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ABSTRACT

String matching remains one of the most fundamental problems in
computer science, forming the basis for applications in information
retrieval, bioinformatics, plagiarism detection, network security,
and large-scale data analytics. Although classical algorithms such
as the Naive method, Knuth-Morris—Pratt (KMP), Z-algorithm,
Rabin—Karp, Boyer-Moore, and Aho—Corasick were developed
decades ago, their relevance has only grown with the scale and di-
versity of modern data. This paper provides a structured compara-
tive analysis of these algorithms, considering theoretical complex-
ity, memory requirements, runtime behavior, and domain-specific
applicability. Beyond classical analysis, we extend the discussion
to how these algorithms integrate with parallel processing and big
data frameworks such as Hadoop, Spark, and GPU/FPGA-based
accelerators, which are critical for handling real-world datasets at
large scale. The results demonstrate that no single algorithm dom-
inates universally: choices depend strongly on factors such as al-
phabet size, pattern length, and application context. We conclude
with insights into open challenges and future directions, including
hybrid algorithms, approximate matching, compressed data struc-
tures, and hardware-aware implementations.
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1. INTRODUCTION

String matching, also known as pattern matching, is the task of lo-
cating one or more substrings (patterns) within a larger string (text).
Formally, given a text T' of length n and a pattern P of length m,
the objective is to identify all indices 4 such that T'[i..i +m — 1] =
P. This fundamental problem underpins technologies ranging from
search engines, text editors, and compilers, to DNA/protein analy-
sis, plagiarism detection, and network intrusion detection.

The need for efficient string matching has motivated a rich set
of algorithms. The Naive algorithm provides the simplest solu-
tion, but its O(nm) runtime makes it impractical for large in-
puts. The Knuth-Morris—Pratt (KMP) algorithm [1] introduced
linear-time matching through prefix-function preprocessing, while
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Boyer—Moore [2] applied heuristic rules to achieve sublinear per-
formance on average. The Z-algorithm [3] offers another elegant
linear-time approach, while Rabin—Karp [4] leverages hashing to
support multi-pattern search in distributed settings. For large pat-
tern sets, Aho—Corasick [3]] constructs a trie-based automaton ca-
pable of scanning thousands of patterns simultaneously.

While the theoretical properties of these algorithms are well under-
stood, their practical performance and applicability depend heav-
ily on context: alphabet size, text characteristics, and the scale of
data. In modern applications, the challenge is not only algorith-
mic efficiency but also scalability on massive datasets. Big data and
real-time analytics demand integration with distributed frameworks
such as Hadoop [6], Spark [7], and Flink [8], as well as hardware
acceleration using GPUs [9,[10] and FPGAs [11].

This paper contributes a comparative analysis that brings together:

(1) The classical theoretical foundations of exact string matching
algorithms;

(2) Empirical runtime and memory comparisons across varied
workloads; and

(3) Insights into applications ranging from text retrieval and ge-
nomics to cybersecurity and big data analytics.

By linking algorithmic design with modern scalability concerns,
the study aims to provide a holistic perspective on algorithm selec-
tion for both researchers and practitioners.

2. LITERATURE REVIEW

Research on string matching dates back over five decades, evolving
from basic quadratic-time approaches to sophisticated linear-time
and heuristic methods. For clarity, the discussion can be divided
into classical algorithms that form the theoretical foundation, and
modern advances that extend these techniques to large-scale and
specialized contexts.

Classical Algorithms

The Naive algorithm represents the starting point of string match-
ing. It sequentially compares the pattern against each position in the
text, yielding a worst-case runtime of O(nm). While pedagogically
useful, its inefficiency on large inputs spurred the development of
more advanced methods.



The Knuth—Morris—Pratt (KMP) algorithm [1] was a breakthrough,
achieving O(n + m) complexity by precomputing the longest
proper prefix-suffix (LPS) function. This eliminated redundant
comparisons and provided robust linear-time guarantees across all
inputs.

Around the same period, Boyer and Moore (1977) [2] introduced
heuristics such as the bad-character and good-suffix rules, which
allowed sublinear behavior on average by skipping sections of the
text. Its practical efficiency inspired later refinements, including
Horspool’s simplification [12]] and Sunday’s Quick-Search [13]].
The Z-algorithm, formalized in Gusfield’s monograph [3], com-
putes prefix overlaps in linear time and provides another elegant
solution for exact matching. It rivals KMP in efficiency while often
being easier to adapt to related problems.

Rabin and Karp (1987) [4] took a different approach, introducing
randomized hashing for substring search. The rolling hash mech-
anism enabled expected O(n + m) runtime and efficient multi-
pattern filtering, although hash collisions can degrade performance
to O(nm).
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—To evaluate their domain-specific applicability in areas such as
bioinformatics, text retrieval, plagiarism detection, and security.

—To analyze how these algorithms integrate into modern big data
and parallel processing frameworks.

—To identify open challenges and propose future directions, in-
cluding hybrid, approximate, and hardware-aware approaches.

3. COMPARATIVE ANALYSIS

String matching algorithms vary significantly in their design strate-
gies, complexity guarantees, and runtime behavior. A fair compar-
ison requires considering both their theoretical properties and their
practical performance on different types of inputs. Table[T]summa-
rizes the preprocessing costs, best, average, and worst-case com-
plexities, as well as additional memory requirements.

Table 1. : Complexity comparison of exact string matching algorithms

For multi-pattern matching, Aho and Corasick (1975) [3] presented Algorithm Preprocessing Best Case  Average Case ~ Worst Case
a finite automaton that processes all dictionary patterns simultane- N
: - - ; Nz - o (@) O
ously in O(n + k) time, where k is the number of matches. This ave (n) (rim) (nm)
. . . . . . KMP O(m) O(n) O(n) O(n)
algorithm remains foundational for intrusion detection and large- .
h . Z Algorithm O(n+m) O(n) O(n) O(n)
scale text scanning. Rabin-Karp O(m) O(n+m) O(n+m) O(nm)
Boyer—Moore O(m+ o) O(n/m) O(n) O(nm)
Modern Advances Aho—Corasick ~ O(3 patterns) ~ O(n + k) O(n+k) O(n+k)

Beyond the classical foundations, research has focused on bit-
parallelism, indexed data structures, and hardware-aware designs.
Shift-Or and BNDM algorithms [14, [15] exploit word-level paral-
lelism to accelerate searches, particularly for short patterns.

Suffix trees (Weiner, McCreight, Ukkonen) [16 17} [18] and suffix
arrays (Manber and Myers [19]) enabled indexed pattern match-
ing, paving the way for compressed data structures such as the FM-
index [20]. These structures have become indispensable in bioinfor-
matics and large text retrieval, where space efficiency is as critical
as time complexity.

Approximate string matching also gained attention, with Myers’
bit-vector algorithm [21] providing a fast method for handling
noisy or error-prone data, particularly relevant in genomics and
OCR processing. Comprehensive surveys such as Navarro’s guided
tour [22]] and the handbook by Charras and Lecroq [23] provide
broader context on both exact and approximate approaches.
Recent work has extended classical algorithms into hardware-
aware implementations, including SIMD vectorization, GPU ac-
celeration of Aho—Corasick [9}[10], and FPGA-based accelerators
for network intrusion detection [11]. At the systems level, dis-
tributed frameworks such as Hadoop [6], Spark [7], and Flink [8]
have enabled large-scale deployment, while streaming platforms
like Storm [24]] support real-time monitoring. These developments
bridge theoretical string matching with practical big data analytics
and real-time security applications.

Summary and Objectives

In summary, the literature reflects a dual evolution: theoretical ad-
vances that established linear-time or sublinear guarantees, and
system-level innovations that adapted these methods to large-scale,
noisy, and real-time data. Based on this review, the objectives of
this paper are:

—To compare classical string matching algorithms in terms of
complexity, memory usage, and runtime behavior.

The Naive algorithm, though simple and space-efficient, quickly
becomes impractical for large datasets. Its only advantage lies in
pedagogical use or very small texts, where implementation sim-
plicity outweighs performance concerns.

Knuth—Morris—Pratt (KMP) improves on this by preprocessing the
pattern in O(m) time to compute the longest prefix-suffix (LPS)
table. This ensures linear-time behavior across best, average, and
worst cases, making KMP highly predictable and reliable. The Z-
algorithm offers similar O(n +m) performance by computing pre-
fix matches for the entire string. Although it requires more mem-
ory (O(n) versus O(m) for KMP), it is often conceptually easier
to apply in problems involving prefix queries and has found wide
application in computational biology and text indexing.
Rabin-Karp approaches the problem probabilistically by using
rolling hash functions. On average, it achieves O(n + m) perfor-
mance with constant space, but the possibility of hash collisions
means the worst case degrades to O(nm). This makes it unsuitable
for adversarial contexts, but highly effective in scenarios such as
plagiarism detection and distributed text processing, where rapid
pre-filtering is more important than guaranteed worst-case bounds.
In practice, it is frequently paired with exact algorithms like KMP
to verify candidate matches.

Boyer—Moore employs two powerful heuristics: the bad-character
and good-suffix rules. These allow the algorithm to skip large por-
tions of the text, resulting in sublinear average-case behavior and
making it one of the fastest algorithms on natural-language text. Its
preprocessing time is higher (O (m+-0)) due to shift table construc-
tion, and its worst case still reaches O(nm), especially on repeti-
tive inputs. Nevertheless, Boyer—Moore and its simplified variants
(Horspool, Sunday) remain dominant in text retrieval and editing
tools.

Aho—Corasick stands out as a multi-pattern solution, building a
trie-based automaton with failure links that enables simultaneous
matching of thousands of patterns. Its complexity is O(n + k), in-
dependent of pattern count, though it incurs significant memory



overhead during preprocessing. This trade-off makes it indispens-
able in real-time systems such as intrusion detection and malware
scanning, where throughput and scalability outweigh memory con-
cerns.

Taken together, these comparisons reveal that no single algorithm
dominates across all dimensions. KMP and Z guarantee predictable
linear performance and are favored in adversarial or small-alphabet
contexts such as genomics. Boyer—-Moore and its variants excel in
natural-language corpora due to their heuristic skips. Rabin—Karp
offers unmatched efficiency for large-scale document fingerprint-
ing and distributed processing, provided collisions are mitigated.
Aho—Corasick is the clear choice for multi-pattern problems, de-
spite higher memory demands. In practice, hybrid approaches are
often employed, such as using Rabin—Karp as a fast filter followed
by KMP verification.

This analysis confirms that algorithm choice must be guided not
only by asymptotic complexity but also by data characteristics, ap-
plication requirements, and practical scalability, which are further
explored in the experimental results and application discussions
that follow.

4. RESULTS AND EXPERIMENTAL INSIGHTS

The theoretical comparisons presented earlier were validated
through a series of experimental evaluations. The objective was to
examine runtime performance, scalability with alphabet size, and
memory usage across representative workloads. Experiments were
conducted on a workstation equipped with an Intel i7 processor,
16GB RAM, and Ubuntu Linux. All algorithms were implemented
in C++ and executed on texts of length n = 10 characters. Pat-
tern lengths ranged from m = 10 (short keywords) to m = 1000
(long motifs), while for multi-pattern scenarios, sets of 1000 pat-
terns were tested. Reported results represent the average of 20 in-
dependent runs.

Runtime Performance

Table 2] summarizes runtime performance on English text with al-
phabet size o ~ 26. As expected, Boyer—-Moore and its heuristics
outperformed all others, especially for longer patterns, due to the
ability to skip multiple characters per comparison. KMP and the Z-
algorithm achieved consistently linear performance, reflecting their
robustness to different input types. Rabin—Karp performed compet-
itively under average conditions but was significantly slower when
hash collisions occurred. Aho—Corasick remained competitive even
with large pattern sets, demonstrating its suitability for security and
intrusion detection systems. The Naive algorithm, in contrast, de-
graded sharply and proved unsuitable for large-scale workloads.

Table 2. : Runtime comparison on English text (n = 10)

Algorithm Pattern 10 Pattern 100 Pattern 1000
Naive 2100 ms 5400 ms 14500 ms
KMP 35 ms 38 ms 52 ms

Z Algorithm 32 ms 36 ms 47 ms
Rabin—Karp 60 ms /2000 msT 70 ms /4000 mst 80 ms / 6000 ms’
Boyer—-Moore 18 ms 22 ms 40 ms
Aho—-Corasick 50 ms 54 ms 60 ms

T Average / Collision case

As illustrated in Figure [T} the runtime of the tested algorithms
grows differently with pattern length. Boyer—Moore exhibits the

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.53, November 2025

steepest initial improvement and maintains sublinear growth as
m increases, while KMP and the Z-algorithm remain almost flat,
confirming their linear-time nature. Rabin—Karp shows near-linear
scaling in average cases but higher variance under collision scenar-
ios. Aho—Corasick maintains stable performance due to its automa-
ton traversal cost.

Runtime vs Pattern Length on English Text (n = 10°6)
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Fig. 1: Trend of runtime with increasing pattern length (n = 10%) showing
sublinear performance of Boyer—Moore and stable linear behavior of KMP
and Z.

Alphabet Size Sensitivity

The impact of alphabet size was also studied using DNA sequences,
where ¢ = 4. Results in Table [3| show that Boyer—Moore lost
its advantage due to fewer opportunities for large skips. In such
contexts, KMP and the Z-algorithm provided the most reliable
performance, maintaining stable linear time. Rabin—Karp contin-
ued to show average-case efficiency, but the effect of hash colli-
sions became more pronounced on repetitive inputs. Aho—Corasick
remained competitive, making it suitable for biological sequence
analysis involving multiple motifs.

Table 3. : Runtime comparison on DNA sequences (n = 106)

Algorithm Case Length20  Length 200
Naive — 2500 ms 8800 ms
KMP — 40 ms 55 ms

Z Algorithm — 42 ms 57 ms
Rabin—Karp average 75 ms 90 ms
Rabin—Karp collisions 2200 ms 3000 ms
Boyer-Moore =~ — 90 ms 120 ms
Aho-Corasick — 60 ms 80 ms

As shown in Figure [2] the effect of alphabet size is evident when
comparing English text (o ~26) to DNA sequences (¢ = 4).
Boyer—Moore’s performance deteriorates sharply because fewer
unique symbols reduce its ability to skip ahead in the text. In con-
trast, KMP and the Z-algorithm maintain nearly constant runtime,
demonstrating their independence from alphabet diversity. Rabin—
Karp displays higher variance due to repeated substring hashes,
while Aho—Corasick performs competitively, confirming its suit-
ability for multi-pattern bioinformatics workloads where patterns
are short but numerous.



Runtime Comparison on DNA Sequences (n = 105, 0 = 4
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Fig. 2: Runtime comparison on DNA sequences (n = 106, o = 4). Boyer—
Moore loses its skip advantage on small alphabets, whereas KMP and the
Z-algorithm maintain stable linear performance. Aho—Corasick remains ef-
ficient for multi-pattern biological motifs.

Memory Requirements

Memory overhead is another important consideration, especially
in large-scale or embedded systems. Table ] compares additional
space requirements. Naive and Rabin—Karp are the most space-
efficient, requiring only constant memory. KMP and Boyer—Moore
incur linear overheads proportional to the pattern length, while the
Z-algorithm requires O(n) additional space, which may be pro-
hibitive for very large inputs. Aho—Corasick is the most memory-
intensive, as its trie-based automaton grows with the number and
length of patterns. However, in intrusion detection or bioinformat-
ics pipelines where thousands of queries are executed repeatedly,
the preprocessing cost is justified by its throughput.

Table 4. : Memory requirements of algorithms

Algorithm Extra Space Complexity
Naive O(1)
KMP O(m)
Z Algorithm O(n)
Rabin-Karp O(1)

Boyer-Moore
Aho—Corasick

O(m+ o)
O(trie size) ~ O(>_ patterns)

Discussion of Insights

Overall, the experiments reinforced theoretical expectations.
Boyer—-Moore excelled on large-alphabet natural-language text,
where heuristic skips allowed sublinear performance. KMP and
the Z-algorithm were the most consistent performers, particularly
in small-alphabet contexts such as genomics. Rabin—Karp offered
strong average-case behavior but required collision-aware han-
dling. Aho—Corasick, despite its memory demands, remained indis-
pensable for multi-pattern matching at scale. The Naive algorithm,
while instructive, was not competitive beyond trivial inputs.

These findings underscore that algorithm selection must be
application-driven. Performance depends not only on asymptotic
complexity but also on alphabet size, pattern characteristics, mem-
ory constraints, and whether single or multiple patterns are in-
volved. This motivates the broader application-oriented discussion
presented in Section 5]
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Extended Analysis and Observations

The experimental outcomes confirm the theoretical trends summa-
rized in Tablem Across all workloads, KMP and Z maintained lin-
ear scalability with respect to text length n, while Boyer—Moore
achieved sublinear behavior on large-alphabet corpora but lost its
advantage for repetitive or small-alphabet data (e.g., DNA). A re-
gression over logT' versus logn yielded a slope of 1.02+0.03
for KMP and 0.84 +0.05 for Boyer—Moore on English text, re-
inforcing its heuristic gain. Rabin—Karp’s measured collision rate
(< 107 for 64-bit hashes) shows that verification overhead us-
ing KMP added less than 5% runtime. For multi-pattern workloads
(k = 10%), Aho—Corasick sustained near-constant throughput at
the cost of linear growth in trie memory, validating its scalability
for network and genomic applications.

Reproducibility. All measurements used C++17 with -03 on
Ubuntu 22.04 (Intel i7, 16 GB RAM); results are means over 20
runs (n = 10%, m € {10,100, 1000}; k£ = 1000 for multi-pattern).
Rabin—Karp candidates were verified with KMP.

5. APPLICATION-WISE APPLICABILITY

The applicability of string matching algorithms is highly dependent
on the domain characteristics, including text size, alphabet distri-
bution, error tolerance, and the number of patterns involved. While
asymptotic complexity provides a baseline, real-world datasets of-
ten favor one algorithm over another due to statistical and structural
properties of the input [23}22].

In text retrieval and editor tools such as grep, IDEs, or word
processors, the Boyer—-Moore family (including Horspool and
Sunday’s Quick-Search) is typically the most efficient. Natural-
language text has relatively large alphabets and longer average
words, which allows Boyer—Moore’s heuristics to skip several char-
acters in each comparison [2| [12} [13]]. This sublinear behavior ex-
plains its dominance in everyday search tasks, although it can be
less effective for highly repetitive or short-pattern inputs.

In bioinformatics and genomics, where the alphabet is much
smaller (DNA with only four nucleotides, or proteins with twenty
amino acids), Boyer—Moore’s skip advantage largely disappears.
Here, algorithms with guaranteed linear-time performance, such as
Knuth—Morris—Pratt and the Z-algorithm, are generally preferred
because they scale reliably even in long genomic sequences [/, 13].
For instance, distributed bioinformatics pipelines have success-
fully leveraged KMP and Z-algorithm implementations on Apache
Spark to analyze massive DNA datasets with linear-time guarantees
[7,125].

Plagiarism detection and document fingerprinting present a very
different challenge: large numbers of documents must be compared
efficiently. Rabin—Karp is particularly well suited in this domain
because of its rolling hash mechanism, which allows constant-time
updates of fingerprints across sliding windows. This makes it fea-
sible to compare documents at scale, with deterministic algorithms
like KMP often used as verifiers for candidate matches to eliminate
false positives [4].

Cybersecurity and network intrusion detection systems require the
scanning of massive volumes of data against thousands of known
attack signatures. Aho—Corasick’s automaton-based design makes
it the de facto solution in such applications, since it allows all pat-
terns to be matched simultaneously in time proportional to the in-
put size plus the number of matches found [3)]. For example, the
widely used open-source intrusion detection system Snort inte-
grates an Aho—Corasick engine to scan packet payloads against tens
of thousands of attack signatures in real time [26]. Although its



trie-based structure incurs heavy memory usage during preprocess-
ing, this cost is amortized in real-time monitoring scenarios where
throughput is critical.

Compiler design and lexical analysis rely on deterministic and con-
sistent scanning of source code. The linear guarantees of KMP and
Z make them attractive for this purpose, as they are resilient to ad-
versarial inputs and repetitive tokens [1} 3]. While finite automata
generated from regular expressions are often used in practice, the
principles are closely related to exact string matching.

Finally, in big data and parallel processing environments, scalabil-
ity and distribution are key. Rabin—Karp’s hash-based partitioning
is easily parallelizable across clusters or MapReduce frameworks,
while Boyer—-Moore variants have been adapted to SIMD and GPU
platforms for accelerated performance [4, 12, [12]. Compressed in-
dexes such as the FM-index [20] further enable repeated queries on
massive fixed corpora with low memory overhead, making them
indispensable in large-scale search systems.

In summary, algorithm selection is not one-size-fits-all: Boyer—
Moore dominates in natural-language search, KMP and Z ex-
cel in small-alphabet scientific domains, Rabin—Karp is ideal for
document-scale comparisons, Aho—Corasick is unmatched in secu-
rity applications, and hybrid or hardware-aware approaches play a
growing role in big data analytics.

6. PARALLEL AND BIG DATA FRAMEWORKS
FOR STRING MATCHING

While classical string matching algorithms have well-established
theoretical and empirical properties, their deployment on modern
large-scale datasets often requires integration with parallel process-
ing frameworks and big data tools. Datasets such as genomic repos-
itories, internet traffic logs, and enterprise-scale document collec-
tions routinely exceed terabytes in size, necessitating distributed
and hardware-accelerated solutions.

One widely adopted strategy is to adapt algorithms such as Rabin—
Karp and Boyer—Moore to MapReduce frameworks like Hadoop.
Here, the text corpus is partitioned into blocks and distributed
across cluster nodes, with each node performing substring search
locally. Rolling hash computations in Rabin—Karp are particularly
suited to this model, since hash values can be computed indepen-
dently and combined efficiently. Similarly, Boyer—Moore can be
applied in parallel across text partitions, although additional care
is required to handle pattern matches spanning partition boundaries
[61].

More advanced frameworks such as Apache Spark [7] and Apache
Flink [8] provide in-memory distributed data processing, enabling
iterative algorithms like KMP and the Z-algorithm to be executed
efficiently on large-scale datasets. Spark’s Resilient Distributed
Datasets (RDDs) allow suffix-array—based methods to be precom-
puted and reused across queries, which is particularly valuable in
large search systems and scientific workloads.

Real-time streaming platforms such as Apache Storm [24] and
Kafka have also been leveraged for continuous monitoring tasks.
For example, in intrusion detection systems, Aho—Corasick au-
tomata can be distributed across nodes to achieve low-latency scan-
ning of high-throughput traffic.

GPU acceleration has proven highly effective, especially for
multi-pattern algorithms like Aho—Corasick, where parallel au-
tomata traversal maps naturally to thousands of GPU threads. Stud-
ies report order-of-magnitude throughput improvements compared
to CPU implementations [9, [10]. Similarly, bit-parallel algorithms
such as Shift-Or and BNDM benefit from SIMD vectorization on
modern CPUs.
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FPGA and memory-based hardware accelerators extend appli-
cability to high-speed networking. Flexible memory-based archi-
tectures allow deterministic throughput at line speed, making them
attractive for network packet inspection and cybersecurity applica-
tions [[L1]].

In summary, the adaptation of classical string matching algorithms
to parallel and big data environments highlights their continuing
relevance. Frameworks such as Hadoop, Spark, and Flink enable
distributed batch and iterative processing, while Storm and Kafka
address low-latency streaming contexts. GPUs and FPGAs provide
hardware acceleration for real-time, high-throughput workloads.
Future research can further optimize these integrations by explor-
ing cache-aware data layouts, heterogeneous CPU-GPU execution
models, and tighter coupling with modern big data ecosystems.
Recent trends also explore hybrid CPU-GPU and FPGA—cloud de-
ployments, where workload partitioning is guided by data locality
and cache-aware scheduling. Integrating such heterogeneous de-
signs with frameworks like Spark RAPIDS or Intel oneAPI remains
an open but promising research avenue.

7. CONCLUSION

The problem of string matching has been studied for over five
decades, leading to a rich spectrum of algorithms that balance
simplicity, theoretical guarantees, and practical performance. As
observed in the literature review, the field evolved from basic
quadratic-time scanning to linear-time deterministic approaches
(KMP, Z), sublinear average-case heuristics (Boyer—Moore fam-
ily), probabilistic hashing-based methods (Rabin—Karp), and multi-
pattern automata solutions (Aho—Corasick). Each contribution was
motivated by the need to address specific limitations of earlier tech-
niques—whether reducing redundancy, leveraging heuristics, sup-
porting multiple patterns, or enabling practical efficiency on real-
world data.

The comparative analysis presented in Section 3 highlights that
while theoretical complexity forms the baseline for evaluation, it
does not by itself determine real-world performance. Algorithms
such as KMP and Z guarantee O(n) runtime, making them reliable
and robust choices for adversarial or highly repetitive data. Boyer—
Moore, despite its O (nm) worst case, is consistently the fastest on
natural-language text due to its ability to skip multiple characters,
a property confirmed in both theory and experiments. Rabin—Karp
offers a unique balance between low preprocessing overhead and
hash-based parallelizability, although its vulnerability to collisions
limits its standalone applicability. Aho—Corasick demonstrates the
importance of scaling to large pattern sets, where its automaton-
based design ensures predictable throughput even with thousands
of signatures.

Section [3] further demonstrates that algorithm selection is in-
herently application-driven. In text retrieval and editors, Boyer—
Moore’s heuristics are unmatched; in bioinformatics, KMP and Z
dominate due to the stability they provide on small alphabets. Pla-
giarism detection and document fingerprinting benefit from Rabin—
Karp’s rolling hash, while cybersecurity and network intrusion de-
tection rely almost exclusively on Aho—Corasick. Thus, the theo-
retical profiles captured in Table [T]align closely with the domain-
specific requirements analyzed in the application section.

In conclusion, there is no universal “best” string matching algo-
rithm. Instead, each approach is optimized for particular trade-offs
between preprocessing, space, runtime stability, and scalability. A
key lesson from this comparative study is that theoretical guar-
antees must be interpreted in light of empirical performance and
domain-specific constraints. Moreover, as emphasized in Section 6,



the integration of these algorithms into parallel processing and big
data frameworks highlights their continued relevance in modern
large-scale systems. By synthesizing literature, complexity anal-
ysis, experimental evidence, and application mapping, this paper
provides a holistic view of how string matching algorithms should
be selected and adapted for both classical and contemporary com-
puting environments.

8. LIMITATIONS

The comparative evaluation, while covering diverse workloads and
alphabets, is limited by the use of representative (and partly syn-
thetic) corpora and a single workstation configuration. Measure-
ments focus on wall-clock runtime and asymptotic behavior; en-
ergy usage, cache-miss profiles, and microarchitectural variance
across CPUs/GPUs are not reported. For Rabin—Karp, a strong
64-bit hash was used and verified by KMP, yet adversarial colli-
sion scenarios were not exhaustively explored. Multi-pattern exper-
iments emphasize throughput and memory at dictionary scales typ-
ical of security and genomics pipelines, but do not include multilin-
gual or compressed corpora (e.g., FM-index—backed repositories)
in the loop. Finally, results are single-node for CPU and do not in-
clude GPU/FPGA implementations; heterogeneous and distributed
settings are discussed conceptually but left to future benchmarking.

Data Availability

The datasets used for evaluation were synthetically generated
within the study itself using the described random corpus gener-
ation procedure; no external data sources were required.

9. FUTURE WORK

While exact string matching is a mature field, several open chal-
lenges and opportunities remain for researchers and practitioners.
Future work can be envisioned along the following directions:

9.1 Hybrid Algorithm Design

One important avenue is the design of hybrid algorithms that com-
bine the strengths of multiple approaches. For example, integrat-
ing Boyer—Moore’s heuristics with KMP’s deterministic guarantees
could produce an algorithm that is both fast on average and robust
in worst-case scenarios. Similarly, Rabin—Karp’s rolling hash can
be used as a pre-filter, with KMP or Z serving as a verifier, en-
abling efficient multi-document search with controlled false posi-
tives. Such hybrids are particularly relevant in modern applications
where workloads vary widely between structured and unstructured
data.

9.2 Approximate and Noisy Matching

Real-world data often contains noise, errors, or variations (e.g.,
OCR text, genomic sequences with mutations). Extending exact al-
gorithms toward approximate matching remains a critical research
area. Bit-parallel techniques such as Myers’ algorithm have made
progress, but there is room to adapt KMP, Z, and Boyer—-Moore
heuristics for approximate contexts. This is highly relevant for do-
mains such as bioinformatics, where identifying approximate mo-
tifs is more important than exact substring matching.

9.3 Hardware-aware Implementations

With the growth of high-throughput data, hardware efficiency
has become as important as algorithmic complexity. Future re-
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search can focus on SIMD vectorization, GPU acceleration, and
FPGA-based architectures for string matching. For instance, par-
allel Aho—Corasick automata on GPUs can handle gigabit-per-
second network traffic for intrusion detection. Exploring cache-
aware data structures, memory layout optimization, and energy-
efficient FPGA implementations would bring significant perfor-
mance gains in real-time systems.

9.4 Compressed and Streaming Data Structures

The rise of large-scale data repositories calls for algorithms that op-
erate on compressed or streaming data. The FM-index and related
compressed suffix structures have demonstrated how exact match-
ing can be achieved while using space close to the information-
theoretic bound. Future work may explore how classical algorithms
such as KMP or Z can be adapted to compressed domains, or
how rolling-hash methods like Rabin—Karp can be integrated into
streaming architectures where data arrives continuously.

9.5 Learning-augmented String Matching

An emerging line of research is the use of machine learning to
guide algorithmic decisions. For example, a learning-augmented
Boyer—-Moore could predict likely mismatch locations or shift
lengths based on corpus statistics, thereby improving average-
case performance. Similarly, adaptive hash selection in Rabin—
Karp could minimize collision probability by learning distribu-
tional properties of input data. This convergence of classical algo-
rithms with Al techniques offers exciting possibilities for adaptive,
context-aware search systems.

9.6 Cross-domain Applications

Finally, future work should focus on tailoring string matching al-
gorithms to specialized domains beyond text and biology. Exam-
ples include log mining in cloud systems, cybersecurity event cor-
relation, natural language understanding, and even multimedia se-
quence matching. In each case, the statistical structure of the data
(small vs. large alphabets, short vs. long patterns, single vs. multi-
pattern requirements) can inform novel algorithmic adaptations.

Summary

In summary, the future of string matching research lies in bridg-
ing theoretical optimality with practical adaptability. Hybridiza-
tion, approximate matching, hardware acceleration, compressed
and streaming search, and learning-augmented methods represent
promising avenues that can extend the impact of string matching
algorithms to the scale and complexity of modern data-driven ap-
plications.
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