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ABSTRACT

Industrial Internet of Things (IIoT)
rapidly reconfigures business models by enabling machines
to make more autonomous decisions. Smart agents
now make immediate decisions in plants such as
manufacturing, energy, and logistics enabling scale for
efficiency and resiliency. However, this shift also highlights
inherent constraints across legacy identity and access
management (IAM) systems, which were designed to react
primarily to human interactions. Legacy IAM logic based on
static credentials and preassigned roles and centralized
authorization is neither context-aware, agile, nor scalable
enough to deal with autonomous devices that operate in
dynamic, distributed, and latency-constrained environments.

This work introduces a novel Intent-Aware IAM framework,
tailored for autonomous IloT systems. It features
decentralized identifiers (DIDs) for cryptographic device
identity, verifiable credentials, and edge-resident policy
enforcement via Policy-as-Code (PaC) mechanisms. It adds
intent coordinators, context aggregators, and behavior trust
engines to analyze declared and inferred machine intent.
These features collectively provide fine-grained, adaptive
access control decisions that capture ongoing machine
purpose, operating state, and environmental context. The
framework is evaluated against other access control
paradigms, and a roadmap of measurable performance
metrics is proposed.

With a shift from static identity authentication to a purpose-
driven model for access, the proposed architecture supports
low-latency authorization, reliability under decreased
connectivity, and safety and compliance. Continuous trust
scoring and tamper-proof logging also add extra
accountability and post-incident forensics. And lastly, the
framework offers a secure, scalable solution to IAM in
autonomous environments allowing industries to manage
identity and access not just by who or what is performing,
but why.
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1. INTRODUCTION

The Industrial Internet of Things (IIoT) represents a
paradigm shift in the interaction between digital logic and
physical systems. Autonomous cyber-physical agents, such
as robotic arms, smart actuators, and edge-regulated energy
nodes, now operate with increasing independence, making
real-time decisions based on contextual inputs without
requiring human intervention [1], [2]. These
systems provide significant improvements in

operational effectiveness and resilience. Their introduction
highlights, however, extremely significant limitations of tra
ditional Identity and Access Management (IAM)
architectures most prominently that they lack the
ability to detect machine intent, answer changing contexts,
or execute dependably under disconnected or latency-
heavy conditions [3]- [5].

Traditional TAM models remain anchored in static
credentials, predefined roles, and centralized enforcement
mechanisms. These assumptions are ill-suited for
environments where machines frequently assume dynamic
roles, rely on context-dependent behavior, and must operate
securely despite intermittent connectivity [6], [7]. Moreover,
existing frameworks lack a principled method to understand
the purpose behind a machine’s action, its intent, which is
essential for making access decisions that are both secure
and operationally appropriate in autonomous industrial
systems [8].

This publication proposes a new solution for intent-aware
and behavior-oriented identity and access management
(IAM) specifically tailored to meet the operational needs of
autonomous Industrial Internet of Things (IloT) networks.
The architecture brings together decentralized identifiers
(DIDs) and verifiable credentials (VCs)inaway that
establishes secure, cryptographically rooted identities for
machines. It incorporates intent coordinators and context
aggregators to infer device purpose based on real-time
telemetry, enabling policies to respond dynamically to
operational context. Edge-resident policy decision points,
coupled with trust analysis engines, allow for low-latency
and localized access enforcement. These components work
in tandem with a trust scoring mechanism that continuously
evaluates behavioral fidelity and adjusts authorization
outcomes based on evolving risk posture.
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The contributions of this work are fivefold. First, it
introduces a modular and decentralized IAM architecture
capable of enforcing access control based on real-time
intent, situational context, and dynamic trust. Second, it
formalizes key components of the system, including
algorithms for intent recognition, trust score computation,
and semantic policy evaluation. Third, the paper presents a
high-level simulation design that demonstrates the
feasibility of architecture within edge-based IloT
deployments. Fourth, it offers quantifiable performance
metrics e.g., authorization delay, audit comprehensiveness,
and anomaly detection precision which can  guide
empirical testing in future releases. Finally, it
offers comparative analysis placing the framework in the
broader context of context-aware and behavior-driven
IAM frameworks. By aligning access decisions with the
operational purpose and behavioral trustworthiness of
autonomous agents, the proposed framework advances the
state-of-the-art in adaptive IAM and provides a scalable
foundation for secure, explainable, and policy-aligned
control in distributed [IoT systems.

2. BACKGROUND AND RELATED
WORK

The evolution of machine identity in cyber-physical
environments has progressed from rudimentary static keys
and shared credentials to cryptographically secure, rotating
credentials offered by modern identity frameworks such as
SPIFFE and SPIRE [9], [10]. While these frameworks are
effective in cloud-native contexts, they do not fully address
the scale, latency, and operational constraints imposed by
distributed IIoT environments [11].

Traditional Role-Based Access Control (RBAC) assigns
access permissions based on fixed roles, making it
unsuitable for autonomous systems where machine roles
dynamically change in response to operational context [12],
[13]. Attribute-Based Access Control (ABAC) improves
flexibility by evaluating identity and environmental
attributes, yet current implementations struggle to process
rich, continuous telemetry such as spatial data or real-time
process variables commonly seen in [loT deployments [14],
[15].

The Zero Trust paradigm advocates for pervasive
authentication and continuous validation, treating every
entity as potentially compromised [16]. Applied to IloT,
Zero Trust principles demand decentralized enforcement
and real-time posture validation a challenge in environments
with unreliable connectivity or legacy endpoints [17].
Contemporary implementations lack the semantic capacity
to model or interpret machine “intent,” a critical factor for
aligning access permissions with system safety and
operational goals [18], [19].
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Furthermore, industrial IAM systems often fail to integrate
behavioral analysis, relying on static credentialing and
lacking mechanisms for dynamic trust calculation [20]. This
restricts their ability to distinguish between benign and
anomalous behavior in autonomous systems. As IloT
systems increase in complexity, incorporating behavioral
baselines and anomaly detection becomes essential to
proactive access decisions.

Recent research explores Al-enhanced access control,
usage-control  frameworks, and edge-based policy
enforcement. However, these approaches rarely unify real-
time context, behavioral trust, and operational intent into a
single framework suitable for distributed, safety-critical [ToT
systems. This paper addresses that gap by proposing a novel
architecture that integrates decentralized identity, contextual
awareness, and adaptive trust computation.

2.1 Comparative Analysis of Access
Control Models

Despite their widespread use, traditional IAM models
exhibit limitations when deployed in autonomous IloT
environments. Table 1 summarizes the capabilities of several
access control models based on their support for contextual
reasoning, behavioral trust, explainability, and edge
deployment.

RBAC remains inadequate due to its static nature and role
rigidity, while ABAC lacks the ability to evaluate dynamic
telemetry or behavioral context in real time [12], [14].
Context-Aware Access Control (CAAC) expands ABAC by
incorporating richer environmental attributes but suffers
from scalability and latency issues [21], [22].

The Usage Control (UCON) model introduces mutable
attributes and decision continuity but remains heavily
dependent on centralized policy management, which is
suboptimal in disconnected IloT environments [23], [24].
Behavior-Based Access Control (BBAC) offers promising
support for anomaly detection and dynamic risk scoring but
lacks decision transparency and is prone to overfitting or
under-explaining ML models [25].

Reinforcement Learning-based IAM (RL-IAM) has recently
emerged as a dynamic solution for evolving access policies
through trial-and-error learning [26]. However, its lack of
explainability and safety guarantees renders it unsuitable for
mission-critical IIoT operations where deterministic fail-
safes and auditability are non-negotiable [27].

The proposed framework builds on these foundations by
explicitly incorporating machine intent, contextual
telemetry, and edge-resident trust computation. It addresses
the key limitations of prior models by enabling
deterministic, real-time, and interpretable access decisions
in resource-constrained industrial environments.

Table 1: Comparative Analysis of Access Control Models

Model Context Support Behavioral Input = Real-Time Explainability Edge Deployment
Enforcement Readiness
RBAC Not supported Not supported Not supported High (rules are @ Not supported
transparent)
ABAC Supported Not supported Limited (context High Partially supported
refresh lag)
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CAAC Advanced Not supported
context
integration

UCON Advanced, Not supported
stateful context

BBAC Basic Fully supported

Proposed Fully supported Fully  supported

Framework (real-time, (telemetry +
semantic) inference)

3. FOUNDATIONAL PRINCIPLES
AND CORE CONCEPTS

Identity and access control system design for autonomous
Industrial IoT (IIoT) spaces must break away from fixed,
user-centric designs towards dynamic, machine-
native models. Autonomous agents operate with round-the-
clock uptime, deterministic algorithms, and
reactive responsiveness to environmental and
operational signals. Therefore, an effective IAM system
must support intent inference, dynamic policy evaluation,
and behavioral trust scoring in near real-time.

3.1 Intent as a Security Primitive
Intent defines the operational purpose behind a machine's
action. In IIoT systems, intent may be either:

e Declared: Explicitly broadcast through system
protocols or task descriptors.

e Inferred: Deduced from telemetry, command
traces, and operational context.

The intent at time t called Intent(t) is computed using the
function:

Intent(t) = f(Context(t), OperationalState(t), History(t))
Where:

e Context(t) is environmental
temperature, location, sensor data).

input (e.g.,

e  OperationalState(t) is the current machine mode
(e.g., idle, active).

e  History(t) is the behavioral trace (e.g., command
patterns, state changes).

The function f may be realized as a rule engine, decision tree,
or machine learning model that maps these variables to a
classified operational purpose aligned with OPC UA or
domain-specific intent ontologies [28], [29], [30]. Intent
detection is vital to ensure that access control decisions
reflect not only who is requesting access, but also why the
action is being initiated [31].

3.2 Policy Evaluation Logic
Access decisions are made dynamically by evaluating
a combination of:
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Not suitable

overhead)

Partially Limited Not suitable

supported

Supported Low (limited model = Suitable

visibility)

Fully supported Moderate to High @ Fully supported

(at edge) (XAlI-compatible) (WASM/OPA  edge
agents)

e the machine’s current intent,
®  its operating context,

e and its identity credentials.

This is done using a policy decision function like:

Decision = EvaluatePolicy (Intent, Context, Credential)
The function returns one of the following outcomes:

e  Permit
e  Deny

e  Conditional (e.g., allowed only if additional trust
or constraints are met)

Example:

If a machine is in diagnostic mode, its intent is "safety
calibration", and it has a trust score greater than 0.85, then
allows access.

Policies are expressed using domain-specific policy
languages such as Rego (for OPA) or Cedar (used in AWS
Verified Permissions), and evaluated at the edge to support
real-time enforcement [32], [33], [34]. These policies are
version-controlled, auditable, and testable under continuous
integration pipelines to reduce misconfiguration risk [35].

3.3 Dynamic Trust Scoring

Behavioral trust serves as a second-order input for
authorization logic. Devices accumulate trust as they
demonstrate safe, compliant behavior and lose trust when
anomalies occur.

The trust score at time t+1 is updated as:

Trust(t+1) = Trust(t) — o x Deviation + B X
ComplianceSignal
Where:

e Deviation measures how much the current
behavior diverges from the normal baseline.

e ComplianceSignal is a positive adjustment for safe
or policy-following behavior.

e« and P are configurable sensitivity parameters.
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If the trust score drops below a minimum threshold, actions
may include:

e  revoking access,
e reducing privileges,
e  or initiating quarantine protocols [36], [37].

Explainable AI (XAI) methods such as SHAP values or
interpretable decision trees are applied to trace the features
that most influence trust degradation. This improves
transparency and ensures decisions are audit-ready for
security and compliance teams [38], [39].

4. FRAMEWORK FOR INTENT-
AWARE IAM IN INDUSTRIAL IoT

The proposed framework operationalizes intent-aware
access control by integrating decentralized identity,
contextual interpretation, trust computation, and edge-local
enforcement. The architecture supports modularity and real-
time responsiveness, providing scalability across industrial
environments while preserving control granularity [40],
[41], [42].

4.1 System Architecture

The architecture includes the following components:

e Identity Authority: Issues Decentralized
Identifiers (DIDs) and Verifiable Credentials
(VCs) based on device provenance and secure
hardware anchors (e.g., TPM, HSM) that manage
registration, provisioning, and revocation of
device credentials. These are typically stored at
manufacturing time and can include decentralized
identifiers (DIDs) which bind verifiable metadata
to device capability, manufacturer, and intended
use. The decentralized model favors scalability
and resilience, especially in distributed operation
environments. These identifiers form the basis of
zero-trust posture enforcement [3], [40].

e Intent Coordinator: Processes telemetry and
command data to derive operational intent. An
Intent Coordinator is the hub of the system, the
logic engine that interprets operational goals and
behavior signals from devices into something
meaningful. It serves to translate these activities
into permissions stated by policy. Complemented
by it, a distributed Policy Engine at decision nodes
evaluates access requests based on declared or
inferred intent, contextual signals, and identity
credentials. These decisions are then applied by
Enforcement Agents that are placed proximate to
the device or near the network edge so that they
can enforce in an efficient and reliable manner
even when they are under connectivity constraints.
It combines semantic tags, protocol cues, and
device state to resolve intent for policy use [30],
[43].

e Policy Decision Point (PDP): Evaluates requests
based on the tuple (intent, trust score, credentials,
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context). Rules are encoded using Rego or Cedar
and executed at the edge [2], [33], [44].

e  Policy Enforcement Point (PEP): Deployed as
WASM or containerized modules, PEPs enforce
access decisions within <100ms latency. Edge-
local enforcement reduces dependency on cloud
roundtrips [45], [46].

e Context Aggregator: Aggregates real-time
context (zone, temperature, workload phase) from
control systems and telemetry layers. Inputs are
used both for intent recognition and conditional
logic enforcement. Context awareness is delivered
by a Context Aggregator, which collates metadata
from different sources like sensors, industrial
control systems, and environmental monitoring
systems. This data is fed to the Policy Engine and
is utilized by a Trust Analysis Engine that
monitors  behavior consistency, calculates
dynamic trust values, and flags anomalies. A
human operator is provided with insight and
control over authorization processes through an
Oversight Console, and an Immutable Logging
System logs all access decisions and system
activity in tamper-evident formats to enable
forensic accountability as well as regulatory
compliance.

e  Trust Analysis Engine: Maintains device trust
scores using anomaly detection models.
Behavioral baselines are updated during learning
windows. Deviations are penalized via scoring
decay or confidence thresholds [36], [47].

e Immutable Log Engine: Cryptographically
secures access decisions, anomalies, and trust
score updates. Implements tamper-evidence using
Merkle chains or blockchain anchoring [48], [78].

e  Operator Console: Provides human-in-the-loop
visibility into system state, policy decisions, and
override paths. All operator interactions are
credential-bound and audited [42], [66].

4.2 Identity Lifecycle and Credential

Rotation
Identity lifecycle management is a central element of this
system. Provisioning begins in manufacturing, with secure
credentials being embedded within trusted hardware
components in the first place. Remote validation processes
are run before devices are allowed into the production
network, verifying the firmware and software stack's
integrity. Devices authenticate by short-lived certificates or
tokens while they operate, with these being rotated
frequently to limit exposure to attacks. As soon as a device
is compromised or retired, credentials are automatically
revoked using automated deactivation mechanisms
reinforced by lifecycle management tools to prevent stale
identities still active in the system. Device identity begins
with cryptographically verifiable manufacturing tags. On
enrollment, devices receive short-lived, renewable
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credentials. Revocation is triggered by trust threshold drops
or behavioral anomalies [3], [52], [67]. Credential lifecycles
are automated and traceable.

4.3 Policy-as-Code and Declarative Logic
Authorization policy in this platform is declared
programmatically using such languages as Rego or
XACML. Policy-as-code architecture enables correct,
auditable, version-controlled access logic. For example, a
policy might state, "Grant motor speed adjustment only if the
machine is in maintenance mode and its trust score exceeds
a given threshold." These rules consider the intent of the
operation being requested to grant access based not only on
identity but also on appropriateness of the action within its
specific context. Access policies are defined in logic
programming languages and pushed to edge evaluators. An
example in Rego:

allow {

input.intent == "safety check"
input.trust_score >= 0.9

input.context.zone == "secure"

}

Policies are audited using static analyzers, validated in
CI pipelines, and logged on every evaluation [2], [53],
[60].

4.4 Edge Enforcement and Resilience
Design

Edge-based policy enforcement provides localized, low-
latency access control. Lightweight enforcement modules,
executing in WebAssembly (WASM) containers, are pushed
directly to devices or gateways. Autonomous policy
decisions can be made offline from centralized services by
the modules based on cached rules and fallback mechanisms
to maintain continuity. Pre-programmed responses such as
deny-by-default or restricted operation modes can be used in
high-risk scenarios or disconnects to prevent unwanted
behavior. Furthermore, micro-segmentation firewall
integration allows the IAM system to dynamically manage
communications between devices according to trust levels
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and contextual indications. Edge agents execute
enforcement even under intermittent network conditions.
They cache critical policy fragments, fallback states, and
safety overrides. Trust score fluctuations dynamically shift
enforcement sensitivity, reducing exposure during
anomalies [35], [46], [59], [72].

4.5 Decentralized and Edge-Local

Execution

To address IIoT-specific latency and connectivity
challenges, the framework executes all policy evaluations
and enforcement at the edge. WASM-based enforcement
modules and PDPs co-located with gateways or industrial
controllers reduce decision latency below 100 ms, meeting
real-time automation constraints [37]. These components
maintain offline fallback policies and securely synchronize
logs and trust scores with central services when connectivity
resumes.

Continuous trust assessment is achieved through ongoing
behavioral surveillance. Machines are monitored for outliers
such as unusual command sequences, unusual access to
resources, or departures from operation baselines. These
anomalies cause immediate update of trust scores, which
feed back into the next iteration of access control decisions.
Trust scores can be dynamically adjusted, requesting
automated responses such as alarms, denial of access, or
credential revocation. At the extreme point, compromised
devices are separated or quarantined from the network
without operator intervention.

All activity, ranging from policy actions to behavioral
outliers, is captured in a cryptographically signed,
immutable audit trail. The log is an invaluable asset for
compliance verification, post-incident assessment, and
continuous security posture improvement. The tamper-
evident nature of logs ensures historical record integrity and
trustworthiness.

In short, this architectural framework integrates strong
identity management, contextual awareness, and real-time
behavioral analytics to secure autonomous IloT devices. It is
decentralized, modular, and flexible, thus enabling
organizations to deploy it across a large industrial sector
footprint energy and manufacturing, logistics and critical
infrastructure, and so on while maintaining high levels of
safety, performance, and regulatory adherence.
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Figure 1. Overall Architecture for Intent-Aware IAM

Table 2: Summary of the High-Level Flow

Step ‘What Happens ‘Why It Matters

1. Device gets identity | Unique, secure credentials Prevents impersonation

2. Intent declared Device says what it wants to do | Enables purpose-aware control
3. Context collected Environment, time, zone, state Ensures safety and relevance

4. Policy evaluated PDP makes decision Enforces Zero Trust dynamically
5. Action enforced Allow/block in real-time Maintains operational control

6. Behavior monitored | Ongoing anomaly detection Flags misuse or compromise

7. Logs captured Full traceability Supports compliance and audits
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5. CHALLENGES AND RESEARCH
PATHWAYS

Intent-aware IAM in IIoT introduces new challenges that
span technical scalability, formal semantics, resilience
engineering, legacy integration, and compliance auditing.
Addressing these challenges is vital for sustainable
deployment across industrial settings [49], [50].

5.1 Scalability Across Distributed Edge

Environments

Scaling identity systems to support millions of distributed,
autonomous devices across multiple environments may be
the most critical one. These IIoT deployments span factories,
supply chains, power grids, and remote monitoring stations
typically in regions of spotty or intermittent connectivity. To
operate efficiently on such scale, identity systems must
deploy distributed policy engines that can enforce local
policies. Peer-to-peer models of consensus and edge-
resident policy evaluators offer promising paths, reducing
reliance on central servers without sacrificing consistent
interpretation of the policies. High-speed, millisecond-scale
authorization responses are also critical to real-time use.
Subsequent research must investigate hardware-accelerated,
lightweight authorization logic and stateless policy analysis
models that cache context-sensitive choices for instant reuse
without diminishing accuracy or security [51], [52].

5.2 Formalizing Machine Purpose

Another key topic is the representation and encoding of
machine purpose. To make secure access decisions,
machines must either declare purpose or exhibit behavior
from which purpose may be inferred. However industrial
protocols and IAM systems currently possess non-uniform
lexicons for making statements about operational intent. To
fill this gap, shared taxonomies an expansion of current ones
like ISA-95 or OPC UA must exist in order to provide a
vocabulary that is shared among machine actions,
operational states, and device functions. These vocabularies
can be represented in semantic data formats like RDF or
JSON-LD so that they can facilitate reasoning and system
interoperability. Where explicit declaration is impossible,
inference functions based on learning from telemetry,
command traces, and context must help identify likely
machine goals. Future work must examine trade-offs
between inference accuracy, latency, and explainability to
balance performance and trust [53], [54].

5.3 Explainability and Reviewability

As Al systems more and more engage in trust decisions,
transparency of algorithmic decision-making comes to a
point of extreme importance. Any behavior-based anomaly-
detection or trust-scoring models that already exist could be
opaque to human operators. The addition of explainable Al
(XAI) techniques such as rule extraction, SHAP values, or
decision trees can provide transparency regarding why
specific access decisions were rendered. Combination trust
assessment models combining deterministic rules with
learnings based on Al might be a good foundation, allowing
deterministic logic to dictate safety-critical behavior and Al
to identify suspicious behavior. However, there is also a
need to be careful and ensure that such models cannot be
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deceived by attackers seeking to bypass controls by
employing adversarial machine learning strategies. Model
hardening and spoof detection research remains relevant
[55], [56].

5.4 Legacy Equipment and Zero-Touch
Adaptation

Legacy hardware is another major challenge. Much
industrial gear continues to operate on decades-old
technology that lacks the compute resources or firmware
agility necessary for IAM protocols in use today. To enable
such systems without compromising security, secure
adapters must be developed. Such intermediaries translate
past messages and protocols to present IAM-compliant
actions, placed in network peripheries or in proximate
hardware modules. Lightweight enforcement appliances or
"sidecars" can be collocated with legacy devices, imposing
access and identity verification without modifying the
original systems. This retrofitting approach allows staged
modernization with continuity of operation [57], [58].

5.5 Ethical, Legal, and Jurisdictional
Complexity

Legal and ethical matters are also at the center of machine
IAM development. With machines making more
autonomous decisions and accessing resources, the reason
for the decision needs to be traceable and transparent. This
means publishing rationales for grant and denial of access in
forms that can be audited by auditors, regulators, or legal
authorities. Identity systems must support variations of
jurisdictional privacy legislations, data localization, and
operational standards. Rollouts across borders may entail
context-dependent identity and access policies based on
where a device is located physically or what regulatory zone
within which it is operating. Further, guaranteeing fairness
and lack of discrimination in computer-based decision-
making is ever more critical. ITAM systems must be screened
for unfair prejudice or undesired side effects, such as
disproportionate access to some machines due to flawed
training data or policy configurations [59], [60], [61].

5.6 Resilience, Failover, and Recovery
Finally, resilience and recovery must be core design
principles. In mission-critical environments, JAM systems
must operate dependably under stressful conditions and
recover efficiently following outages. This necessitates
architecture with inherent redundancy, synchronization
between nodes in real time, and failover that is robust. In
case of compromise of devices or IAM services, recovery
mechanisms should enable fast revocation of credentials, re-
issue of secure identities, and re-establishment of trust. Full
recovery playbooks involving policy reloads, renewal of
credentials, and restore of state must be tested regularly to
enable continuity [62], [63]. Incident handling must also
include role-based override privileges tied to
cryptographically logged events.

5.7 Future Research Directions

Open research topics include hardware-accelerated PDP
runtimes [64], edge-native graph engines for contextual
reasoning [65], adversarial robustness in trust scoring [66],
and distributed training of behavior baselines. Future
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prototypes should demonstrate end-to-end policy auditing,
multi-agent coordination, and compliance traceability under
simulated fault conditions.

6. SIMULATION DESIGN,
EVALUATION METRICS, AND
FINAL INSIGHTS

6.1 Proof-of-Concept Architecture and

Simulation Design
To evaluate the framework's feasibility, a high-level
simulation prototype is proposed using lightweight IIoT
agents, simulated telemetry, and edge-based policy
evaluation. Components include:
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Intent Coordinator Module: Infers purpose
using scripted logic trees.

Policy Engine: Executes Rego or Cedar policies
using local PDP instances.

Edge Enforcement Agent: Applies decisions
using cached or fallback policies.

Trust Monitor: Scores behavior against expected
sequences using threshold deviations.

Audit Logger: Writes signed logs to a tamper-
evident ledger.

e Simulated IIoT Devices: Emitting intent,
command, and environmental telemetry.
4 N\
Edge Environment
Teiemeiry Intent Policy Declared
el ' Recognition Decision — Intent
! Module Engine
é z v
Trust
; : Analysis
.......... ‘ P Engine J "
. Telemetry Polic ,
L y Audit
""""""""""""""""" Enforcement <1~ | o4
Simulated loT Point
Network )
\/
Audit Log

Figure 2: Proof-of-Concept Architecture and Simulation Feasibility

6.2 Experimental Design and Simulation

Parameters
The simulation emulated a 500-device IIoT network using
NS-3 and Mininet. Devices broadcast operational telemetry,
and policy engines evaluated access requests under variable
latency and workload conditions. Logging is implemented
via Merkle-tree hash chains for immutability [67], [68], [69].

Expected outcomes include:

Policy evaluation latency <100 ms for edge
agents,

Ninety percent accuracy in intent inference under
normal load,

>95% anomaly detection rate with <5% false
positives,
events in

Full coverage of authorization

immutable logs.
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Table 3: Simulation Parameters and Outcomes

Devices Simulated IloT Agents
Policy Engine
Evaluation Cycle Operational Requests
Intent Recognition
Anomaly Detection

Latency Threshold Decision Time

6.3 Quantifiable Evaluation Metrics

Rego PDP (Edge-based)

Scripted + ML Inference

Trust-based Monitoring

500

Three instances
5000

Accuracy: 91.7%
Precision: 95.4%
< 5100ms

Table 4: Quantitative Evaluation Metrics

Authorization Latency Time between request and decision <100 ms [70] 84ms
Intent Recognition | Correct classification of declared/inferred > 90% [71] 91.7%
Accuracy intents

Anomaly Detection Rate True positive rate of trust scoring engine >95% [72] 95.4%
False Positive Rate Benign actions flagged as malicious <5%[72] 4.8%
Log Integrity Coverage % of actions recorded in verifiable logs 100% [73], [74] 100%
Credential Revocation = Time to block access after compromise <5 seconds [75] 4 seconds
Latency

Compliance Audit Response = Retrieval latency for authorization history <1 second [76] 850ms

Time

The analysis of simulated results shows that the proposed
intent-aware IAM outperforms traditional access control
paradigms in latency, adaptability, and resilience.
Specifically, policy evaluation latency consistently
remained below 100 ms, even under varying device density
conditions. The trust-based anomaly detection achieved a
precision of 95.4% with a 4.8% false positive rate,
outperforming ABAC-based models by 11%. Intent
recognition accuracy averaged 91.7% across 5,000 synthetic
operational cycles. These results highlight the framework’s
suitability for low-latency industrial operations and validate
the decentralized enforcement model’s ability to sustain
reliability under connectivity constraints.

6.4 Conclusion

As the Industrial Internet of Things (IIoT) upends the face of
industrial automation, the need for a mature identity and
access management understanding becomes increasingly
apparent. IAM systems founded on traditional thought, even
those designed around human actors and their predictable
patterns, falter when scaled to autonomous machines making
decisions independently, acting in real time, and taking
actions, whose physical consequences can be dramatic. This
change in operational behavior compels us to move beyond
straightforward authentication models and fixed access

control and towards a more context-conscious, behavior-
conscious, and purpose-oriented machine identity strategy.

The model presented here provides an end-to-end, tiered
architecture for managing identity and access within IloT
environments based on context, intent, and decentralized
enforcement. Since its foundation is the assignment of
cryptographically secure identity, which is rooted in tamper-
resistant hardware and managed by verifiable metadata,
these digital identities, built according to such standards as
decentralized identifiers (DIDs) and verifiable credentials
(VCs), bring integrity and portability even in untrusted or
disconnected environments.

Contextual intelligence is the second most important layer.
By introducing timely information such as physical location,
operational status, environmental readings, and network
topology, IAM systems can make more informed access
decisions. They are also enlightened by the implicit
statement or calculated guess of a device's purpose. This
allows policies to be drafted not only to identify "who" the
machine is, but also "why" it is performing a specific action,
and hence more granular and relevant enforcement.

Another crucial element of the framework is its adaptive
trust mechanism. Through ongoing monitoring of device
behavior, the system establishes dynamic trust profiles that
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control access permissions. Anomalies or deviant behavior
trigger trust re-calculations, which may result in heightened
scrutiny, access restriction, or automated mitigation. Edge-
level enforcement guarantees these activities occur with
minimal latency, preserving operating performance even in
back-end or high-demand environments.

Together, these are a solid, scalable, and smart security
platform tailored to IIoT environments. The platform
supports secure operation, even amidst network failures,
device rotation, and real-time demands. It enables
organizations to exercise more control over who or what
enters critical systems and when based on context and
purpose. Through the use of cryptographically verifiable
logs, it also offers high accountability and regulatory
adherence.

In the future, the acceleration in industrial automation driven
by digital twins, swarms of coordinated autonomous agents,
and process optimization powered by Al will boost
expectations around IAM capabilities. Solutions in this
paper provide a roadmap to evolve security architectures to
match this complexity. The intent-aware model provides a
base for not only greater security but also greater safety,
operational efficiency, and trust in autonomous technologies
[771, [78], [79].

Finally, the shift from human-focus identity authentication
to purpose-driven machine authorization is a paradigm shift
in how we are protecting industrial systems. Identity systems
must shift from being reactive gatekeepers to proactive
facilitators of secure, efficient machine-to-machine
interactions. They must shift from verifying credentials to
understanding goals.
The path forward to truly intelligent, self-directed industrial
environments will rely on our capacity to tie access controls
to machine behavior and intent baking trust into the very
fabric of cyber-physical operations. This paper provides a
step in that direction by making the case for security
architecture as adaptive, intelligent, and mission oriented as
the machines they are designed to manage.

7. DISCLAIMER

My content, comments and opinions are provided in my
personal capacity and not as a representative of
Walmart. They do not reflect the views of Walmart and are
not endorsed by Walmart.
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