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ABSTRACT

The agricultural industry faces significant challenges in
managing perishable goods, with a substantial portion of
produce being wasted due to spoilage. This paper presents a
comparative study of two deep learning approaches for
predicting the shelf life of fruits using Convolutional Neural
Networks (CNNs) and edge computing. This study developed
and evaluated both a classification model and a regression
model, both based on the MobileNetV2 architecture for a fair
comparison. The classification model achieved a test accuracy
of 74.75%, while the regression model provided more granular
predictions with a mean absolute error of 1.44 days. Both
models were converted to the TensorFlow Lite (TFLite) format
and evaluated on the test set, achieving identical performance
to their Keras counterparts while significantly reducing
prediction latency. This research explores the advantages and
disadvantages of both classification and regression approaches,
demonstrating the potential of deep learning and edge
computing to create scalable and efficient solutions for real-
time shelf-life prediction, which can help to reduce food waste
and optimize supply chain management.
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1. INTRODUCTION

The prediction of shelf life for fruits and vegetables is a crucial
aspect of modern agriculture, food distribution, and supply
chain management. This paper explores two distinct deep
learning  methodologies for shelf-life prediction: a
classification approach to categorize produce into ripeness
stages, and a regression approach to predict the remaining
shelf-life in days. Fruits, being perishable goods, are highly
susceptible to spoilage. Traditional methods of estimating shelf
life typically rely on manual inspection, which can be labor-
intensive and subjective. Consequently, there is a growing need
for innovative technologies to predict the shelf life of fruits
more accurately and efficiently [1]. Convolutional Neural
Networks (CNNs) have proven highly effective in processing
and analyzing visual data, making them ideal for this task [2,
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3]. By training CNNs on large datasets of fruit images, it is
possible to create predictive models that can automatically
estimate the remaining shelf life of fruits based on their
appearance [4, 5].

This paper compares a classification model and a regression
model, both based on the MobileNetV2 architecture, to ensure
a fair comparison. The classification model assigns a ripeness
category (e.g., "fresh", "ripe"), while the regression model
predicts a continuous value for the remaining shelf life. The
classification model offers a simpler, more interpretable output,
while the regression model provides more granular and
actionable data for fine-tuning supply chain logistics.

Furthermore, this research investigates the deployment of these
models on edge devices using TensorFlow Lite (TFLite),
enabling real-time, on-site analysis without reliance on cloud
infrastructure [6]. By combining CNNs with Edge Computing,
the aim is to provide a scalable and efficient solution that
addresses the challenges associated with fruit quality
monitoring, storage, and distribution [7]. This comparative
study will shed light on the trade-offs between classification
and regression models for this application, offering valuable
insights for the development of future food technology
systems.

2. LITERATURE SURVEY

Fruits and vegetables shelf-life estimation is a critical area of
research in food science and technology, aiming to enhance
food quality, reduce wastage, and improve supply chain
efficiency. Traditional methods for determining fruit freshness
rely on physical, chemical, and biological assessments, which
are often time-consuming and subject to human error. The
introduction of deep learning, particularly Convolutional
Neural Networks (CNNs), has revolutionized fruit shelf-life
estimation by enabling automated, accurate, and scalable
predictions [8]. Despite these advancements, significant
research gaps persist, including limitations in dataset
availability, variability in environmental conditions,
computational constraints, and ethical concerns. This literature
survey explores existing research on fruit shelf-life estimation
using CNNs and highlights key gaps that need to be addressed
for more effective implementation.

A study titled "A Review on Automated Detection and
Assessment of Fruit Damage Using Machine Learning" by
Yonsai Safari, Joyce Nakatumba-Nabende, Rose Nakasi, and
Rose Nakibuule, comprehensively examined 32 research
papers from the past 13 years, focusing on automated fruit
damage detection using machine learning and deep learning
techniques [9]. The review highlights a significant shift
towards deep learning models, particularly Convolutional
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Neural Networks (CNNs), for their superior performance in
processing large datasets and achieving high accuracy. For
instance, studies using deep CNNs achieved accuracies up to
98.6% in apple and banana disease detection and 98% in citrus
disease severity detection, while Faster R-CNN reached 88.1%
in mango fruit detection. The most commonly extracted
features for damage detection were color, texture, shape, and
size. While deep learning models demonstrated high accuracy,
particularly with models like ResNet-50 and VGG-16,
traditional machine learning remains relevant due to its lower
computational demands, especially for smaller datasets [9].
However, a major drawback is the limited availability of large,
open-source datasets, hindering reproducibility and further
research. The review also identified challenges such as
occlusion in orchards, the detection of defects like chilling
injuries that do not alter color or texture, and the manual
selection of CNN hyperparameters. Furthermore, most of the
research focused on post-harvest damage detection, with
limited studies addressing in-field damage assessment. The
review concludes that while deep learning shows significant
promise for automated fruit damage detection, future research
should focus on developing lightweight CNN architectures for
mobile and embedded devices, addressing occlusion
challenges, exploring alternative imaging modalities like
thermal imaging, and developing domain adaptation methods
for broader applicability [9].

Another study, "Comparative Analysis for Predicting Shelf life
of Fruits Using Advanced Deep Learning Approaches" by
Sanath S Shenoy, Radhika Mishra, and Ruchi Chaturvedi,
explored the application of deep learning, specifically Faster R-
CNN and YOLOVS, to predict the shelf life of bananas, aiming
to reduce food waste by accurately assessing fruit maturity
[10]. The research involved creating a dataset of 254 images of
Cavendish bananas, categorized into five shelf-life stages, and
training both models using 164 images, with 45 images each
for validation and testing. The models were trained with a batch
size of 16, and their performance was evaluated using mean
Average Precision (mAP) at 50% Intersection over Union
(mAP50) and mAP between 50% and 95% IoU (mAP50-95)
across 250, 300, 500, and 1000 epochs or iterations. The results
indicated that both models achieved mAP50 and mAP50-95
scores exceeding 80%, demonstrating their potential for shelf-
life prediction. However, Faster R-CNN exhibited better
performance at higher iterations but demanded more
computational resources, while YOLOvS5 offered model
variants with lower hardware requirements [10]. The study
highlights the feasibility of object detection models for fruit
shelf-life prediction, but the dataset size of 254 images is
relatively small, which could limit the generalizability of the
findings. Additionally, the paper does not specify the exact
mAP values obtained for each model and epoch, hindering a
precise quantitative comparison.

The work done by Saeed S. Alahmari, and Tawfiq Salem titled
"Food State Recognition Using Deep Learning", introduced a
novel cascaded multi-head deep learning approach to
simultaneously recognize food ingredient type and state,
addressing a gap in existing research that primarily focused on
ingredient type recognition [11]. The proposed method utilizes
a cascaded architecture, where features learned for food
ingredient type are fused with image deep representations to
enhance food state recognition. The authors trained and
evaluated their approach on a benchmark dataset, comparing it
to a non-cascaded deep learning method. The cascaded
approach achieved an 87% accuracy in food ingredient state
recognition, demonstrating a significant improvement over the
81% accuracy obtained by the non-cascaded method. The
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discussion highlighted that the non-cascaded approach
struggled with distinguishing between similar food states, such
as diced and sliced, or creamy-paste and grated, due to the lack
of food type information. By incorporating the food type
feature vector, the cascaded approach significantly reduced
these misclassifications [11]. The paper acknowledges
limitations, including dataset imbalances and instances where
food state labels were missing, necessitating data
preprocessing. Future work aims to address these issues by
balancing the dataset and incorporating image segmentation to
further improve recognition accuracy. The conclusion
emphasizes the efficacy of the proposed cascaded multi-head
deep neural network in jointly learning food ingredient type and
state, showcasing its potential for applications in automated
food handling, elderly care, and other intelligent systems.

Another study titled "Remaining Shelf-Life Estimation of
Fresh Fruits and Vegetables During Transportation" by Arwa
Abougharib , Mahmoud Awad and Malick Ndiaye, introduced
a novel Shelf-Life Estimation Model (SLEM) designed to
predict the Remaining Shelf-Life (RSL) of Fresh Fruits and
Vegetables (FFVs) during transportation, leveraging real-time
environmental data from IoT sensors [12]. The model estimates
the decay rate based on respiration, integrating it over time, and
offers a non-destructive, non-invasive approach without
requiring pre-deployment accelerated shelf-life experiments.
To facilitate real-time applications, a surrogate model (QnD)
was developed to reduce computational intensity. Experimental
validation using strawberries, apricots, and spinach in a
domestic refrigerator demonstrated that the original model
achieved a maximum prediction error of 1.3 days, while the
surrogate model's error reached 2.95 days. Statistical analysis,
including ANOVA tests, confirmed that both models produced
predictions not significantly different from observed shelf
lives, even at a 0.01 significance level, validating the model's
accuracy despite simplifying assumptions. However, the
surrogate model exhibited higher errors, particularly with
sealed spinach, likely due to accumulated approximation errors
and challenges in accurately estimating parameters like
headspace air volume and porosity. The model consistently
overestimated the RSL for apricots, potentially due to
unaccounted exogenous ethylene influence. The study
concluded that the original model is more accurate for sealed
products and prolonged experiments, while both models
perform well for unsealed products like strawberries and
apricots. The research suggests that respiration rate, coupled
with time, temperature, and CO2 concentration, are primary
decay predictors. The model, though validated in a refrigerator
setting, is deemed applicable to transportation, cold storage,
and inventory management due to its temperature-dependent
nature [12].

2.1 Research Gaps

2.1.1 Limited availability of High-Quality
Datasets

One of the primary challenges in CNN-based fruit shelf-life
estimation is the lack of large, high-quality, labeled datasets.
Most existing datasets focus on fruit classification rather than
shelf-life prediction. The limited availability of diverse datasets
hinders the generalizability of CNN models, leading to reduced
accuracy when applied to different fruit varieties, climates, and
storage conditions. To address this gap, researchers must
develop standardized, publicly accessible datasets that
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incorporate a wide range of fruit types and environmental
factors.

2.1.2 Challenges in Model Generalization

CNN models trained on specific datasets often struggle to
generalize to new environments. Factors such as lighting
conditions, camera angles, and fruit positioning can
significantly impact model accuracy. Existing studies have
primarily focused on controlled environments, which do not
reflect real-world supply chain conditions. Future research
should emphasize transfer learning techniques and domain
adaptation strategies to improve model robustness across
diverse scenarios.

2.1.3 Ethical and Regulatory Challenges

Despite the benefits of CNN-based fruit shelf-life estimation,
ethical concerns regarding data privacy, algorithmic bias, and
food safety compliance remain unresolved. There is a lack of
standardized regulatory frameworks governing the use of Al in
food quality assessment. Addressing these ethical and legal
gaps requires interdisciplinary collaboration between Al
researchers, food scientists, and policymakers.

2.1.4 Computational and Hardware Constraints
CNN models require significant computational resources,
making them less accessible for small-scale farmers and
retailers. Existing research has largely focused on cloud-based
implementations, which may not be feasible for regions with
limited internet connectivity. Developing lightweight, edge-
computing-based CNN models could enhance accessibility and
scalability [13]. Although CNNs have demonstrated significant
potential in fruit shelf-life estimation, various research gaps
must be addressed to improve their effectiveness. The lack of
high-quality datasets, challenges in model generalization,
ethical considerations, and computational limitations present
significant hurdles to widespread adoption. Future research
should focus on developing robust, adaptable, and ethically
sound Al-driven fruit shelf-life estimation models to optimize
food supply chains and reduce wastage. By bridging these
research gaps, CNN-based solutions can contribute to a more
efficient and sustainable food industry.

2.2 Research Objectives

Fruit shelf-life estimation is a crucial area of research in the
food industry, focusing on enhancing food safety, reducing
waste, and improving supply chain efficiency. The application
of Convolutional Neural Networks (CNNs) has revolutionized
shelf-life prediction by enabling automated, real-time
monitoring of fruit freshness. While numerous studies have
explored the use of deep learning for fruit quality assessment,
well-defined research objectives are essential to guide future
investigations. A structured literature survey provides insights
into key research objectives that drive advancements in CNN-
based fruit shelf-life estimation. This study aims to identify
critical research goals, including data acquisition, model
optimization, accuracy improvement, real-world deployment,
and ethical considerations.

2.2.1 Development of High-Quality Datasets

A major research objective in CNN-based fruit shelf-life
estimation is the collection and enhancement of high-quality
datasets. CNN models require extensive labeled datasets to
improve accuracy and generalization. Existing datasets often
lack diversity in fruit types, environmental conditions, and
ripeness  stages. Research must focus on creating
comprehensive, publicly available datasets that include images
of fruits from various regions, storage conditions, and time
intervals.
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2.2.2 Optimization of CNN Architectures for
Higher Accuracy

Another key research objective is optimizing CNN
architectures to improve accuracy while reducing
computational complexity. Traditional CNN models require
substantial computing power, making them impractical for
real-time applications. Research should explore lightweight
architectures, hybrid deep learning models, and transfer
learning techniques to enhance model performance [14, 15].

2.2.3 Real-World Deployment and Scalability
Despite advancements in CNN-based fruit analysis, real-world
deployment remains a challenge. The objective of scalability is
to ensure that Al-driven shelf-life estimation can be integrated
into existing food supply chain management systems. Future
research should address model adaptation for different storage
environments, real-time IoT integration, and mobile-friendly
Al applications [7].

2.2.4 Ethical Al Implementation and Compliance
with Food Safety

Ensuring ethical Al implementation and compliance with food
safety regulations is a critical research objective. CNN-based
models must adhere to data privacy laws, algorithmic fairness,
and transparency in decision-making. Researchers should
develop frameworks that prevent biased predictions and ensure
responsible Al deployment in food monitoring systems.

3. SYSTEM ANALYSIS
3.1 Existing System

Predicting the remaining shelf-life of food products presents a
dichotomy based on their inherent characteristics and handling.
For sealed, dried, highly processed, and chemically preserved
items, established mathematical models offer reliable
predictions due to their relative stability and predictable
degradation patterns. Conversely, the shelf-life prediction for
unsealed, unprocessed, and Dbiologically active foods,
exemplified by fresh fruits, vegetables, milk, fish, and meat
transported alongside diverse fresh commodities under
dynamic logistic conditions, remains a significant and
multifaceted challenge. This complexity does not stem from a
scarcity of sophisticated mathematical models designed to
address the primary factors contributing to their deterioration.
Instead, the practical application of these theoretical
frameworks is severely hampered by numerous limitations,
including their pronounced specificity to individual food
species, the frequent requirement for destructive testing
methodologies, and the often-prohibitive time investment
associated  with  necessary  pre-testing  procedures.
Consequently, despite the theoretical advancements, current
models often prove unsustainable and impractical for
widespread implementation in real-world  scenarios,
particularly within the complexities of modern food supply
chains.

3.2 Proposed System

This paper proposes a system that leverages deep learning for
the non-destructive prediction of fruit shelf life based on visual
data. The core of the system is a comparative study between
two distinct neural network models: a classification model to
categorize fruits into discrete ripeness stages, and a regression
model to predict the specific number of days of remaining shelf
life. To ensure a fair and effective comparison, both models are
built upon the highly efficient MobileNetV2 architecture,
utilizing transfer learning from weights pre-trained on the
ImageNet dataset. This approach allows the system to achieve
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high accuracy even with a specialized and limited dataset. A
key objective of the proposed system is to be practical for real-
world deployment in the supply chain. To this end, the trained
models are converted to the TensorFlow Lite (TFLite) format,
optimizing them for high-performance inference on edge
devices. This enables real-time, on-site analysis without the
need for constant cloud connectivity, making the solution
scalable and accessible.

4. METHODOLOGY
4.1 Dataset

The foundation of this research is the "Fruit Arrival Time and
Shelf-Life Dataset" from Kaggle [16], which provides images
of bananas categorized into five distinct stages of ripeness. The
dataset contains images of bananas categorized into five classes
based on their age: “Banana(1-2)”, “Banana(3-4)”, “Banana(5-
7)”, “Banana(8-10)”, “BananaExpired”. The dataset was split
into training and testing sets. To ensure the quality of the
training data, the dataset underwent a preprocessing and
cleaning phase. This involved programmatically verifying each
image to identify and discard any corrupt or invalid files,
thereby ensuring the integrity of the dataset before model
training. For the regression model, the remaining shelf-life in
days was calculated for each image based on its class. Taking
11 as an average number of days until expiry, the formula used
was

remaining_shelf life = 11 — max(age in class name)

4.2 Model Architecture

Two CNN models were developed, both based on the
MobileNetV2 architecture for a fair comparison. The
MobileNetV2 architecture was selected for this study due to its
high efficiency and performance, making it particularly well-
suited for deployment on edge devices. As a state-of-the-art
model designed for mobile and resource-constrained
environments, it provides an excellent balance between
accuracy and computational cost. Furthermore, leveraging
MobileNetV2 pre-trained on the ImageNet dataset allows for
the application of transfer learning. This approach enables the
model to utilize a rich set of pre-learned features, which is
highly beneficial for achieving strong performance on a
specialized task with a limited dataset, such as the one used in
this research.

The general architecture for both models in this study consists
of the MobileNetV2 base model, with its convolutional layers
frozen to retain the pre-trained weights. On top of this frozen
base, a custom head was added. This head begins with a
GlobalAveragePooling2D layer, which reduces the spatial
dimensions of the feature maps. Following this, a Dense layer
with 128 neurons and a ReLU activation function is used to
learn higher-level features.

For the classification model, the final layer is a Dense layer
with 5 neurons, corresponding to the five ripeness classes, and
uses a softmax activation function to output class probabilities.
For the regression model, the final layer is a single Dense layer
with a linear activation function, which outputs a continuous
numerical value representing the predicted remaining shelf-
life.

4.3 Model Training

Classification Model: The model was trained using the Adam
optimizer with a sparse categorical cross-entropy loss function.
To improve generalization and prevent overfitting, data
augmentation techniques such as rotation, shifting, shearing,
zooming, and horizontal flipping were applied to the training
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data. A hold-out validation strategy was employed, where 20%
of the training data was set aside as a validation set.

Regression Model: The regression model was trained using the
Adam optimizer with a mean squared error (MSE) loss
function. The primary evaluation metric was mean absolute
error (MAE). Data augmentation techniques were also applied
to the training data. Similar to the classification model, a 20%
validation split was used.

4.4 Edge Deployment and Optimization
Following the training phase, both models were optimized for
edge deployment. The trained Keras models were converted
into the TensorFlow Lite (TFLite) format. This conversion
process creates a highly efficient and portable version of the
models, employing techniques such as quantization and
operator fusion to significantly reduce the model's file size and
computational complexity. The resulting TFLite models are
designed for low-latency inference on resource-constrained
hardware, making them ideal for real-world applications on
edge devices.

5. SYSTEM DESIGN

The system architecture is centered around a transfer learning
approach using the pre-trained MobileNetV2 model. The
process begins with the dataset of fruit images, which is split
into training, validation, and testing sets. The core of the
architecture is the MobileNetV2 base model, with its weights
frozen to leverage the powerful features learned from the
ImageNet dataset.

Two distinct predictive models are constructed on top of this
common base. For the classification task, a custom head is
added, which consists of a GlobalAveragePooling2D layer, a
Dense layer with 128 neurons (ReLU activation), and a final
Dense output layer with 5 neurons and a softmax activation
function to correspond to the five ripeness classes. For the
regression task, a similar head is used, but the final output layer
is a single Dense neuron with a linear activation function to
predict the continuous value of remaining shelf life.

Both models are trained and validated independently. After
training, the final step in the architecture is the conversion of
the saved Keras models into the TensorFlow Lite (TFLite)
format. This optimization step produces lightweight, efficient
models ready for performance evaluation and deployment on
edge computing devices, completing the workflow from data
input to deployable asset.

6. IMPLEMENTATION

The system was implemented in Python using the TensorFlow
and Keras libraries for model development and training. The
implementation followed a structured workflow, from data
preparation to final model optimization, to create and evaluate
both the classification and regression models for shelf-life
prediction.

6.1 Data Collection and Preprocessing

The initial step involved acquiring the "Fruit Arrival Time and
Shelf Life Dataset" from Kaggle [16]. A data cleaning script
was implemented to ensure the integrity of the dataset. This
script iterated through all image files and used the Python
Imaging Library (PIL) to identify and remove any corrupted or
invalid images that would otherwise cause errors during
training. For the classification model, the directory names
served as the class labels. For the regression model, these class
labels were programmatically converted into numerical targets
representing the remaining shelf life in days, based on the
formula described in the methodology. The dataset was then
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split into training and testing sets to ensure a fair evaluation of
the models' performance on unseen data.

6.2 Building the Model

The core of the implementation was the construction of the
deep learning models using the TensorFlow Keras API. A
transfer learning approach was adopted by wusing the
MobileNetV2 architecture with weights pre-trained on
ImageNet as the base model. The convolutional layers of this
base were frozen to retain the learned low-level features. A
custom head was then added for the specific prediction tasks.
This head consisted of a Global Average Pooling(2D) layer to
reduce the feature map dimensions, followed by a Dense layer
with 128 neurons and a ReLU activation function. For the
classification model, the final output layer was a Dense layer
with 5 units and a softmax activation. For the regression model,
the output was a single Dense layer with a linear activation.

6.3 Model Training and Validation

The training process was configured and executed for both
models. An ImageDataGenerator class was used to apply data
augmentation to the training set, including transformations like
rotation, shifting, shearing, zooming, and horizontal flipping,
to improve model generalization and reduce overfitting. The
classification model was compiled with the Adam optimizer
and the sparse_categorical crossentropy loss function. The
regression model was also compiled with the Adam optimizer
but used the mean_squared _error (MSE) loss function. Both
models were trained with a validation split of 20%, allowing
for the monitoring of performance on a hold-out set during
training to identify the best-performing epoch.

6.4 Edge Optimization and Evaluation

After training, the best-performing model checkpoints were
saved. The final implementation step focused on optimizing
these models for edge deployment. A conversion script was
used to transform the saved Keras models (.h5 format) into the
TensorFlow Lite (.tflite) format. This process creates
lightweight, optimized models suitable for low-latency
inference on resource-constrained devices. The performance of
these TFLite models was then rigorously evaluated on the test
dataset to confirm that the conversion process did not degrade
accuracy or Mean Absolute Error and to measure the significant
reduction in prediction latency.

Classification Model Accuracy
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7. RESULTS

7.1 Classification Model Performance

The performance of the trained classification CNN model,
based on the MobileNetV2 architecture, was evaluated on the
held-out test dataset. The model achieved a final test accuracy
of 74.75%. The training process showed the model accuracy
improving over epochs, while the validation accuracy provided
a measure of the model's ability to generalize to new data.

The classification report in Table 1 provides a more detailed
breakdown of the model’s performance for each ripeness class,
showing the precision, recall, and F1-score. These metrics offer
insights into the model's ability to correctly identify positive
instances (precision) and to find all positive instances (recall)
for each class. The F1-score is the harmonic mean of precision
and recall, providing a single metric that balances both
concerns.

Table 1. Classification Report

Class Precision | Recall Fl- Support
score
Banana(1-2) 0.95 0.90 0.92 20
Banana(3-4) 0.71 0.63 0.67 19
Banana(5-7) 0.66 0.95 0.78 20
Banana(8-10) 0.76 0.65 0.70 20
BananaExpired 0.71 0.60 0.65 20

The training and validation performance is plotted visually
using accuracy and loss curves as shown in Fig 1. To further
understand the model's performance and identify specific areas
of confusion, a confusion matrix was generated as shown in Fig
2. This matrix visually represents the number of correct and
incorrect predictions for each class, highlighting which classes
are being misclassified.

7.2 Regression Model Performance

The regression model, which also utilizes transfer learning with
MobileNetV2, was evaluated on the same test set. The model
achieved a Mean Absolute Error (MAE) of 1.44 days on the
test set. This indicates that, on average, the model's predictions
of the remaining shelf-life are off by approximately 1.44 days.
A plot of the training and validation performance is visualized
in Fig 3.

Classification Model Loss

—— Training Accuracy
0.40 A Validation Accuracy
0.35 1
>
@
5 0.30 4
I}
2
0.25 4
0.20 4

Loss

1.901 —— Training Loss

1.85 Validation Loss

1.80 1
175
170
1.65 1

1.60 1

1.55

1.50

[} 2 4 6 8
Epoch

Epoch

Fig 1: Accuracy and loss curves plotted during training and validation for the classification model

54



Banana(l-2)
Banana(3-4) -
]
C
- Banana(5-7) - 0
2
}_
Banana(8-10) - 0
BananaExpired - 0
I I
o ¥
— m
T T
c =
[1+] [+
=4 =
& &

Banana(5-7) -

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.53, November 2025

17.5

15.0

12.5

10.0

-75

-5.0

-2.5

- 0.0

Banana(8-10) -
BananaExpired

Predicted Label
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Fig 3: MAE and loss curves plotted during training and validation for the regression model.

7.3 Edge Model Performance

Both the classification and regression models were converted
to the TensorFlow Lite (TFLite) format and evaluated on the
test set. The TFLite classification model achieved a test
accuracy of 74.75%, and the TFLite regression model achieved
a test MAE of 1.44 days. This confirms that the conversion
process did not result in a loss of performance for either model.

Crucially, the performance evaluation showed a significant
improvement in inference speed. The average prediction
latency for the TFLite models was 3.6372 ms. This low latency
is critical for real-time applications and demonstrates the
effectiveness of TFLite in optimizing models for deployment
on edge devices.

7.4 Comparison of Models

The classification model provides a simple and interpretable
output, categorizing bananas into distinct ripeness stages. This
is useful for quick assessments in a retail environment. The test
accuracy of 74.75% shows a good performance for this task.

The regression model, on the other hand, provides a continuous
numerical value for the remaining shelf-life, offering more
detailed and actionable information for inventory management
and supply chain optimization. The MAE of 1.44 days indicates
a reasonable level of accuracy for predicting the exact day of
shelf life. The choice between a classification and a regression
model depends on the specific application. For a high-level
overview of fruit ripeness, a classification model may be
sufficient. For more precise inventory management and waste
reduction, a regression model is more suitable.

8. CONCLUSION

The primary objective of this work was to develop and compare
efficient and accurate systems for predicting the shelf life of
fruits by leveraging the capabilities of CNNs and Edge
Computing. The research successfully demonstrated that this
integrated approach provides a powerful solution to the
significant challenge of food spoilage in the supply chain.
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The developed systems, a classification model and a regression
model, both based on the MobileNetV2 architecture,
effectively predict the freshness of fruits based on visual data.
The classification model achieved a test accuracy of 74.75%,
while the regression model achieved a mean absolute error of
1.44 days.

The integration with an edge computing paradigm is a key
contribution of this work. By converting the models to
TensorFlow Lite, the critical need for real-time, on-site analysis
is addressed, reducing latency and dependency on centralized
cloud infrastructure. The TFLite models' low average
prediction latency of 3.64ms makes the solution practical for
deployment in diverse environments across the agricultural
supply chain.

In summary, this research validates that the synergy between
deep learning-based image analysis and edge computing offers
robust, scalable, and effective methods for shelf-life prediction.
The successful implementation and validation of both systems
underscore their potential to significantly reduce food waste,
optimize inventory management, and enhance overall
efficiency in the food industry. The choice between the two
models depends on the desired level of granularity for the
prediction.

9. FUTURE ENHANCEMENTS

While the current systems provide a strong foundation, there
are several avenues for future enhancement that could further
improve their capabilities and impact:

Expanded Multi-Fruit Dataset: The current models were
trained on a dataset of bananas. A significant enhancement
would be to expand the dataset to include a wider variety of
fruits and vegetables, each with its unique spoilage
characteristics.  This  would improve the models'
generalizability and make the system a more versatile tool for
the broader agricultural industry.

Integration of Internet of Things (IoT) and Multi-Modal
Sensor Data: Future iterations could develop a holistic
monitoring system by incorporating data from real-time IoT
sensors. This would involve tracking key environmental
parameters that affect spoilage, such as ambient temperature,
humidity, and ethylene gas concentrations, during transport and
storage. Fusing this multi-modal data with the visual
information from the CNN could lead to significantly more
accurate and nuanced shelf-life predictions.

Development of a Full Decision Support System: The
predictive models could become the core of a comprehensive
Decision Support System. This would involve creating a user-
friendly, web-based dashboard for real-time monitoring and
visualization of freshness data and environmental trends. The
system could include an automated alert and notification
feature to flag batches approaching critical shelf-life
thresholds, enabling proactive interventions to reduce waste.

Longitudinal Shelf-Life Prediction: The current regression
model predicts the remaining shelf life from a single image. A
more advanced system could be developed to analyze a time-
series of images and sensor data. By incorporating Recurrent
Neural Networks (RNNs) or LSTMs, the model could learn the
trajectory of ripening and spoilage, potentially leading to more
accurate predictions of the future rate of decay.

Integration with Supply Chain Management Systems: To
maximize its practical impact, the system could be integrated
via Application Programming Interfaces (APIs) with existing
inventory and supply chain management software. This would
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allow for automated decision-making, such as dynamically
adjusting prices, re-routing shipments based on predicted
freshness, or automatically flagging batches of produce for
quick sale.
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