeepFool, but also Ma et 

al. [12] who established that PGD can disable diabetic 

retinopathy detection frameworks. 
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Fig 7: Visual illustration of adversarial perturbations on chest X-rays 

The figure shows that even the perturbations that cannot be 

even perceived by the human eye can drastically change 

diagnostic outputs. Such lack of strength is a matter of serious 

concern in the field of medical imaging where the ability to 

ensure a diagnosis has a direct effect on patient outcomes. 

Interestingly, the confidence models were not reduced during 

an attack; it is more common that the adversarial samples 

would cause the high-confidence false alarms (e.g. >95 %). 

This phenomenon implies that adversarial attacks not only can 

create errors but also hide them, thus making it more difficult 

to detect by the human eye. Similar risks were found by 

Finlayson et al. [4], who noted that adversarial manipulations 

may encourage models to incorrectly label benign X -rays as 

pathological and vice versa, which can have disastrous clinical 

consequences. 

The consequences of telehealth and remote healthcare systems 

are far-reaching. Actors adversarial have the possibilities to 

take advantage of the vulnerabilities detected to tamper with 

the diagnostic results so as to commit financial fraud, insurance 

abuse, or malicious interference. As it has been shown in the 

current performance analysis, both convolutional neural 

network and transformer-based diagnostic models are highly 

susceptible without comprehensive defensive mechanisms in 

place. As a result, such findings justify the exploration of the 

multilayered defense techniques, such as adversarial training, 

detection heuristics, and ensemble learning, which are 

discussed further. 

5.2 Biometric Cross Validation Results.   
Whereas visual diagnostic models are mostly affected by 

adversarial attacks, authentication of patients and clinicians in 

telehealth environments heavily depends on the ability to verify 

the identity. It used a multimodal biometric cross-validation 

system and included face recognition, voice biometrics and 

gesture responses. The rationale behind this is that adversarial 

attacks which focus on a single modality, including a face-

swapped video or a voice clone, can be alleviated by requiring 

several independent checks. This idea is aligned with the 

existing literature that highlights the potential of multifactor 

authentication in the field of medical AI (Mason et al., 2020; 

Pahuja and Goel, 2024). 

Both benign and adversarial sessions were simulated and 

included in the evaluation. True patient and clinician inputs 

were used in clean sessions, and nonexistent or dissimilar 

gestures were used in adversarial sessions built on deep-face 

streams generated with DeepFaceLab and voice cloning 

generated with Tacotron 2 together with SV2TTS. To 

determine the level of system efficacy, performance measures 

in terms of false acceptance rate (FAR), false rejection rate 

(FRR) and equal error rate (EER) were used. The obtained data 

is summarized in Table 5.2. 

Table 2: Biometric authentication performance across 

modalities 

Modality FAR (%) FRR (%) EER (%) 

Face recognition 9 5 7 

Voice biometrics 11 6 8.5 

Gesture prompt 3 7 5 

Multimodal fusion 0.8 4 2.4 

 

The findings proved that the individual unimodal systems were 

susceptible. Under deep/ fake attacks, face recognition returned 

a false acceptance rate (FAR) of 9 per cent, compared to voice 

biometrics which returned a 11 per cent FAR to face cloned 

speech. Gesture prompts, which needs a robust physical action, 

e.g. nodding or hand wave, had a FAR of 3⁻ and a false 

rejection rate (FRR) of 7: This FAR indicates the usability 

problems. The FAR decreased to less than 1% with majority 

vote fusion scheme and the FRR evened out at 4% resulting in 

an equal error rate of 2.4%. 

Confusion matrices for unimodal vs. multimodal 

authentication. 

 

Fig 8 Face recognition confusion matrix 
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Fig 9: Voice Biometrics confusion matrix 

 

Fig 10: Gesture Prompt confusion matrix 

 

Fig 11: Multimodal Fusion confusion matrix 

The number brings out the fact that the unimodal systems tend 

to categorize adversarial inputs as legitimate inputs especially 

in the case of synthetic voice, and multimodal fusion helps 

minimize these errors. This finding aligns with the biometric 

literature on security, where multimodal systems have 

demonstrated greater resistance to spoofing compared to 

unimodal systems on a number of occasions (Scherhag et al., 

2017). 

Latency was also tested in order to evaluate real-world. Face 

and voice recognition increased the processing time up to 0.5 

and 0.5 seconds each, and gesture recognition took around 1.2 

seconds. The integrated system added about 2.2 seconds of the 

mean session start duration to a single-modality framework. 

This was rated acceptable even though not so rapidly in the 

telehealth consultations themselves, particularly due to the 

security benefits. 

 

Fig 12: Bar chart comparing FAR and FRR across 

modalities 

Two important insights are highlighted in the analysis. To 

begin with, the adversarial manipulation of unimodal biometric 

systems is not only possible, but very effective as well. In the 

presented simulation, a cloned voice with a similarity of about 

90⠻¹ to the original speaker passed the biometric threshold in 

over one of ten trials, thus showing the insufficiency of voice-

based authentication as a method. Second, adversarial success 

is alleviated through the incorporation of independent 

modalities, which obliges an attacker to compromise numerous 

systems simultaneously, which is a significantly more intricate 

task. These results are in line with the results of Gaw et al. 

(2022), who have noted a significant enhancement in the 

strength of authentication in targeted spoofing situations using 

multimodal fusion. 

Feasible problems remain. Gesture-based authentication, even 

though it can deny deep-fake inputs, has usability overheads on 

geriatric or disabled patients. In addition, multimodal systems 

increase the level of computation and require alignment of 

nonhomogeneous information streams. However, in high-

stakes settings like telemedicine, where impersonation may 

trigger fraud or identity theft or lead to compromised care, the 

benefits of security system prevail over operational expenses. 

The results, therefore, justify the biometric cross-validation as 

a critical protection in remote health care. They also provide a 

quantitative justification of implementing multi-layered 

authentication as a default option as opposed to an optional one. 

In combination with antagonistic detection systems integrated 

within diagnostic models, biometric defenses are an 

indispensable element of a robust telehealth infrastructure. 

4.3 Blockchain Provenance Impact 
The other aspect of remote medical defense against adversarial 

manipulation is the protection of the integrity and provenance 

of medical data. In the current simulation, the technology of 

blockchain was utilized as a means to record clinical records 

and streams of communication during telemedicine in an 

impeccable way. The individual X-ray frames, audio samples 

and electronic health record (EHR) text entries were hashed 

with SHA-256 and then stored in a distributed registry. The 

purpose of such architecture was to guarantee that any form of 

tampering or replacement of the data should be identified and 

logged automatically. The comparison involved three 

scenarios, namely (a) no provenance logging; (b) centralized 
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database and hash-based integrity checks; and (c) blockchain-

supported provenance. The key metrics included detection rate 

of tampered inputs, latency overhead, and auditability. Results 

are summarised in Table 5.3. 

Table 3: Provenance verification outcomes under different 

logging mechanisms 

Logging 

Mechanism 

Tampering 

Detection Rate 

(%) 

Latency 

Overhead 

(ms/frame) 

Auditabi

lity 

Score 

No logging 0 0 None 

Centralised 

hash 

checks 

96 25 Limited 

Blockchain 

ledger 

100 35 Full 

 

The results demonstrate clear advantages for the blockchain 

approach. Without logging, tampered data such as deepfake 

video frames or modified EHR entries went undetected, 

allowing attacks to propagate unchecked. With centralised 

hashing, tampering was detected in most cases (≈96%), but 

auditability was limited because central servers presented a 

single point of failure and trust. Blockchain-based logging 

achieved full detection of tampering attempts, as every frame 

or record mismatch was flagged against its immutable ledger 

entry. Latency overhead was modest, averaging 30–40 ms per 

frame, an acceptable range for telemedicine consultations 

where video buffering already introduces delays. 

 

Fig 13: Flow diagram of blockchain provenance process 

In addition to tamper detection, block-chain enhanced post-

incident forensic analysis was found to be central. The entries 

of every anomaly were time stamped and connected to a ledger 

record, thus giving a clear record of when and how things were 

manipulated. Assuming the simulated consultation, in the 

video, the deepfake video frames were added at the 30-second 

point and were registered, then accessed later to be audited, 

which allowed proving the date and time of the attack. This 

kind of forensic power is essential in medical activities wherein 

responsibility and follow-up are part of ethical and legal 

practices (Bathula et al. 2024). 

The consequences of patient trust are important. Unchangeable 

provenance logs can help to convince the clinicians and patients 

alike that the medical data was not manipulated behind the 

scenes. It is consistent with the claims in the literature that 

verifiable AI pipelines are needed in healthcare, where all steps 

in data processing can be verified separately (Azaria et al. 

2016). However, there are still difficulties. Blockchain systems 

use more processing power, scaleability is doubtful when 

dealing with extremely large image collections, and because 

stored records cannot be altered, may also complicate the 

adherence to privacy laws like GDPR. 

All in all, the presented blockchain provenance simulation 

shows that, even though the distributed ledger technology does 

not constitute a panacea, it represents a potent adjunct to 

adversarial detection and biometric protection. Blockchain can 

be used as a key to reliable remote healthcare systems by 

offering integrity, auditability and tamper evidence. 

4.4 Simulated Consultation Case Study 

As an example of the combined effect of adversarial attacks and 

the viability of the defence model, a simulated telemedicine 

consultation was examined. It was a case of a de-identified 65-

year-old patient with a MIMIC-III history of hypertension and 

pneumonia (Johnson et al. 2016) who was remotely connected 

to a clinician. Then, at the 30-second point of the consultation, 

an attacker tried a multimodal impersonation by introducing a 

video stream of face-swapped deepfakes and using a voice of a 

clone of Tacotron-2.  

The response of the system occurred in four layers. To begin 

with, the frame-level detection deep-fake detector labeled the 

stream as adversarial immediately and gave a 92-percent 

chance of fabrication in less than a second after the attack 

started. This was more than the pre-established threshold of 

80% which sent a direct on-screen warning and stopped the 

video. Second, the cloned voice was biometrically verified and 

was found to have a similarity of 81 per cent with the clinician 

profile that was stored, which was less than the 90 per cent 

acceptance level. As a result, a secondary authentication 

request was made, but the attacker was unable to make 

legitimate responses. Third, a gesture prompt, where the 

clinician was asked to nod in response to a question, did not 

create a valid motion, also supporting the argument that an 

attack occurred. Fourth, provenance logging, developed on top 

of blockchain hashed all received frames and audio packets; 

any irregularities found within the 3036 seconds attack window 

were stored permanently to be audited later. 

The system was able to end the compromised session at 36 

seconds and suggested to reschedule using confirmed channels. 

Notably, no false alarms were seen in any of the previous 20 

clean test runs, thus highlighting the low false-positive rate of 

the framework. The feedback provided by clinicians in the 

course of the simulation indicated that there was a high degree 

of confidence in the layered safeguards, and that, specifically, 

the clarity of alerts and automatic enforcement of session 

termination were highly trusted. The case study highlights the 

volume of the multi-layered defence. The deep-fake detector 

offered the first-line protection in a short period of time, 

biometrics and gestures offered the second-level control, and 

blockchain guaranteed the accountability even after the 

termination. The defence being layered further complicated the 

success of the attacker since he would then have to meet 

numerous independent checks at the same time to manipulate. 

This was particularly the case with the forensic audit function. 

Blockchain logging generated an unalterable account of the 

attempted hacking with timestamps and hash of altered data. 

Such openness acts as a legal and moral insurance policy and 

as such it brings accountability and the investigation into the 

attacks. In clinical practice, this would support compliance with 

medical device regulation and patient safety guidelines. 

However, continuous challenges were also pointed out in the 

simulation. Detection, despite its speed, added a small latency 

to video rendering; gesture prompts, despite its efficiency, can 

be unfeasible with patients with motor issues; and the 
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blockchain component, though secure, required more 

computing power that cannot be easily obtained in low-

resource healthcare environments. These constraints indicate 

that even effective systems need to be carefully designed to 

make them usable, scalable, and fairly accessible.  

The case study, therefore, confirms the larger quantitative 

findings by demonstrating the defensive framework at work in 

realistic circumstances. It shows that not only are adversarial 

attacks plausible, but they are potentially disruptive in remote 

healthcare but also that layered defenses can help identify and 

prevent them effectively. 

5. DISCUSSION AND 

RECOMMENDATIONS 
The current investigation has performed a thorough analysis of 

the vulnerability of medical artificial intelligence (AI) systems 

compared to adversarial and deep-fake attacks, as well as the 

effectiveness of layered defense mechanisms in the future. 

Based on the available literature and carefully controlled 

simulations, the results are summarized in the finding that 

adversarial perturbation is not only a conceptual novelty but a 

concrete threat that potentially affects remote healthcare 

provision on a material plane. Models trained on the chest 

radiographs, both convolutional neural networks (CNNs) (e.g. 

ResNet -50, Vision Transformers (ViTs)) and bare machine 

learning models (e.g. Projected Gradient Descent (PGD), 

Carlini Wenger (CW)) exhibited strong baseline performance 

in an ideal scenario; however, the application of even the 

smallest perturbations triggered a catastrophic drop in 

predictive performance. These adversarial examples dropped 

model accuracy to almost random levels, thus confirming 

previous studies by Paschali et al. [8] and Ma et al. [12] and 

validating the inherent susceptibility of medical AI to 

adversarial examples. 

Another finding based on the information is that this weakness 

is not limited to diagnostic algorithms, and it is also applicable 

to authentication systems that protect patient-clinician 

interactions in telehealth settings. Unimodal biometrics 

systems, i.e. based on vocal or facial recognition, were 

provably easy to exploit, and deep-faked identities had a non-

negligible falseness-acceptance rate, therefore creating 

opportunities to use impersonation to access medical 

consultations or clinical records fraudulently. On the other 

hand, the adoption of a biometric cross-validation system of 

multimodality significantly reduced these risks, with face, 

voice, and gesture modalities combined together, resulting in a 

false-acceptance rate of less than 1 per cent. This empirical data 

supports the position expressed by Muoka et al. (2023), 

according to which, powerful security procedures require 

multi-heterogenous verification paths, and not the 

implementation of one biometric modality. 

The implementation of a provenance system based on 

blockchain is a critical component of the overall defence 

model. These systems with the establishment of immutable 

logging of video, audio and electronic health record inputs 

guarantee that any form of tampering can be identified and later 

audited. The distributed ledger trail offers forensic 

accountability to systems that are often denounced as being 

black-box in nature. Although blockchain implementation can 

be associated with latency that is relatively low, the resulting 

integrity and transparency benefits are considered acceptable in 

most telemedicine implementations. In addition, the stored 

forensic evidence has significant implications in regulatory 

compliance and legal responsibility, which supports the 

suggestions of Azaria et al. (2016), who emphasized the 

usefulness of blockchain in validating healthcare data. 

The combined case study provides a graphic explanation of the 

dynamics of the layered framework. In a simulated 

consultation, a fake intrusion using deepfake was detected in 

two seconds, verified by biometric and gesture checks, and 

permanently stored to be audited. Before any harm was done, 

the session was brought to an end. Importantly, none of the 

false positives were observed in the case of legitimate 

consultations, which means that it is possible to enhance 

security without affecting the usability. However, problems 

that the case study revealed which should be improved included 

accessibility of gesture-based authentication to patients with 

disabilities and scaling of blockchain systems under resource-

limited settings. Altogether, remote healthcare systems face 

serious and evolving dangers that are based on adversarial and 

synthetic manipulations. Although each of the technical 

defences (adversarial training, preprocessing, multimodal 

authentication and blockchain provenance) offers a different 

benefit, none of the approaches are sufficient. Subsequently, a 

multi-layered defence-in-depth framework will appear to be 

necessary, either through the combination of complementary 

measures towards addressing various attack vectors with equal 

effectiveness and ease, or by properly adjusting resilience and 

usability. 

A number of recommendations come up in the current analysis. 

To begin with, adversarial robustness testing should become a 

standard condition of the development and approval of medical 

artificial intelligence systems, similar to pharmaceutical trials 

with stress testing. The regulatory bodies, such as FDA and 

EMA should incorporate the adversarial assessment in the 

current frameworks regarding AI-based medical devices. 

Second, defaulting to multimodal authentication should be the 

default of telehealth providers. Unimodal methods are 

convenient, but since they are prone to deep-faking attacks, 

they are inadequate in protecting sensitive health interactions. 

Multimodal biometrics cross-validation can provide more 

secure remote consultation and access to records. Third, 

provenance mechanisms based on blockchain need to be tested 

and optimized in healthcare. Structures that blend on-chain 

integrity and off-chain storage can be a compromise between 

transparency and efficiency. Hospitals and telehealth solutions 

should also liaise with blockchain experts to help them to scale 

without sacrificing security. Fourth, interdisciplinary 

cooperation is required to minimize these challenges. Technical 

innovation by itself cannot determine issues of accountability 

and liability in the case of adversarial manipulation with 

harmful consequences. Ethicists, clinicians, and policy makers 

have to collaborate with engineers to come up with specific 

frameworks that will fairly assign responsibility to developers, 

healthcare institutions, and regulators. Lastly, future studies 

should go further than simulated experiments to user studies 

and clinical pilots. The perceptions of clinicians and patients 

regarding alerts, biometric prompts, and provenance logs can 

be critical in the enhancement of the idea that the security 

measures are built in such a way that they boost trust and do 

not create obstacles to care. The human-centred design is 

essential in translating the technical defence to the sustainable 

practice. 

6. CONCLUSION  
This paper aimed to discuss the vulnerabilities of deep learning 

systems in the medical imaging field, as well as test the 

performance of the defense mechanisms to mitigate the threats. 

The results obtained make it obvious that, although both 

convolutional neural networks and Vision Transformers are 

very accurate on clean chest X-ray data, their performance 
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suffers considerably in the case of adversarial perturbations. 

Other attacks like Projected Gradient Descent and Carlini and 

Wagner were particularly successful as they usually decrease 

the accuracy of the models to an extent that would not be 

acceptable in clinical context. The findings prove that 

adversarial risks are not hypothetical but rather concrete 

challenges to the implementation of medical AI. 

Partial protection was provided through defensive means, and 

adversarial training became the most resilient to this protection 

but with lower clean-data accuracy. The preprocessing 

techniques and ensemble modelling provided a further level of 

resilience, and detection techniques provided a possible safety 

net in cases of naive attacks. Nevertheless, none of the 

strategies was effective enough to protect all in a 

comprehensive manner, which is where the use of multiple 

defenses akin to the defense-in-depth paradigm of 

cybersecurity is needed. This evidence therefore indicates that 

medical AI cannot use technical performance as its sole 

reliance and that such an approach should be combined with 

multi-faceted safeguards in case it is to be safely implemented 

in clinical settings. 

In addition to technical weaknesses, the results highlight more 

global ethical and regulatory consequences. Implementing 

systems that are likely to be adversarially manipulated, unless 

they have sufficient protective measures in place, would 

threaten patient safety, negatively affect the trust of clinicians, 

and subject institutions to litigation. The solution to these 

concerns must involve both technical innovation and active 

regulation and open conversation with the stakeholders. 
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