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ABSTRACT

This study investigates the performance of 3D Convolutional
Neural Networks (3D CNNs) and Long Short-Term Memory
(LSTM) networks for real-time American Sign Language
(ASL) recognition. Though 3D CNNs are good at
spatiotemporal feature extraction from video sequences,
LSTMs are optimized for modeling temporal dependencies in
sequential data. Both architectures were evaluated on a dataset
containing 1,200 ASL signs across 50 classes, comparing their
accuracy, computational efficiency, and latency under similar
training conditions. Experimental results demonstrate that 3D
CNNs achieve 92.4% recognition accuracy but require 3.2x
more processing time per frame compared to LSTMs, which
maintain 86.7% accuracy with significantly lower resource
consumption. The hybrid 3D CNN-LSTM model shows decent
performance, which suggests that context-dependent
architecture selection is crucial for practical implementation.
This project provides professional benchmarks for developing
assistive technologies, highlighting trade-offs between
recognition precision and real-time operational requirements in
edge computing environments.
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1. INTRODUCTION

Sign language is the primary way that people in the Deaf and
Hard of Hearing (DHH) community communicate, yet there’s

still a big gap because automated translation tech isn’t widely
used. Recent advancements in deep learning have facilitated
notable progress in the development of vision-based systems
capable of recognizing and transcribing sign language into text.
Two prominent methodologies include Long Short-Term
Memory (LSTM) networks, which are proficient in modeling
the temporal sequence of hand movements, and 3D
Convolutional Neural Networks (3D CNNs), which process
both the visual and time-based aspects of sign language videos
all at once. LSTMs are good at tracking the flow of gestures
over time, while 3D CNNs excel at capturing both spatial
configurations and dynamic movements.

This paper presents a comparative analysis of these two
approaches for the translation of individual American Sign
Language (ASL) gestures into text. The study evaluates their
accuracy, computational requirements, training complexity,
and real-time applicability. MediaPipe was employed for
reliable hand tracking to ensure consistent preprocessing across
models. The study findings provide practical guidance for
researchers and developers in the field of sign language
recognition technology by delineating the respective
advantages and limitations of each method. By tackling the
challenges of choosing and optimizing these models, this work
aims to help create better, more accessible tools for the DHH
community and pave the way for future advancements in
translating continuous sign language.

2. LITERATURE REVIEW

Necati Cihan Camgoz et al. [1] demonstrated the effectiveness
of 3D CNNss in capturing spatiotemporal features from raw sign
language videos, highlighting the model’s ability to process
both spatial (hand shape) and temporal (motion) information
simultaneously. Their work emphasized the trade-off between
computational complexity and accuracy, as 3D CNNs require
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high resources but excel in recognizing visually distinct
gestures.

M. Al-Qurishi et al. [2] provided a comprehensive survey of
deep learning techniques, including 3D CNNs and LSTMs, for
sign language recognition. Their study compared performance
across benchmarks and discussed key challenges such as
dataset scarcity and real-time deployment - issues directly
relevant to this research.

Yangiong Zhang and Xianwei Jiang [3] analyzed modern
architectures like 3D CNNs, Transformers, and hybrid models
for sign language recognition. Their review highlighted
advancements in spatiotemporal modeling and attention
mechanisms for improving long-sequence recognition,
reinforcing the choice of LSTM for efficient temporal
modeling in this study.

Ur Rehman et al. [4] proposed a hybrid deep learning
framework combining 3D CNNs and LSTMs to exploit spatial
and temporal dependencies. Although the hybrid model
achieved superior accuracy, it also introduced significant
computational overhead. This finding supported the decision to
evaluate both architectures independently for real-time
suitability.

X. Ouyang et al. [5] introduced a multi-task learning
architecture integrating 3D CNNs and LSTMs for action
recognition. Their model jointly optimized spatial and temporal
learning but exhibited high computational cost, emphasizing
the trade-off between accuracy and feasibility - a central
consideration of the present work.

Dushyant Kumar Singh [6] demonstrated the effectiveness of
3D CNNs s in recognizing dynamic gestures within Indian Sign
Language (ISL). The study highlighted the model’s strong
spatial-temporal learning capabilities alongside high resource
dependency, aligning with similar observations made in this
comparative analysis between the models effectiveness.

Ma et al. [7] proposed an attention-based 3D CNN model that
enhanced focus on salient spatiotemporal features in sign
language videos, achieving a 92.3% recognition rate with ~45
ms GPU latency. Their approach validated the importance of
attention mechanisms in improving interpretability and real-
time performance of the proposed 3D CNN Model.

P. Sinha et al. [8] examined a CNN-LSTM hybrid architecture
for real-time sign prediction, noting improved accuracy but
substantial computational overhead. Their findings motivated
this study’s evaluation of standalone 3D CNN and LSTM
architectures for efficiency comparison.

The author in [9] presented an attention-enhanced CNN-LSTM
framework achieving state-of-the-art results but with increased
processing cost. This work inspired further exploration of
lightweight attention optimization for real-time applications.

D. D. Meshram et al. [10] reviewed deep learning approaches
for Indian Sign Language, highlighting that 3D CNNs
dominate spatial-temporal feature extraction, while attention-
based LSTMs excel at continuous gesture recognition. Their
analysis underscored the need for lightweight, region-specific
models - an objective also addressed by this research.

3. METHODOLOGY

The primary objective of this project is to develop an efficient
and accurate system for translating sign language gestures into
text. The methodology is structured into four main stages: data
acquisition, preprocessing, model training, and performance
evaluation. We have developed a LSTM (Long Short-Term
Memory) Model and compared it with 3D - CNN Model
architecture.
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Data Acquisition and Preprocessing:

This work utilizes publicly available datasets, including the
Indian Sign Language (ISL) dataset and an American Sign
Language (ASL) dataset. The datasets comprise both static
hand postures and dynamic gesture sequences corresponding to
alphabets and numerals.

Steps:

e Images and sequences of frames were extracted from real-
time webcam feed or pre-recorded datasets.

e  MediaPipe was used to extract 3D hand landmarks (21
points per hand, each with x, y, z coordinates), resulting in
63 features per frame for single-hand tracking.

e  These features were normalized and reshaped to prepare
them for time-series or spatial analysis, depending on the
model.

3.1 LSTM-Based Sign Language

Recognition:

The Long Short-Term Memory (LSTM) network, a type of
Recurrent Neural Network (RNN), is particularly well-suited
for sequence prediction problems, especially when there are
long-term dependencies across time steps. In the context of sign
language recognition, gestures are basically sequential-coming
in sequences, a sign is not just a static posture but also use of
hand movements over time. LSTM networks are capable of
learning and remembering this information, making them
highly effective for dynamic gesture recognition problems.
The goal of the LSTM model in our system is to interpret a
continuous stream of hand gestures captured in real-time from
a webcam and convert them into corresponding alphabets or
numbers. The model uses sequences of hand landmark
coordinates, which are numerical representations of the spatial
position of each key point on the hand across time.

3.1.1 Model Architecture:

The model is made of LSTM (Long Short-Term Memory)
layers, capturing the entire trajectory of a hand gesture rather
than just its position at one moment. These layers are designed
to work as a team: the lower layers zero in on subtle details,
like slight changes in finger positioning or wrist angles, while
the higher layers build on this to understand the broader
"movement signature" that defines a specific gesture, such as
the fluid motion of signing a letter or number.

To ensure the model doesn’t just memorize the training
examples and can adapt to new, unseen gestures, a Dropout
layer was included right after the LSTMs. During training, this
layer randomly deactivates a portion of neurons, forcing the
model to learn more flexible patterns. It’s like training the
network to stay sharp even when some of its tools are
temporarily unavailable, which helps it generalize better and
perform reliably on fresh data.

After the LSTM layers, fully connected (Dense) layers are
employed to transform the temporal features into high-
dimensional representations for classification. The final output
layer applies a softmax activation function with C units, where
C corresponds to the number of gesture classes (e.g., 36 for
alphabets A-Z and digits 0-9). This produces a probability
distribution over all gesture classes

At the end of the architecture, there is the Output layer, which

uses a softmax activation function. This layer is designed with
exactly as many units as there are gesture classes to recognize
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- for example, 36 units to cover the alphabet (A-Z) and numbers
(0-9). The softmax layer processes the Dense layer outputs and
generates a probability distribution, giving a confidence score
for each possible gesture. This means that for any given hand
movement, the model not only identifies the most likely
character but also provides a sense of how certain it is about
each potential match, making it easier to trust and interpret its
predictions.

3.1.2 Advantages of LSTM Model:

e  Temporal Awareness:
Unlike traditional CNNs which only analyze spatial
features, LSTM models inherently understand the
temporal evolution of gestures.

e  Handles Variable-Length Inputs:
LSTM can process sequences of varying lengths, making
it robust to different gesture speeds and durations.

e  Real-Time Capability:
The model’s relatively small computational footprint
allows it to run in real time on standard consumer
hardware without requiring a GPU.

e Noise Tolerance:
Since the input is based on 3D hand landmarks rather than
raw pixel data, the model is less sensitive to background
noise and lighting variations, improving robustness in
diverse environments

e  Scalability:
The model can be easily extended to learn phrases or full
sign language sentences by feeding longer sequences or
stacking gesture outputs.

3.2 3D Convolutional Neural Network (3D-
CNN) Model:

While LSTMs excel at learning temporal dependencies in
sequential data, Convolutional Neural Networks (CNNs)
particularly 3D CNNs offer a powerful alternative by learning
spatiotemporal features directly from raw video input. A 3D
CNN applies convolutional filters across both spatial
dimensions (height, width) and the temporal dimension (time),
making it especially suitable for video classification tasks
where both motion and appearance are important.

In this research, 3D CNN architecture was used as a
comparative baseline to evaluate how well a spatial-temporal
convolutional approach performs against the LSTM model for
real-time sign language gesture recognition.

3.2.1 Model Architecture:

The 3D convolutional layers act as the core feature extractors
in the model. They process short video clips using volumetric
kernels that look at both the spatial layout (what’s happening in
each frame) and the temporal flow (how things change over
time). For instance, a 3x3x3 kernel analyzes a small 3x3 area
across three consecutive frames, helping the model understand
not just the shape of the hands but also how they move - both
of which are crucial for recognizing signs.

Multiple 3D convolutional layers are stacked sequentially to
progressively learn higher-level spatiotemporal patterns. Each
convolutional block is followed by 3D max-pooling layers,
which reduce spatial-temporal resolution while retaining
salient features. Batch normalization is incorporated to stabilize
training, and dropout layers are applied to mitigate overfitting
by randomly deactivating neurons during training.
At the end of the network, fully connected layers pull
everything together to make a final prediction. The final
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softmax layer outputs a probability distribution over the gesture
classes, indicating the model's prediction and its associated
confidence level.

Overall, this architecture is designed to fully capture both the
visual details and the motion dynamics of sign language, all
while staying efficient enough for practical use.

3.2.2 Advantages of 3D CNNs:

e  Spatiotemporal Feature Learning:
Learns both motion and hand shape feature directly from
raw frames without needing hand landmarks or key points.
e No Feature Engineering Required:
Unlike LSTM models which require pre-extracted
landmarks (using MediaPipe, etc.), 3D CNNs learn
directly from video data.
e  High Expressiveness:
Can capture subtle differences in hand shapes and
movements that might be lost in coordinate-only inputs.

The LSTM-based approach provides a strong baseline for
gesture recognition and serves as the backbone of the real-time
sign-to-text translator application. In this research, comparison
is done with a 3D CNN architecture to evaluate its trade-offs in

terms of accuracy, speed, and usability in real-world scenarios.

3.3 LSTM Vs 3D-CNN: A Comparison
1. Input Format

LSTM: Uses pre-extracted hand landmarks (X, y, z coordinates
of 21 key points per frame). These are fed as sequences (e.g.,
30 frames X 63 features).
3D CNN: Takes raw video frames as input (e.g., 30 RGB
frames of 128x128 pixels), preserving both shape and motion
directly.

3.3.1. Temporal Awareness

LSTM: Explicitly designed for sequential data, making it
naturally suited for time-dependent gestures.
3D CNN: Learns temporal features implicitly through 3D
convolutions but is not as specialized in modeling long-term
dependencies as LSTM.

3.3.2 Spatial Awareness

LSTM: Limited, relies only on coordinate data i.e.; no texture,
color, or visual details
3D CNN: High spatial awareness due to access to pixel-level
visual features in the input video.

3.3.3 Performance on Different Gestures

LSTM: Excels in recognizing dynamic gestures involving
time.

3D CNN: Performs better for static or shape-dominant gestures
due to its strong spatial feature extraction.

3.3.4 Resource Efficiency

LSTM: Lightweight, requires less memory and computational
power. Suitable for real-time and edge applications.
3D CNN: Computationally heavy; needs a GPU and high RAM
for real-time performance.

3.3.5 Data Requirements

LSTM: Can generalize well on smaller datasets due to fewer
trainable parameters.
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3D CNN: Requires large amounts of labeled video data to
avoid overfitting and learn robust features.

3.3.6 Preprocessing

LSTM: Requires hand detection and landmark extraction
(here, via MediaPipe), but reduces input dimensionality
significantly.

3D CNN: Requires raw video clips, often with cropping,
resizing, normalization, and augmentation.

3.3.7 Interpretability

LSTM: Easier to interpret as it works on landmarks; errors can
be traced to motion or key point misalignment.
3D CNN: More complex to interpret; difficult to pinpoint
which pixel regions influence predictions.

3.4 Comparison
Table 1. Comparison between 3D-CNN and LSTM based
on various parameters
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Static/Dynamic Static as well as
Best used for Y visually distinctive
Picture
gestures
. Limited (no texture String (learns from
Spatial Context or shape .
. . raw images)
information)
Temporal Strong, using Moderate, using 3D
Modelling LSTM layers convolution
Hand tracking+ Cropping, resizin,
Preprocessing landmark pping, resizing,
. normalization
extraction
. Low (lightweight, . .
Computation real-time friendly) High (GPU required)
. Requires larger
Training Data Works with labeled video
smaller datasets
datasets
Real - Time Excellent Limited, depends on
Capability hardware
Model Size Small Large
oy Good with Needs augmentation
Generalization L s
regularization and regularization
. High (coordinate- | Low (complex visual
Interpretability based decisions) features)
Deployment . Desktop or Cloud
Suitability Mobile, Web Apps interface

Parameters LSTM Model CNN Model
Tnput Sequence of 3D Raw Vl((ieg frames
hand landmarks 30%128x128%3)
Focus Temporal sequence Spatiotemporal
modelling feature extraction

Input Sequence

Ilj\ft;rl'llviltenf:t):reel [(63 features x 30 frames)H LSTM Layer 1 HLSTM Layer ZH Dropout H Dense Layer H Softmax OutputJ

—

3D CNN Model
Architecture

Input Video Clip

3D Conv Layer + ‘ 3D Conv Layer + Flatten - Dense
(30x128x128x3) Relu 3D Max Pooling H BatchNorm H Layers HSoﬁmax OutputJ

Fig 1. Comparative architecture of LSTM and 3D CNN models illustrating layer configurations for sequential and
spatiotemporal feature extraction in sign language recognition.

4. RESULTS AND DISCUSSION

The comparative evaluation between the LSTM and 3D CNN
models for sign language to text translation demonstrates key
differences in performance, architecture suitability, and real-
time applicability. The LSTM model, which exploits the
temporal dependencies within sequential gesture data, achieved
an accuracy of 86.7% on the test dataset. It proved particularly
effective in recognizing dynamic gestures that require
understanding the order and flow of hand movements, a
common trait in sign languages. The LSTM model is
lightweight, efficient, and capable of delivering smooth real-
time predictions even on low-resource devices. Its use of
sequential 3D landmark data (e.g., 30 frames x 63 features)
allowed for effective modeling of motion, but it occasionally
showed reduced precision in differentiating spatially similar
static gestures.

In contrast, the 3D CNN model, which processes
spatiotemporal video data using volumetric convolution
kernels (e.g., 3x3%3), achieved a higher overall accuracy of
92.4%. It excelled at capturing rich spatial features across
frames, resulting in superior performance in classifying static
or visually distinct signs. However, the model's complexity
came at the cost of increased inference time (around 65
milliseconds) and a larger memory requirement of 87.6 MB,
making it less suitable for real-time applications unless run on
high-performance  hardware with GPU acceleration.
Additionally, while the 3D CNN was slightly more accurate in

offline evaluation, it showed signs of overfitting and struggled
with fast-changing or subtle dynamic gestures in live scenarios.

User testing and qualitative observations reinforced these
results: the LSTM model demonstrated higher responsiveness
and robustness in live video input, making it preferable for
interactive applications such as assistive communication tools.
Meanwhile, the 3D CNN, although precise in controlled
environments, lacked the adaptability and responsiveness
required for real-time translation. Overall, this comparative
analysis underscores that while 3D CNNs offer higher
classification accuracy, LSTM models strike a better balance
between accuracy, speed, and computational efficiency, thus
making them more appropriate for real-time sign language
recognition systems deployed in practical settings.
Table 2. Performance Table

Metric LSTM 3D-CNN Remarks
Model Model
Accuracy 86.7 92.4 3D CNN achieves
(%) higher accuracy
Precision 0.86 0.92 3D CNN performs
better on static
gestures
Recall 0.88 0.90 LSTM handles
sequences better
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F1-Score 0.87 0.91 3D CNN slightly
superior

Inference 20 65 LSTM is 3.2x faster

time
Model size 34.1 87.6 LSTM is more
(GB) lightweight
GPU Optional | Required 3D CNN demands
Requirement higher resources

5. CONCLUSION

In conclusion, this research presents a robust and practical
system for translating sign language gestures into text using
deep learning techniques, with a particular focus on comparing
the effectiveness of LSTM and 3D CNN architectures. This
project successfully implements a real-time sign language
recognition system powered by an LSTM model, leveraging
sequential hand landmark data extracted through MediaPipe.
The LSTM model demonstrated strong performance in
recognizing dynamic and temporally dependent hand gestures,
making it highly suitable for real-time applications, especially
on resource-limited devices due to its lightweight architecture
and fast inference speed. In parallel, we evaluated a 3D CNN
model that processes spatiotemporal features across
consecutive frames, offering slightly higher classification
accuracy in offline scenarios. However, the 3D CNN comes
with a significantly higher computational cost and latency,
which may hinder its use in live environments. The
comparative analysis reveals that while 3D CNNs excel in
capturing complex motion patterns across space and time,
LSTMs offer a better balance between performance, efficiency,
and practicality for deployment in real-world assistive
technologies. The system’s GUI further enhances user
interaction by displaying detected signs, maintaining a dynamic
sentence output, and providing a reference module for
individual ASL letters. Overall, this research not only delivers
a functional and accessible prototype but also provides critical
insights into model selection and optimization for gesture
recognition tasks. It opens new avenues for enhancing
communication accessibility for the deaf and hard-of-hearing
community through Al-powered solutions and sets a
foundation for future enhancements such as hybrid models,
attention mechanisms, and multilingual sign language support.
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