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ABSTRACT 

The agricultural industry faces significant challenges in 

managing perishable goods, with a substantial portion of 

produce being wasted due to spoilage. This paper presents a 

comparative study of two deep learning approaches for 

predicting the shelf life of fruits using Convolutional Neural 

Networks (CNNs) and edge computing. This study developed 

and evaluated both a classification model and a regression 

model, both based on the MobileNetV2 architecture for a fair 

comparison. The classification model achieved a test accuracy 

of 74.75%, while the regression model provided more granular 

predictions with a mean absolute error of 1.44 days. Both 

models were converted to the TensorFlow Lite (TFLite) format 

and evaluated on the test set, achieving identical performance 

to their Keras counterparts while significantly reducing 

prediction latency. This research explores the advantages and 

disadvantages of both classification and regression approaches, 

demonstrating the potential of deep learning and edge 

computing to create scalable and efficient solutions for real-

time shelf-life prediction, which can help to reduce food waste 

and optimize supply chain management.   
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1. INTRODUCTION 
The prediction of shelf life for fruits and vegetables is a crucial 

aspect of modern agriculture, food distribution, and supply 

chain management. This paper explores two distinct deep 

learning methodologies for shelf-life prediction: a 

classification approach to categorize produce into ripeness 

stages, and a regression approach to predict the remaining 

shelf-life in days. Fruits, being perishable goods, are highly 

susceptible to spoilage. Traditional methods of estimating shelf 

life typically rely on manual inspection, which can be labor-

intensive and subjective. Consequently, there is a growing need 

for innovative technologies to predict the shelf life of fruits 

more accurately and efficiently [1]. Convolutional Neural 

Networks (CNNs) have proven highly effective in processing 

and analyzing visual data, making them ideal for this task [2, 

3]. By training CNNs on large datasets of fruit images, it is 

possible to create predictive models that can automatically 

estimate the remaining shelf life of fruits based on their 

appearance [4, 5]. 

This paper compares a classification model and a regression 

model, both based on the MobileNetV2 architecture, to ensure 

a fair comparison. The classification model assigns a ripeness 

category (e.g., "fresh", "ripe"), while the regression model 

predicts a continuous value for the remaining shelf life. The 

classification model offers a simpler, more interpretable output, 

while the regression model provides more granular and 

actionable data for fine-tuning supply chain logistics. 

Furthermore, this research investigates the deployment of these 

models on edge devices using TensorFlow Lite (TFLite), 

enabling real-time, on-site analysis without reliance on cloud 

infrastructure [6]. By combining CNNs with Edge Computing, 

the aim is to provide a scalable and efficient solution that 

addresses the challenges associated with fruit quality 

monitoring, storage, and distribution [7]. This comparative 

study will shed light on the trade-offs between classification 

and regression models for this application, offering valuable 

insights for the development of future food technology 

systems. 

2. LITERATURE SURVEY 
Fruits and vegetables shelf-life estimation is a critical area of 

research in food science and technology, aiming to enhance 

food quality, reduce wastage, and improve supply chain 

efficiency. Traditional methods for determining fruit freshness 

rely on physical, chemical, and biological assessments, which 

are often time-consuming and subject to human error. The 

introduction of deep learning, particularly Convolutional 

Neural Networks (CNNs), has revolutionized fruit shelf-life 

estimation by enabling automated, accurate, and scalable 

predictions [8]. Despite these advancements, significant 

research gaps persist, including limitations in dataset 

availability, variability in environmental conditions, 

computational constraints, and ethical concerns. This literature 

survey explores existing research on fruit shelf-life estimation 

using CNNs and highlights key gaps that need to be addressed 

for more effective implementation. 

A study titled "A Review on Automated Detection and 

Assessment of Fruit Damage Using Machine Learning" by 

Yonsai Safari, Joyce Nakatumba-Nabende, Rose Nakasi, and 

Rose Nakibuule, comprehensively examined 32 research 

papers from the past 13 years, focusing on automated fruit 

damage detection using machine learning and deep learning 

techniques [9]. The review highlights a significant shift 

towards deep learning models, particularly Convolutional 
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Neural Networks (CNNs), for their superior performance in 

processing large datasets and achieving high accuracy. For 

instance, studies using deep CNNs achieved accuracies up to 

98.6% in apple and banana disease detection and 98% in citrus 

disease severity detection, while Faster R-CNN reached 88.1% 

in mango fruit detection. The most commonly extracted 

features for damage detection were color, texture, shape, and 

size. While deep learning models demonstrated high accuracy, 

particularly with models like ResNet-50 and VGG-16, 

traditional machine learning remains relevant due to its lower 

computational demands, especially for smaller datasets [9]. 

However, a major drawback is the limited availability of large, 

open-source datasets, hindering reproducibility and further 

research. The review also identified challenges such as 

occlusion in orchards, the detection of defects like chilling 

injuries that do not alter color or texture, and the manual 

selection of CNN hyperparameters. Furthermore, most of the 

research focused on post-harvest damage detection, with 

limited studies addressing in-field damage assessment. The 

review concludes that while deep learning shows significant 

promise for automated fruit damage detection, future research 

should focus on developing lightweight CNN architectures for 

mobile and embedded devices, addressing occlusion 

challenges, exploring alternative imaging modalities like 

thermal imaging, and developing domain adaptation methods 

for broader applicability [9]. 

Another study, "Comparative Analysis for Predicting Shelf life 

of Fruits Using Advanced Deep Learning Approaches" by 

Sanath S Shenoy, Radhika Mishra, and Ruchi Chaturvedi, 

explored the application of deep learning, specifically Faster R-

CNN and YOLOv5, to predict the shelf life of bananas, aiming 

to reduce food waste by accurately assessing fruit maturity 

[10]. The research involved creating a dataset of 254 images of 

Cavendish bananas, categorized into five shelf-life stages, and 

training both models using 164 images, with 45 images each 

for validation and testing. The models were trained with a batch 

size of 16, and their performance was evaluated using mean 

Average Precision (mAP) at 50% Intersection over Union 

(mAP50) and mAP between 50% and 95% IoU (mAP50-95) 

across 250, 300, 500, and 1000 epochs or iterations. The results 

indicated that both models achieved mAP50 and mAP50-95 

scores exceeding 80%, demonstrating their potential for shelf-

life prediction. However, Faster R-CNN exhibited better 

performance at higher iterations but demanded more 

computational resources, while YOLOv5 offered model 

variants with lower hardware requirements [10]. The study 

highlights the feasibility of object detection models for fruit 

shelf-life prediction, but the dataset size of 254 images is 

relatively small, which could limit the generalizability of the 

findings. Additionally, the paper does not specify the exact 

mAP values obtained for each model and epoch, hindering a 

precise quantitative comparison. 

The work done by Saeed S. Alahmari, and Tawfiq Salem titled 

"Food State Recognition Using Deep Learning", introduced a 

novel cascaded multi-head deep learning approach to 

simultaneously recognize food ingredient type and state, 

addressing a gap in existing research that primarily focused on 

ingredient type recognition [11]. The proposed method utilizes 

a cascaded architecture, where features learned for food 

ingredient type are fused with image deep representations to 

enhance food state recognition. The authors trained and 

evaluated their approach on a benchmark dataset, comparing it 

to a non-cascaded deep learning method. The cascaded 

approach achieved an 87% accuracy in food ingredient state 

recognition, demonstrating a significant improvement over the 

81% accuracy obtained by the non-cascaded method. The 

discussion highlighted that the non-cascaded approach 

struggled with distinguishing between similar food states, such 

as diced and sliced, or creamy-paste and grated, due to the lack 

of food type information. By incorporating the food type 

feature vector, the cascaded approach significantly reduced 

these misclassifications [11]. The paper acknowledges 

limitations, including dataset imbalances and instances where 

food state labels were missing, necessitating data 

preprocessing. Future work aims to address these issues by 

balancing the dataset and incorporating image segmentation to 

further improve recognition accuracy. The conclusion 

emphasizes the efficacy of the proposed cascaded multi-head 

deep neural network in jointly learning food ingredient type and 

state, showcasing its potential for applications in automated 

food handling, elderly care, and other intelligent systems. 

Another study titled "Remaining Shelf-Life Estimation of 

Fresh Fruits and Vegetables During Transportation" by Arwa 

Abougharib , Mahmoud Awad and Malick Ndiaye, introduced 

a novel Shelf-Life Estimation Model (SLEM) designed to 

predict the Remaining Shelf-Life (RSL) of Fresh Fruits and 

Vegetables (FFVs) during transportation, leveraging real-time 

environmental data from IoT sensors [12]. The model estimates 

the decay rate based on respiration, integrating it over time, and 

offers a non-destructive, non-invasive approach without 

requiring pre-deployment accelerated shelf-life experiments. 

To facilitate real-time applications, a surrogate model (QnD) 

was developed to reduce computational intensity. Experimental 

validation using strawberries, apricots, and spinach in a 

domestic refrigerator demonstrated that the original model 

achieved a maximum prediction error of 1.3 days, while the 

surrogate model's error reached 2.95 days. Statistical analysis, 

including ANOVA tests, confirmed that both models produced 

predictions not significantly different from observed shelf 

lives, even at a 0.01 significance level, validating the model's 

accuracy despite simplifying assumptions. However, the 

surrogate model exhibited higher errors, particularly with 

sealed spinach, likely due to accumulated approximation errors 

and challenges in accurately estimating parameters like 

headspace air volume and porosity. The model consistently 

overestimated the RSL for apricots, potentially due to 

unaccounted exogenous ethylene influence. The study 

concluded that the original model is more accurate for sealed 

products and prolonged experiments, while both models 

perform well for unsealed products like strawberries and 

apricots. The research suggests that respiration rate, coupled 

with time, temperature, and CO2 concentration, are primary 

decay predictors. The model, though validated in a refrigerator 

setting, is deemed applicable to transportation, cold storage, 

and inventory management due to its temperature-dependent 

nature [12]. 

2.1 Research Gaps 

2.1.1 Limited availability of High-Quality 

Datasets 
One of the primary challenges in CNN-based fruit shelf-life 

estimation is the lack of large, high-quality, labeled datasets. 

Most existing datasets focus on fruit classification rather than 

shelf-life prediction. The limited availability of diverse datasets 

hinders the generalizability of CNN models, leading to reduced 

accuracy when applied to different fruit varieties, climates, and 

storage conditions. To address this gap, researchers must 

develop standardized, publicly accessible datasets that 
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incorporate a wide range of fruit types and environmental 

factors. 

2.1.2 Challenges in Model Generalization 
CNN models trained on specific datasets often struggle to 

generalize to new environments. Factors such as lighting 

conditions, camera angles, and fruit positioning can 

significantly impact model accuracy. Existing studies have 

primarily focused on controlled environments, which do not 

reflect real-world supply chain conditions. Future research 

should emphasize transfer learning techniques and domain 

adaptation strategies to improve model robustness across 

diverse scenarios. 

2.1.3 Ethical and Regulatory Challenges 
Despite the benefits of CNN-based fruit shelf-life estimation, 

ethical concerns regarding data privacy, algorithmic bias, and 

food safety compliance remain unresolved. There is a lack of 

standardized regulatory frameworks governing the use of AI in 

food quality assessment. Addressing these ethical and legal 

gaps requires interdisciplinary collaboration between AI 

researchers, food scientists, and policymakers. 

2.1.4 Computational and Hardware Constraints 
CNN models require significant computational resources, 

making them less accessible for small-scale farmers and 

retailers. Existing research has largely focused on cloud-based 

implementations, which may not be feasible for regions with 

limited internet connectivity. Developing lightweight, edge-

computing-based CNN models could enhance accessibility and 

scalability [13]. Although CNNs have demonstrated significant 

potential in fruit shelf-life estimation, various research gaps 

must be addressed to improve their effectiveness. The lack of 

high-quality datasets, challenges in model generalization, 

ethical considerations, and computational limitations present 

significant hurdles to widespread adoption. Future research 

should focus on developing robust, adaptable, and ethically 

sound AI-driven fruit shelf-life estimation models to optimize 

food supply chains and reduce wastage. By bridging these 

research gaps, CNN-based solutions can contribute to a more 

efficient and sustainable food industry. 

2.2 Research Objectives 
Fruit shelf-life estimation is a crucial area of research in the 

food industry, focusing on enhancing food safety, reducing 

waste, and improving supply chain efficiency. The application 

of Convolutional Neural Networks (CNNs) has revolutionized 

shelf-life prediction by enabling automated, real-time 

monitoring of fruit freshness. While numerous studies have 

explored the use of deep learning for fruit quality assessment, 

well-defined research objectives are essential to guide future 

investigations. A structured literature survey provides insights 

into key research objectives that drive advancements in CNN-

based fruit shelf-life estimation. This study aims to identify 

critical research goals, including data acquisition, model 

optimization, accuracy improvement, real-world deployment, 

and ethical considerations. 

2.2.1 Development of High-Quality Datasets 
A major research objective in CNN-based fruit shelf-life 

estimation is the collection and enhancement of high-quality 

datasets. CNN models require extensive labeled datasets to 

improve accuracy and generalization. Existing datasets often 

lack diversity in fruit types, environmental conditions, and 

ripeness stages. Research must focus on creating 

comprehensive, publicly available datasets that include images 

of fruits from various regions, storage conditions, and time 

intervals. 

2.2.2 Optimization of CNN Architectures for 

Higher Accuracy 
Another key research objective is optimizing CNN 

architectures to improve accuracy while reducing 

computational complexity. Traditional CNN models require 

substantial computing power, making them impractical for 

real-time applications. Research should explore lightweight 

architectures, hybrid deep learning models, and transfer 

learning techniques to enhance model performance [14, 15]. 

2.2.3 Real-World Deployment and Scalability 
Despite advancements in CNN-based fruit analysis, real-world 

deployment remains a challenge. The objective of scalability is 

to ensure that AI-driven shelf-life estimation can be integrated 

into existing food supply chain management systems. Future 

research should address model adaptation for different storage 

environments, real-time IoT integration, and mobile-friendly 

AI applications [7]. 

2.2.4 Ethical AI Implementation and Compliance 

with Food Safety 
Ensuring ethical AI implementation and compliance with food 

safety regulations is a critical research objective. CNN-based 

models must adhere to data privacy laws, algorithmic fairness, 

and transparency in decision-making. Researchers should 

develop frameworks that prevent biased predictions and ensure 

responsible AI deployment in food monitoring systems. 

3. SYSTEM ANALYSIS 

3.1 Existing System 
Predicting the remaining shelf-life of food products presents a 

dichotomy based on their inherent characteristics and handling. 

For sealed, dried, highly processed, and chemically preserved 

items, established mathematical models offer reliable 

predictions due to their relative stability and predictable 

degradation patterns. Conversely, the shelf-life prediction for 

unsealed, unprocessed, and biologically active foods, 

exemplified by fresh fruits, vegetables, milk, fish, and meat 

transported alongside diverse fresh commodities under 

dynamic logistic conditions, remains a significant and 

multifaceted challenge. This complexity does not stem from a 

scarcity of sophisticated mathematical models designed to 

address the primary factors contributing to their deterioration. 

Instead, the practical application of these theoretical 

frameworks is severely hampered by numerous limitations, 

including their pronounced specificity to individual food 

species, the frequent requirement for destructive testing 

methodologies, and the often-prohibitive time investment 

associated with necessary pre-testing procedures. 

Consequently, despite the theoretical advancements, current 

models often prove unsustainable and impractical for 

widespread implementation in real-world scenarios, 

particularly within the complexities of modern food supply 

chains. 

3.2 Proposed System 
This paper proposes a system that leverages deep learning for 

the non-destructive prediction of fruit shelf life based on visual 

data. The core of the system is a comparative study between 

two distinct neural network models: a classification model to 

categorize fruits into discrete ripeness stages, and a regression 

model to predict the specific number of days of remaining shelf 

life. To ensure a fair and effective comparison, both models are 

built upon the highly efficient MobileNetV2 architecture, 

utilizing transfer learning from weights pre-trained on the 

ImageNet dataset. This approach allows the system to achieve 
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high accuracy even with a specialized and limited dataset. A 

key objective of the proposed system is to be practical for real-

world deployment in the supply chain. To this end, the trained 

models are converted to the TensorFlow Lite (TFLite) format, 

optimizing them for high-performance inference on edge 

devices. This enables real-time, on-site analysis without the 

need for constant cloud connectivity, making the solution 

scalable and accessible. 

4. METHODOLOGY 

4.1 Dataset 
The foundation of this research is the "Fruit Arrival Time and 

Shelf-Life Dataset" from Kaggle [16], which provides images 

of bananas categorized into five distinct stages of ripeness. The 

dataset contains images of bananas categorized into five classes 

based on their age: “Banana(1-2)”, “Banana(3-4)”, “Banana(5-

7)”, “Banana(8-10)”, “BananaExpired”. The dataset was split 

into training and testing sets. To ensure the quality of the 

training data, the dataset underwent a preprocessing and 

cleaning phase. This involved programmatically verifying each 

image to identify and discard any corrupt or invalid files, 

thereby ensuring the integrity of the dataset before model 

training. For the regression model, the remaining shelf-life in 

days was calculated for each image based on its class. Taking 

11 as an average number of days until expiry, the formula used 

was  

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠ℎ𝑒𝑙𝑓_𝑙𝑖𝑓𝑒 = 11 − 𝑚𝑎𝑥(𝑎𝑔𝑒 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑛𝑎𝑚𝑒) 

4.2 Model Architecture 
Two CNN models were developed, both based on the 

MobileNetV2 architecture for a fair comparison. The 

MobileNetV2 architecture was selected for this study due to its 

high efficiency and performance, making it particularly well-

suited for deployment on edge devices. As a state-of-the-art 

model designed for mobile and resource-constrained 

environments, it provides an excellent balance between 

accuracy and computational cost. Furthermore, leveraging 

MobileNetV2 pre-trained on the ImageNet dataset allows for 

the application of transfer learning. This approach enables the 

model to utilize a rich set of pre-learned features, which is 

highly beneficial for achieving strong performance on a 

specialized task with a limited dataset, such as the one used in 

this research. 

The general architecture for both models in this study consists 

of the MobileNetV2 base model, with its convolutional layers 

frozen to retain the pre-trained weights. On top of this frozen 

base, a custom head was added. This head begins with a 

GlobalAveragePooling2D layer, which reduces the spatial 

dimensions of the feature maps. Following this, a Dense layer 

with 128 neurons and a ReLU activation function is used to 

learn higher-level features. 

For the classification model, the final layer is a Dense layer 

with 5 neurons, corresponding to the five ripeness classes, and 

uses a softmax activation function to output class probabilities. 

For the regression model, the final layer is a single Dense layer 

with a linear activation function, which outputs a continuous 

numerical value representing the predicted remaining shelf-

life. 

4.3 Model Training 
Classification Model: The model was trained using the Adam 

optimizer with a sparse categorical cross-entropy loss function. 

To improve generalization and prevent overfitting, data 

augmentation techniques such as rotation, shifting, shearing, 

zooming, and horizontal flipping were applied to the training 

data. A hold-out validation strategy was employed, where 20% 

of the training data was set aside as a validation set. 

Regression Model: The regression model was trained using the 

Adam optimizer with a mean squared error (MSE) loss 

function. The primary evaluation metric was mean absolute 

error (MAE). Data augmentation techniques were also applied 

to the training data. Similar to the classification model, a 20% 

validation split was used. 

4.4 Edge Deployment and Optimization 
Following the training phase, both models were optimized for 

edge deployment. The trained Keras models were converted 

into the TensorFlow Lite (TFLite) format. This conversion 

process creates a highly efficient and portable version of the 

models, employing techniques such as quantization and 

operator fusion to significantly reduce the model's file size and 

computational complexity. The resulting TFLite models are 

designed for low-latency inference on resource-constrained 

hardware, making them ideal for real-world applications on 

edge devices. 

5. SYSTEM DESIGN 
The system architecture is centered around a transfer learning 

approach using the pre-trained MobileNetV2 model. The 

process begins with the dataset of fruit images, which is split 

into training, validation, and testing sets. The core of the 

architecture is the MobileNetV2 base model, with its weights 

frozen to leverage the powerful features learned from the 

ImageNet dataset. 

Two distinct predictive models are constructed on top of this 

common base. For the classification task, a custom head is 

added, which consists of a GlobalAveragePooling2D layer, a 

Dense layer with 128 neurons (ReLU activation), and a final 

Dense output layer with 5 neurons and a softmax activation 

function to correspond to the five ripeness classes. For the 

regression task, a similar head is used, but the final output layer 

is a single Dense neuron with a linear activation function to 

predict the continuous value of remaining shelf life. 

Both models are trained and validated independently. After 

training, the final step in the architecture is the conversion of 

the saved Keras models into the TensorFlow Lite (TFLite) 

format. This optimization step produces lightweight, efficient 

models ready for performance evaluation and deployment on 

edge computing devices, completing the workflow from data 

input to deployable asset. 

6. IMPLEMENTATION 
The system was implemented in Python using the TensorFlow 

and Keras libraries for model development and training. The 

implementation followed a structured workflow, from data 

preparation to final model optimization, to create and evaluate 

both the classification and regression models for shelf-life 

prediction. 

6.1 Data Collection and Preprocessing 
The initial step involved acquiring the "Fruit Arrival Time and 

Shelf Life Dataset" from Kaggle [16]. A data cleaning script 

was implemented to ensure the integrity of the dataset. This 

script iterated through all image files and used the Python 

Imaging Library (PIL) to identify and remove any corrupted or 

invalid images that would otherwise cause errors during 

training. For the classification model, the directory names 

served as the class labels. For the regression model, these class 

labels were programmatically converted into numerical targets 

representing the remaining shelf life in days, based on the 

formula described in the methodology. The dataset was then 
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split into training and testing sets to ensure a fair evaluation of 

the models' performance on unseen data. 

6.2 Building the Model 
The core of the implementation was the construction of the 

deep learning models using the TensorFlow Keras API. A 

transfer learning approach was adopted by using the 

MobileNetV2 architecture with weights pre-trained on 

ImageNet as the base model. The convolutional layers of this 

base were frozen to retain the learned low-level features. A 

custom head was then added for the specific prediction tasks. 

This head consisted of a Global Average Pooling(2D) layer to 

reduce the feature map dimensions, followed by a Dense layer 

with 128 neurons and a ReLU activation function. For the 

classification model, the final output layer was a Dense layer 

with 5 units and a softmax activation. For the regression model, 

the output was a single Dense layer with a linear activation. 

6.3 Model Training and Validation 
The training process was configured and executed for both 

models. An ImageDataGenerator class was used to apply data 

augmentation to the training set, including transformations like 

rotation, shifting, shearing, zooming, and horizontal flipping, 

to improve model generalization and reduce overfitting. The 

classification model was compiled with the Adam optimizer 

and the sparse_categorical_crossentropy loss function. The 

regression model was also compiled with the Adam optimizer 

but used the mean_squared_error (MSE) loss function. Both 

models were trained with a validation split of 20%, allowing 

for the monitoring of performance on a hold-out set during 

training to identify the best-performing epoch. 

6.4 Edge Optimization and Evaluation 
After training, the best-performing model checkpoints were 

saved. The final implementation step focused on optimizing 

these models for edge deployment. A conversion script was 

used to transform the saved Keras models (.h5 format) into the 

TensorFlow Lite (.tflite) format. This process creates 

lightweight, optimized models suitable for low-latency 

inference on resource-constrained devices. The performance of 

these TFLite models was then rigorously evaluated on the test 

dataset to confirm that the conversion process did not degrade 

accuracy or Mean Absolute Error and to measure the significant 

reduction in prediction latency. 

7. RESULTS 

7.1 Classification Model Performance 
The performance of the trained classification CNN model, 

based on the MobileNetV2 architecture, was evaluated on the 

held-out test dataset. The model achieved a final test accuracy 

of 74.75%. The training process showed the model accuracy 

improving over epochs, while the validation accuracy provided 

a measure of the model's ability to generalize to new data. 

The classification report in Table 1 provides a more detailed 

breakdown of the model’s performance for each ripeness class, 

showing the precision, recall, and F1-score. These metrics offer 

insights into the model's ability to correctly identify positive 

instances (precision) and to find all positive instances (recall) 

for each class. The F1-score is the harmonic mean of precision 

and recall, providing a single metric that balances both 

concerns. 

Table 1. Classification Report 

Class Precision Recall 
F1-

score 
Support 

Banana(1-2) 0.95 0.90 0.92 20 

Banana(3-4) 0.71 0.63 0.67 19 

Banana(5-7) 0.66 0.95 0.78 20 

Banana(8-10) 0.76 0.65 0.70 20 

BananaExpired 0.71 0.60 0.65 20 

 

The training and validation performance is plotted visually 

using accuracy and loss curves as shown in Fig 1. To further 

understand the model's performance and identify specific areas 

of confusion, a confusion matrix was generated as shown in Fig 

2. This matrix visually represents the number of correct and 

incorrect predictions for each class, highlighting which classes 

are being misclassified. 

7.2 Regression Model Performance 
The regression model, which also utilizes transfer learning with 

MobileNetV2, was evaluated on the same test set. The model 

achieved a Mean Absolute Error (MAE) of 1.44 days on the 

test set. This indicates that, on average, the model's predictions 

of the remaining shelf-life are off by approximately 1.44 days. 

A plot of the training and validation performance is visualized 

in Fig 3.

 

Fig 1:  Accuracy and loss curves plotted during training and validation for the classification model 
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Fig 2: Confusion matrix for the classification model over test set. 

 

Fig 3: MAE and loss curves plotted during training and validation for the regression model.

7.3 Edge Model Performance 
Both the classification and regression models were converted 

to the TensorFlow Lite (TFLite) format and evaluated on the 

test set. The TFLite classification model achieved a test 

accuracy of 74.75%, and the TFLite regression model achieved 

a test MAE of 1.44 days. This confirms that the conversion 

process did not result in a loss of performance for either model. 

Crucially, the performance evaluation showed a significant 

improvement in inference speed. The average prediction 

latency for the TFLite models was 3.6372 ms. This low latency 

is critical for real-time applications and demonstrates the 

effectiveness of TFLite in optimizing models for deployment 

on edge devices. 

7.4 Comparison of Models 
The classification model provides a simple and interpretable 

output, categorizing bananas into distinct ripeness stages. This 

is useful for quick assessments in a retail environment. The test 

accuracy of 74.75% shows a good performance for this task. 

The regression model, on the other hand, provides a continuous 

numerical value for the remaining shelf-life, offering more 

detailed and actionable information for inventory management 

and supply chain optimization. The MAE of 1.44 days indicates 

a reasonable level of accuracy for predicting the exact day of 

shelf life. The choice between a classification and a regression 

model depends on the specific application. For a high-level 

overview of fruit ripeness, a classification model may be 

sufficient. For more precise inventory management and waste 

reduction, a regression model is more suitable. 

8. CONCLUSION 
The primary objective of this work was to develop and compare 

efficient and accurate systems for predicting the shelf life of 

fruits by leveraging the capabilities of CNNs and Edge 

Computing. The research successfully demonstrated that this 

integrated approach provides a powerful solution to the 

significant challenge of food spoilage in the supply chain. 
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The developed systems, a classification model and a regression 

model, both based on the MobileNetV2 architecture, 

effectively predict the freshness of fruits based on visual data. 

The classification model achieved a test accuracy of 74.75%, 

while the regression model achieved a mean absolute error of 

1.44 days. 

The integration with an edge computing paradigm is a key 

contribution of this work. By converting the models to 

TensorFlow Lite, the critical need for real-time, on-site analysis 

is addressed, reducing latency and dependency on centralized 

cloud infrastructure. The TFLite models' low average 

prediction latency of 3.64ms makes the solution practical for 

deployment in diverse environments across the agricultural 

supply chain. 

In summary, this research validates that the synergy between 

deep learning-based image analysis and edge computing offers 

robust, scalable, and effective methods for shelf-life prediction. 

The successful implementation and validation of both systems 

underscore their potential to significantly reduce food waste, 

optimize inventory management, and enhance overall 

efficiency in the food industry. The choice between the two 

models depends on the desired level of granularity for the 

prediction. 

9. FUTURE ENHANCEMENTS 
While the current systems provide a strong foundation, there 

are several avenues for future enhancement that could further 

improve their capabilities and impact: 

Expanded Multi-Fruit Dataset: The current models were 

trained on a dataset of bananas. A significant enhancement 

would be to expand the dataset to include a wider variety of 

fruits and vegetables, each with its unique spoilage 

characteristics. This would improve the models' 

generalizability and make the system a more versatile tool for 

the broader agricultural industry. 

Integration of Internet of Things (IoT) and Multi-Modal 

Sensor Data: Future iterations could develop a holistic 

monitoring system by incorporating data from real-time IoT 

sensors. This would involve tracking key environmental 

parameters that affect spoilage, such as ambient temperature, 

humidity, and ethylene gas concentrations, during transport and 

storage. Fusing this multi-modal data with the visual 

information from the CNN could lead to significantly more 

accurate and nuanced shelf-life predictions. 

Development of a Full Decision Support System: The 

predictive models could become the core of a comprehensive 

Decision Support System. This would involve creating a user-

friendly, web-based dashboard for real-time monitoring and 

visualization of freshness data and environmental trends. The 

system could include an automated alert and notification 

feature to flag batches approaching critical shelf-life 

thresholds, enabling proactive interventions to reduce waste. 

Longitudinal Shelf-Life Prediction: The current regression 

model predicts the remaining shelf life from a single image. A 

more advanced system could be developed to analyze a time-

series of images and sensor data. By incorporating Recurrent 

Neural Networks (RNNs) or LSTMs, the model could learn the 

trajectory of ripening and spoilage, potentially leading to more 

accurate predictions of the future rate of decay. 

Integration with Supply Chain Management Systems: To 

maximize its practical impact, the system could be integrated 

via Application Programming Interfaces (APIs) with existing 

inventory and supply chain management software. This would 

allow for automated decision-making, such as dynamically 

adjusting prices, re-routing shipments based on predicted 

freshness, or automatically flagging batches of produce for 

quick sale. 
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