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ABSTRACT

Solutions that guarantee data privacy and model transparency
are required due to the quick integration of Al into delicate
industries like cybersecurity, healthcare, and finance. Federated
Learning (FL) is a promising paradigm that allows for
cooperative model training across decentralized datasets while
maintaining privacy by avoiding the sharing of raw data.
Simultaneously, Explainable Al (XAI) makes otherwise opaque
models interpretable, promoting stakeholder trust and assisting
with regulatory compliance. Using techniques like SHAP,
LIME, Grad-CAM, fuzzy logic, and rule-based systems, recent
research has investigated the nexus between FL and XAl in tasks
like intrusion detection, fraud detection, and medical diagnosis.
Despite the impressive performance of these efforts, there are
still unresolved issues with scalability, non- IID data, privacy—
interpretability trade-offs, standardized evaluation metrics, and
resilience to adversarial manipulation. The present state of
research is compiled in this review, which also identifies
important gaps, emphasizes methodological trends, and
suggests future directions. These issues could be resolved by
integrating FL. and XAI, which could lead to reliable, private,
and interpretable Al systems in high-stakes situations where
security and explainability are crucial.
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1. INTRODUCTION
1.1 Motivation

Artificial intelligence (Al) and machine learning (ML) solutions
for tasks like fraud detection, credit scoring, risk management,
and medical-financial applications have propelled the financial
technology (FinTech) industry's recent explosive growth
[6,25,29]. However, lack of interpretability and data privacy are
two major obstacles that prevent Al from being widely used in
delicate industries like healthcare and finance. Federated
Learning (FL) protects privacy and complies with regulations
like the GDPR by facilitating cooperative model training across
several institutions without the need for data sharing [12,16]. In
the meantime, Explainable Al (XAI) offers transparency into
black-box models, which is crucial for maintaining user
confidence in decision-making, regulatory trust, and fairness
[14,26].

1.2 Contributions of the Review

Artificial intelligence (Al) and machine learning (ML) solutions
for tasks like fraud detection, credit scoring, risk management,
and medical-financial applications have propelled the financial
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technology (FinTech) industry's recent explosive growth
[6,25,29]. However, the widespread application of Al in delicate
fields like healthcare and finance is constrained by two basic
issues: With an empbhasis on their applications in FinTech and
related fields, this review offers a thorough summary of the body
of research on the nexus between explainable Al and federated
learning. The following are the primary contributions:

1. Survey of FL+XAI frameworks:  Current
methodologies in cybersecurity, healthcare, and
finance, emphasizing their approaches, aggregation
strategies, and explanation tactics are examined [1—
5,25,29,33].

2. Finding research gaps: Unresolved issues like the lack
of standardized evaluation metrics for interpretability
[26,31], the mneed for Iintrinsic explainability
mechanisms [9,10], and the limited empirical
validation of explanations in FL are talked about [7,8].

3. Applying findings from fields like healthcare [4,5,8],
imaging [14,15], and fraud detection [6,25,29] to the
FinTech landscape, the improvement in regulatory
compliance, credit scoring, insurance modeling, and
fraud detection using FL+XAI is demonstrated.

4. Future research directions: Areas like standardized
evaluation techniques [26,32], reliable FL+XAI
frameworks for high-stakes decisions [11,24,31], and
counterfactual explanations in federated settings are
suggested [18,19].

2. BACKGROUND
2.1 Federated Learning

Finding research gaps: Unresolved issues like the lack of
standardized evaluation metrics for interpretability [26,31], the
need for intrinsic explainability mechanisms [9,10], and the
limited empirical validation of explanations in FL [7,8] are
talked about. Google was the first to introduce Federated
Learning (FL), a decentralized training paradigm [16]. FL
enables institutions to work together to create a global model
while retaining raw data on local devices, in contrast to
traditional centralized approaches that require data from various
sources to be gathered in one place. Only the learned parameters
or gradients are transmitted to a central server for aggregation
after each client trains a local model using its own private dataset
[12,16]. This approach preserves privacy and reduces the risks
of data leakage, which is particularly important for domains
handling sensitive information such as healthcare, finance, and
cybersecurity [5,28,32].

To enhance global model performance in a range of scenarios,
several aggregation techniques have been put forth. Federated
Averaging (FedAvg), which averages model parameters across
clients, is the most popular [16]. While hybrid schemes and rule-
based aggregation methods try to handle heterogeneous or non-
IID data distributions [9,12], other methods, like weighted
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averaging, take client data sizes into account [1,2,5]. Despite its
potential, FL still has to deal with real-world issues like
effective communication, model convergence for diverse
clientele, and striking a balance between participant fairness and
global performance [7,12].

2.2 Explainable Al (XAI)

2.2.1  Post-hoc vs intrinsic methods

Intrinsic approaches in Explainable Al (XAI) entail creating
models that are transparent by nature, such as decision trees or
linear regression, so that their decision-making procedure can
be directly comprehended. Post-hoc approaches, on the other
hand, use tools such as SHAP or feature importance to analyze a
pre-trained "black-box" model after it has been created in order
to produce explanations; however, they only offer
approximations of the model's actual behavior [21,25].

2.2.2  Model-agnostic vs model-specific.

In machine learning, explainability techniques fall into one of
two general categories: model-specific or model-agnostic. Any
kind of machine learning model, regardless of its underlying
architecture, can be used with model-agnostic techniques. By
examining input-output relationships or by approximating the
decision boundary, they produce explanations for the model,
which they treat as a "black box." LIME and SHAP are two
examples that can be used with ensemble models, neural
networks, or linear classifiers [21,25]. Although they are widely
applicable due to their flexibility, they may only offer
approximations and frequently come with additional
computational costs.

Conversely, model-specific approaches are customized for
specific model classes and use their internal organization to
generate explanations. Grad-CAM, for instance, is made
especially for convolutional neural networks (CNNs) and
highlights significant areas of images using gradient
information [17]. In a similar vein, transformer attention
mechanisms offer inherent justifications connected to the
model's structure [23]. These methods lack the broad
applicability of model-agnostic techniques, but they usually
provide more accurate and computationally efficient
explanations. In conclusion, the choice depends on the use case
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and model type; model-specific approaches emphasize
faithfulness and efficiency, whereas model-agnostic approaches
emphasize flexibility.

2.2.3  Types of explanations

Conversely, model-specific approaches are designed to Borys et
al. [15] performed a PubMed analysis based on manual
classification of all methods into visual and non-visual
categories in order to comprehend the current trends in the
application of XAI methods in medical imaging. In order to shed
light on a model's decision-making process, explainability
techniques that rely on visual explanations are widely employed
[14].

2.2.3.1 Quantitative explanations

These provide quantifiable indicators of feature relevance. For
instance, techniques like feature importance scores or SHAP
values give input features weights that show how much each
feature influences the model's prediction. For structured or
tabular data, where interpretability frequently hinges on
knowing the relative importance of features, these explanations
are especially helpful. For instance, LIME quantifies the
influence of each feature on the model's output and builds
interpretable surrogate models around local instances to
approximate the model's behavior [21].

2.2.3.2 Visual explanations

These use visual aids to draw attention to specific areas or trends
in the input that influence the model's judgment. For example,
methods such as Grad-CAM and heatmaps highlight and identify
important regions in an image that have the greatest impact on
classification [17]. These techniques are particularly helpful in
computer vision tasks where interpretability depends heavily on
spatial patterns and visual cues.

2.2.3.3 Symbolic explanations

These explain decision-making processes in terms that are easy
for humans to understand by using interpretable structures like
rules, decision trees, or logic-based models [8,9,19]. Users can
follow and analyze the steps that result in a prediction thanks
to these explanations, which offer a clear mapping between
inputs and outputs

Table 1: Taxonomy of XAI methods

Methods Post-hoc/ Type of Form of Advantages Disadvantages
Intrinsic explanation explanation
SHAP (SHapley Post-hoc, model- Feature Quantitative Theoretically Computationally
Additive agnostic attribution (feature grounded, expensive, not
exPlanations) importance consistent scalable to very
scores) feature large models, may

attributions,
works across
models

leak sensitive info
in FL

LIME (Local

Post-hoc, model-

Local surrogate

Quantitative +

Simple,

Unstable (different

Interpretable agnostic models Symbolic (linear | intuitive, works | runs may give
Model-agnostic models, rules) with any model, different results),
Explanations) provides local approximations
explanations may be misleading

Grad-CAM Post-hoc, CNN- Saliency/heatma | Visual Highlights Limited to CNNs,
(Gradient- specific p visualization critical image low resolution
weighted Class regions, good for | heatmaps, not
Activation CNN faithful to exact
Mapping) interpretability decision logic

53



International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.52, November 2025

NAM (Neural Intrinsic, Neural-based Quantitative + More flexible Still limited
Additive Models) interpretable additive feature Symbolic than GAMs, compared to black-
contributions scalable, box deep models,
interpretable requires careful
feature functions | training
Attention Models Intrinsic, model- Attention Quantitative + Naturally Attention #
(e.g., specific weights as Visual (attention | interpretable, explanation
Transformers, explanations maps) integrates into (weights may
Attention-based deep models, not always
FL) scalable reflect true
reasoning), can
be misinterprete
d

3. NEED FOR EXPLAINABILITY IN Al

Concerns regarding the opacity of complex models have
increased as artificial intelligence is being used more widely in
delicate fields. Although deep learning has demonstrated
cutting-edge performance in tasks ranging from fraud detection
to medical diagnosis, its opaque nature raises questions about
accountability, trust, and regulatory compliance [25,26,30].
This lack of interpretability restricts the use of Al in high-stakes
decision-making, where justifications for predictions are
crucial, in addition to impeding user acceptance [11,24].

When implementing Al systems in federated environments,
explainability is especially crucial. FL works with distributed,
non-IID datasets, in contrast to centralized models, which can
result in a variety of local behaviors and intricate global
dynamics [7,12]. It becomes challenging to assess how client
heterogeneity affects model decisions or to guarantee
participant fairness in the absence of strong explanations [8,10].
Additionally, federated models frequently call for the
aggregation of local contributions, necessitating the explanation
of both local forecasts and the global decision- making process
[9,32].

From the standpoint of a review paper, explainability is
necessary due to the absence of standardized frameworks as
well as technical difficulties. Although post-hoc techniques like
Grad-CAM and SHAP are frequently used [17,21,25], little is
known about how reliable they are in federated settings. In a
similar vein, intrinsic interpretable models exhibit potential
[8,9,19], but a thorough assessment of their accuracy,
scalability, and privacy trade-offs is necessary. These gaps show
how important it is to compile the body of research in order to
give a thorough picture of the state of the art, its shortcomings,
and its prospects.

4. LITERATURE REVIEW

The application of explainable Al (XAI) and federated learning
(FL) in fields like cybersecurity, finance, and healthcare has
been the subject of recent research. Numerous studies show how
FL can maintain high predictive accuracy in the healthcare
industry while protecting privacy. For instance, Briola et al. [1]
used SHAP to highlight feature importance in their federated
explainable model for breast cancer classification, which
achieved over 97% accuracy. Likewise, in their investigation of
red blood cell abnormality detection, Dipto et al. [2] found that
VGG16 achieved 96% accuracy in centralized training and 94—
95% in federated settings, with Grad-CAM offering post- hoc
explanations. Other studies extended FL+XAI to time- series
data: Mastoi et al. [5] used FL with GoogLeNet for brain tumor
classification, improving interpretability through Grad- CAM
and saliency maps, while Raza et al. [4] created an ECG

monitoring framework that combined federated transfer learning
with a modified Grad-CAM to produce interpretable heatmaps.

Some studies have investigated intrinsic explainability in
federated environments, going beyond traditional post-hoc
methods. Fuzzy rules and SHAP were combined by Ducange et
al. [8] to classify Parkinson's disease, yielding results that were
casy to understand without appreciably compromising accuracy.
Although scalability and robustness are still issues, Barcena et al.
[9] presented LR-XFL, a logic-driven framework that
incorporates reasoning rules straight into the FL process. These
pieces show the promise of intrinsic approaches, but they also
highlight performance and generalization trade-offs. Embedding
explainability into federated settings is still experimental and
necessitates a careful balancing act between interpretability,
accuracy, and privacy, according to other surveys like Lopez-
Blanco et al. [10].

Emerging research focuses on FinTech and cybersecurity
applications in addition to healthcare. In their federated

framework for malware classification and intrusion detection,
Timofte et al. [32] integrated SHAP to interpret predictions and
integrated secure communication and differential privacy.

Similar initiatives have been documented in the field of network
intrusion detection, where key features that contribute to
classification outcomes were highlighted with the aid of SHAP-
based explanations [7]. Aljunaid et al. [28] used SHAP and
LIME to detect banking fraud in the financial sector with nearly
perfect accuracy (~99.9%). Similarly, Sharma et al. [6] used
autoencoders and deep learning to detect fraud in credit card
transactions, highlighting the importance of decision- making
transparency. These studies show that in high-risk financial
applications, FL in conjunction with XAI can successfully strike
a balance between interpretability and predictive power.

The state of the field is also mapped by a number of recent
surveys. While Lopez-Ramos et al. [7] specifically review the
intersection of FL and XAI, highlighting issues with privacy,
fairness, and heterogeneity, Adadi and Berrada [25] give a
general overview of XAl techniques. By classifying techniques
into visual and non-visual explanations, Van der Velden et al.

[14] and Borys et al. [15] draw attention to trends in medical
imaging. Grad-CAM and heatmaps are the most popular image-
based applications. These surveys highlight the variety of
approaches, but they also highlight the lack of standard criteria
for assessing interpretability across tasks.

When combined, these studies show how flexible FL+XAI is in
a variety of high-stakes situations. Due to their ease of
integration,  post-hoc  methods  currently = dominate
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implementations [17,21,25], but intrinsic approaches are
becoming more popular [8,9,19]. Furthermore, despite
significant advancements, the field still lacks standardized
frameworks for evaluation, which makes cross-domain
comparison challenging. Another problem is that the majority
of current research is proof-of-concept, meaning it has only
been tested on small datasets or simulated environments instead
of large-scale, real-world deployments.
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In conclusion, FL+XAI techniques are still in their infancy even
though they have demonstrated promise. Scalability issues,
explanation consistency across diverse client distributions, and
the establishment of uniform interpretability standards must all
be resolved before they can be used in the real world. Table 2
provides a consolidated overview of representative works, their
aggregation strategies, XAI methods, performance, and
limitations in order to compare contributions in a methodical
manner.

Table 2 Literature review

Title Domain FL XAI Performance Gaps /
Aggregation Method Limitations
A Federated Explainable Healthcare FedAvg (Flower) | SHAP Acc. 97.6%, F1 Limited datasets; no
Al Model for Breast Cancer 98.4% scalability analysis
Classification [1]
Red Blood Cell Healthcare Vanilla & Grad- Acc. 94-96% Non-IID data
Abnormality Detection in Weighted Avg CAM impact not
Federated Environment [2] addressed
ECG Monitoring with Healthcare Weighted Avg Modified Acc. 94.5% Limited to MIT-
Federated Transfer Grad- (noisy), 98.9% BIH dataset;
Learning and XAI [4] CAM (clean data) scalability
Interpretable FL Model for | Healthcare Weighted Avg Grad- Acc. 94% No tests on
Brain Tumor CAM, heterogeneous clients
Classification [5] Saliency Maps
Pediatric Healthcare Not specified SHAP, Case-based study Early-stage;
Echocardiography with Grad- clinical
XAland FL [3] CAM validation
pending
Federated XAl for Healthcare FedAvg Fuzzy High accuracy on Trade-off:
Parkinson’s Disease [8] Rules + case study interpretability vs.
SHAP accuracy
LR-XFL: Logical Cross-domain Logic-driven Rule- Conceptual Scalability,
Reasoning-based FL [9] rules based, framework robustness not
intrinsic tested
XAI
Federated XAI Review General Multiple SHAP, Survey Lack of benchmarks,
(FED-XAI) [10] rule-based, evaluation standards
hybrid
Federated Learning for Cybersecurity FedAvg + DP SHAP Acc. >90%, Limited to
Cybersecurity [32] Privacy loss benchmark
<5% datasets
Credit Card Fraud Finance FedAvg SHAP, LIME | Acc. ~99.9% Dataset imbalance,
Detection using DL + FL limited explainability
[6,28]
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While Table 2 provides a comprehensive overview of existing
federated learning and explainable Al studies, it remains
difficult to discern how specific XAl techniques are distributed
across application domains. To provide a clearer comparative
perspective, a domain-wise visualization was constructed using
only the empirical studies cited in this review. This heatmap
aggregates the occurrence of each XAI method—such as
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SHAP, LIME, Grad-CAM, Saliency Maps, Fuzzy or Logic-
based rules, and intrinsic interpretable models—across key
domains including healthcare, finance, and cybersecurity. The
visualization highlights the concentration of post-hoc
techniques in healthcare applications and the limited
exploration of intrinsic interpretability in real-world federated
settings.

Heatmap of XAl Methods Usage Across Application Domains (2018-2025)
(Counts from empirical studies cited in the manuscript)
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Fig 1: Heatmap of XAI methods usage across application domains (2018-2025)

5. GAPS AND CHALLENGES

There are still a number of research gaps at the nexus of FL and
XAl despite encouraging advancements. First, the majority of
previous research is limited to small-scale federations and
limited datasets, which limits its applicability to real-world
deployments [1, 2, 5, 28, 32]. Heterogeneous, large-scale
settings are still poorly understood. Second, both the fidelity of
explanations and the accuracy of federated models are still under
threat from non-IID data and client heterogeneity [7,10,12].
Third, although the majority of recent research is focused on
post-hoc techniques like SHAP, LIME, and Grad- CAM
[17,21,25], these techniques only offer approximations of model
behavior and may not be consistent across federated clients.
Despite their conceptual strength, intrinsic explainability
techniques have to compromise on scalability and predictive
performance [8,9,19].

The absence of standardized evaluation metrics for
interpretability represents another significant gap. Qualitative
case studies or visualizations are frequently presented in current
works ~ without systematic, quantitative  benchmarks
[14,15,25,26]. Furthermore, little is known about how FL
parameters—like communication rounds, aggregation tactics,
and privacy-preserving mechanisms—interact with explanation
quality [7,32]. Lastly, there are still unresolved issues regarding
explanations that compromise privacy and their susceptibility to
hostile manipulation [30, 32].

6. FUTURE SCOPE

In order to compare FL+XAI frameworks fairly across domains,
future research should concentrate on creating standardized
interpretability metrics [25,26]. It will be essential to develop
privacy-preserving explanation strategies that guarantee
accuracy without disclosing private information [30, 32].
Furthermore, hybrid approaches that balance accuracy,
transparency, and scalability by combining post-hoc flexibility
with intrinsic interpretability are required [8,9].

There is also potential in investigating domain-specific
adaptations, such as feature-attribution techniques in finance
where auditability is necessary for regulatory compliance [6,28]
or rule-based or symbolic explanations for clinical
interpretability in healthcare [3,4,5]. Likewise, cybersecurity
applications require explanations that are resistant to hostile
attacks [32]. Another approach is to combine explainability
modules and federated frameworks with sophisticated
architectures like transformers [23] and graph neural networks
[22]. Last but not least, developing extensive benchmark
datasets and simulation platforms for federated XAI would
promote equitable evaluation of competing approaches,
expedite research, and enable reproducibility [7,10].

7. CONCLUSION

In order to develop Al systems that are both interpretable and
privacy-preserving, federated learning and explainable Al must
come together. Previous studies show encouraging outcomes in
cybersecurity [32], healthcare [1-5,8], and finance [6,28], where
XAl offers the transparency needed for accountability and trust,
and FL permits collaborative training without jeopardizing
sensitive data. Current research is dominated by post-hoc
methods [17,21,25], but intrinsic approaches are becoming more
popular [8,9,19]. Scalability, robustness, evaluation metrics, and
privacy—interpretability trade-offs are still issues, though
[7,10,12,30].

Although FL+XALI is still in its early stages, the direction of
research suggests that it has a lot of promise. Future work can
guarantee the deployment of reliable, transparent, and useful
federated Al systems in high-stakes domains by filling in the
existing gaps through standardized frameworks, hybrid
approaches, and extensive evaluations.
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