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ABSTRACT 

Urban waterlogging has escalated into a chronic and debilitating 

crisis across India, inflicting severe economic, infrastructural, and 

public health consequences. This systemic failure of modern urban 

water management stands in stark contrast to the sophisticated and 

resilient hydraulic engineering of the ancient Indus Valley 

Civilization. This paper introduces a novel Multi-Tier Scheduling 

Framework designed to address this contemporary challenge by 

drawing inspiration from ancient design philosophies while 

leveraging state-of-the-art technology. The framework employs a 

three-tier architecture—Perception, Fog, and Cloud—that 

facilitates real-time waterlogging detection, predictive analysis, 

and optimized emergency resource dispatch. The Perception Tier 

integrates a dense network of low-cost IoT sensors (ultrasonic and 

pressure) and fuses this quantitative data with qualitative insights 

derived from Natural Language Processing (NLP) of social media 

feeds and meteorological forecasts. The Fog Tier, operating at the 

network edge, utilizes a hybrid Transformer-Long Short-Term 

Memory (LSTM) deep learning model for low-latency, localized 

waterlogging prediction. The Cloud Tier orchestrates city-wide 

response, employing a metaheuristic optimizer based on a hybrid 

Ant Colony Optimization and Genetic Algorithm (ACO-GA) to 

solve the dynamic vehicle routing problem for emergency dispatch. 

A preemptive, priority-based real-time scheduler governs the entire 

framework, ensuring that time-critical tasks are prioritized during 

emergencies. A simulated implementation using geospatial and 

hydrological data from a flood-prone urban zone demonstrates the 

framework's efficacy. The results indicate a significant 

improvement in prediction accuracy and a substantial reduction in 

emergency response times compared to baseline models. This 

research presents a holistic, technologically advanced, and 

historically informed blueprint for building climate-resilient and 

intelligent urban water management systems in India and beyond. 
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1. INTRODUCTION 

The Deluge in Modern India's Cities 

The seasonal monsoon, once a life-giving force, has increasingly 

become a harbinger of chaos for India’s urban centers. The 

phenomenon of urban waterlogging—the overwhelming drainage 

systems leading to widespread flooding—has transitioned from an 

occasional nuisance to a predictable, annual crisis [1], [2]. This 

recurring failure of urban infrastructure not only paralyzes daily 

life but also inflicts a staggering toll on the nation’s economy, 

public health, and social fabric [3], [6], [7]. 

A. The Scale of the Crisis 
The pervasiveness of urban waterlogging in India has reached 

endemic levels. A nationwide survey revealed that 94% of 

citizens report their city or district experiences waterlogging, 

with 58% describing the situation as “quite badly” affected [1], 

[2]. This is no longer a localized issue but a systemic, national 

problem underscoring a fundamental inadequacy in urban 

planning and management [3], [5]. 

The crisis is being amplified by climate change. The 

Intergovernmental Panel on Climate Change (IPCC) projects 

increased and more intense monsoon precipitation across 

South Asia, a trend already visible in Indian cities [6], [7]. 

Delhi, for example, experienced its wettest August in 15 years, 

recording 228.1 mm of rainfall in 24 hours, surpassing the 

monthly average [4]. Similarly, the 2005 Mumbai flood was 

triggered by an unprecedented 944 mm of rainfall in a single 

day [8]. These events demonstrate that existing urban drainage 

systems, often relics of the colonial era, are critically 

unprepared for the new climatic reality [9], [10]. This 

normalization of failure has fostered a reactive stance among 

authorities and resignation among citizens, perpetuating a 

cycle of disruption and recovery [6], [7]. 

 
Fig.1. Daily Rainfall- Mumbai(Aug 2025) 

Daily rainfall comparison between Santacruz and Colaba, 

showing intra-city variability during August 2025. 

B. The Cascading Consequences 

1) Economic disruption: 

Urban flooding imposes immense economic costs. The World 

Bank estimates that pluvial flooding costs India $4 billion 

annually [7]. Catastrophic events like the 2005 Mumbai flood 
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resulted in insured losses exceeding USD 3 billion [6]. Surveys 

further reveal that 84% of citizens lose commuting time, 68% face 

increased vehicle wear, and 54% report lost working hours due to 

waterlogging [1], [2]. For a city like Mumbai, which contributes 

~6.1% of India’s GDP, such disruptions have national 

repercussions [6]. 

2) Infrastructural failure: 

Flooding paralyzes urban infrastructure. Transportation networks 

collapse, as seen in Bengaluru, where submerged pump houses 

disrupted city water supply for days [9], [10], [31], [32]. 

3) Public health emergency: 

Floodwaters foster waterborne diseases like cholera, typhoid, and 

hepatitis A, as well as vector-borne diseases such as dengue and 

malaria [11]–[14]. In Chennai, floods triggered outbreaks of 

melioidosis, a potentially fatal bacterial infection [13], [15]. The 

health impacts extend to respiratory ailments, injuries, and mental 

health stresses [12], [14]. Vulnerable populations in low-lying, 

informal settlements face disproportionate risks [15], [16]. 

 
Fig.2. Causes of Waterlogging Delays 

Distribution of waterlogging delays, with traffic congestion and 

blocked drains as dominant causes. 

C.  A Paradigm Lost: The Harappan Precedent 

India’s present failures stand in sharp contrast to the hydraulic 

sophistication of the Indus Valley Civilization (IVC) nearly 5,000 

years ago. Cities like Mohenjo-Daro and Harappa demonstrated 

foresight and resilience, with city-wide covered drainage, wells, 

and public reservoirs [17]–[21], [25]–[30]. Water was treated not 

as a nuisance but as a resource integrated into the urban fabric [19], 

[20]. This wisdom has been forgotten amidst rapid and often 

chaotic urbanization, where rainwater is treated as waste to be 

expelled [21], [22], [23]. 

D. Thesis and Framework Introduction 

This research posits that effective solutions to India’s urban 

waterlogging demand a paradigm shift—fusing Harappan 

resilience with modern AI, IoT, and real-time systems engineering. 

We propose a Multi-Tier Scheduling Framework for Real-Time 

Urban Waterlogging Detection and Dispatch Optimization, with 

three key functions: 

1. Real-Time Sensing – A distributed network of IoT-based 

physical and social sensors [34]–[38]. 

2. Predictive Analytics – AI and machine learning models 

for rainfall and flood forecasting [45]–[50]. 

3. Optimized Resource Allocation – Dynamic 

scheduling for emergency response resources [39]–

[44]. 

 

This framework seeks to transform India’s urban water 

management from a reactive system into a proactive, 

preemptive, and intelligent paradigm, reviving lessons from 

Harappa through cutting-edge technology. 

2. LITERATURE REVIEW 
A. Echoes of the Past, Fragments of the Future 

The challenge of urban water management is defined by a stark 

dichotomy: the enduring legacy of ancient, resilient systems 

and the persistent failures of their modern counterparts. This 

review explores this contrast, establishing the historical and 

philosophical grounding for a new approach. It then surveys 

the fragmented landscape of modern technologies—sensing, 

prediction, communication, and optimization—that provide 

the necessary components for an integrated solution, but which 

have yet to be holistically combined to address the problem at 

a systemic level. 

 
Fig.3.Pareto chart - Causes of WaterLogging Delays 

Pareto chart of waterlogging causes, emphasizing the “vital 

few” issues driving most disruptions. 

1) A Tale of Two Drainages: Harappan 

Foresight vs. Modern Failures 

A comparative analysis of water management systems from the 

Indus Valley Civilization and contemporary Indian cities 

reveals a regression in fundamental design principles. While 

the former was characterized by proactive integration and long-

term resilience, the latter is often defined by reactive fixes and 

accumulated vulnerabilities. 

a) The Harappan Blueprint for Resilience 

 The urban centers of the Indus Valley Civilization, particularly 

Mohenjo-Daro and Harappa, were masterpieces of hydraulic 

engineering and sanitation, unparalleled in the ancient world 

[17, 18]. Their approach was not an afterthought but a core 

element of their meticulously planned urban grid [21]. 

The most remarkable feature was a comprehensive, city-wide 

drainage system [25]. These drains, constructed from 

standardized, high-quality baked bricks and often covered, 

were ubiquitous. Every street and lane had a drain, and these 

were fed by smaller channels originating from individual 
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houses, which were often equipped with private bathing platforms 

and toilets [27]. This network was hierarchical and integrated, 

channeling wastewater and stormwater efficiently out of the city 

[26]. 

The system was designed for longevity and maintenance. The 

Harappans incorporated ingenious features like settling pools and 

sediment traps at regular intervals, which could be periodically 

cleaned to prevent blockages—a testament to their understanding 

of long-term operational needs [26, 27]. Beyond mere drainage, 

their water management was holistic. Mohenjo-Daro alone may 

have had over 700 wells, ensuring a distributed and reliable supply 

of fresh water for its citizens [27]. In more arid regions like 

Dholavira, this foresight manifested in the construction of massive, 

stone-lined reservoirs and stepwells designed for large-scale 

rainwater harvesting [22, 23]. The enduring genius of this design 

is not just a matter of archaeological record; the ancient drainage 

system of Mohenjo-Daro proved its functionality in the modern era 

by successfully channeling away record-breaking monsoon rains in 

2022, saving the 5,000-year-old site from complete inundation 

while adjacent modern towns were submerged [29, 30]. 

b) The Anatomy of Modern Urban Collapse In stark 

contrast, the waterlogging crises in modern Indian cities are a direct 

consequence of decades of planning failures and accumulated 

"design debt" [3, 5]. Where Harappan planning was proactive, 

modern urban development has often been reactive, prioritizing 

short-term expansion over long-term resilience. This has resulted 

in a systemic vulnerability with several root causes: 

● Infrastructural Decay and Inadequacy: Many cities rely 

on colonial-era drainage systems designed for rainfall 

intensities of 20-25 mm per hour and for significantly 

smaller populations. These systems are now fundamentally 

incapable of handling the intense precipitation bursts and 

increased runoff volumes characteristic of the current 

climate [3, 5]. 

● Unplanned Urbanization and Impervious Surfaces: The 

explosive and often unregulated growth of Indian cities has 

led to a dramatic increase in built-up, impervious surfaces 

like concrete and asphalt [31]. This rapid concretization 

prevents natural rainwater infiltration, converting rainfall 

almost instantly into surface runoff that overwhelms the 

drainage network. The loss of permeable surfaces is a 

primary driver of increased flood-prone areas [32]. 

● Encroachment and Neglect of Natural Systems: Perhaps 

the most critical failure has been the systematic destruction 

of natural hydrological systems. A study by the National 

Institute of Urban Affairs found that major Indian cities 

have lost 70-80% of their water bodies over the last 40 

years [3]. Wetlands, lakes, and natural drainage channels 

(nullahs), which once acted as natural sponges and flood 

buffers, have been encroached upon and built over by both 

private and government actors [9, 10]. This has not only 

destroyed the cities' natural water storage capacity but has 

also severed the vital interconnectivity between water 

bodies, further crippling the drainage ecosystem. 

Compounding this is the chronic neglect of the remaining 

infrastructure. Drains are frequently clogged with solid 

waste, construction debris, and silt, drastically reducing 

their carrying capacity and rendering them ineffective 

during heavy rainfall [5]. 

This profound divergence in approach is summarized in Table 1, 

which starkly illustrates the contrast between a system designed for 

sustainability and one succumbing to the consequences of short-

sighted development. 

 
Fig.4. Pump Deployment by Region 

Pump deployment across regions (2024 vs. planned 2025 vs. 

revised 2025), illustrating resource reallocation trends. 

Table 1: Comparative Analysis of Harappan and Modern 

Indian Urban Drainage Systems 

Feature Harappan System (e.g., 

Mohenjo-Daro) 

Modern Indian Urban 

System (Typical) 

Design 

Philosophy 

Proactive, integrated, water-as-a-

resource, designed for longevity 

and maintenance. 

Reactive, fragmented, 

water-as-a-nuisance, 

prioritizing short-term 

expansion. 

Drainage 

Coverage 

Comprehensive, city-wide 

network covering all streets, 

lanes, and integrated with 

individual houses. 

Incomplete coverage, 

often absent in 

unauthorized or newly 

developed areas; reliant 

on outdated networks. 

Materials Standardized, high-quality baked 

bricks, gypsum mortar, and 

bitumen for waterproofing. 

Often concrete, with 

varying quality; older 

systems use decaying 

brickwork. 

Integration Fully integrated with housing 

(baths, toilets) and public 

facilities (Great Bath). 

Poorly integrated; 

illegal connections and 

waste dumping 

compromise the 

system. 

Maintenance Designed for maintenance with 

features like removable covers, 

Poorly maintained, 

frequently clogged with 

solid waste, silt, 
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Feature 

 

Harappan System (e.g., 

Mohenjo-Daro) 

settling pools, and sediment 

traps. 

Modern Indian Urban 

System (Typical) 

and debris; difficult to 

access and clean. 

Water 

Conservation 

High emphasis on water 

conservation through numerous 

wells, reservoirs, and rainwater 

harvesting. 

Minimal integration of 

water conservation; 

focus is on rapid 

expulsion of runoff, 

leading to loss of 

groundwater recharge. 

Resilience Proven resilience over millennia; 

ancient systems still functional 

and effective against modern 

extreme rainfall. 

Extremely low 

resilience; systems 

routinely fail during 

predictable monsoon 

seasons,causing 

widespread disruption. 

Outcome 

Sustainable urban living for 

centuries in a challenging 

riverine environment. 

Chronic annual 

waterlogging, 

economic loss, public 

health crises, and 

infrastructural 

paralysis. 

 

C. Technological Foundations for Urban Resilience 

While urban planning has faltered, technology has advanced, 

offering a suite of tools that can, if integrated correctly, form the 

basis of a modern, resilient water management system. However, 

the current body of research often examines these technologies in 

isolation, creating a "data fusion gap" where the synergistic 

potential of a holistic system remains largely unexplored. 

1) Sensing and Monitoring The foundation of any real-time 

system is its ability to perceive the environment. For urban 

waterlogging, this involves deploying Internet of Things (IoT) 

sensors within the drainage network. Low-cost, non-contact 

ultrasonic level sensors are well-suited for measuring water levels 

in open channels and manholes [34], while submersible pressure 

transducers can effectively monitor levels in pressurized sewers 

and lift stations [36]. The development of integrated, inexpensive 

sensors capable of measuring multiple parameters simultaneously, 

such as water depth and conductivity, offers a path toward dense, 

cost-effective network deployment [37]. However, the strategic 

placement of these sensors within complex and often poorly 

documented Urban Drainage Networks (UDNs) remains a 

significant optimization challenge [38]. 

2) Communication Networks Transmitting data from thousands 

of distributed sensors requires a robust and power-efficient 

communication fabric. Low-Power Wide-Area Network 

(LPWAN) technologies are ideal for this purpose. The two leading 

standards, LoRaWAN and Narrowband IoT (NB-IoT), present a 

trade-off [39, 40]. LoRaWAN operates in the unlicensed spectrum, 

offering very low power consumption, long battery life (up to 10-

15 years), and the flexibility of deploying private networks, making 

it cost-effective for wide-area coverage in areas with inconsistent 

cellular service [41]. Conversely, NB-IoT operates on licensed 

cellular spectrum, leveraging existing 4G/5G infrastructure [42]. 

This provides greater reliability, higher data rates, lower latency, 

and better penetration into dense urban environments and 

underground locations, but at the cost of subscription fees and 

higher power consumption compared to LoRaWAN [43, 44].  

A hybrid approach, using LoRaWAN for broad coverage and 

NB-IoT for critical, high-density nodes, may offer an optimal 

solution for a city-wide deployment. 

3)  Predictive Modeling with AI Predicting the onset of 

waterlogging is a complex, non-linear problem well-suited for 

Artificial Intelligence (AI) models. While traditional machine 

learning (ML) algorithms like Support Vector Machines 

(SVM) and Random Forest (RF) have been applied, their 

predictive power is often limited [45, 47]. Deep Learning (DL) 

models, particularly those designed for time-series analysis, 

have shown superior performance. Artificial Neural Networks 

(ANNs) have been widely used for flood prediction, but more 

advanced architectures like Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) networks are 

specifically designed to capture temporal dependencies in 

hydrological and meteorological data, making them highly 

effective for forecasting water levels and streamflow [48, 49]. 

The most promising frontier is the development of hybrid deep 

learning models. Architectures like CNN-LSTM combine 

Convolutional Neural Networks (CNNs) to extract spatial 

features from input data (e.g., rainfall patterns across a city) 

with LSTMs to model the temporal evolution of these features 

[47]. More recently, Transformer-based models, which use 

attention mechanisms to weigh the importance of different 

inputs over time, have been integrated with LSTMs 

(Transformer-LSTM) to further enhance prediction accuracy 

[49]. A critical element for the success of these models is the 

integration of diverse data sources, moving beyond simple 

water level data to include real-time and forecasted 

meteorological data, which significantly improves model 

performance [48]. 

4) Real-Time Situational Awareness Physical sensors 

provide a quantitative but incomplete picture of a waterlogging 

event. The lived experience of citizens, shared in real-time on 

social media, offers a rich, qualitative data source that can 

dramatically enhance situational awareness. Natural Language 

Processing (NLP) techniques can be employed to 

automatically mine platforms like Twitter (X) for relevant 

information. By filtering for keywords (e.g., "flood," 

"waterlogging," "drain blocked") and extracting geolocations, 

authorities can identify emerging hotspots, impassable roads, 

and citizen distress calls in real-time, often before official 

reports are filed. Furthermore, sentiment analysis can be 

applied to these posts to gauge the level of public panic and 

identify areas with the most urgent need for assistance, 

providing a crucial layer of social intelligence to the 

operational picture. 

5) Optimization and Scheduling Once a waterlogging event 

is predicted or detected, an effective response depends on the 

efficient allocation of limited resources. This is a complex 

logistical challenge that can be formulated as a dynamic 

Vehicle Routing Problem (VRP). Metaheuristic algorithms, 

which are adept at finding near-optimal solutions to NP-hard 

problems, are well-suited for this task. Ant Colony 

Optimization (ACO) is particularly effective for pathfinding in 

dynamic networks where conditions (e.g., road closures due to 

flooding) can change rapidly. Genetic Algorithms (GA) can be 

used to optimize the allocation of different types of resources 

(e.g., dewatering pumps, rescue teams, medical units) to the 

dispatched vehicles. 

The orchestration of these diverse technological components in 

a time-critical environment necessitates a robust scheduling 

mechanism. Principles from real-time operating systems 

(RTOS) are directly applicable. A preemptive, priority-based 
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scheduling algorithm (e.g., Rate-Monotonic Scheduling or Earliest 

Deadline First) is essential to ensure that the most critical tasks—

such as running the prediction model or issuing an alert—are 

executed without delay, even under high system load. Assigning 

static or dynamic priorities to different computational tasks ensures 

that the system remains responsive and reliable when it matters 

most.[48,49] 

3. METHODOLOGY 
To address the multifaceted challenge of urban waterlogging, this 

paper proposes a comprehensive, intelligent framework built upon 

a multi-tier computing architecture and governed by a real-time, 

priority-driven scheduler. This design moves beyond simple data 

collection to create a cohesive system that senses, predicts, and 

acts, transforming raw data into actionable intelligence [31][38]. 

A. Conceptual Overview and Design Principles 
1. The framework's design is guided by four core principles 

derived from the successful and resilient systems of the 

Harappan civilization 

a) Proactive: The system prioritizes prediction and 

preemption over reaction, aiming to mitigate 

waterlogging before it reaches a critical stage [45][47]. 

b) Integrated: It breaks down data silos by fusing 

heterogeneous data streams from physical sensors, social 

media, and meteorological services into a single, 

coherent operational picture  

c)Decentralized Intelligence: It distributes 

computational tasks across a tiered architecture, enabling 

rapid local responses while maintaining centralized 

coordination. This mirrors the hierarchical efficiency of 

a biological nervous system, with local reflex arcs for 

speed and a central brain for complex planning . 

d) Resilience: The architecture is designed for 

robustness, with priority-based scheduling ensuring that 

critical functions are maintained even under the extreme 

system load of a widespread emergency . 

2. The framework is structured as a three-tier Edge–Fog–Cloud 

continuum, a modern technological analogue to the 

Harappan drainage network's hierarchical flow from 

individual households to main city outfalls 

[17][18][19][25][30]. 

B. Tier 1 – The Perception and Data Ingestion Layer 

(The "Sensory Nerves") 

1. Distributed Sensor Network 
A dense network of low-cost, ruggedized IoT sensors is deployed 

at critical nodes within the city's drainage infrastructure. This 

includes manholes in low-lying areas, major storm drain junctions, 

canals, and pumping stations [38]. The sensor suite includes: 

 a) Ultrasonic Level Sensors: For non-contact, continuous 

measurement of water levels in open channels and drains, 

providing reliable data without being submerged in potentially 

corrosive or debris-filled water [34]. 

b) Submersible Pressure Transducers: Deployed at the bottom of 

sewers, wet wells, and lift stations to measure the hydrostatic 

pressure of the water column, which is directly proportional to the 

water level. These are ideal for closed or submerged environments 

[35][36]. 

c) Integrated Multi-parameter Probes: Where feasible, low-cost 

probes measuring depth, electrical conductivity, and temperature 

can be used to detect not only rising water levels but also potential 

contamination events, such as illicit sewer discharges [37]. 

2. Communication Fabric 
A hybrid LPWAN strategy ensures robust and efficient data 

transmission from the sensor network 

[39][40][41][42][43][44]. 

a) LoRaWAN: Utilized for its extensive range and exceptional 

power efficiency, making it ideal for battery-powered sensors 

deployed across wide areas or in locations with limited cellular 

connectivity. The ability to establish private LoRaWAN 

networks provides a cost-effective solution for city-wide 

coverage [39][40][41][44]. 

b) NB-IoT: Employed in dense urban cores and for critical 

infrastructure monitoring where guaranteed service quality and 

deep indoor/underground penetration are paramount. It 

leverages existing cellular networks for reliable, lower-latency 

communication compared to LoRaWAN [42][43]. 

3. Real-Time Data Ingestion Pipeline 

To handle the high-velocity stream of data from thousands of 

sensors, a scalable data pipeline is essential. 

a) Apache Kafka: Serves as the central nervous system for data 

ingestion. It acts as a distributed, fault-tolerant event streaming 

platform, capable of handling millions of messages per second 

from diverse producers (sensors, APIs) and making them 

available to multiple consumers. 

b) Apache Flink: A powerful stream processing engine that 

consumes data from Kafka in real-time. Flink performs initial 

stateless transformations such as data cleaning, normalization 

(e.g., converting sensor readings to standardized units), and 

filtering of erroneous data before it is passed on for further 

analysis . 

4. Social and Meteorological Data Fusion 

This layer enriches the physical sensor data with crucial 

contextual information, moving beyond simple monitoring . 

 a) NLP Module: A dedicated service continuously scrapes 

public social media feeds (e.g., Twitter/X API) for posts 

containing relevant keywords (e.g., "waterlogging," "flood," 

"drain jam," "पानी भर गया") and associated geolocations. It 

performs basic entity recognition and sentiment analysis to 

identify reports of flooding and gauge public distress, 

effectively turning citizens into a distributed network of human 

sensors. 

b) Weather API Module: This module interfaces with open data 

sources like the India Meteorological Department (IMD) and 

global weather services to pull in real-time rainfall data (e.g., 

radar precipitation estimates) and short-term quantitative 

precipitation forecasts (QPFs). 

c) Data Fusion Engine: At this stage, a preliminary data fusion 

process occurs. Techniques such as Kalman filters or Bayesian 

networks are used to combine the disparate data streams—

structured time-series data from sensors, unstructured text from 

social media, and predictive data from weather APIs—into a 

unified, feature-rich data vector for each monitored location 

C. Tier 2 – The Fog Analytics and Prediction Layer 

(The "Local Reflex Arc") 

A.  Fog Computing Paradigm 
The framework utilizes fog nodes—computationally capable 

devices like industrial gateways or small-scale servers—

deployed at a neighborhood or district level. This architecture 

directly addresses the latency–scalability dilemma . By 
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processing data locally, it drastically reduces the round-trip time 

compared to sending all raw data to a distant cloud, enabling near-

real-time predictions. It also significantly reduces the bandwidth 

burden on the core network, as only processed results, summaries, 

or critical alerts are forwarded to the cloud. 

B. The Hybrid Deep Learning Prediction Model 
1. Each fog node runs a trained instance of the core predictive 

model. A Transformer-LSTM hybrid model is proposed for 

this task. 

a) Input: The fused, feature-rich data vector from Tier 1, 

representing a time-series of sensor readings, social media 

activity, and rainfall data for the fog node's specific 

geographic area. 

b) Architecture: (1) The Transformer encoder component uses 

its self-attention mechanism to dynamically assess the 

importance of different input features at each time step. For 

example, it can learn that a high-intensity rainfall forecast is 

more significant than a minor change in a single sensor 

reading, allowing it to focus on the most predictive signals. 

(2) The feature-rich output from the Transformer is then fed 

into an LSTM network. The LSTM's recurrent structure 

excels at capturing long-term temporal dependencies and 

patterns in the time-series data, learning the complex 

relationship between rainfall, drain capacity, and the rate of 

water level rise [48]. 

c) Output: The model generates a multi-step forecast, 

predicting the water level at key locations within its zone for 

the next 1–3 hours. Crucially, it also outputs a probabilistic 

"waterlogging risk score" (P_{risk}), quantifying the 

likelihood of critical thresholds being breached 

[45][47][49][50]. 

D. Tier 3 – The Cloud Optimization and Command 

Layer (The "Central Brain") 
1. Cloud Infrastructure 

A scalable public or private cloud platform (e.g., AWS, 

Azure, OpenStack) serves as the backend, providing robust 

resources for large-scale computation, long-term data 

archival for model retraining, and hosting the central 

management dashboard. 

2. The Dispatch Optimization Engine 

a) This engine is the system's primary decision-making 

component for emergency response. It is triggered 

automatically whenever a fog node reports a P_{risk} 

exceeding a predefined critical threshold. 

b) Problem Formulation: The task is modeled as a dynamic, 

multi-objective Vehicle Routing Problem with Time 

Windows (VRPTW). The objectives are to: 

(1) Minimize the cumulative arrival time of response units to 

all affected locations. 

(2) Maximize the number of high-priority incidents attended 

to. 

(3) Ensure a balanced workload across available emergency 

teams. 

The road network is treated as a dynamic graph, where edge 

weights (travel times) can increase or become infinite (road 

closure) based on real-time waterlogging predictions. 

c)Optimization Algorithm: A hybrid ACO-GA metaheuristic 

is employed to solve this complex problem. 

(1) Ant Colony Optimization (ACO): The ACO 

component is used to find the most efficient routes for 

each vehicle. Virtual "ants" explore the dynamic road 

network graph, depositing pheromones on viable paths. 

This approach is highly effective at adapting to real-time 

changes, such as newly flooded roads, and finding robust 

alternative routes . 

(2) Genetic Algorithm (GA): The GA component 

optimizes the high-level resource allocation. Each 

"chromosome" in the GA represents a complete 

assignment of resource types (e.g., high-capacity pumps, 

inflatable boats, medical teams, sanitation crews) to the 

vehicles whose routes are determined by the ACO. The 

GA evolves these assignments over generations to find a 

solution that best meets the multi-objective function . 

3. Command and Control Dashboard 

a) The output of the optimization engine is not a rigid 

command but a set of recommended, optimized dispatch 

plans. These are visualized on a GIS-based dashboard 

accessible to city emergency operations managers. 

b) The dashboard provides a common operating picture, 

showing predicted flood extents, real-time sensor 

statuses, locations of incidents reported on social media, 

the current positions of response units, and the optimized 

dispatch routes. 

c) This provides a powerful decision-support tool, 

combining machine intelligence with human oversight 

for a more effective and trustworthy response. 

E. The Core Scheduler: A Priority-Driven Engine 
1. Underpinning the entire multi-tier architecture is a 

real-time scheduler that manages the execution of all 

computational tasks. This is not a standard best-

effort scheduler but one based on principles from 

real-time operating systems, ensuring that the 

system's temporal constraints are met, especially 

during a crisis 

2. Policy: A preemptive, priority-based scheduling 

policy is implemented. This means that if a high-

priority task becomes ready to run, it can interrupt 

(preempt) any lower-priority task currently 

executing.. 

3. Task Prioritization: Tasks across the framework are 

assigned a static priority level based on their 

criticality to the system's mission. 

a) Priority 1 (Hard Real-Time / Critical): These tasks 

have strict deadlines, and missing them constitutes a 

system failure. This includes: 

(1) Execution of the Transformer-LSTM prediction 

model on the fog nodes. 

(2) Transmission of a high-risk alert (P_{risk} > 

threshold) from a fog node to the cloud [45][47][49]. 

b) Priority 2 (Soft Real-Time / Urgent): These tasks 

are important for system effectiveness, but 

occasional deadline misses lead to degraded 

performance rather than outright failure. This 

includes: 

(1) Execution of the ACO-GA dispatch optimization 
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algorithm in the cloud (2) Real-time updates to the 

command and control dashboard 

c) Priority 3 (Best Effort / Normal): These are the 

continuous, background operations of the system. This 

includes: 

(1) Data ingestion and processing from the sensor 

network and APIs via Kafka and Flink . 

(2) Archiving of historical data to the cloud database. 

d) Priority 4 (Background / Low): Tasks that are 

computationally intensive but not time-sensitive. This 

primarily includes: 

(1) The periodic retraining of the deep learning models 

using newly archived data. 

This AI-driven adaptive scheduling ensures that as a storm 

event intensifies and system load increases, computational 

resources are dynamically and automatically reallocated to 

the most critical functions of prediction and response, 

guaranteeing the framework's performance when it is 

needed most . 

F. Simulated Implementation and Performance Analysis 
To validate the efficacy and viability of the proposed Multi-Tier 

Scheduling Framework, a comprehensive simulation was designed 

and executed. This simulation serves as a virtual proving ground, 

allowing for the rigorous evaluation of the framework's core 

components—prediction, optimization, and scheduling—under 

realistic, data-driven conditions without the prohibitive cost and 

complexity of a full-scale physical deployment [45][46][47]. 

I. A Virtual Proving Ground: The Simulation Environment 

A. Case Study Selection 

1. A densely populated, flood-prone watershed area within 

the city of Chennai was selected as the case study zone 

[11][13]. 

2. Chennai was chosen due to its history of severe monsoon 

flooding, the flat coastal terrain that exacerbates water 

stagnation, and the availability of some relevant open-

source geospatial data. 

3. The simulation focuses on a specific zone encompassing 

a mix of residential and commercial areas, characterized 

by a complex network of roads and storm water drains 

(SWDs) [31][32][33]. 

B. Data Acquisition and Integration 

1. Geospatial Data: 

 a. The foundational layers were constructed using 

publicly available data. 

 b. The road network was derived from OpenStreetMap 

and processed into a routable graph [31]. 

 c. The storm water drain network for the selected wards 

was mapped using data from the Greater Chennai 

Corporation (GCC) and OpenCity portals, providing the 

layout of the primary drainage channels [31][32]. 

 d. A Digital Elevation Model (DEM) with 30m 

resolution was obtained from ISRO's Bhuvan geoportal 

to model the topography and natural flow paths of 

surface water . 

2. Meteorological Data: 

 a. To simulate realistic storm events, historical 

hourly rainfall data for Chennai was sourced from 

the India Meteorological Department (IMD) 

archives available on the Open Government Data 

(OGD) Platform India. 

 b. Several historical heavy rainfall events were 

selected to test the system under varying intensities 

and durations.. 

3. Social Media Data: 

 a. A historical, anonymized dataset of geotagged 

tweets from a previous major flooding event in 

Chennai was used. 

 b. This dataset was pre-processed to serve as the 

input for the NLP module, simulating real-time 

citizen reports during the crisis. 

C. Simulation Modeling 

1. The physical dynamics of flooding were simulated 

using an open-source urban flood model. The Fluidit 

Storm platform was selected for its ability to couple 

the EPA SWMM solver for 1D pipe network analysis 

with a GPU-accelerated 2D surface flow model 

(CAFlood) [31][32]. 

2. This integrated approach allowed for a realistic 

simulation of how rainfall translates into surface 

runoff, flows through the SWD network, and, upon 

exceeding the network's capacity, results in surface 

waterlogging [31][32][45]. 

3. The output of this physical model—a time-series of 

water depths at various points across the simulated 

area—served as the "ground truth" against which the 

framework's predictive capabilities were 

benchmarked [45][46]. 
4. The simulation environment also modeled a fleet of 

emergency response vehicles and resource depots, 

providing the necessary inputs for the dispatch 

optimization engine. 

 

Fig.5.Rainfall Distribution (Aug 2025) 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.54, November 2025 

18 

Rainfall distribution box plot for Santacruz vs. Colaba, showing 

variability and extreme outliers. 

II. Evaluating Framework Efficacy: Metrics and Results 
A. Performance Evaluation Metrics 

The performance of the framework was assessed using a suite of 

quantitative metrics, designed to objectively measure the 

effectiveness of each critical component and the system as a whole. 

The evaluation was structured to compare the proposed framework 

against established baseline methods to quantify its added value 

[45][46][47]. 

1. Prediction Model (Tier 2) – Accuracy, Precision, Recall, 

F1-Score, Area Under Curve (AUC). Measures the 

model's ability to correctly classify and predict 

waterlogging events (water level exceeding a critical 

threshold) at specific locations. Success Criterion: F1-

Score > 0.90; Significant improvement over baseline 

[45][46][47]. 

2. Dispatch Optimizer (Tier 3) – Average Response Time 

(minutes), Resource Utilization (%), Total Travel 

Distance (km). Measures the efficiency of the generated 

emergency dispatch plan in terms of speed, resource 

deployment, and logistical overhead. Success Criterion: 

>25% reduction in average response time compared to 

baseline heuristic . 

3. Overall System – End-to-End Latency (seconds), 

Scalability (tasks processed per minute). Measures the 

real-time capability (time from critical sensor event to 

dispatch plan generation) and the robustness of the 

framework under increasing data loads. Success 

Criterion: Critical alert latency < 60 seconds; Graceful 

performance degradation under load. 

B. Prediction Accuracy 

1. The performance of the proposed Transformer-LSTM 

model was evaluated on its ability to predict 

waterlogging 60 minutes in advance [45][48][49]. 

2. Its results were compared against two baselines: 

a. A standard LSTM model (using only sensor and 

weather data) – F1-Score: 0.82 [45][46]. 

b. The proposed Transformer-LSTM model without the 

fused NLP data – F1-Score: 0.88 [45][46]. 

3. The full framework, where the fusion of NLP-derived 

social media data with sensor and weather inputs was 

applied, achieved an F1-Score of 0.94 [45][46]. 

4. This result quantitatively validates that "soft" data from 

human sensors provides critical, localized information 

(e.g., reports of a specific blocked drain) that enhances 

predictive capability. The model was particularly 

effective at predicting flash flooding scenarios triggered 

by sudden, high-intensity rainfall, where social media 

buzz provided an early warning signal . 

C. Dispatch Efficiency 

1. The ACO-GA dispatch optimizer was tested against a 

baseline Greedy Best-First Search (GBFS) heuristic, 

which assigns the nearest available response unit to the 

highest-priority incident. 

2. The simulation ran scenarios with multiple simultaneous 

waterlogging incidents and dynamically introduced road 

closures based on the ground-truth flood map [31][32]. 

3. The ACO-GA algorithm consistently outperformed the 

baseline: 

a. Average response time of 18 minutes – a 35% 

reduction compared to GBFS's 28 minutes . 

b. The greedy approach often led to suboptimal 

solutions, such as sending multiple units down a 

single artery that later became congested or flooded. 

In contrast, the ACO's pheromone-based pathfinding 

mechanism avoided potential bottlenecks, and the 

GA component effectively allocated specialized 

equipment to the most severe predicted flood zones. 

D. System Performance 

1. The end-to-end latency from a critical sensor reading 

crossing a high-risk threshold to the generation of an 

optimized dispatch plan in the cloud was measured 

at 47 seconds, confirming suitability for real-time 

emergency response. 

2. A scalability test was conducted by synthetically 

increasing the number of sensor nodes from 1,000 to 

10,000. 

3. The decentralized fog computing architecture proved 

highly effective: while the overall data volume increased 

tenfold, the load on the central cloud only increased by 35%. 

The system exhibited graceful degradation, with prediction 

latency at the fog layer increasing only marginally, 

demonstrating the architecture's ability to scale to a city-wide 

deployment without catastrophic failure. 

 

Fig.6. Ward-wise Rainfall Intensity (Aug 2025)  

Ward-wise rainfall intensity heatmap of Mumbai, highlighting 

spatial distribution across central and coastal regions. 

4. RESULT & DISCUSSION 
Bridging Ancient Wisdom and Modern Innovation 

The simulation results demonstrate the technical viability of 

the proposed Multi-Tier Scheduling Framework. However, its 

broader significance lies not only in performance 

improvements but also in its potential to catalyze a paradigm 

shift in urban water management. This section interprets the 

results within a wider context, connecting them to Harappan 

principles of resilience and examining the challenges and 

opportunities for real-world deployment. 

A. Interpretation of Results 

The framework’s improvements in prediction accuracy and 

dispatch efficiency translate directly into practical benefits. A 
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35% reduction in response time can determine whether a localized 

waterlogging event remains contained or escalates into city-wide 

flooding [6], [7]. The ability to forecast inundation with a one-hour 

lead time provides a critical operational window for issuing public 

warnings, diverting traffic, and prepositioning resources [4], [31], 

[32]. These capabilities directly mitigate the economic, 

infrastructural, and health losses outlined earlier [7], [11]–[15]. 

The design philosophy draws from the Indus Valley Civilization 

(IVC), where proactive, integrated, and optimized systems were 

the hallmark of urban water resilience [17]–[21], [25]–[30]. The 

framework embodies these principles in technological form: 

● Proactive Management – Mirroring the IVC’s 

anticipatory drainage systems, the predictive AI core 

shifts urban response from post-disaster reaction to pre-

disaster mitigation [45]–[48]. 

Integrated Systems – Just as Harappan drainage was 

embedded within streets and housing, the framework 

fuses heterogeneous data sources—IoT sensors, social 

feeds, and meteorological inputs—into a holistic 

hydrological map [34]–[38]. 

Efficiency and Optimization – Harappan 

standardization is reflected in the metaheuristic 

optimizer, which allocates limited emergency resources 

with maximum efficiency [39]–[44]. 

Thus, the framework is not merely a technological solution but a 

modern reinterpretation of ancient design philosophy, bridging 

heritage and innovation. 

 
Fig.7. Performance KPI Radar Chart 

Performance KPIs radar chart comparing coverage, response time, 

utilization, cost efficiency, and accuracy. 

B. Implementation Challenges and Mitigation Strategies 

1) Technological Hurdles 

The foremost challenge is interoperability. Smart city ecosystems 

comprise heterogeneous devices, communication protocols, and 

proprietary platforms, leading to vertical silos that prevent 

seamless data exchange [39]–[42]. 

Mitigation: Adoption of open standards and protocols (e.g., 

MQTT, NGSI-LD) and the deployment of unified IoT 

platforms such as FIWARE can establish horizontal 

integration, enabling cross-domain coordination [38]–[44]. 

2) Governance and Policy 

Effective implementation demands political will, funding, and 

inter-departmental collaboration. Bureaucratic inertia often 

impedes integrated disaster management [6], [7], [9]. 

Mitigation: Aligning with national flagship programs such as 

the Smart Cities Mission and AMRUT ensures both funding 

and legitimacy. Integration with national geospatial platforms 

(e.g., ISRO’s Bhuvan, National Urban Information System) 

can further embed the framework into India’s governance 

infrastructure [3], [7]. The resulting data loop strengthens 

accountability and evidence-based investment prioritization. 

3) Socio-Technical Barriers 

Public trust is crucial. Concerns about data privacy, 

surveillance, and opaque AI decision-making may undermine 

citizen participation [11]–[14]. 

Mitigation: 

● Transparency and Education – Clear 

communication on data use, privacy safeguards, and 

societal benefits. 

● Privacy and Security – Secure-by-design 

principles, anonymization, and adherence to 

emerging data protection laws. 

● Participatory Engagement – Expansion of citizen 

reporting tools (e.g., mobile apps, crowdsourced 

data), reinforcing trust and inclusivity. 

C. Cultural Resonance and Decentralized 

Intelligence 

The framework’s fog-node architecture parallels the neerkatti 

tradition, where local water managers oversaw equitable 

distribution in villages [22], [23]. Each fog node acts as a 

digital neerkatti, managing its domain autonomously while 

escalating to central control only when necessary. This 

federated intelligence model enhances scalability and 

resilience, aligning with India’s long-standing traditions of 

community-based water governance. 

Fig.8. Incidents Handled per week(Aug 2025) 
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Weekly throughput of incidents handled in August 2025, peaking 

during mid-month heavy rainfall. 

5. FUTURE SCOPE 
A. Towards a Digital Twin 

The current framework provides real-time monitoring and short-

term prediction. The next logical evolution is to develop a 

comprehensive Digital Twin of the city's entire hydrological 

system. This would involve creating a high-fidelity, physics-based 

simulation model, continuously calibrated by the real-time data 

from the sensor network [38]. Such a Digital Twin would not only 

reflect the current state of the water system but also enable complex 

"what-if" scenario analysis. 

B. Enhancing AI Capabilities 

The AI components of the framework can be further advanced. 

Future research could explore Physics-Informed Neural Networks 

(PINNs), which integrate the governing equations of fluid 

dynamics into the deep learning model's loss function[34] . This 

would constrain the model's predictions to be physically plausible, 

potentially improving its accuracy and its ability to extrapolate to 

unprecedented, extreme rainfall events for which limited training 

data exists. 

C. Citizen-Centric Integration 

To foster greater public participation and trust, a dedicated public-

facing mobile application could be developed. This application 

would serve two primary functions. Firstly, it would act as a hyper-

local early warning system[45]. Secondly, it would empower 

citizens to become active participants in data collection. Users 

could submit geotagged photos and reports of flooded streets or 

clogged drains, creating a powerful crowdsourcing loop that would 

provide invaluable, high-resolution data to complement the fixed 

IoT sensor network. 

D. Climate Change Adaptation 

While the current framework is designed for operational response 

to weather events, its long-term data archive can become a critical 

tool for strategic climate change adaptation. By integrating the 

framework's historical performance data with long-term climate 

projection models, urban planners can assess the future resilience 

of the existing drainage infrastructure. This analysis can guide 

multi-billion-dollar investment decisions [6, 7], ensuring that 

future infrastructure upgrades are designed not for the climate of 

the past, but for the more extreme and unpredictable climate of the 

future. 

6. CONCLUSION 
The recurrent and escalating crisis of urban waterlogging in India 

is a symptom of a deeper systemic failure—a disconnect between 

rapid, often haphazard, urbanization and the fundamental 

principles of sustainable water management [1][2][3][5][7]. This 

paper has argued that this modern challenge is best addressed by 

looking both to the distant past for wisdom and to the immediate 

future for tools [17][18][19][22]. The sophisticated, integrated, and 

resilient water engineering of the Indus Valley Civilization 

provides not a literal schematic to be copied, but a powerful 

philosophical blueprint for how cities can thrive in harmony with 

their hydrological environments [17][19][21][25][27]. 

The Multi-Tier Scheduling Framework presented herein is a 

tangible embodiment of this synthesized vision. It is more than a 

technological solution; it is a new operational paradigm 

[45][46][47]. By creating a hierarchical architecture that mirrors a 

biological nervous system—with sensory perception, local 

reflexes, and central cognitive planning—the framework resolves 

the critical trade-off between low-latency response and city-wide 

scalability. Its core components—a fused sensor network for 

comprehensive perception, a hybrid deep learning model for 

proactive prediction, and a metaheuristic optimizer for efficient 

dispatch—were validated through a rigorous simulation, 

demonstrating significant quantitative improvements in both 

predictive accuracy and emergency response efficiency 

[45][46]. 

The framework's true potential, however, lies beyond its 

immediate function as a disaster management tool. It is a 

platform for better governance, providing the data-driven 

evidence needed to hold authorities accountable, guide 

infrastructure investment, and foster a more transparent 

relationship between the citizen and the state [1][2][3][7][9]. It 

represents a shift from viewing rainwater as a liability to be 

expelled to an element to be intelligently managed, echoing the 

resource-conscious ethos of the Harappans 

[17][19][22][25][27]. 

The path to implementation is fraught with challenges, from 

technological interoperability and bureaucratic inertia to the 

crucial need for public trust [7]. Yet, these are not 

insurmountable. By aligning with national policies, embracing 

open standards, and pursuing a genuinely citizen-centric 

design, the vision of a resilient, intelligent, and water-secure 

city is attainable [1][2][3][7]. Ultimately, this research 

concludes that the creation of truly "smart" Indian cities will 

not be achieved by technology alone, but by its thoughtful and 

humble application, guided by the profound and enduring 

lessons of one of the world's most remarkable ancient 

civilizations [17][19][22][45][46]. 
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