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ABSTRACT 

Cognitive neuroscience explores how brain functions relate to 

mental processes to better understand cognitive structures. To 

identify brain states linked to different mental activities, 

appropriate measurement tools are essential. In this study, a 

new framework is proposed for classifying mental workload 

and distinguishing between the resting state and mental 

counting using local pattern transformations and machine 

learning algorithms. Mental activities are analyzed using an 

Electroencephalogram (EEG) via three local pattern 

transformations: one-dimensional local binary patterns (1D-

LBP), one-dimensional local gradient patterns (1D-LGP), and 

local neighbor descriptive patterns (LNDP). To classify 

cognitive workload (good vs. bad counters) and resting state 

versus mental counting, three classifiers are employed: gradient 

boosting (XGBoost), K-Nearest Neighbors (KNN), and 

random forests (RF). Using XGBoost and three feature 

extraction methods, an average performance of about 98% was 

achieved. With KNN, the highest accuracy was obtained, 

averaging 99% across all performance metrics with all three 

feature extraction methods. When using RF, the average score 

was around 99% with 1D-LBP and 1D-LGP, and 98% with 

LNDP.  
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1. INTRODUCTION 
The human brain is the center of cognitive activity, and 

appropriate methods and measurements are still needed to 

identify the brain states during various mental activities [1]. 

Cognitive neuroscience studies brain activities related to both 

neurological and psychological functions, using various 

imaging techniques to gain a comprehensive understanding of 

behavior and cognitive processes [2]. The goal of cognitive 

neuroscience is to understand the basic mental structures that 

support cognitive functions [3]. Extensive research has been 

conducted to explore the characteristics of human brain 

function during mental arithmetic processes. The 

electroencephalogram (EEG) is a convenient method due to its 

high temporal resolution, noninvasiveness, affordability, and 

portability, with minimal setup time [4]. Therefore, it is highly 

useful for real-time clinical applications and preferred for 

recording EEG signals during mental arithmetic tasks. 

The authors examined the complexity of brain activity and 

highlighted the importance of using suitable techniques to 

capture its nonlinear dynamics using the Discrete Wavelet 

Transform (DWT) method, achieving promising results in 

detecting transitions in EEG signals [5]. Moreover, they 

utilized spectral entropy as a valuable tool for distinguishing 

between EEG recordings obtained before and during mental 

arithmetic tasks. In this study, the authors analyzed EEG 

signals to understand disorders such as attention-deficit 

hyperactivity disorder, dyscalculia, or autism spectrum 

disorder, which can cause difficulty in learning or 

understanding arithmetic [6]. They estimated effective 

connectivity using Direct Transfer Function (DTF), direct DTF 

(dDTF), and Generalized Partial Directed Coherence (GPDC) 
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methods to measure the causal relationships between different 

brain regions. They used hierarchical feature selection along 

with five other feature selection methods to choose features, 

and SVM was used for classification, reaching an accuracy of 

89%.  

In this research, local pattern transformation-based feature 

extraction methods are used to classify good and poor 

performance in mental arithmetic tasks. Moreover, different 

machine learning algorithms are used to classify the periods 

before and during mental arithmetic. Three local pattern 

transformations: one-dimensional local binary patterns (1D-

LBP), one-dimensional local gradient patterns (1D-LGP), and 

local neighbor descriptive patterns (LNDP). Local binary 

patterns are widely applied for analyzing textures in 2D images 

[7, 8, 9]. A decade ago, LBP began to be used in one-

dimensional signals, particularly in EEG signals, to classify 

seizure periods in epilepsy patients [10, 11, 12, 13]. They 

referred to this approach as one-dimensional local binary 

pattern (1D-LBP) to extract features from EEG signals, 

achieving high accuracy in the classification of EEG signals. 

Recently, two new local pattern transformation methods, 

LNDP and 1D-LGP, have been introduced and applied in the 

classification of epileptic EEG signals, achieving an average 

classification accuracy of 99.82% and 99.80%, respectively 

[12]. Most previous research used local pattern transformation-

based features for classifying neurological disorders, especially 

epilepsy, where epileptic EEG signals have high amplitude 

compared to normal signals, making it easier for methods to 

detect these signals and achieve high accuracy. However, in 

this research, cognitive task EEG was used —specifically the 

mental arithmetic task —to classify good counts versus bad 

counts and before versus during the task, using three different 

transformation-based feature extraction methods with various 

machine learning algorithms. 

2. DATASET DESCRIPTION 
In this study, a publicly available EEG dataset was used for 

analysis. The dataset includes EEG recordings of subjects 

before and during performing mental arithmetic tasks [14, 15]. 

The EEGs were recorded with a Neurocom EEG 23-channel 

system, following the international 10/20 system. A high-pass 

filter with a 30Hz cutoff frequency and a 50Hz notch filter were 

applied. All recordings are artifact-free EEG segments of 60 

seconds each. During data preprocessing, independent 

component analysis (ICA) was used to remove artifacts from 

eye movements, muscles, and cardiac activity. The data were 

recorded from 36 healthy participants (9 male and 27 female) 

aged 18 to 26 years (Mean = 18.6 years, standard deviation = 

0.87 years). The arithmetic task involved serial subtraction of 

two numbers. Each trial began with an oral presentation of 4-

digit (minuend) and 2-digit (subtrahend) numbers (e.g., 3141 

and 42). The 36 subjects were divided into two groups: the 

proposed task was a difficult task for one group of participants 

(group “Bad”, 12 subjects, mean number of operations = 7, SD 

= 3,6), whereas the second group managed the task without 

difficulty (group “Good”, 24 subjects, mean number of 

operations = 21, SD = 7,4). 

3. METHODOLOGY 
The mental arithmetic EEG signals were used to classify good 

count and bad count. The EEG signal is extracted for the local 

pattern information using three different local pattern 

transformation methods, such as local binary pattern, local 

gradient pattern, and local neighbor descriptive pattern. Then, 

the machine learning algorithms are applied: gradient boosting 

(XGBoost), K-Nearest Neighbors (KNN), and random forests 

(RF). The overall framework of the mental arithmetic 

classification is shown in figure 1. 

3.1 1D-local Binary Pattern (1D-LBP) 
The 1D-LBP method was derived from the steps used in 2D-

LBP and was proposed for detecting non-stationary speech 

signals [10]. For each data sample in a signal, a binary code is 

generated by comparing its value to that of the center sample. 

This process is repeated across the entire signal. The equation 

of 1D-LBP on a sample is given by: 

𝑃𝑐
1D−LBP =  ∑ 𝑘(𝑆𝑖 − 𝑆𝑐)2𝑖

𝑚−1

𝑖=0

 

where 

𝑘(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where m is the number of neighboring points, Si and Sc are the 

neighbor and center points of the segment.  

3.2 1D-local Gradient Pattern (1D-LGP) 
1D-LGP method preserves the structural property of a pattern 

[12]. The equation of the 1D-LGP is as follows: 

(1) The gradient value is computed as 𝑓𝑖 = |𝑆𝑖 − 𝑆𝑐|, for 

i = 0, …, m –1, where m is the number of neighboring 

points 

(2) The mean gradient value is computed as follows: 

𝑓𝑎𝑣𝑔 =
1

𝑚
∑ 𝑓𝑖

𝑚−1

𝑖=0

 

(3) Compute the gradient code as 𝑓𝑐𝑖 = |𝑓𝑖 − 𝑓𝑎𝑣𝑔 |, for 

i = 0, …, m –1. 

𝑃𝑐
1D−LGP = ∑ 𝑘(

𝑚−1

𝑖=0

𝑓𝑐𝑖)2𝑖 

where 

𝑘(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

3.3 Local Neighbor Descriptive Pattern 

(LNDP) 
LNDP is a feature extraction technique that relies on local 

pattern transformation, capturing the relationships between 

neighbors and preserving the pattern's structural properties by 

comparing the values of neighboring points within the pattern 

[12]. 

(1) The difference of consecutive points is computed as: 

𝑛𝑖 = 𝑠𝑖 − 𝑠𝑖+1, for i = 0, …, m –1, where m is the 

number of neighboring points. 

(2) Computed the LNDP by  

𝑃𝑐
LNDP = ∑ 𝑘(

𝑚−1

𝑖=0

𝑛𝑖)2𝑖 

where 

𝑘(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The values of local pattern transformation from raw EEG 

signals using three methods are shown in figure 2. The raw 

EEG recordings, taken while a participant was resting and 

performing mental counting, are displayed in figure 2(a) and 

2(b). When applying 1D-LBP to the signals and the decimal 

values from both states, resting and mental counting, the values 

range from 0 to 255. The histogram’s distribution is  

(1) 

(2) 

(3) 

(4) 
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Fig 1: Overall framework for mental arithmetic classification 

 

shown in figure 2(c) and 2(d). Again, the distribution reflects 

the 1D-LGP, with LNDP also illustrated in figure 2(e-h). After 

analyzing features from these three methods, different 

classification techniques are used to categorize the two types: 

good count and bad count, as well as resting state and during 

mental counting.  

For the classification stage, three algorithms are applied: 

XGBoost, KNN, and RF. Before the classification stage, the 

features from all 36 participants (grouping together) are 

concatenated to classify the good vs bad, and the features from 

before and during the tasks are concatenated for classification 

of the resting state and mental counting. The feature data is split 

into training and testing with an 80-20 ratio. The training set is 

applied to the SMOTE Imbalance Learn package [17] to 

balance the positive (good count and mental counting) and 

negative classes (bad count and resting state). However, the 

SMOTE did not apply for the test set. The 5-fold cross-

validation was performed at both the participant and group 

levels with hyperparameter tuning using 

HalvingGridSearchCV [18] for all machine learning models. 

 

 

 

 
Fig 2: Feature extraction from local pattern 

transformation, (a) a segment of the EEG signal 

(resting state), (b) a segment of the EEG signal (mental 

counting), (c) histogram of 1D-LBP (resting state), (d) 

histogram of 1D-LBP (mental counting), (e) histogram 

of 1D-LGP (resting state), (f) histogram of 1D-LGP 

(mental counting), (g) histogram of LNDP (resting 

state), and (h) histogram of LNDP (mental counting) 

4. RESULTS AND DISCUSSION 
As mentioned above, using the 5-fold cross-validation 

technique, the best classification accuracy was achieved, 

98.25% with 1D-LBP + KNN, along with a precision of 

98.28% with 1D-LBP + KNN, a recall of 98.25% with 1D-LBP 

+ KNN, and an F1-score of 98.25% with 1D-LBP + KNN (see 

table 1). From tables 2 and 3, the best performance metrics for 

KNN were achieved on both 1D-LGP and LNDP, with results 

exceeding 98% and 97%, respectively. Therefore, this study 

demonstrates that these three feature extraction methods 

perform well in differentiating between good and bad counts 

with various classifiers, with all performance metric scores 

above 90%. The accuracy, precision, recall, and F1-score are 

defined as: 

• Accuracy: The ratio of correctly predicted classes 

(both positive and negative) to the total number of 

classes, the formula is (TP+TN)/(TP+TN+FP+FN). 

• Precision: Out of all classes the model predicted as 

positive, how many were actually positive, the 

formula is TP/TP+FP. 

• Recall: Out of all the actual positive classes in the 

data, how many did the model correctly identify, the 

formula is TP/(TP+FN). 

• F1-score: A single metric that balances precision and 

recall by calculating their harmonic mean, the 

formula is 2×(Precision×Recall)/(Precision+Recall). 

Where TP is true positive, TN is true negative, FP is false 

positive, and FN is false negative. 
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Table 1. Classification report for 1D-LBP and three 

machine learning models 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

XGBoost 92.58 92.63 92.58 92.60 

KNN 98.25 98.28 98.25 98.25 

RF 97.27 97.29 97.27 97.24 

 

Table 2. Classification report for 1D-LGP and three 

machine learning models 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

XGBoost 92.50      92.51   92.50     92.50 

KNN 98.18      98.22   98.18     98.19 

RF 97.22      97.23   97.22     97.19 

 

Table 3. Classification report for LNDP and three machine 

learning models 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

XGBoost 92.72      92.65   92.72     92.67 

KNN 97.11      97.21   97.11     97.13 

RF 95.80      95.87   95.80     95.72 

 

After the group-level classification, the individual-level 

classification was performed for the resting state versus the 

mental counting condition. Three features were extracted—1D-

LBP, 1D-LGP, and LNDP—from 36 participants and input 

these features into different classifiers for classification. In 

figure 3, XGBoost was used, and three feature extraction 

methods were used, achieving an average of around 98% across 

all performance measures. With KNN, the best score was 

achieved, averaging 99% across all performance metrics in all 

three feature extraction methods (see figure 4). RF was used for 

classification, and the average score of the performance matrix 

was around 99% with 1D-LBP and 1D-LGP, and 98% with 

LNDP, as shown in figure 4. The overall performance score of 

each participant is illustrated, which is shown in figure 3-5. An 

average classification performance score of 98% was achieved 

using three feature extraction methods and three different 

classifiers. As previous research reports 99% in LBP, 99.80% 

in 1D-LGP, and 99.82% in LNDP, when classifying epileptic 

EEG signals [10, 12]. Epileptic EEG signals typically contain 

high-amplitude, stereotyped events that are readily separable 

from normal activity, whereas mental arithmetic tasks involve 

more subtle, distributed modulation in local texture features. 

However, this research achieved a similar score to that of the 

previous study, despite using a different cognitive task dataset. 

The computational efficiency of all local pattern transformation 

methods averages 0.33 seconds for 1D-LBP, 0.35 seconds for 

1D-LGP, and 0.45 seconds for LNDP, as shown in figure 6. All 

experiments are conducted using Python and are executed on 

an 11th Gen Intel® Core™ i7-1195G7 (2.92GHz) CPU 

machine with 16 GB RAM. All machine learning models run 

exclusively on the CPU. 

 

 
Fig 3: Classification report of three feature extraction 

methods with XGBoost (a) accuracy, (b) precision, (c) 

recall, and (d) f1-score 

 

 

 

Fig 4: Classification report of three feature extraction 

methods with KNN (a) accuracy, (b) precision, (c) 

recall, and (d) f1-score 
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Fig 5: Classification report of three feature extraction 

methods with RF (a) accuracy, (b) precision, (c) recall, 

and (d) f1-score 

 

 

Fig 6: Comparison of three local pattern 

transformation methods in terms of the CPU time 

 

5. CONCLUSION 
In this study, a novel framework for classifying mental states 

was developed using three local pattern features: 1D-LBP, 1D-

LGP, and LNDP, combined with three classifiers—XGBoost, 

KNN, and RF. XGBoost was used with three feature extraction 

methods, achieving an average accuracy of around 98% across 

all performance measures. KNN yielded the highest score, 

averaging 99% across all metrics for all three feature extraction 

methods. When using RF for classification, the average 

performance score was about 99% with 1D-LBP and 1D-LGP, 

and 98% with LNDP. Overall, an average classification 

accuracy of 98% was achieved using three extraction methods 

and three different classifiers. For future research, it is 

necessary to explore features across different EEG frequency 

bands and brain regions that may contribute more significantly 

to cognitive workload. Additionally, it is necessary to analyze 

different datasets using the same framework in this research to 

assess the performance of local pattern transformation 

methods. 
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