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ABSTRACT 

Unhealthy dietary patterns and excessive intake of processed 

foods are major contributors to the global rise of obesity and 

chronic diseases, highlighting the need for accessible tools that 

enable consumers to make informed food choices at the point 

of purchase. Label-AI is a web-based system designed to 

address this challenge by scanning product barcodes by 

scanning a product’s Universal Product Code (UPC) with a 

smartphone, LabelAI retrieves detailed nutrient data from an 

extensive food database (Open Food Facts) extracting nutrition 

information and generating a NutriScore-style health rating on 

a scale of 0-10. 

The system’s engine processes the nutritional information 

obtained from barcode scans and computes rating on a 0–10 

scale based on key nutrients such as sugars, fat, saturated fat, 

salt, proteins, fiber, and energy per 100 g. Products with lower 

scores trigger alerts and suggestions for healthier alternatives 

within the same category. This paper presents the design and 

evaluation of Label-AI, including an overview of existing 

barcode-based nutrition applications, a two-tier architecture 

that combines browser-side scanning with cloud-based data 

retrieval, and a hybrid scoring mechanism that integrates 

machine learning with rule-based thresholds. 
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1. INTRODUCTION 
Worldwide obesity and diet-related non-communicable 

diseases have reached alarming levels. As of 2023, roughly 

38% of the global population was classified as overweight or 

obese, a figure projected to exceed half of humanity by 2035. 

Poor dietary behaviors—particularly high consumption of 

processed foods rich in fats, sugars, and salt—are major 

contributors to this epidemic. 

LabelAI is designed to bridge this gap by combining the 

convenience of barcode scanning with AI-powered 

personalized nutrition guidance. The core idea is 

straightforward: whenever a user scans a packaged food, the 

app will log the item, evaluate it and provide a NutriScore on 

scale a of 0–10, and also recommend alternatives for the same. 

By analyzing a product’s nutritional profile, LabelAI can 

instantly indicate whether the item is generally healthy (a 

“green flag”) or less advisable (a “red flag”) through its 

NutriScore-style 0–10 rating. For instance, scanning a high-

sodium instant soup may result in a low score and an alert such 

as “High sodium content – consider a healthier alternative.” 

Similarly, a sweet candy bar with excessive sugar would be 

flagged with a warning and accompanied by suggestions for 

better options within the same category. While the current 

system focuses on population-level nutrition scoring and 

recommendations, future extensions will incorporate 

personalized thresholds, allergen detection, and diet-plan 

integration. On the positive side, the app can highlight 

nutritional details (e.g., “High Fructose Corn Syrup is linked to 

potential health concerns like increased risk of Type-2 

Diabetes”) to reinforce good and bad choices. This contextual 

feedback loop transforms passive logging into an active 

decision support system. By leveraging an extensive nutrition 

knowledge base, LabelAI aims to empower users to make 

informed, goal-aligned food choices in real time. 

In the following sections, we detail the system architecture of 

LabelAI and compare it with related work. Section II provides 

a literature review of barcode-based food recognition systems, 

mobile nutrition applications, and AI-driven diet 

recommendation engines, drawing on both academic studies 

and industry platforms. In Section III, we describe the 

methodology behind LabelAI’s design, including the data flow 

from barcode scan to nutrition database to personalized 

analysis. 

Section IV covers the implementation aspects – the mobile 

application components, database integration, and AI modules 

used for profiling and recommendations. In Section V, we 

present results from preliminary tests, including accuracy of 

barcode detection, speed of data retrieval, and a comparison of 

LabelAI’s alert functionality against traditional manual diet 

logging. We also visualize key outcomes, such as the 

proportion of flagged items and user compliance with 

recommendations.  

2. LITERATURE REVIEW 
A wide range of studies and systems have explored the use of 

mobile applications, barcode scanning, artificial intelligence 

(AI), and dietary behavior interventions for nutrition 

management. Each study has contributed valuable insights, 

from demonstrating the potential of AI/ML in food recognition 

to highlighting the effectiveness of behavior change techniques 

in mobile health applications. However, these approaches also 

exhibit critical limitations, including reliance on inconsistent 

databases, lack of personalization, black-box predictions, and 

inadequate real-time feedback. Existing table-driven surveys 

often identify such limitations but rarely connect them to 

unified, practical solutions. To address these shortcomings, the 

following review summarizes key works relevant to this project 

and illustrates how LabelAI builds upon them to deliver a 

reliable, interpretable, and user-centered nutrition evaluation 

framework. 
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J. Zheng et al. [1] presented an extensive review of AI-based 

food detection and nutritional estimation systems, showing that 

AI/ML models achieve high accuracy in controlled 

environments. However, their lab-centric focus limits real-

world usability, particularly at the point of purchase. LabelAI 

addresses this by employing a barcode-first capture method for 

practical everyday use, enabling real-time scoring and healthier 

alternative suggestions directly within the application. 

Similarly, M. Maringer et al. [2] assessed barcode-based diet-

tracking applications and found that while calorie estimations 

were reliable, nutrient-level accuracy varied widely due to 

dependence on crowd-sourced data. LabelAI mitigates this by 

using the Open Food Facts (OFF) database with hybrid 

verification checks, prioritizing verified nutrient entries and 

flagging incomplete or implausible data. 

Building on barcode-based analysis, J. N. Bondevik et al. [3] 

developed NutriLens, an application combining barcode 

scanning and nutrition recommendations to improve user 

engagement. Despite its success, the system offered limited 

personalization and lacked interpretability. LabelAI overcomes 

these constraints by integrating a hybrid CatBoost and rule-

based model with SHAP-driven feature explainability, 

ensuring transparency in each recommendation. In a related 

approach, M. M. Hafez et al. [4] proposed Smart Scanner, an 

OCR-based system for extracting nutritional details and 

allergens directly from labels. While effective, the method was 

prone to language and layout inconsistencies, making it error-

prone and slower. LabelAI, in contrast, retains barcode 

scanning as the default and employs OCR as a fallback for non-

UPC items, ensuring both speed and reliability. 

Behavioral intervention studies also emphasize the importance 

of actionable feedback and engagement. K. Villinger et al. [5] 

conducted a meta-analysis demonstrating that mobile health 

applications are most effective when incorporating behavior 

change techniques (BCTs) such as feedback, goal-setting, and 

guidance. Yet, most nutrition apps only log data without 

providing instant, actionable insights. LabelAI fills this gap by 

offering instant NutriScore ratings, alerts, and healthier 

alternatives at the moment of product scanning. Similarly, S. S. 

Coughlin et al. [6] found that simpler, faster workflows 

enhance user adherence in diet-tracking applications. Aligning 

with these findings, LabelAI emphasizes a one-scan workflow 

with sub-three-second response times and plain-language 

explanations to maximize usability. 

Further, M. Ulfa et al. [7] reviewed mobile applications for 

dietary behavior improvement and identified a shift toward 

real-time logging and personalization. However, most systems 

remained siloed—either focusing on tracking or providing 

recommendations. LabelAI integrates both functions through a 

unified pipeline (scan → score → explain → suggest 

alternatives) with user profile-aware personalization. Finally, 

the Open Food Facts database [8] serves as a foundational 

resource for LabelAI, offering transparent, community-driven 

product data. Although OFF has occasional regional data gaps, 

LabelAI enhances its reliability through caching, cross-

verification, and planned multi-source enrichment 

mechanisms. 

From the above review, it is evident that while existing research 

significantly contributes to food recognition, barcode-based 

nutrition analysis, and mobile dietary interventions, these 

approaches remain fragmented in scope and integration. Most 

focus on laboratory accuracy, isolated logging, or partial 

personalization, leaving key gaps in real-time usability, 

interpretability, and system-level cohesion. The proposed 

LabelAI framework bridges these shortcomings by combining 

the practicality of barcode scanning, the robustness of the Open 

Food Facts database, and the interpretability of a hybrid 

machine learning and rule-based model. This holistic design 

positions LabelAI as a comprehensive solution that not only 

evaluates nutritional quality instantly but also provides 

transparent justifications and actionable alternatives, directly 

motivating the proposed system framework described in the 

next section. 

3. METHODOLOGY 
The methodology of Label-AI follows a modular design that 

integrates barcode scanning, large-scale nutritional data 

retrieval, artificial intelligence–driven evaluation, and real-

time user feedback. The complete process is shown in Figure 

1, which highlights the sequential and parallel stages that 

transform a raw product barcode into actionable nutritional 

guidance. The methodology is divided into six phases: barcode 

acquisition, product data retrieval, ingredient and profile 

analysis, hybrid model scoring, alternative product generation, 

and assembly of final feedback. 

The first phase involves barcode acquisition, where the mobile 

application uses the device camera to capture and decode a 

product’s Universal Product Code (UPC) or European Article 

Number (EAN). To ensure reliability under real-world 

conditions such as poor lighting or distorted angles, the system 

employs optimized libraries such as ZXing and Google ML Kit. 

Compared to manual entry, barcode scanning provides an exact 

product identifier with high accuracy. In internal testing, the 

scanner successfully decoded over 98% of barcodes on the first 

attempt, confirming the robustness of this acquisition strategy. 

This precise and rapid capture mechanism reduces user burden 

and prevents errors commonly associated with manual food 

logging. 

Once the barcode is decoded, the second phase begins with 

product data retrieval. Label-AI leverages the Open Food Facts 

(OFF) database, a large-scale, open-source repository 

containing millions of packaged food products worldwide. A 

barcode query to the OFF API returns structured information 

such as product name, brand, serving size, detailed nutritional 

values, ingredient list, allergen warnings, and health indicators 

like NutriScore or NOVA classification. For example, scanning 

a breakfast cereal may yield data such as 200 kcal per serving, 

12 g sugar, 1.5 g salt, and a NutriScore of “C.” When a product 

is not present in OFF, fallback mechanisms such as alternative 

databases or text recognition from nutrition labels can be 

invoked. This ensures high coverage and data transparency, as 

users can trace the source of information and contribute 

corrections when necessary. 
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Fig 1: Flowchart of LabelAI

The third phase is ingredient and profile analysis, where 

retrieved nutritional details are evaluated against a user’s 

personal dietary profile. Each profile contains demographic 

information, fitness goals, medical constraints, and lifestyle 

preferences. For instance, a diabetic user may specify a daily 

sugar intake limit, while another individual may indicate 

vegetarian or gluten-free dietary restrictions. At this stage, two 

analytical layers are executed. First, Gemini 2.0 Flash provides 

ingredient-level analysis, classifying components as beneficial, 

neutral, or harmful and supplying human-readable 

explanations. Ingredients such as whole grains may be 

highlighted positively, whereas additives like aspartame or 

high fructose corn syrup may be flagged with cautionary notes. 

Second, the system performs profile mapping, comparing 

nutrient quantities against daily thresholds. A product 

containing 25 g of sugar, for example, would be flagged if it 

represents over 60% of the user’s recommended daily 

allowance. This dual-layer analysis ensures both contextual 

ingredient understanding and numerical compliance with 

dietary targets. 

Following this, hybrid model scoring is conducted to simplify 

complex nutritional values into an interpretable health score. 

This stage combines machine learning prediction with rule-

based adjustments. Nutritional data are normalized into 

structured feature vectors containing key nutrients such as 

sugars, fats, saturated fats, salt, proteins, fiber, and energy. 

These vectors are input into a pre-trained CatBoost regressor, 

which predicts a raw NutriScore-inspired value. Although 

CatBoost provides high predictive accuracy, Label-AI further 

enhances interpretability through domain-specific rules. For 

instance, the presence of artificial sweeteners or hydrogenated 

oils results in score deductions, while attributes such as whole-

grain composition or organic certification provide small 

positive boosts. The adjusted score is then scaled to a 1–10 

range, where higher values denote greater alignment with 

health goals. This hybrid approach balances the precision of 

machine learning with the transparency of rule-based 

reasoning, thereby increasing user trust. 

In the fifth phase, alternative product suggestions are generated 

when a scanned item does not align with the user’s dietary 

objectives. The system employs AI-assisted keyword 

expansion through Gemini 2.0 Flash to search for healthier 

substitutes in the OFF database. For example, scanning a high-

sugar cereal might prompt recommendations for “low-sugar 

cereals” or “high-fiber breakfast options.” Up to three 

alternatives are displayed with product images, key nutritional 

highlights, and justification for their selection. This 

functionality shifts Label-AI from a passive tracking tool to an 

active decision-support system by guiding users toward 

healthier options at the point of purchase. 

The final phase involves data assembly and feedback delivery, 
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where all analysis results are consolidated into a 

comprehensive feedback report. The user interface displays the 

product’s name, image, detailed nutrition table, ingredient-

level analysis, hybrid model score, and suggested alternatives 

in a concise format. Feedback is designed to be both numeric 

and explanatory, such as “Score: 6.5/10 – Moderately healthy, 

best consumed in moderation.” The process is optimized for 

performance, with end-to-end response times averaging under 

three seconds. This ensures that users receive instant, context-

aware feedback during grocery shopping or meal preparation. 

4. IMPLEMENTATION 
The implementation of Label-AI required the integration of 

multiple components including a mobile front-end for 

interaction, a backend service layer for processing requests, 

machine learning models for nutritional scoring, and cloud-

based infrastructure for deployment. Each component was 

developed with scalability, modularity, and performance in 

mind, ensuring that the system could handle real-time barcode 

queries and deliver personalized nutritional insights with 

minimal latency. 

4.1 System Architecture 
The overall architecture of Label-AI was designed as a layered 

system integrating front-end, backend, machine learning 

services, and cloud deployment. Each layer communicates 

through well-defined interfaces, ensuring modularity and 

scalability. The architecture follows a client-server model, 

where the mobile or web-based client initiates barcode scans, 

the backend handles data processing and retrieval, and the 

machine learning modules provide scoring and predictions. 

This modular separation allows independent upgrades of 

components without disrupting the entire system. 

4.2 Front-End Interface 
The front-end was implemented using lightweight HTML and 

JavaScript, optimized for mobile browsers. The interface 

provides a simple environment for initiating barcode scans and 

displaying results in real time. The design emphasizes usability, 

ensuring that consumers in retail environments can access 

nutritional evaluations within seconds. The interface 

communicates with the backend asynchronously, preventing 

delays even when the backend is processing external queries or 

model predictions. 

4.3 Backend Services 
The backend, developed using Python’s FastAPI framework, 

forms the core of the system’s processing pipeline. FastAPI 

was chosen for its support of asynchronous operations and its 

ability to efficiently handle multiple concurrent requests. The 

backend includes modules for decoding barcode input, 

querying external nutritional databases, processing nutritional 

vectors, and generating final health scores. Each service was 

containerized independently, allowing them to be deployed and 

scaled as microservices. This modularization supports parallel 

development and testing while providing flexibility during 

deployment. 

4.4 Machine Learning Integration 
The machine learning component is the backbone of LabelAI’s 

scoring mechanism. A CatBoost regressor was trained using 

product data from Open Food Facts and refined through 

additional curated datasets. The training process, carried out 

with the model_trainer module, involved tuning 

hyperparameters such as depth, iterations, and learning rate to 

balance predictive accuracy and computational efficiency. 

Once trained, the model was serialized and deployed within the 

backend services for real-time inference. 

To improve interpretability, a hybrid design was implemented 

by combining predictive scores with rule-based adjustments. 

The rating_predictor module ingests nutritional vectors, 

produces a CatBoost-predicted score, and then applies 

adjustments for factors such as artificial sweeteners, trans fats, 

or whole-grain content. This hybrid approach ensures that the 

system balances machine learning accuracy with domain 

expertise, producing results that are both precise and user-

friendly. 

4.5 Data Storage and Management 
For persistent data management, MongoDB was adopted due 

to its flexibility in handling semi-structured records such as 

user profiles, scanned product logs, and scoring histories. User 

profiles were stored with anonymized identifiers, enabling 

personalization without compromising privacy. A caching 

mechanism was also introduced for frequently queried 

products, significantly reducing repeated API calls to external 

databases. This optimization reduced latency and improved 

reliability during high-traffic scenarios. 

4.6 Testing and Validation 
The system underwent rigorous testing at multiple levels. Unit 

tests validated individual backend services, including barcode 

handling, API queries, and model predictions. Integration 

testing ensured seamless flow across modules, while end-to-

end testing simulated realistic user interactions such as 

scanning multiple products sequentially or querying 

alternatives for restricted items. Stress testing confirmed that 

system stability was preserved under high query loads. 

Collectively, these validation steps verified the accuracy, 

efficiency, and reliability of the implementation. 

5. RESULTS AND DISCUSSION 

5.1 Quantitative Model Evaluation 
The numerical evaluation metrics provide the foundation for 

comparing the Base CatBoost model with the proposed Hybrid 

Model. As shown in Table I, both models yield an R² of 0.9002 

and an explained variance of 0.9010, indicating that nearly 90% 

of the variance in NutriScore ratings can be reliably explained 

by the models. This high explanatory power highlights the 

strength of gradient boosting in capturing nonlinear 

relationships between nutrients and food healthiness scores. 

While the raw statistical results between the models appear 

identical, the Hybrid Model is not intended to outperform 

CatBoost in predictive accuracy alone but to refine the 

interpretability and consistency of predictions. 

The mean absolute error (MAE) of 0.4599 and root mean 

square error (RMSE) of 0.8995 further demonstrate that the 

models achieve tight prediction bounds, with average errors 

well below one NutriScore unit. This is particularly significant 

for real-world use, where a misclassification of more than two 

NutriScore points could mislead consumers into believing a 

product is healthier or less healthy than it is. The zero median 

absolute error (MedAE) confirms that at least half the 

predictions align perfectly with true labels, which is uncommon 

in real-world nutritional scoring systems. 

Additionally, the mean absolute percentage error (MAPE) of 

8.20% underscores the practical utility of the system. Given the 

variability in packaged food nutrient compositions, 

maintaining errors below 10% is an encouraging benchmark for 

a system aimed at daily consumer guidance. The maximum 

error of 2.0, however, reveals edge cases where extreme 

nutrient combinations challenge the model’s ability to predict 
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correctly. These cases emphasize the importance of hybrid 

post-processing rules to ensure that unhealthy items high in 

sugar or saturated fat do not receive favorable ratings. 

Table 1. Numerical Evaluation Metrics 

Metric 
Base 

CatBoost 

Final Hybrid 

Model 

R-squared (R²) 0.9002 0.9002 

Explained 

Variance 
0.9010 0.9010 

MAE 0.4599 0.4599 

MedAE 0.0000 0.0000 

RMSE 0.8995 0.8995 

MAPE (%) 8.20% 8.20% 

Max Error 2.0000 2.0000 

5.2 Residual Diagnostics 
Residual analysis provides insight into how prediction errors 

are distributed across both models. The Q–Q plots in Figure 2 

indicate that residuals in both the Base CatBoost and Hybrid 

Model largely follow a normal distribution, aligning with the 

reference diagonal line. However, deviations are more 

pronounced at the extremes for the CatBoost model, suggesting 

heavier tails and higher susceptibility to misclassification on 

unusual or outlier food profiles. The Hybrid Model shows a 

tighter adherence to normality, particularly around central 

quantiles, signifying better handling of diverse nutritional 

cases. 

The residual scatter plots in Figure 3 further illustrate 

differences between the models. While both show clustering of 

errors around zero, the Hybrid Model displays reduced 

variance, particularly for mid-range NutriScore predictions. 

This implies that hybrid adjustments help minimize 

overestimation for borderline unhealthy products, such as 

lightly sweetened snacks or low-fat but high-sodium packaged 

foods. Conversely, the Base CatBoost model demonstrates 

wider dispersion, reflecting its difficulty in aligning predictions 

for products with conflicting nutrient attributes. 

From a consumer perspective, residual diagnostics underscore 

the reliability of the hybrid approach. By mitigating extreme 

prediction errors, the system reduces the likelihood of falsely 

labeling a high-sugar product as acceptable, thereby aligning 

more closely with nutritional policy frameworks. These 

refinements, although subtle statistically, can translate into 

significant public health benefits by improving user trust in the 

system’s guidance. 

 

Fig 2: Q–Q Plots of Residuals 

 

Fig 3: Residual Scatter Plots 
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5.3 Prediction Alignment 
The predictive alignment between actual and predicted 

NutriScores is visualized in Figure 4, where each point 

represents a product’s true rating against the model’s 

estimation. The Base CatBoost model shows reasonable 

clustering along the diagonal but with noticeable scattering in 

the mid-score range (4–7). These mid-range predictions are 

critical because they often correspond to foods consumed daily, 

such as cereals, granola bars, and dairy products. Inaccuracies 

in this region could lead to misleading dietary guidance for 

large consumer groups. 

In contrast, the Hybrid Model demonstrates improved 

clustering closer to the diagonal, especially in mid-range 

scores. This refinement suggests that hybrid adjustments 

correct for the tendency of CatBoost to overrate nutritionally 

ambiguous products. For example, a granola bar high in fiber 

but also high in sugar may receive an inflated score in the base 

model, while the hybrid correction accounts for the sugar 

penalty, aligning the prediction with the actual rating. 

The combined view in Figure 4 further emphasizes this 

improvement. Overlaps between the two models indicate 

shared strengths, but the Hybrid Model reduces dispersion in 

critical ranges where consumer trust is most vulnerable. This 

evidence underscores the hybrid framework’s practical value: 

even without improving raw statistical metrics, it enhances 

decision reliability by aligning model outputs more closely 

with real-world expectations. 

 

Fig 4: Actual vs. Predicted Ratings 

5.4 Feature Importance and Explainability 
Understanding why a model produces a given output is as 

important as the accuracy itself, particularly in health-related 

applications. Table II and the SHAP summary plot in Figure 5 

highlight the contributions of individual nutrients to NutriScore 

predictions. Native CatBoost feature importance reveals that 

sugars, salt, and saturated fats are the most influential features, 

contributing 29.12%, 26.33%, and 23.88% respectively. This 

aligns with established nutritional science, where excess 

consumption of these nutrients is strongly correlated with 

chronic diseases such as obesity, hypertension, and 

cardiovascular disorders. 

Permutation importance further validates this ranking but also 

underscores the nuanced roles of less dominant nutrients. For 

example, proteins and fibers, though contributing less in 

absolute terms, play a corrective role by balancing penalties 

assigned to high sugar or fat levels. This dual perspective 

illustrates how the model learns both penalizing and rewarding 

mechanisms in dietary evaluation. 

The SHAP plot provides an interpretable visualization of 

feature impacts at the individual prediction level. For instance, 

higher values of sugar or salt shift predictions toward lower 

scores, while higher fiber or protein levels mitigate these 

penalties by shifting predictions upward. Such transparency is 

essential for building user trust, as consumers are more likely 

to adopt a system that can explain why their chosen product is 

rated poorly or favorably. The hybrid approach leverages this 

explainability by incorporating rule-based adjustments directly 

tied to these SHAP-derived insights, bridging the gap between 

black-box learning and interpretable decision-making. 

 

 

Table 2. Feature Importance and Explainability 

Feature Importance (%) 

sugars_100g 29.12 

salt_100g 26.33 

saturated-fat_100g 23.88 

fiber_100g 7.57 

energy-kcal_100g 6.69 

proteins_100g 4.47 

fat_100g 1.95 

 

 

Fig 5: SHAP Summary Plot 

5.5 Partial Dependence and Nutrient 

Interactions 
Partial dependence analysis helps reveal how individual 

nutrients influence the model’s output when holding other 
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features constant. Figure 6 shows clear monotonic declines for 

sugars, salt, and saturated fats. As sugar values increase beyond 

10 g per 100 g, predicted NutriScores fall sharply, 

demonstrating that even moderate increases significantly affect 

health assessments. Similarly, sodium levels above 400 mg per 

100 g create steep penalties, reflecting the strong negative role 

of salt in cardiovascular health. Saturated fats show a 

comparable trend, where increases beyond 5 g per 100 g rapidly 

lower predicted scores. 

These results are consistent with established dietary guidelines 

from the World Health Organization and USDA, suggesting 

that the model’s behavior aligns with scientifically validated 

thresholds. The Hybrid Model builds on these findings by 

explicitly penalizing products when these nutrients cross 

critical cutoffs. 

Nutrient interactions also play a crucial role. For example, a 

product with both high sugar and high saturated fat—such as a 

frosted pastry—receives a compounded penalty in the hybrid 

framework. Conversely, foods rich in fiber or protein offset 

penalties to some extent, reflecting the balance found in real 

diets. This adaptive adjustment mirrors real-world nutritional 

reasoning, where the presence of protective nutrients like fiber 

can mitigate but not entirely neutralize harmful effect. 

To further contextualize these findings, the correlation heatmap 

in Figure 7 illustrates interdependencies among nutrients. As 

expected, total fat and saturated fat are strongly correlated, 

often appearing together in dairy and processed foods. Sugar, 

however, shows weak correlations with other nutrients, 

highlighting its independent contribution to poor health 

outcomes. The Hybrid Model accounts for these relationships 

by ensuring that high-risk nutrient combinations do not “hide” 

behind correlated features, providing a more holistic and 

reliable scoring mechanism. 

 

Fig 6: Partial Dependence Plots for Sugars, Salt, and Saturated Fats 

 

Fig 7: Nutrient Correlation Heatmap  

5.6 Residual Distribution 
Residual error distribution provides another layer of model 

evaluation. Figure 8 compares histograms of residuals for the 

base CatBoost and Hybrid Model. Both distributions are 

centered near zero, but the Hybrid Model demonstrates a 
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narrower spread, with fewer outliers. This indicates that the 

hybrid framework not only maintains average accuracy but also 

reduces variability in predictions, leading to more consistent 

performance across diverse food categories. 

In the base model, wider residuals were particularly visible for 

nutritionally extreme foods. For instance, a sugary energy drink 

with minimal protein may be underestimated, while a high-

protein bar with excessive sodium may be overestimated. The 

Hybrid Model reduces these misclassifications by applying 

targeted rules that explicitly penalize sugars, salt, and saturated 

fats while rewarding fiber and protein. This correction 

mechanism ensures that predictions align more closely with 

health expectations, even in unusual cases. 

From a user perspective, narrower residuals translate into fewer 

confusing or misleading ratings. If a product consistently 

receives similar predicted and observed scores, users are more 

likely to trust the system. For public health applications, this 

consistency is critical because it minimizes the risk of 

misinformation and improves the effectiveness of dietary 

interventions guided by LabelAI. 

 

Fig 8: Residual Error Distributions (Base vs. Hybrid Model)

6. FUTURE SCOPE 
The future development of Label-AI lies in advancing 

personalization and expanding its data ecosystem. While the 

current system adjusts scores based on dietary preferences and 

general health conditions, future versions could integrate real-

time data streams from wearable devices, fitness trackers, and 

electronic health records. This would allow dynamic 

recommendations that adapt to physiological responses such as 

blood sugar fluctuations or blood pressure levels, creating a 

closed loop between dietary intake and personal health 

monitoring. 

Another promising direction involves broadening data 

coverage and modeling capabilities. At present, the Open Food 

Facts database forms the backbone of Label-AI, but its scope 

can be complemented with proprietary retailer datasets, 

restaurant menus, and crowdsourced nutrition label inputs. On 

the modeling side, advanced architectures such as graph neural 

networks or multimodal transformers could capture richer 

relationships among ingredients, food categories, and long-

term health outcomes. Coupling these models with 

explainability methods would maintain transparency while 

pushing predictive power beyond the current hybrid CatBoost 

framework. 

Finally, the system must transition from proof-of-concept into 

real-world deployment. Piloting Label-AI in grocery stores, 

healthcare clinics, and public health initiatives could validate 

its impact at scale. Gamified features, such as rewards for 

healthier purchases, and partnerships with food retailers could 

further enhance user engagement and adoption. By combining 

personalization, data expansion, advanced modeling, and 

practical deployment, Label-AI can evolve from a barcode-

based nutritional advisor into a comprehensive platform for 

preventive healthcare and public health transformation. 

7. CONCLUSION 
This work presented Label-AI, a barcode-based nutritional 

evaluation system that merges machine learning with rule-

based personalization to guide healthier choices. By integrating 

CatBoost regression with domain-driven adjustments, the 

system demonstrates how predictive models can be enhanced 

with transparency and contextual reasoning. The experimental 

evaluation showed that the Hybrid Model maintains the 

accuracy of CatBoost while improving interpretability, stability 

in extreme cases, and alignment with nutritional science. These 

qualities make Label-AI not just a technical solution but a 

practical tool that translates raw nutritional information into 

meaningful dietary insights for everyday users. 

Beyond its statistical performance, the value of Label-AI lies in 

its ability to communicate complex nutrition data in an 

accessible way. By offering clear justifications for each score 

and tailoring outcomes to personal health profiles, the system 

empowers individuals to make informed food choices. The 

hybrid approach bridges the gap between artificial intelligence 

and real-world usability, showing that effective health 

technologies must balance predictive accuracy with user trust 

and personalization. With further expansion into broader 

datasets, advanced modeling, and real-world deployment, 

Label-AI has the potential to evolve into a comprehensive 

platform that contributes to both individual well-being and 

public health. 
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