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ABSTRACT

Unhealthy dietary patterns and excessive intake of processed
foods are major contributors to the global rise of obesity and
chronic diseases, highlighting the need for accessible tools that
enable consumers to make informed food choices at the point
of purchase. Label-Al is a web-based system designed to
address this challenge by scanning product barcodes by
scanning a product’s Universal Product Code (UPC) with a
smartphone, LabelAl retrieves detailed nutrient data from an
extensive food database (Open Food Facts) extracting nutrition
information and generating a NutriScore-style health rating on
a scale of 0-10.

The system’s engine processes the nutritional information
obtained from barcode scans and computes rating on a 0—10
scale based on key nutrients such as sugars, fat, saturated fat,
salt, proteins, fiber, and energy per 100 g. Products with lower
scores trigger alerts and suggestions for healthier alternatives
within the same category. This paper presents the design and
evaluation of Label-Al, including an overview of existing
barcode-based nutrition applications, a two-tier architecture
that combines browser-side scanning with cloud-based data
retrieval, and a hybrid scoring mechanism that integrates
machine learning with rule-based thresholds.
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1. INTRODUCTION

Worldwide obesity and diet-related non-communicable
diseases have reached alarming levels. As of 2023, roughly
38% of the global population was classified as overweight or
obese, a figure projected to exceed half of humanity by 2035.
Poor dietary behaviors—particularly high consumption of
processed foods rich in fats, sugars, and salt—are major
contributors to this epidemic.

LabelAl is designed to bridge this gap by combining the
convenience of barcode scanning with Al-powered
personalized nutrition guidance. The core idea is
straightforward: whenever a user scans a packaged food, the
app will log the item, evaluate it and provide a NutriScore on
scale a of 0—10, and also recommend alternatives for the same.

By analyzing a product’s nutritional profile, LabelAl can
instantly indicate whether the item is generally healthy (a
“green flag”) or less advisable (a “red flag”) through its
NutriScore-style 0-10 rating. For instance, scanning a high-
sodium instant soup may result in a low score and an alert such
as “High sodium content — consider a healthier alternative.”
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Similarly, a sweet candy bar with excessive sugar would be
flagged with a warning and accompanied by suggestions for
better options within the same category. While the current
system focuses on population-level nutrition scoring and
recommendations, future extensions will incorporate
personalized thresholds, allergen detection, and diet-plan
integration. On the positive side, the app can highlight
nutritional details (e.g., “High Fructose Corn Syrup is linked to
potential health concerns like increased risk of Type-2
Diabetes”) to reinforce good and bad choices. This contextual
feedback loop transforms passive logging into an active
decision support system. By leveraging an extensive nutrition
knowledge base, LabelAl aims to empower users to make
informed, goal-aligned food choices in real time.

In the following sections, we detail the system architecture of
LabelAI and compare it with related work. Section II provides
a literature review of barcode-based food recognition systems,
mobile nutrition  applications, and Al-driven diet
recommendation engines, drawing on both academic studies
and industry platforms. In Section III, we describe the
methodology behind LabelAI’s design, including the data flow
from barcode scan to nutrition database to personalized
analysis.

Section IV covers the implementation aspects — the mobile
application components, database integration, and Al modules
used for profiling and recommendations. In Section V, we
present results from preliminary tests, including accuracy of
barcode detection, speed of data retrieval, and a comparison of
LabelAI’s alert functionality against traditional manual diet
logging. We also visualize key outcomes, such as the
proportion of flagged items and user compliance with
recommendations.

2. LITERATURE REVIEW

A wide range of studies and systems have explored the use of
mobile applications, barcode scanning, artificial intelligence
(Al), and dietary behavior interventions for nutrition
management. Each study has contributed valuable insights,
from demonstrating the potential of AI/ML in food recognition
to highlighting the effectiveness of behavior change techniques
in mobile health applications. However, these approaches also
exhibit critical limitations, including reliance on inconsistent
databases, lack of personalization, black-box predictions, and
inadequate real-time feedback. Existing table-driven surveys
often identify such limitations but rarely connect them to
unified, practical solutions. To address these shortcomings, the
following review summarizes key works relevant to this project
and illustrates how LabelAl builds upon them to deliver a
reliable, interpretable, and user-centered nutrition evaluation
framework.
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J. Zheng et al. [1] presented an extensive review of Al-based
food detection and nutritional estimation systems, showing that
AI/ML models achieve high accuracy in controlled
environments. However, their lab-centric focus limits real-
world usability, particularly at the point of purchase. Label Al
addresses this by employing a barcode-first capture method for
practical everyday use, enabling real-time scoring and healthier
alternative suggestions directly within the application.
Similarly, M. Maringer et al. [2] assessed barcode-based diet-
tracking applications and found that while calorie estimations
were reliable, nutrient-level accuracy varied widely due to
dependence on crowd-sourced data. Label Al mitigates this by
using the Open Food Facts (OFF) database with hybrid
verification checks, prioritizing verified nutrient entries and
flagging incomplete or implausible data.

Building on barcode-based analysis, J. N. Bondevik et al. [3]
developed NutriLens, an application combining barcode
scanning and nutrition recommendations to improve user
engagement. Despite its success, the system offered limited
personalization and lacked interpretability. Label Al overcomes
these constraints by integrating a hybrid CatBoost and rule-
based model with SHAP-driven feature explainability,
ensuring transparency in each recommendation. In a related
approach, M. M. Hafez et al. [4] proposed Smart Scanner, an
OCR-based system for extracting nutritional details and
allergens directly from labels. While effective, the method was
prone to language and layout inconsistencies, making it error-
prone and slower. LabelAl, in contrast, retains barcode
scanning as the default and employs OCR as a fallback for non-
UPC items, ensuring both speed and reliability.

Behavioral intervention studies also emphasize the importance
of actionable feedback and engagement. K. Villinger et al. [5]
conducted a meta-analysis demonstrating that mobile health
applications are most effective when incorporating behavior
change techniques (BCTs) such as feedback, goal-setting, and
guidance. Yet, most nutrition apps only log data without
providing instant, actionable insights. LabelAl fills this gap by
offering instant NutriScore ratings, alerts, and healthier
alternatives at the moment of product scanning. Similarly, S. S.
Coughlin et al. [6] found that simpler, faster workflows
enhance user adherence in diet-tracking applications. Aligning
with these findings, LabelAl emphasizes a one-scan workflow
with sub-three-second response times and plain-language
explanations to maximize usability.

Further, M. Ulfa et al. [7] reviewed mobile applications for
dietary behavior improvement and identified a shift toward
real-time logging and personalization. However, most systems
remained siloed—either focusing on tracking or providing
recommendations. Label Al integrates both functions through a
unified pipeline (scan — score — explain — suggest
alternatives) with user profile-aware personalization. Finally,
the Open Food Facts database [8] serves as a foundational
resource for LabelAl, offering transparent, community-driven
product data. Although OFF has occasional regional data gaps,
LabelAl enhances its reliability through caching, cross-
verification, and planned multi-source  enrichment
mechanisms.
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From the above review, it is evident that while existing research
significantly contributes to food recognition, barcode-based
nutrition analysis, and mobile dietary interventions, these
approaches remain fragmented in scope and integration. Most
focus on laboratory accuracy, isolated logging, or partial
personalization, leaving key gaps in real-time usability,
interpretability, and system-level cohesion. The proposed
LabelAl framework bridges these shortcomings by combining
the practicality of barcode scanning, the robustness of the Open
Food Facts database, and the interpretability of a hybrid
machine learning and rule-based model. This holistic design
positions LabelAl as a comprehensive solution that not only
evaluates nutritional quality instantly but also provides
transparent justifications and actionable alternatives, directly
motivating the proposed system framework described in the
next section.

3. METHODOLOGY

The methodology of Label-Al follows a modular design that
integrates barcode scanning, large-scale nutritional data
retrieval, artificial intelligence—driven evaluation, and real-
time user feedback. The complete process is shown in Figure
1, which highlights the sequential and parallel stages that
transform a raw product barcode into actionable nutritional
guidance. The methodology is divided into six phases: barcode
acquisition, product data retrieval, ingredient and profile
analysis, hybrid model scoring, alternative product generation,
and assembly of final feedback.

The first phase involves barcode acquisition, where the mobile
application uses the device camera to capture and decode a
product’s Universal Product Code (UPC) or European Article
Number (EAN). To ensure reliability under real-world
conditions such as poor lighting or distorted angles, the system
employs optimized libraries such as ZXing and Google ML Kit.
Compared to manual entry, barcode scanning provides an exact
product identifier with high accuracy. In internal testing, the
scanner successfully decoded over 98% of barcodes on the first
attempt, confirming the robustness of this acquisition strategy.
This precise and rapid capture mechanism reduces user burden
and prevents errors commonly associated with manual food
logging.

Once the barcode is decoded, the second phase begins with
product data retrieval. Label-Al leverages the Open Food Facts
(OFF) database, a large-scale, open-source repository
containing millions of packaged food products worldwide. A
barcode query to the OFF API returns structured information
such as product name, brand, serving size, detailed nutritional
values, ingredient list, allergen warnings, and health indicators
like NutriScore or NOVA classification. For example, scanning
a breakfast cereal may yield data such as 200 kcal per serving,
12 g sugar, 1.5 g salt, and a NutriScore of “C.” When a product
is not present in OFF, fallback mechanisms such as alternative
databases or text recognition from nutrition labels can be
invoked. This ensures high coverage and data transparency, as
users can trace the source of information and contribute
corrections when necessary.
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Fig 1: Flowchart of LabelAl

The third phase is ingredient and profile analysis, where
retrieved nutritional details are evaluated against a user’s
personal dietary profile. Each profile contains demographic
information, fitness goals, medical constraints, and lifestyle
preferences. For instance, a diabetic user may specify a daily
sugar intake limit, while another individual may indicate
vegetarian or gluten-free dietary restrictions. At this stage, two
analytical layers are executed. First, Gemini 2.0 Flash provides
ingredient-level analysis, classifying components as beneficial,
neutral, or harmful and supplying human-readable
explanations. Ingredients such as whole grains may be
highlighted positively, whereas additives like aspartame or
high fructose corn syrup may be flagged with cautionary notes.
Second, the system performs profile mapping, comparing
nutrient quantities against daily thresholds. A product
containing 25 g of sugar, for example, would be flagged if it
represents over 60% of the user’s recommended daily
allowance. This dual-layer analysis ensures both contextual
ingredient understanding and numerical compliance with
dietary targets.

Following this, hybrid model scoring is conducted to simplify
complex nutritional values into an interpretable health score.
This stage combines machine learning prediction with rule-
based adjustments. Nutritional data are normalized into
structured feature vectors containing key nutrients such as
sugars, fats, saturated fats, salt, proteins, fiber, and energy.

These vectors are input into a pre-trained CatBoost regressor,
which predicts a raw NutriScore-inspired value. Although
CatBoost provides high predictive accuracy, Label-Al further
enhances interpretability through domain-specific rules. For
instance, the presence of artificial sweeteners or hydrogenated
oils results in score deductions, while attributes such as whole-
grain composition or organic certification provide small
positive boosts. The adjusted score is then scaled to a 1-10
range, where higher values denote greater alignment with
health goals. This hybrid approach balances the precision of
machine learning with the transparency of rule-based
reasoning, thereby increasing user trust.

In the fifth phase, alternative product suggestions are generated
when a scanned item does not align with the user’s dietary
objectives. The system employs Al-assisted keyword
expansion through Gemini 2.0 Flash to search for healthier
substitutes in the OFF database. For example, scanning a high-
sugar cereal might prompt recommendations for “low-sugar
cereals” or “high-fiber breakfast options.” Up to three
alternatives are displayed with product images, key nutritional
highlights, and justification for their selection. This
functionality shifts Label-Al from a passive tracking tool to an
active decision-support system by guiding users toward
healthier options at the point of purchase.

The final phase involves data assembly and feedback delivery,
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where all analysis results are consolidated into a
comprehensive feedback report. The user interface displays the
product’s name, image, detailed nutrition table, ingredient-
level analysis, hybrid model score, and suggested alternatives
in a concise format. Feedback is designed to be both numeric
and explanatory, such as “Score: 6.5/10 — Moderately healthy,
best consumed in moderation.” The process is optimized for
performance, with end-to-end response times averaging under
three seconds. This ensures that users receive instant, context-
aware feedback during grocery shopping or meal preparation.

4. IMPLEMENTATION

The implementation of Label-Al required the integration of
multiple components including a mobile front-end for
interaction, a backend service layer for processing requests,
machine learning models for nutritional scoring, and cloud-
based infrastructure for deployment. Each component was
developed with scalability, modularity, and performance in
mind, ensuring that the system could handle real-time barcode
queries and deliver personalized nutritional insights with
minimal latency.

4.1 System Architecture

The overall architecture of Label-Al was designed as a layered
system integrating front-end, backend, machine learning
services, and cloud deployment. Each layer communicates
through well-defined interfaces, ensuring modularity and
scalability. The architecture follows a client-server model,
where the mobile or web-based client initiates barcode scans,
the backend handles data processing and retrieval, and the
machine learning modules provide scoring and predictions.
This modular separation allows independent upgrades of
components without disrupting the entire system.

4.2 Front-End Interface

The front-end was implemented using lightweight HTML and
JavaScript, optimized for mobile browsers. The interface
provides a simple environment for initiating barcode scans and
displaying results in real time. The design emphasizes usability,
ensuring that consumers in retail environments can access
nutritional evaluations within seconds. The interface
communicates with the backend asynchronously, preventing
delays even when the backend is processing external queries or
model predictions.

4.3 Backend Services

The backend, developed using Python’s FastAPI framework,
forms the core of the system’s processing pipeline. FastAPI
was chosen for its support of asynchronous operations and its
ability to efficiently handle multiple concurrent requests. The
backend includes modules for decoding barcode input,
querying external nutritional databases, processing nutritional
vectors, and generating final health scores. Each service was
containerized independently, allowing them to be deployed and
scaled as microservices. This modularization supports parallel
development and testing while providing flexibility during
deployment.

4.4 Machine Learning Integration

The machine learning component is the backbone of LabelAl’s
scoring mechanism. A CatBoost regressor was trained using
product data from Open Food Facts and refined through
additional curated datasets. The training process, carried out
with the model trainer module, involved tuning
hyperparameters such as depth, iterations, and learning rate to
balance predictive accuracy and computational efficiency.
Once trained, the model was serialized and deployed within the
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backend services for real-time inference.

To improve interpretability, a hybrid design was implemented
by combining predictive scores with rule-based adjustments.
The rating predictor module ingests nutritional vectors,
produces a CatBoost-predicted score, and then applies
adjustments for factors such as artificial sweeteners, trans fats,
or whole-grain content. This hybrid approach ensures that the
system balances machine learning accuracy with domain
expertise, producing results that are both precise and user-
friendly.

4.5 Data Storage and Management

For persistent data management, MongoDB was adopted due
to its flexibility in handling semi-structured records such as
user profiles, scanned product logs, and scoring histories. User
profiles were stored with anonymized identifiers, enabling
personalization without compromising privacy. A caching
mechanism was also introduced for frequently queried
products, significantly reducing repeated API calls to external
databases. This optimization reduced latency and improved
reliability during high-traffic scenarios.

4.6 Testing and Validation

The system underwent rigorous testing at multiple levels. Unit
tests validated individual backend services, including barcode
handling, API queries, and model predictions. Integration
testing ensured seamless flow across modules, while end-to-
end testing simulated realistic user interactions such as
scanning multiple products sequentially or querying
alternatives for restricted items. Stress testing confirmed that
system stability was preserved under high query loads.
Collectively, these validation steps verified the accuracy,
efficiency, and reliability of the implementation.

5. RESULTS AND DISCUSSION
5.1 Quantitative Model Evaluation

The numerical evaluation metrics provide the foundation for
comparing the Base CatBoost model with the proposed Hybrid
Model. As shown in Table I, both models yield an R? of 0.9002
and an explained variance 0f 0.9010, indicating that nearly 90%
of the variance in NutriScore ratings can be reliably explained
by the models. This high explanatory power highlights the
strength of gradient boosting in capturing nonlinear
relationships between nutrients and food healthiness scores.
While the raw statistical results between the models appear
identical, the Hybrid Model is not intended to outperform
CatBoost in predictive accuracy alone but to refine the
interpretability and consistency of predictions.

The mean absolute error (MAE) of 0.4599 and root mean
square error (RMSE) of 0.8995 further demonstrate that the
models achieve tight prediction bounds, with average errors
well below one NutriScore unit. This is particularly significant
for real-world use, where a misclassification of more than two
NutriScore points could mislead consumers into believing a
product is healthier or less healthy than it is. The zero median
absolute error (MedAE) confirms that at least half the
predictions align perfectly with true labels, which is uncommon
in real-world nutritional scoring systems.

Additionally, the mean absolute percentage error (MAPE) of
8.20% underscores the practical utility of the system. Given the
variability in packaged food nutrient compositions,
maintaining errors below 10% is an encouraging benchmark for
a system aimed at daily consumer guidance. The maximum
error of 2.0, however, reveals edge cases where extreme
nutrient combinations challenge the model’s ability to predict
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correctly. These cases emphasize the importance of hybrid
post-processing rules to ensure that unhealthy items high in
sugar or saturated fat do not receive favorable ratings.

Table 1. Numerical Evaluation Metrics

. Base Final Hybrid
Metric CatBoost Model
R-squared (R?) 0.9002 0.9002
Explained 0.9010 0.9010
Variance
MAE 0.4599 0.4599
MedAE 0.0000 0.0000
RMSE 0.8995 0.8995
MAPE (%) 8.20% 8.20%
Max Error 2.0000 2.0000

5.2 Residual Diagnostics

Residual analysis provides insight into how prediction errors
are distributed across both models. The Q—Q plots in Figure 2
indicate that residuals in both the Base CatBoost and Hybrid
Model largely follow a normal distribution, aligning with the
reference diagonal line. However, deviations are more
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pronounced at the extremes for the CatBoost model, suggesting
heavier tails and higher susceptibility to misclassification on
unusual or outlier food profiles. The Hybrid Model shows a
tighter adherence to normality, particularly around central
quantiles, signifying better handling of diverse nutritional
cases.

The residual scatter plots in Figure 3 further illustrate
differences between the models. While both show clustering of
errors around zero, the Hybrid Model displays reduced
variance, particularly for mid-range NutriScore predictions.
This implies that hybrid adjustments help minimize
overestimation for borderline unhealthy products, such as
lightly sweetened snacks or low-fat but high-sodium packaged
foods. Conversely, the Base CatBoost model demonstrates
wider dispersion, reflecting its difficulty in aligning predictions
for products with conflicting nutrient attributes.

From a consumer perspective, residual diagnostics underscore
the reliability of the hybrid approach. By mitigating extreme
prediction errors, the system reduces the likelihood of falsely
labeling a high-sugar product as acceptable, thereby aligning
more closely with nutritional policy frameworks. These
refinements, although subtle statistically, can translate into
significant public health benefits by improving user trust in the
system’s guidance.
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5.3 Prediction Alignment

The predictive alignment between actual and predicted
NutriScores is visualized in Figure 4, where each point
represents a product’s true rating against the model’s
estimation. The Base CatBoost model shows reasonable
clustering along the diagonal but with noticeable scattering in
the mid-score range (4-7). These mid-range predictions are
critical because they often correspond to foods consumed daily,
such as cereals, granola bars, and dairy products. Inaccuracies
in this region could lead to misleading dietary guidance for
large consumer groups.

In contrast, the Hybrid Model demonstrates improved
clustering closer to the diagonal, especially in mid-range
scores. This refinement suggests that hybrid adjustments
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correct for the tendency of CatBoost to overrate nutritionally
ambiguous products. For example, a granola bar high in fiber
but also high in sugar may receive an inflated score in the base
model, while the hybrid correction accounts for the sugar
penalty, aligning the prediction with the actual rating.

The combined view in Figure 4 further emphasizes this
improvement. Overlaps between the two models indicate
shared strengths, but the Hybrid Model reduces dispersion in
critical ranges where consumer trust is most vulnerable. This
evidence underscores the hybrid framework’s practical value:
even without improving raw statistical metrics, it enhances
decision reliability by aligning model outputs more closely
with real-world expectations.
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Fig 4: Actual vs. Predicted Ratings

5.4 Feature Importance and Explainability
Understanding why a model produces a given output is as
important as the accuracy itself, particularly in health-related
applications. Table II and the SHAP summary plot in Figure 5
highlight the contributions of individual nutrients to NutriScore
predictions. Native CatBoost feature importance reveals that
sugars, salt, and saturated fats are the most influential features,
contributing 29.12%, 26.33%, and 23.88% respectively. This
aligns with established nutritional science, where excess
consumption of these nutrients is strongly correlated with
chronic diseases such as obesity, hypertension, and
cardiovascular disorders.

Permutation importance further validates this ranking but also
underscores the nuanced roles of less dominant nutrients. For
example, proteins and fibers, though contributing less in
absolute terms, play a corrective role by balancing penalties
assigned to high sugar or fat levels. This dual perspective
illustrates how the model learns both penalizing and rewarding
mechanisms in dietary evaluation.

The SHAP plot provides an interpretable visualization of
feature impacts at the individual prediction level. For instance,
higher values of sugar or salt shift predictions toward lower
scores, while higher fiber or protein levels mitigate these
penalties by shifting predictions upward. Such transparency is
essential for building user trust, as consumers are more likely
to adopt a system that can explain why their chosen product is
rated poorly or favorably. The hybrid approach leverages this
explainability by incorporating rule-based adjustments directly
tied to these SHAP-derived insights, bridging the gap between
black-box learning and interpretable decision-making.

Table 2. Feature Importance and Explainability

Feature Importance (%)
sugars 100g 29.12
salt 100g 26.33
saturated-fat 100g 23.88
fiber_100g 7.57
energy-kcal 100g 6.69
proteins_100g 4.47
fat 100g 1.95
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Fig 5: SHAP Summary Plot

5.5 Partial Dependence and Nutrient

Interactions
Partial dependence analysis helps reveal how individual
nutrients influence the model’s output when holding other
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features constant. Figure 6 shows clear monotonic declines for
sugars, salt, and saturated fats. As sugar values increase beyond
10 g per 100 g, predicted NutriScores fall sharply,
demonstrating that even moderate increases significantly affect
health assessments. Similarly, sodium levels above 400 mg per
100 g create steep penalties, reflecting the strong negative role
of salt in cardiovascular health. Saturated fats show a
comparable trend, where increases beyond 5 g per 100 g rapidly
lower predicted scores.

These results are consistent with established dietary guidelines
from the World Health Organization and USDA, suggesting
that the model’s behavior aligns with scientifically validated
thresholds. The Hybrid Model builds on these findings by
explicitly penalizing products when these nutrients cross
critical cutoffs.

Nutrient interactions also play a crucial role. For example, a
product with both high sugar and high saturated fat—such as a
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frosted pastry—receives a compounded penalty in the hybrid
framework. Conversely, foods rich in fiber or protein offset
penalties to some extent, reflecting the balance found in real
diets. This adaptive adjustment mirrors real-world nutritional
reasoning, where the presence of protective nutrients like fiber
can mitigate but not entirely neutralize harmful effect.

To further contextualize these findings, the correlation heatmap
in Figure 7 illustrates interdependencies among nutrients. As
expected, total fat and saturated fat are strongly correlated,
often appearing together in dairy and processed foods. Sugar,
however, shows weak correlations with other nutrients,
highlighting its independent contribution to poor health
outcomes. The Hybrid Model accounts for these relationships
by ensuring that high-risk nutrient combinations do not “hide”
behind correlated features, providing a more holistic and
reliable scoring mechanism.
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5.6 Residual Distribution

Residual error distribution provides another layer of model

evaluation. Figure 8 compares histograms of residuals for the
base CatBoost and Hybrid Model. Both distributions are
centered near zero, but the Hybrid Model demonstrates a
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narrower spread, with fewer outliers. This indicates that the
hybrid framework not only maintains average accuracy but also
reduces variability in predictions, leading to more consistent
performance across diverse food categories.

In the base model, wider residuals were particularly visible for
nutritionally extreme foods. For instance, a sugary energy drink
with minimal protein may be underestimated, while a high-
protein bar with excessive sodium may be overestimated. The
Hybrid Model reduces these misclassifications by applying
targeted rules that explicitly penalize sugars, salt, and saturated
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fats while rewarding fiber and protein. This correction
mechanism ensures that predictions align more closely with
health expectations, even in unusual cases.

From a user perspective, narrower residuals translate into fewer
confusing or misleading ratings. If a product consistently
receives similar predicted and observed scores, users are more
likely to trust the system. For public health applications, this
consistency is critical because it minimizes the risk of
misinformation and improves the effectiveness of dietary
interventions guided by LabelAl.
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Fig 8: Residual Error Distributions (Base vs. Hybrid Model)

6. FUTURE SCOPE

The future development of Label-Al lies in advancing
personalization and expanding its data ecosystem. While the
current system adjusts scores based on dietary preferences and
general health conditions, future versions could integrate real-
time data streams from wearable devices, fitness trackers, and
electronic health records. This would allow dynamic
recommendations that adapt to physiological responses such as
blood sugar fluctuations or blood pressure levels, creating a
closed loop between dietary intake and personal health
monitoring.

Another promising direction involves broadening data
coverage and modeling capabilities. At present, the Open Food
Facts database forms the backbone of Label-Al, but its scope
can be complemented with proprietary retailer datasets,
restaurant menus, and crowdsourced nutrition label inputs. On
the modeling side, advanced architectures such as graph neural
networks or multimodal transformers could capture richer
relationships among ingredients, food categories, and long-
term health outcomes. Coupling these models with
explainability methods would maintain transparency while
pushing predictive power beyond the current hybrid CatBoost
framework.

Finally, the system must transition from proof-of-concept into
real-world deployment. Piloting Label-Al in grocery stores,
healthcare clinics, and public health initiatives could validate
its impact at scale. Gamified features, such as rewards for
healthier purchases, and partnerships with food retailers could
further enhance user engagement and adoption. By combining
personalization, data expansion, advanced modeling, and
practical deployment, Label-Al can evolve from a barcode-
based nutritional advisor into a comprehensive platform for
preventive healthcare and public health transformation.

7. CONCLUSION

This work presented Label-Al, a barcode-based nutritional
evaluation system that merges machine learning with rule-
based personalization to guide healthier choices. By integrating
CatBoost regression with domain-driven adjustments, the

system demonstrates how predictive models can be enhanced
with transparency and contextual reasoning. The experimental
evaluation showed that the Hybrid Model maintains the
accuracy of CatBoost while improving interpretability, stability
in extreme cases, and alignment with nutritional science. These
qualities make Label-Al not just a technical solution but a
practical tool that translates raw nutritional information into
meaningful dietary insights for everyday users.

Beyond its statistical performance, the value of Label-Al lies in
its ability to communicate complex nutrition data in an
accessible way. By offering clear justifications for each score
and tailoring outcomes to personal health profiles, the system
empowers individuals to make informed food choices. The
hybrid approach bridges the gap between artificial intelligence
and real-world usability, showing that effective health
technologies must balance predictive accuracy with user trust
and personalization. With further expansion into broader
datasets, advanced modeling, and real-world deployment,
Label-Al has the potential to evolve into a comprehensive
platform that contributes to both individual well-being and
public health.
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