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ABSTRACT

Urban waterlogging has escalated into a chronic and debilitating
crisis across India, inflicting severe economic, infrastructural, and
public health consequences. This systemic failure of modern urban
water management stands in stark contrast to the sophisticated and
resilient hydraulic engineering of the ancient Indus Valley
Civilization. This paper introduces a novel Multi-Tier Scheduling
Framework designed to address this contemporary challenge by
drawing inspiration from ancient design philosophies while
leveraging state-of-the-art technology. The framework employs a
three-tier architecture—Perception, Fog, and Cloud—that
facilitates real-time waterlogging detection, predictive analysis,
and optimized emergency resource dispatch. The Perception Tier
integrates a dense network of low-cost IoT sensors (ultrasonic and
pressure) and fuses this quantitative data with qualitative insights
derived from Natural Language Processing (NLP) of social media
feeds and meteorological forecasts. The Fog Tier, operating at the
network edge, utilizes a hybrid Transformer-Long Short-Term
Memory (LSTM) deep learning model for low-latency, localized
waterlogging prediction. The Cloud Tier orchestrates city-wide
response, employing a metaheuristic optimizer based on a hybrid
Ant Colony Optimization and Genetic Algorithm (ACO-GA) to
solve the dynamic vehicle routing problem for emergency dispatch.
A preemptive, priority-based real-time scheduler governs the entire
framework, ensuring that time-critical tasks are prioritized during
emergencies. A simulated implementation using geospatial and
hydrological data from a flood-prone urban zone demonstrates the
framework's efficacy. The results indicate a significant
improvement in prediction accuracy and a substantial reduction in
emergency response times compared to baseline models. This
research presents a holistic, technologically advanced, and
historically informed blueprint for building climate-resilient and
intelligent urban water management systems in India and beyond.
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1. INTRODUCTION
The Deluge in Modern India's Cities

The seasonal monsoon, once a life-giving force, has increasingly
become a harbinger of chaos for India’s urban centers. The
phenomenon of urban waterlogging—the overwhelming drainage
systems leading to widespread flooding—has transitioned from an
occasional nuisance to a predictable, annual crisis [1], [2]. This
recurring failure of urban infrastructure not only paralyzes daily
life but also inflicts a staggering toll on the nation’s economy,
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public health, and social fabric [3], [6], [7].

A. The Scale of the Crisis

The pervasiveness of urban waterlogging in India has reached
endemic levels. A nationwide survey revealed that 94% of
citizens report their city or district experiences waterlogging,
with 58% describing the situation as “quite badly” affected [1],
[2]. This is no longer a localized issue but a systemic, national
problem underscoring a fundamental inadequacy in urban
planning and management [3], [5].

The crisis is being amplified by climate change. The
Intergovernmental Panel on Climate Change (IPCC) projects
increased and more intense monsoon precipitation across
South Asia, a trend already visible in Indian cities [6], [7].
Delhi, for example, experienced its wettest August in 15 years,
recording 228.1 mm of rainfall in 24 hours, surpassing the
monthly average [4]. Similarly, the 2005 Mumbai flood was
triggered by an unprecedented 944 mm of rainfall in a single
day [8]. These events demonstrate that existing urban drainage
systems, often relics of the colonial era, are critically
unprepared for the new climatic reality [9], [10]. This
normalization of failure has fostered a reactive stance among
authorities and resignation among citizens, perpetuating a
cycle of disruption and recovery [6], [7].
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Fig.1. Daily Rainfall- Mumbai(Aug 2025)

Daily rainfall comparison between Santacruz and Colaba,
showing intra-city variability during August 2025.

B. The Cascading Consequences

1) Economic disruption:

Urban flooding imposes immense economic costs. The World
Bank estimates that pluvial flooding costs India $4 billion
annually [7]. Catastrophic events like the 2005 Mumbai flood
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resulted in insured losses exceeding USD 3 billion [6]. Surveys
further reveal that 84% of citizens lose commuting time, 68% face
increased vehicle wear, and 54% report lost working hours due to
waterlogging [1], [2]. For a city like Mumbai, which contributes
~6.1% of India’s GDP, such disruptions have national
repercussions [6].

2) Infrastructural failure:

Flooding paralyzes urban infrastructure. Transportation networks
collapse, as seen in Bengaluru, where submerged pump houses
disrupted city water supply for days [9], [10], [31], [32].

3) Public health emergency:

Floodwaters foster waterborne diseases like cholera, typhoid, and
hepatitis A, as well as vector-borne diseases such as dengue and
malaria [11]-[14]. In Chennai, floods triggered outbreaks of
melioidosis, a potentially fatal bacterial infection [13], [15]. The
health impacts extend to respiratory ailments, injuries, and mental
health stresses [12], [14]. Vulnerable populations in low-lying,
informal settlements face disproportionate risks [15], [16].
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Fig.2. Causes of Waterlogging Delays

Distribution of waterlogging delays, with traffic congestion and
blocked drains as dominant causes.

C. A Paradigm Lost: The Harappan Precedent

India’s present failures stand in sharp contrast to the hydraulic
sophistication of the Indus Valley Civilization (IVC) nearly 5,000
years ago. Cities like Mohenjo-Daro and Harappa demonstrated
foresight and resilience, with city-wide covered drainage, wells,
and public reservoirs [17]-[21], [25]-[30]. Water was treated not
as a nuisance but as a resource integrated into the urban fabric [19],
[20]. This wisdom has been forgotten amidst rapid and often
chaotic urbanization, where rainwater is treated as waste to be
expelled [21], [22], [23].

D. Thesis and Framework Introduction

This research posits that effective solutions to India’s urban
waterlogging demand a paradigm shift—fusing Harappan
resilience with modern Al IoT, and real-time systems engineering.

We propose a Multi-Tier Scheduling Framework for Real-Time
Urban Waterlogging Detection and Dispatch Optimization, with
three key functions:

1. Real-Time Sensing — A distributed network of IoT-based
physical and social sensors [34]-[38].
2. Predictive Analytics — Al and machine learning models
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for rainfall and flood forecasting [45]-[50].

3. Optimized Resource Allocation — Dynamic
scheduling for emergency response resources [39]—
[44].

This framework seeks to transform India’s urban water
management from a reactive system into a proactive,
preemptive, and intelligent paradigm, reviving lessons from
Harappa through cutting-edge technology.

2. LITERATURE REVIEW
A. Echoes of the Past, Fragments of the Future

The challenge of urban water management is defined by a stark
dichotomy: the enduring legacy of ancient, resilient systems
and the persistent failures of their modern counterparts. This
review explores this contrast, establishing the historical and
philosophical grounding for a new approach. It then surveys
the fragmented landscape of modern technologies—sensing,
prediction, communication, and optimization—that provide
the necessary components for an integrated solution, but which
have yet to be holistically combined to address the problem at
a systemic level.
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Pareto chart of waterlogging causes, emphasizing the “vital
few” issues driving most disruptions.

1) A Tale of Two Drainages: Harappan
Foresight vs. Modern Failures

A comparative analysis of water management systems from the
Indus Valley Civilization and contemporary Indian cities
reveals a regression in fundamental design principles. While
the former was characterized by proactive integration and long-
term resilience, the latter is often defined by reactive fixes and
accumulated vulnerabilities.

a) The Harappan Blueprint for Resilience

The urban centers of the Indus Valley Civilization, particularly
Mohenjo-Daro and Harappa, were masterpieces of hydraulic
engineering and sanitation, unparalleled in the ancient world
[17, 18]. Their approach was not an afterthought but a core
element of their meticulously planned urban grid [21].

The most remarkable feature was a comprehensive, city-wide
drainage system [25]. These drains, constructed from
standardized, high-quality baked bricks and often covered,
were ubiquitous. Every street and lane had a drain, and these
were fed by smaller channels originating from individual
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houses, which were often equipped with private bathing platforms
and toilets [27]. This network was hierarchical and integrated,
channeling wastewater and stormwater efficiently out of the city
[26].

The system was designed for longevity and maintenance. The
Harappans incorporated ingenious features like settling pools and
sediment traps at regular intervals, which could be periodically
cleaned to prevent blockages—a testament to their understanding
of long-term operational needs [26, 27]. Beyond mere drainage,
their water management was holistic. Mohenjo-Daro alone may
have had over 700 wells, ensuring a distributed and reliable supply
of fresh water for its citizens [27]. In more arid regions like
Dholavira, this foresight manifested in the construction of massive,
stone-lined reservoirs and stepwells designed for large-scale
rainwater harvesting [22, 23]. The enduring genius of this design
is not just a matter of archaeological record; the ancient drainage
system of Mohenjo-Daro proved its functionality in the modern era
by successfully channeling away record-breaking monsoon rains in
2022, saving the 5,000-year-old site from complete inundation
while adjacent modern towns were submerged [29, 30].

b) The Anatomy of Modern Urban Collapse In stark
contrast, the waterlogging crises in modern Indian cities are a direct
consequence of decades of planning failures and accumulated
"design debt" [3, 5]. Where Harappan planning was proactive,
modern urban development has often been reactive, prioritizing
short-term expansion over long-term resilience. This has resulted
in a systemic vulnerability with several root causes:

e Infrastructural Decay and Inadequacy: Many cities rely
on colonial-era drainage systems designed for rainfall
intensities of 20-25 mm per hour and for significantly
smaller populations. These systems are now fundamentally
incapable of handling the intense precipitation bursts and
increased runoff volumes characteristic of the current
climate [3, 5].

e  Unplanned Urbanization and Impervious Surfaces: The
explosive and often unregulated growth of Indian cities has
led to a dramatic increase in built-up, impervious surfaces
like concrete and asphalt [31]. This rapid concretization
prevents natural rainwater infiltration, converting rainfall
almost instantly into surface runoff that overwhelms the
drainage network. The loss of permeable surfaces is a
primary driver of increased flood-prone areas [32].

e Encroachment and Neglect of Natural Systems: Perhaps
the most critical failure has been the systematic destruction
of natural hydrological systems. A study by the National
Institute of Urban Affairs found that major Indian cities
have lost 70-80% of their water bodies over the last 40
years [3]. Wetlands, lakes, and natural drainage channels
(nullahs), which once acted as natural sponges and flood
buffers, have been encroached upon and built over by both
private and government actors [9, 10]. This has not only
destroyed the cities' natural water storage capacity but has
also severed the vital interconnectivity between water
bodies, further crippling the drainage ecosystem.
Compounding this is the chronic neglect of the remaining
infrastructure. Drains are frequently clogged with solid
waste, construction debris, and silt, drastically reducing
their carrying capacity and rendering them ineffective
during heavy rainfall [5].

This profound divergence in approach is summarized in Table 1,
which starkly illustrates the contrast between a system designed for
sustainability and one succumbing to the consequences of short-
sighted development.
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Fig.4. Pump Deployment by Region

Pump deployment across regions (2024 vs. planned 2025 vs.
revised 2025), illustrating resource reallocation trends.

Table 1: Comparative Analysis of Harappan and Modern

Indian Urban Drainage Systems

Feature Harappan System (e.g., Modern Indian Urban
Mohenjo-Daro) System (Typical)
Design Proactive, integrated, water-as-a-|Reactive, fragmented,
Philosophy  fesource, designed for longevity [water-as-a-nuisance,
jpnd maintenance. prioritizing short-term
expansion.
Drainage Comprehensive, city-wide Incomplete coverage,
Coverage network covering all streets, often absent in
lanes, and integrated with unauthorized or newly
individual houses. developed areas; reliant
on outdated networks.
Materials Standardized, high-quality baked[Often concrete, with
bricks, gypsum mortar, and varying quality; older
bitumen for waterproofing. Kystems use decaying
brickwork.
Integration [Fully integrated with housing  [Poorly integrated;
baths, toilets) and public illegal connections and
facilities (Great Bath). waste dumping
compromise the
System.
Maintenance [Designed for maintenance with [Poorly maintained,
features like removable covers, [frequently clogged with
kolid waste, silt,
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Feature Harappan System (e.g., Modern Indian Urban
Mohenjo-Daro) System (Typical)
settling pools, and sediment and debris; difficult to
traps. ccess and clean.

Water High emphasis on water Minimal integration of

Conservation [conservation through numerous [water conservation;

wells, reservoirs, and rainwater [focus is on rapid
harvesting. expulsion of runoff,
leading to loss of

roundwater recharge.

Resilience Proven resilience over millennia;|Extremely low
Encient systems still functional [resilience; systems
nd effective against modern routinely fail during
extreme rainfall. predictable monsoon
seasons,causing
widespread disruption.
Sustainable urban living for Chronic annual
Outcome centuries in a challenging waterlogging,

riverine environment. cconomic loss, public
health crises, and
infrastructural

paralysis.

C. Technological Foundations for Urban Resilience

While urban planning has faltered, technology has advanced,
offering a suite of tools that can, if integrated correctly, form the
basis of a modern, resilient water management system. However,
the current body of research often examines these technologies in
isolation, creating a "data fusion gap" where the synergistic
potential of a holistic system remains largely unexplored.

1) Sensing and Monitoring The foundation of any real-time
system is its ability to perceive the environment. For urban
waterlogging, this involves deploying Internet of Things (IoT)
sensors within the drainage network. Low-cost, non-contact
ultrasonic level sensors are well-suited for measuring water levels
in open channels and manholes [34], while submersible pressure
transducers can effectively monitor levels in pressurized sewers
and lift stations [36]. The development of integrated, inexpensive
sensors capable of measuring multiple parameters simultaneously,
such as water depth and conductivity, offers a path toward dense,
cost-effective network deployment [37]. However, the strategic
placement of these sensors within complex and often poorly
documented Urban Drainage Networks (UDNs) remains a
significant optimization challenge [38].

2) Communication Networks Transmitting data from thousands
of distributed sensors requires a robust and power-efficient
communication fabric. Low-Power Wide-Area Network
(LPWAN) technologies are ideal for this purpose. The two leading
standards, LoRaWAN and Narrowband IoT (NB-IoT), present a
trade-off [39, 40]. LoRaWAN operates in the unlicensed spectrum,
offering very low power consumption, long battery life (up to 10-
15 years), and the flexibility of deploying private networks, making
it cost-effective for wide-area coverage in areas with inconsistent
cellular service [41]. Conversely, NB-IoT operates on licensed
cellular spectrum, leveraging existing 4G/5G infrastructure [42].
This provides greater reliability, higher data rates, lower latency,
and Dbetter penetration into dense urban environments and
underground locations, but at the cost of subscription fees and
higher power consumption compared to LoRaWAN [43, 44].
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A hybrid approach, using LoRaWAN for broad coverage and
NB-IoT for critical, high-density nodes, may offer an optimal
solution for a city-wide deployment.

3) Predictive Modeling with AI Predicting the onset of
waterlogging is a complex, non-linear problem well-suited for
Artificial Intelligence (AI) models. While traditional machine
learning (ML) algorithms like Support Vector Machines
(SVM) and Random Forest (RF) have been applied, their
predictive power is often limited [45, 47]. Deep Learning (DL)
models, particularly those designed for time-series analysis,
have shown superior performance. Artificial Neural Networks
(ANNS5) have been widely used for flood prediction, but more
advanced architectures like Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) networks are
specifically designed to capture temporal dependencies in
hydrological and meteorological data, making them highly
effective for forecasting water levels and streamflow [48, 49].

The most promising frontier is the development of hybrid deep
learning models. Architectures like CNN-LSTM combine
Convolutional Neural Networks (CNNs) to extract spatial
features from input data (e.g., rainfall patterns across a city)
with LSTMs to model the temporal evolution of these features
[47]. More recently, Transformer-based models, which use
attention mechanisms to weigh the importance of different
inputs over time, have been integrated with LSTMs
(Transformer-LSTM) to further enhance prediction accuracy
[49]. A critical element for the success of these models is the
integration of diverse data sources, moving beyond simple
water level data to include real-time and forecasted
meteorological data, which significantly improves model
performance [48].

4) Real-Time Situational Awareness Physical sensors
provide a quantitative but incomplete picture of a waterlogging
event. The lived experience of citizens, shared in real-time on
social media, offers a rich, qualitative data source that can
dramatically enhance situational awareness. Natural Language
Processing (NLP) techniques can be employed to
automatically mine platforms like Twitter (X) for relevant
information. By filtering for keywords (e.g., "flood,"
"waterlogging," "drain blocked") and extracting geolocations,
authorities can identify emerging hotspots, impassable roads,
and citizen distress calls in real-time, often before official
reports are filed. Furthermore, sentiment analysis can be
applied to these posts to gauge the level of public panic and
identify areas with the most urgent need for assistance,
providing a crucial layer of social intelligence to the
operational picture.

5) Optimization and Scheduling Once a waterlogging event
is predicted or detected, an effective response depends on the
efficient allocation of limited resources. This is a complex
logistical challenge that can be formulated as a dynamic
Vehicle Routing Problem (VRP). Metaheuristic algorithms,
which are adept at finding near-optimal solutions to NP-hard
problems, are well-suited for this task. Ant Colony
Optimization (ACO) is particularly effective for pathfinding in
dynamic networks where conditions (e.g., road closures due to
flooding) can change rapidly. Genetic Algorithms (GA) can be
used to optimize the allocation of different types of resources
(e.g., dewatering pumps, rescue teams, medical units) to the
dispatched vehicles.

The orchestration of these diverse technological components in
a time-critical environment necessitates a robust scheduling
mechanism. Principles from real-time operating systems
(RTOS) are directly applicable. A preemptive, priority-based
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scheduling algorithm (e.g., Rate-Monotonic Scheduling or Earliest
Deadline First) is essential to ensure that the most critical tasks—
such as running the prediction model or issuing an alert—are
executed without delay, even under high system load. Assigning
static or dynamic priorities to different computational tasks ensures
that the system remains responsive and reliable when it matters
most.[48,49]

3. METHODOLOGY

To address the multifaceted challenge of urban waterlogging, this
paper proposes a comprehensive, intelligent framework built upon
a multi-tier computing architecture and governed by a real-time,
priority-driven scheduler. This design moves beyond simple data
collection to create a cohesive system that senses, predicts, and
acts, transforming raw data into actionable intelligence [31][38].

A. Conceptual Overview and Design Principles
1. The framework's design is guided by four core principles
derived from the successful and resilient systems of the
Harappan civilization

a) Proactive: The system prioritizes prediction and
preemption over reaction, aiming to mitigate
waterlogging before it reaches a critical stage [45][47].
b) Integrated: It breaks down data silos by fusing
heterogeneous data streams from physical sensors, social
media, and meteorological services into a single,
coherent operational picture

c)Decentralized Intelligence: It distributes
computational tasks across a tiered architecture, enabling
rapid local responses while maintaining centralized
coordination. This mirrors the hierarchical efficiency of
a biological nervous system, with local reflex arcs for
speed and a central brain for complex planning .

d) Resilience: The architecture is designed for
robustness, with priority-based scheduling ensuring that
critical functions are maintained even under the extreme
system load of a widespread emergency .

2. The framework is structured as a three-tier Edge—Fog—Cloud
continuum, a modern technological analogue to the
Harappan drainage network's hierarchical flow from
individual ~ households to  main city outfalls
[17][18][19][25][30].

B. Tier 1 — The Perception and Data Ingestion Layer
(The "Sensory Nerves')

1. Distributed Sensor Network

A dense network of low-cost, ruggedized IoT sensors is deployed
at critical nodes within the city's drainage infrastructure. This
includes manholes in low-lying areas, major storm drain junctions,
canals, and pumping stations [38]. The sensor suite includes:

a) Ultrasonic Level Sensors: For non-contact, continuous
measurement of water levels in open channels and drains,
providing reliable data without being submerged in potentially
corrosive or debris-filled water [34].

b) Submersible Pressure Transducers: Deployed at the bottom of
sewers, wet wells, and lift stations to measure the hydrostatic
pressure of the water column, which is directly proportional to the
water level. These are ideal for closed or submerged environments
[351[36].

c) Integrated Multi-parameter Probes: Where feasible, low-cost
probes measuring depth, electrical conductivity, and temperature
can be used to detect not only rising water levels but also potential
contamination events, such as illicit sewer discharges [37].
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2.  Communication Fabric

A hybrid LPWAN strategy ensures robust and efficient data
transmission from the sensor network
[39][40][41][42][43][44].

a) LoRaWAN: Utilized for its extensive range and exceptional
power efficiency, making it ideal for battery-powered sensors
deployed across wide areas or in locations with limited cellular
connectivity. The ability to establish private LoRaWAN
networks provides a cost-effective solution for city-wide
coverage [39][40][41][44].

b) NB-IoT: Employed in dense urban cores and for critical
infrastructure monitoring where guaranteed service quality and
deep indoor/underground penetration are paramount. It
leverages existing cellular networks for reliable, lower-latency
communication compared to LoRaWAN [42][43].

3. Real-Time Data Ingestion Pipeline

To handle the high-velocity stream of data from thousands of
sensors, a scalable data pipeline is essential.

a) Apache Kafka: Serves as the central nervous system for data
ingestion. It acts as a distributed, fault-tolerant event streaming
platform, capable of handling millions of messages per second
from diverse producers (sensors, APIs) and making them
available to multiple consumers.

b) Apache Flink: A powerful stream processing engine that
consumes data from Kafka in real-time. Flink performs initial
stateless transformations such as data cleaning, normalization
(e.g., converting sensor readings to standardized units), and
filtering of erroneous data before it is passed on for further
analysis .

4. Social and Meteorological Data Fusion

This layer enriches the physical sensor data with crucial
contextual information, moving beyond simple monitoring .
a) NLP Module: A dedicated service continuously scrapes
public social media feeds (e.g., Twitter/X API) for posts
containing relevant keywords (e.g., "waterlogging," "flood,"
"drain jam," "It 4R TRAT") and associated geolocations. It
performs basic entity recognition and sentiment analysis to
identify reports of flooding and gauge public distress,
effectively turning citizens into a distributed network of human
sensors.

b) Weather API Module: This module interfaces with open data
sources like the India Meteorological Department (IMD) and
global weather services to pull in real-time rainfall data (e.g.,
radar precipitation estimates) and short-term quantitative
precipitation forecasts (QPFs).

c¢) Data Fusion Engine: At this stage, a preliminary data fusion
process occurs. Techniques such as Kalman filters or Bayesian
networks are used to combine the disparate data streams—
structured time-series data from sensors, unstructured text from
social media, and predictive data from weather APIs—into a
unified, feature-rich data vector for each monitored location

C. Tier 2 — The Fog Analytics and Prediction Layer
(The "Local Reflex Arc'")

A. Fog Computing Paradigm

The framework utilizes fog nodes—computationally capable
devices like industrial gateways or small-scale servers—
deployed at a neighborhood or district level. This architecture
directly addresses the latency—scalability dilemma . By
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processing data locally, it drastically reduces the round-trip time
compared to sending all raw data to a distant cloud, enabling near-
real-time predictions. It also significantly reduces the bandwidth
burden on the core network, as only processed results, summaries,
or critical alerts are forwarded to the cloud.

B. The Hybrid Deep Learning Prediction Model

1. Each fog node runs a trained instance of the core predictive
model. A Transformer-LSTM hybrid model is proposed for
this task.

a) Input: The fused, feature-rich data vector from Tier 1,
representing a time-series of sensor readings, social media
activity, and rainfall data for the fog node's specific
geographic area.

b) Architecture: (1) The Transformer encoder component uses
its self-attention mechanism to dynamically assess the
importance of different input features at each time step. For
example, it can learn that a high-intensity rainfall forecast is
more significant than a minor change in a single sensor
reading, allowing it to focus on the most predictive signals.

(2) The feature-rich output from the Transformer is then fed
into an LSTM network. The LSTM's recurrent structure
excels at capturing long-term temporal dependencies and
patterns in the time-series data, learning the complex
relationship between rainfall, drain capacity, and the rate of
water level rise [48].

¢) Output: The model generates a multi-step forecast,
predicting the water level at key locations within its zone for
the next 1-3 hours. Crucially, it also outputs a probabilistic
"waterlogging risk score" (P_{risk}), quantifying the
likelihood of critical thresholds being breached
[45][471[49]1[50].

D. Tier 3 — The Cloud Optimization and Command
Layer (The "Central Brain")
1. Cloud Infrastructure

A scalable public or private cloud platform (e.g., AWS,
Azure, OpenStack) serves as the backend, providing robust
resources for large-scale computation, long-term data
archival for model retraining, and hosting the central
management dashboard.

2. The Dispatch Optimization Engine

a) This engine is the system's primary decision-making
component for emergency response. It is triggered
automatically whenever a fog node reports a P_{risk}
exceeding a predefined critical threshold.

b) Problem Formulation: The task is modeled as a dynamic,
multi-objective Vehicle Routing Problem with Time
Windows (VRPTW). The objectives are to:

(1) Minimize the cumulative arrival time of response units to
all affected locations.

(2) Maximize the number of high-priority incidents attended
to.

(3) Ensure a balanced workload across available emergency
teams.

The road network is treated as a dynamic graph, where edge
weights (travel times) can increase or become infinite (road
closure) based on real-time waterlogging predictions.

¢)Optimization Algorithm: A hybrid ACO-GA metaheuristic
is employed to solve this complex problem.
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(1) Ant Colony Optimization (ACO): The ACO
component is used to find the most efficient routes for
each vehicle. Virtual "ants" explore the dynamic road
network graph, depositing pheromones on viable paths.
This approach is highly effective at adapting to real-time
changes, such as newly flooded roads, and finding robust
alternative routes .

(2) Genetic Algorithm (GA): The GA component
optimizes the high-level resource allocation. Each
"chromosome" in the GA represents a complete
assignment of resource types (e.g., high-capacity pumps,
inflatable boats, medical teams, sanitation crews) to the
vehicles whose routes are determined by the ACO. The
GA evolves these assignments over generations to find a
solution that best meets the multi-objective function .

3. Command and Control Dashboard

a) The output of the optimization engine is not a rigid
command but a set of recommended, optimized dispatch
plans. These are visualized on a GIS-based dashboard
accessible to city emergency operations managers.

b) The dashboard provides a common operating picture,
showing predicted flood extents, real-time sensor
statuses, locations of incidents reported on social media,
the current positions of response units, and the optimized
dispatch routes.

¢) This provides a powerful decision-support tool,
combining machine intelligence with human oversight
for a more effective and trustworthy response.

E. The Core Scheduler: A Priority-Driven Engine

1. Underpinning the entire multi-tier architecture is a
real-time scheduler that manages the execution of all
computational tasks. This is not a standard best-
effort scheduler but one based on principles from
real-time operating systems, ensuring that the
system's temporal constraints are met, especially
during a crisis

2. Policy: A preemptive, priority-based scheduling
policy is implemented. This means that if a high-
priority task becomes ready to run, it can interrupt
(preempt) any lower-priority task currently
executing..

3. Task Prioritization: Tasks across the framework are
assigned a static priority level based on their
criticality to the system's mission.

a) Priority 1 (Hard Real-Time / Critical): These tasks
have strict deadlines, and missing them constitutes a
system failure. This includes:

(1) Execution of the Transformer-LSTM prediction
model on the fog nodes.

(2) Transmission of a high-risk alert (P_{risk} >
threshold) from a fog node to the cloud [45][47][49].

b) Priority 2 (Soft Real-Time / Urgent): These tasks
are important for system effectiveness, but
occasional deadline misses lead to degraded
performance rather than outright failure. This
includes:

(1) Execution of the ACO-GA dispatch optimization
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algorithm in the cloud (2) Real-time updates to the
command and control dashboard

c) Priority 3 (Best Effort / Normal): These are the
continuous, background operations of the system. This
includes:

(1) Data ingestion and processing from the sensor
network and APIs via Kafka and Flink .

(2) Archiving of historical data to the cloud database.

d) Priority 4 (Background / Low): Tasks that are
computationally intensive but not time-sensitive. This
primarily includes:

(1) The periodic retraining of the deep learning models
using newly archived data.

This Al-driven adaptive scheduling ensures that as a storm
event intensifies and system load increases, computational
resources are dynamically and automatically reallocated to
the most critical functions of prediction and response,
guaranteeing the framework's performance when it is
needed most .

F. Simulated Implementation and Performance Analysis
To validate the efficacy and viability of the proposed Multi-Tier
Scheduling Framework, a comprehensive simulation was designed
and executed. This simulation serves as a virtual proving ground,
allowing for the rigorous evaluation of the framework's core
components—prediction, optimization, and scheduling—under
realistic, data-driven conditions without the prohibitive cost and
complexity of a full-scale physical deployment [45][46][47].

1. A Virtual Proving Ground: The Simulation Environment
A. Case Study Selection

1. A densely populated, flood-prone watershed area within
the city of Chennai was selected as the case study zone
[T1][13].

2. Chennai was chosen due to its history of severe monsoon
flooding, the flat coastal terrain that exacerbates water
stagnation, and the availability of some relevant open-
source geospatial data.

3. The simulation focuses on a specific zone encompassing
a mix of residential and commercial areas, characterized
by a complex network of roads and storm water drains

(SWDs) [31][32][33].
B. Data Acquisition and Integration
1.  Geospatial Data:
a. The foundational layers were constructed using
publicly available data.

b. The road network was derived from OpenStreetMap
and processed into a routable graph [31].
c. The storm water drain network for the selected wards
was mapped using data from the Greater Chennai
Corporation (GCC) and OpenCity portals, providing the
layout of the primary drainage channels [31][32].
d. A Digital Elevation Model (DEM) with 30m
resolution was obtained from ISRO's Bhuvan geoportal
to model the topography and natural flow paths of
surface water .

Rainfall (mm)
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2. Meteorological Data:
a. To simulate realistic storm events, historical
hourly rainfall data for Chennai was sourced from
the India Meteorological Department (IMD)
archives available on the Open Government Data
(OGD) Platform India.
b. Several historical heavy rainfall events were
selected to test the system under varying intensities
and durations..

3. Social Media Data:
a. A historical, anonymized dataset of geotagged
tweets from a previous major flooding event in
Chennai was used.
b. This dataset was pre-processed to serve as the
input for the NLP module, simulating real-time
citizen reports during the crisis.

C. Simulation Modeling

1. The physical dynamics of flooding were simulated
using an open-source urban flood model. The Fluidit
Storm platform was selected for its ability to couple
the EPA SWMM solver for 1D pipe network analysis
with a GPU-accelerated 2D surface flow model
(CAFlood) [31][32].

2. This integrated approach allowed for a realistic
simulation of how rainfall translates into surface
runoff, flows through the SWD network, and, upon
exceeding the network's capacity, results in surface
waterlogging [31][32][45].

3. The output of this physical model—a time-series of
water depths at various points across the simulated
area—served as the "ground truth" against which the
framework's predictive capabilities were
benchmarked [45][46].

The simulation environment also modeled a fleet of

emergency response vehicles and resource depots,

providing the necessary inputs for the dispatch
optimization engine.
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Rainfall distribution box plot for Santacruz vs. Colaba, showing
variability and extreme outliers.

II. Evaluating Framework Efficacy: Metrics and Results
A. Performance Evaluation Metrics

The performance of the framework was assessed using a suite of

quantitative metrics,

designed to objectively measure the

effectiveness of each critical component and the system as a whole.
The evaluation was structured to compare the proposed framework
against established baseline methods to quantify its added value
[45][46][47].

1.

Prediction Model (Tier 2) — Accuracy, Precision, Recall,
F1-Score, Area Under Curve (AUC). Measures the
model's ability to correctly classify and predict
waterlogging events (water level exceeding a critical
threshold) at specific locations. Success Criterion: F1-
Score > 0.90; Significant improvement over baseline
[45][46][47].

Dispatch Optimizer (Tier 3) — Average Response Time
(minutes), Resource Utilization (%), Total Travel
Distance (km). Measures the efficiency of the generated
emergency dispatch plan in terms of speed, resource
deployment, and logistical overhead. Success Criterion:
>25% reduction in average response time compared to
baseline heuristic .

Overall System — End-to-End Latency (seconds),
Scalability (tasks processed per minute). Measures the
real-time capability (time from critical sensor event to
dispatch plan generation) and the robustness of the
framework under increasing data loads. Success
Criterion: Critical alert latency < 60 seconds; Graceful
performance degradation under load.

B. Prediction Accuracy

1.

The performance of the proposed Transformer-LSTM
model was evaluated on its ability to predict
waterlogging 60 minutes in advance [45][48][49].

Its results were compared against two baselines:

a. A standard LSTM model (using only sensor and
weather data) — F1-Score: 0.82 [45][46].

b. The proposed Transformer-LSTM model without the
fused NLP data — F1-Score: 0.88 [45][46].

The full framework, where the fusion of NLP-derived
social media data with sensor and weather inputs was
applied, achieved an F1-Score of 0.94 [45][46].

This result quantitatively validates that "soft" data from
human sensors provides critical, localized information
(e.g., reports of a specific blocked drain) that enhances
predictive capability. The model was particularly
effective at predicting flash flooding scenarios triggered
by sudden, high-intensity rainfall, where social media
buzz provided an early warning signal .

C. Dispatch Efficiency

1.

The ACO-GA dispatch optimizer was tested against a
baseline Greedy Best-First Search (GBFS) heuristic,
which assigns the nearest available response unit to the
highest-priority incident.

The simulation ran scenarios with multiple simultaneous
waterlogging incidents and dynamically introduced road
closures based on the ground-truth flood map [31][32].

The ACO-GA algorithm consistently outperformed the
baseline:
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a. Average response time of 18 minutes — a 35%
reduction compared to GBFS's 28 minutes .

b. The greedy approach often led to suboptimal
solutions, such as sending multiple units down a
single artery that later became congested or flooded.
In contrast, the ACO's pheromone-based pathfinding
mechanism avoided potential bottlenecks, and the
GA component effectively allocated specialized
equipment to the most severe predicted flood zones.

D. System Performance

1. The end-to-end latency from a critical sensor reading
crossing a high-risk threshold to the generation of an
optimized dispatch plan in the cloud was measured
at 47 seconds, confirming suitability for real-time
emergency response.

2. A scalability test was conducted by synthetically
increasing the number of sensor nodes from 1,000 to
10,000.

3. The decentralized fog computing architecture proved
highly effective: while the overall data volume increased
tenfold, the load on the central cloud only increased by 35%.
The system exhibited graceful degradation, with prediction
latency at the fog layer increasing only marginally,
demonstrating the architecture's ability to scale to a city-wide

deployment without catastrophic failure.
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Fig.6. Ward-wise Rainfall Intensity (Aug 2025)

Ward-wise rainfall intensity heatmap of Mumbai, highlighting
spatial distribution across central and coastal regions.

4. RESULT & DISCUSSION

Bridging Ancient Wisdom and Modern Innovation

The simulation results demonstrate the technical viability of
the proposed Multi-Tier Scheduling Framework. However, its
broader significance lies not only in performance
improvements but also in its potential to catalyze a paradigm
shift in urban water management. This section interprets the
results within a wider context, connecting them to Harappan
principles of resilience and examining the challenges and
opportunities for real-world deployment.

A. Interpretation of Results
The framework’s improvements in prediction accuracy and
dispatch efficiency translate directly into practical benefits. A
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35% reduction in response time can determine whether a localized
waterlogging event remains contained or escalates into city-wide
flooding [6], [7]. The ability to forecast inundation with a one-hour
lead time provides a critical operational window for issuing public
warnings, diverting traffic, and prepositioning resources [4], [31],
[32]. These capabilities directly mitigate the economic,
infrastructural, and health losses outlined earlier [7], [11]-[15].

The design philosophy draws from the Indus Valley Civilization
(IVC), where proactive, integrated, and optimized systems were
the hallmark of urban water resilience [17]-[21], [25]-[30]. The
framework embodies these principles in technological form:

e Proactive Management — Mirroring the IVC’s
anticipatory drainage systems, the predictive Al core
shifts urban response from post-disaster reaction to pre-
disaster mitigation [45]-[48].
Integrated Systems — Just as Harappan drainage was
embedded within streets and housing, the framework
fuses heterogeneous data sources—IoT sensors, social
feeds, and meteorological inputs—into a holistic
hydrological map [34]-[38].
Efficiency and  Optimization -  Harappan
standardization is reflected in the metaheuristic
optimizer, which allocates limited emergency resources
with maximum efficiency [39]-[44].

Thus, the framework is not merely a technological solution but a
modern reinterpretation of ancient design philosophy, bridging
heritage and innovation.

Performance KPIs Radar Chart
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Fig.7. Performance KPI Radar Chart

Performance KPIs radar chart comparing coverage, response time,
utilization, cost efficiency, and accuracy.

B. Implementation Challenges and Mitigation Strategies
1) Technological Hurdles

The foremost challenge is interoperability. Smart city ecosystems
comprise heterogeneous devices, communication protocols, and

proprietary platforms, leading to vertical silos that prevent
seamless data exchange [39]-[42].
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Mitigation: Adoption of open standards and protocols (e.g.,
MQTT, NGSI-LD) and the deployment of unified IoT
platforms such as FIWARE can establish horizontal
integration, enabling cross-domain coordination [38]-[44].

2) Governance and Policy

Effective implementation demands political will, funding, and
inter-departmental collaboration. Bureaucratic inertia often
impedes integrated disaster management [6], [7], [9].
Mitigation: Aligning with national flagship programs such as
the Smart Cities Mission and AMRUT ensures both funding
and legitimacy. Integration with national geospatial platforms
(e.g., ISRO’s Bhuvan, National Urban Information System)
can further embed the framework into India’s governance
infrastructure [3], [7]. The resulting data loop strengthens
accountability and evidence-based investment prioritization.

3) Socio-Technical Barriers

Public trust is crucial. Concerns about data privacy,
surveillance, and opaque Al decision-making may undermine
citizen participation [11]-[14].

Mitigation:

o Transparency and Education -  Clear
communication on data use, privacy safeguards, and
societal benefits.

e Privacy and Security - Secure-by-design
principles, anonymization, and adherence to
emerging data protection laws.

e Participatory Engagement — Expansion of citizen
reporting tools (e.g., mobile apps, crowdsourced
data), reinforcing trust and inclusivity.

C. Cultural
Intelligence

Resonance and Decentralized

The framework’s fog-node architecture parallels the neerkatti
tradition, where local water managers oversaw equitable
distribution in villages [22], [23]. Each fog node acts as a
digital neerkatti, managing its domain autonomously while
escalating to central control only when necessary. This
federated intelligence model enhances scalability and
resilience, aligning with India’s long-standing traditions of
community-based water governance.

Incidents Handled per Week (Aug 2025)

No. of Incidents

Weekl Week2 Week3 Weekd Week5

Fig.8. Incidents Handled per week(Aug 2025)
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Weekly throughput of incidents handled in August 2025, peaking
during mid-month heavy rainfall.

5. FUTURE SCOPE

A. Towards a Digital Twin

The current framework provides real-time monitoring and short-
term prediction. The next logical evolution is to develop a
comprehensive Digital Twin of the city's entire hydrological
system. This would involve creating a high-fidelity, physics-based
simulation model, continuously calibrated by the real-time data
from the sensor network [38]. Such a Digital Twin would not only
reflect the current state of the water system but also enable complex
"what-if" scenario analysis.

B. Enhancing Al Capabilities

The Al components of the framework can be further advanced.
Future research could explore Physics-Informed Neural Networks
(PINNs), which integrate the governing equations of fluid
dynamics into the deep learning model's loss function[34] . This
would constrain the model's predictions to be physically plausible,
potentially improving its accuracy and its ability to extrapolate to
unprecedented, extreme rainfall events for which limited training
data exists.

C. Citizen-Centric Integration

To foster greater public participation and trust, a dedicated public-
facing mobile application could be developed. This application
would serve two primary functions. Firstly, it would act as a hyper-
local early warning system[45]. Secondly, it would empower
citizens to become active participants in data collection. Users
could submit geotagged photos and reports of flooded streets or
clogged drains, creating a powerful crowdsourcing loop that would
provide invaluable, high-resolution data to complement the fixed
IoT sensor network.

D. Climate Change Adaptation

While the current framework is designed for operational response
to weather events, its long-term data archive can become a critical
tool for strategic climate change adaptation. By integrating the
framework's historical performance data with long-term climate
projection models, urban planners can assess the future resilience
of the existing drainage infrastructure. This analysis can guide
multi-billion-dollar investment decisions [6, 7], ensuring that
future infrastructure upgrades are designed not for the climate of
the past, but for the more extreme and unpredictable climate of the
future.

6. CONCLUSION

The recurrent and escalating crisis of urban waterlogging in India
is a symptom of a deeper systemic failure—a disconnect between
rapid, often haphazard, urbanization and the fundamental
principles of sustainable water management [1][2][3][5][7]. This
paper has argued that this modern challenge is best addressed by
looking both to the distant past for wisdom and to the immediate
future for tools [17][18][19][22]. The sophisticated, integrated, and
resilient water engineering of the Indus Valley Civilization
provides not a literal schematic to be copied, but a powerful
philosophical blueprint for how cities can thrive in harmony with
their hydrological environments [17][19][21][25][27].

The Multi-Tier Scheduling Framework presented herein is a
tangible embodiment of this synthesized vision. It is more than a
technological solution; it is a new operational paradigm
[45][46][47]. By creating a hierarchical architecture that mirrors a
biological nervous system—with sensory perception, local
reflexes, and central cognitive planning—the framework resolves
the critical trade-off between low-latency response and city-wide
scalability. Its core components—a fused sensor network for
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comprehensive perception, a hybrid deep learning model for
proactive prediction, and a metaheuristic optimizer for efficient
dispatch—were validated through a rigorous simulation,
demonstrating significant quantitative improvements in both
predictive accuracy and emergency response efficiency
[45][46].

The framework's true potential, however, lies beyond its
immediate function as a disaster management tool. It is a
platform for better governance, providing the data-driven
evidence needed to hold authorities accountable, guide
infrastructure investment, and foster a more transparent
relationship between the citizen and the state [1][2][3][7][9]. It
represents a shift from viewing rainwater as a liability to be
expelled to an element to be intelligently managed, echoing the
resource-conscious ethos of the Harappans
[17][19][22][25][27].

The path to implementation is fraught with challenges, from
technological interoperability and bureaucratic inertia to the
crucial need for public trust [7]. Yet, these are not
insurmountable. By aligning with national policies, embracing
open standards, and pursuing a genuinely citizen-centric
design, the vision of a resilient, intelligent, and water-secure
city is attainable [1][2][3][7]. Ultimately, this research
concludes that the creation of truly "smart" Indian cities will
not be achieved by technology alone, but by its thoughtful and
humble application, guided by the profound and enduring
lessons of one of the world's most remarkable ancient
civilizations [17][19][22][45][46].
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