
International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.52, November 2025 

52 

Explainable Federated Learning: Taxonomy, Evaluation 
Frameworks, and Emerging Challenges 

Rishika Singh 
Dept. of Artificial Intelligence & Data Science 

Thakur College of Engineering and Technology 
Mumbai, Maharashtra 

Swati Joshi 
Dept. of Artificial Intelligence & Data Science 

Thakur College of Engineering and Technology 
Mumbai, Maharashtra 

 

ABSTRACT 
Solutions that guarantee data privacy and model transparency 

are required due to the quick integration of AI into delicate 

industries like cybersecurity, healthcare, and finance. Federated 

Learning (FL) is a promising paradigm that allows for 

cooperative model training across decentralized datasets while 

maintaining privacy by avoiding the sharing of raw data. 

Simultaneously, Explainable AI (XAI) makes otherwise opaque 

models interpretable, promoting stakeholder trust and assisting 

with regulatory compliance. Using techniques like SHAP, 

LIME, Grad-CAM, fuzzy logic, and rule-based systems, recent 

research has investigated the nexus between FL and XAI in tasks 

like intrusion detection, fraud detection, and medical diagnosis. 

Despite the impressive performance of these efforts, there are 

still unresolved issues with scalability, non- IID data, privacy–

interpretability trade-offs, standardized evaluation metrics, and 

resilience to adversarial manipulation. The present state of 

research is compiled in this review, which also identifies 

important gaps, emphasizes methodological trends, and 

suggests future directions. These issues could be resolved by 

integrating FL and XAI, which could lead to reliable, private, 

and interpretable AI systems in high-stakes situations where 

security and explainability are crucial. 
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1. INTRODUCTION 

1.1 Motivation 
Artificial intelligence (AI) and machine learning (ML) solutions 

for tasks like fraud detection, credit scoring, risk management, 

and medical-financial applications have propelled the financial 

technology (FinTech) industry's recent explosive growth 

[6,25,29]. However, lack of interpretability and data privacy are 

two major obstacles that prevent AI from being widely used in 

delicate industries like healthcare and finance. Federated 

Learning (FL) protects privacy and complies with regulations 

like the GDPR by facilitating cooperative model training across 

several institutions without the need for data sharing [12,16]. In 

the meantime, Explainable AI (XAI) offers transparency into 

black-box models, which is crucial for maintaining user 

confidence in decision-making, regulatory trust, and fairness 

[14,26]. 

1.2 Contributions of the Review 
Artificial intelligence (AI) and machine learning (ML) solutions 

for tasks like fraud detection, credit scoring, risk management, 

and medical-financial applications have propelled the financial 

technology (FinTech) industry's recent explosive growth 

[6,25,29]. However, the widespread application of AI in delicate 

fields like healthcare and finance is constrained by two basic 

issues: With an emphasis on their applications in FinTech and 

related fields, this review offers a thorough summary of the body 

of research on the nexus between explainable AI and federated 

learning. The following are the primary contributions: 

1. Survey of FL+XAI frameworks: Current 

methodologies in cybersecurity, healthcare, and 

finance, emphasizing their approaches, aggregation 

strategies, and explanation tactics are examined [1–

5,25,29,33]. 

2. Finding research gaps: Unresolved issues like the lack 

of standardized evaluation metrics for interpretability 

[26,31], the need for intrinsic explainability 

mechanisms [9,10], and the limited empirical 

validation of explanations in FL are talked about [7,8]. 

3. Applying findings from fields like healthcare [4,5,8], 

imaging [14,15], and fraud detection [6,25,29] to the 

FinTech landscape, the improvement in regulatory 

compliance, credit scoring, insurance modeling, and 

fraud detection using FL+XAI is demonstrated. 

4. Future research directions: Areas like standardized 

evaluation techniques [26,32], reliable FL+XAI 

frameworks for high-stakes decisions [11,24,31], and 

counterfactual explanations in federated settings are 

suggested [18,19]. 

2. BACKGROUND 

2.1 Federated Learning 
Finding research gaps: Unresolved issues like the lack of 

standardized evaluation metrics for interpretability [26,31], the 

need for intrinsic explainability mechanisms [9,10], and the 

limited empirical validation of explanations in FL [7,8] are 

talked about. Google was the first to introduce Federated 

Learning (FL), a decentralized training paradigm [16]. FL 

enables institutions to work together to create a global model 

while retaining raw data on local devices, in contrast to 

traditional centralized approaches that require data from various 

sources to be gathered in one place. Only the learned parameters 

or gradients are transmitted to a central server for aggregation 

after each client trains a local model using its own private dataset 

[12,16]. This approach preserves privacy and reduces the risks 

of data leakage, which is particularly important for domains 

handling sensitive information such as healthcare, finance, and 

cybersecurity [5,28,32]. 

To enhance global model performance in a range of scenarios, 

several aggregation techniques have been put forth. Federated 

Averaging (FedAvg), which averages model parameters across 

clients, is the most popular [16]. While hybrid schemes and rule-

based aggregation methods try to handle heterogeneous or non-

IID data distributions [9,12], other methods, like weighted 
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averaging, take client data sizes into account [1,2,5]. Despite its 

potential, FL still has to deal with real-world issues like 

effective communication, model convergence for diverse 

clientele, and striking a balance between participant fairness and 

global performance [7,12]. 

2.2 Explainable AI (XAI) 
2.2.1 Post-hoc vs intrinsic methods 

Intrinsic approaches in Explainable AI (XAI) entail creating 

models that are transparent by nature, such as decision trees or 

linear regression, so that their decision-making procedure can 

be directly comprehended. Post-hoc approaches, on the other 

hand, use tools such as SHAP or feature importance to analyze a 

pre-trained "black-box" model after it has been created in order 

to produce explanations; however, they only offer 

approximations of the model's actual behavior [21,25]. 

2.2.2 Model-agnostic vs model-specific. 
In machine learning, explainability techniques fall into one of 

two general categories: model-specific or model-agnostic. Any 

kind of machine learning model, regardless of its underlying 

architecture, can be used with model-agnostic techniques. By 

examining input-output relationships or by approximating the 

decision boundary, they produce explanations for the model, 

which they treat as a "black box." LIME and SHAP are two 

examples that can be used with ensemble models, neural 

networks, or linear classifiers [21,25]. Although they are widely 

applicable due to their flexibility, they may only offer 

approximations and frequently come with additional 

computational costs. 

Conversely, model-specific approaches are customized for 

specific model classes and use their internal organization to 

generate explanations. Grad-CAM, for instance, is made 

especially for convolutional neural networks (CNNs) and 

highlights significant areas of images using gradient 

information [17]. In a similar vein, transformer attention 

mechanisms offer inherent justifications connected to the 

model's structure [23]. These methods lack the broad 

applicability of model-agnostic techniques, but they usually 

provide more accurate and computationally efficient 

explanations. In conclusion, the choice depends on the use case 

and model type; model-specific approaches emphasize 

faithfulness and efficiency, whereas model-agnostic approaches 

emphasize flexibility. 

2.2.3 Types of explanations 
Conversely, model-specific approaches are designed to Borys et 

al. [15] performed a PubMed analysis based on manual 

classification of all methods into visual and non-visual 

categories in order to comprehend the current trends in the 

application of XAI methods in medical imaging. In order to shed 

light on a model's decision-making process, explainability 

techniques that rely on visual explanations are widely employed 

[14]. 

2.2.3.1 Quantitative explanations 
These provide quantifiable indicators of feature relevance. For 

instance, techniques like feature importance scores or SHAP 

values give input features weights that show how much each 

feature influences the model's prediction. For structured or 

tabular data, where interpretability frequently hinges on 

knowing the relative importance of features, these explanations 

are especially helpful. For instance, LIME quantifies the 

influence of each feature on the model's output and builds 

interpretable surrogate models around local instances to 

approximate the model's behavior [21]. 

2.2.3.2 Visual explanations 
These use visual aids to draw attention to specific areas or trends 

in the input that influence the model's judgment. For example, 

methods such as Grad-CAM and heatmaps highlight and identify 

important regions in an image that have the greatest impact on 

classification [17]. These techniques are particularly helpful in 

computer vision tasks where interpretability depends heavily on 

spatial patterns and visual cues. 

2.2.3.3 Symbolic explanations 
These explain decision-making processes in terms that are easy 

for humans to understand by using interpretable structures like 

rules, decision trees, or logic-based models [8,9,19]. Users can 

follow and analyze the steps that result in a prediction thanks 

to these explanations, which offer a clear mapping between 

inputs and outputs 

Table 1: Taxonomy of XAI methods 

Methods Post-hoc/ 

Intrinsic 

Type of 

explanation 

Form of 

explanation 

Advantages Disadvantages 

SHAP (SHapley 

Additive 

exPlanations) 

Post-hoc, model- 

agnostic 

Feature 

attribution 

Quantitative 

(feature 

importance 

scores) 

Theoretically 

grounded, 

consistent 

feature 

attributions, 

works across 

models 

Computationally 

expensive, not 

scalable to very 

large models, may 

leak sensitive info 

in FL 

LIME (Local 

Interpretable 

Model-agnostic 

Explanations) 

Post-hoc, model- 

agnostic 

Local surrogate 

models 

Quantitative + 

Symbolic (linear 

models, rules) 

Simple, 

intuitive, works 

with any model, 

provides local 

explanations 

Unstable (different 

runs may give 

different results), 

approximations 

may be misleading 

Grad-CAM 

(Gradient- 

weighted Class 

Activation 

Mapping) 

Post-hoc, CNN- 

specific 

Saliency/heatma 

p visualization 

Visual Highlights 

critical image 

regions, good for 

CNN 

interpretability 

Limited to CNNs, 

low resolution 

heatmaps, not 

faithful to exact 

decision logic 
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NAM (Neural 

Additive Models) 

Intrinsic, 

interpretable 

Neural-based 

additive feature 

contributions 

Quantitative + 

Symbolic 

More flexible 

than GAMs, 

scalable, 

interpretable 

feature functions 

Still limited 

compared to black- 

box deep models, 

requires careful 

training 

Attention Models 

(e.g., 

Transformers, 

Attention-based 

FL) 

Intrinsic, model- 

specific 

Attention 

weights as 

explanations 

Quantitative + 

Visual (attention 

maps) 

Naturally 

interpretable, 

integrates into 

deep models, 

scalable 

Attention ≠ 

explanation 

(weights may 

not always 

reflect true 

reasoning), can 

be misinterprete 

d 

 

3. NEED FOR EXPLAINABILITY IN AI 
Concerns regarding the opacity of complex models have 

increased as artificial intelligence is being used more widely in 

delicate fields. Although deep learning has demonstrated 

cutting-edge performance in tasks ranging from fraud detection 

to medical diagnosis, its opaque nature raises questions about 

accountability, trust, and regulatory compliance [25,26,30]. 

This lack of interpretability restricts the use of AI in high-stakes 

decision-making, where justifications for predictions are 

crucial, in addition to impeding user acceptance [11,24]. 

When implementing AI systems in federated environments, 

explainability is especially crucial. FL works with distributed, 

non-IID datasets, in contrast to centralized models, which can 

result in a variety of local behaviors and intricate global 

dynamics [7,12]. It becomes challenging to assess how client 

heterogeneity affects model decisions or to guarantee 

participant fairness in the absence of strong explanations [8,10]. 

Additionally, federated models frequently call for the 

aggregation of local contributions, necessitating the explanation 

of both local forecasts and the global decision- making process 

[9,32]. 

From the standpoint of a review paper, explainability is 

necessary due to the absence of standardized frameworks as 

well as technical difficulties. Although post-hoc techniques like 

Grad-CAM and SHAP are frequently used [17,21,25], little is 

known about how reliable they are in federated settings. In a 

similar vein, intrinsic interpretable models exhibit potential 

[8,9,19], but a thorough assessment of their accuracy, 

scalability, and privacy trade-offs is necessary. These gaps show 

how important it is to compile the body of research in order to 

give a thorough picture of the state of the art, its shortcomings, 

and its prospects. 

4. LITERATURE REVIEW 
The application of explainable AI (XAI) and federated learning 

(FL) in fields like cybersecurity, finance, and healthcare has 

been the subject of recent research. Numerous studies show how 

FL can maintain high predictive accuracy in the healthcare 

industry while protecting privacy. For instance, Briola et al. [1] 

used SHAP to highlight feature importance in their federated 

explainable model for breast cancer classification, which 

achieved over 97% accuracy. Likewise, in their investigation of 

red blood cell abnormality detection, Dipto et al. [2] found that 

VGG16 achieved 96% accuracy in centralized training and 94–

95% in federated settings, with Grad-CAM offering post- hoc 

explanations. Other studies extended FL+XAI to time- series 

data: Mastoi et al. [5] used FL with GoogLeNet for brain tumor 

classification, improving interpretability through Grad- CAM 

and saliency maps, while Raza et al. [4] created an ECG 

monitoring framework that combined federated transfer learning 

with a modified Grad-CAM to produce interpretable heatmaps. 

Some studies have investigated intrinsic explainability in 

federated environments, going beyond traditional post-hoc 

methods. Fuzzy rules and SHAP were combined by Ducange et 

al. [8] to classify Parkinson's disease, yielding results that were 

easy to understand without appreciably compromising accuracy. 

Although scalability and robustness are still issues, Bárcena et al. 

[9] presented LR-XFL, a logic-driven framework that 

incorporates reasoning rules straight into the FL process. These 

pieces show the promise of intrinsic approaches, but they also 

highlight performance and generalization trade-offs. Embedding 

explainability into federated settings is still experimental and 

necessitates a careful balancing act between interpretability, 

accuracy, and privacy, according to other surveys like López-

Blanco et al. [10]. 

Emerging research focuses on FinTech and cybersecurity 

applications in addition to healthcare. In their federated 

framework for malware classification and intrusion detection, 

Timofte et al. [32] integrated SHAP to interpret predictions and 

integrated secure communication and differential privacy. 

Similar initiatives have been documented in the field of network 

intrusion detection, where key features that contribute to 

classification outcomes were highlighted with the aid of SHAP-

based explanations [7]. Aljunaid et al. [28] used SHAP and 

LIME to detect banking fraud in the financial sector with nearly 

perfect accuracy (~99.9%). Similarly, Sharma et al. [6] used 

autoencoders and deep learning to detect fraud in credit card 

transactions, highlighting the importance of decision- making 

transparency. These studies show that in high-risk financial 

applications, FL in conjunction with XAI can successfully strike 

a balance between interpretability and predictive power. 

The state of the field is also mapped by a number of recent 

surveys. While López-Ramos et al. [7] specifically review the 

intersection of FL and XAI, highlighting issues with privacy, 

fairness, and heterogeneity, Adadi and Berrada [25] give a 

general overview of XAI techniques. By classifying techniques 

into visual and non-visual explanations, Van der Velden et al. 

[14] and Borys et al. [15] draw attention to trends in medical 

imaging. Grad-CAM and heatmaps are the most popular image-

based applications. These surveys highlight the variety of 

approaches, but they also highlight the lack of standard criteria 

for assessing interpretability across tasks. 

When combined, these studies show how flexible FL+XAI is in 

a variety of high-stakes situations. Due to their ease of 

integration, post-hoc methods currently dominate 
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implementations [17,21,25], but intrinsic approaches are 

becoming more popular [8,9,19]. Furthermore, despite 

significant advancements, the field still lacks standardized 

frameworks for evaluation, which makes cross-domain 

comparison challenging. Another problem is that the majority 

of current research is proof-of-concept, meaning it has only 

been tested on small datasets or simulated environments instead 

of large-scale, real-world deployments. 

In conclusion, FL+XAI techniques are still in their infancy even 

though they have demonstrated promise. Scalability issues, 

explanation consistency across diverse client distributions, and 

the establishment of uniform interpretability standards must all 

be resolved before they can be used in the real world. Table 2 

provides a consolidated overview of representative works, their 

aggregation strategies, XAI methods, performance, and 

limitations in order to compare contributions in a methodical 

manner. 

Table 2 Literature review 

Title Domain FL 

Aggregation 

XAI 

Method 

Performance Gaps / 

Limitations 

A Federated Explainable 

AI Model for Breast Cancer 

Classification [1] 

Healthcare FedAvg (Flower) SHAP Acc. 97.6%, F1 

98.4% 

Limited datasets; no 

scalability analysis 

Red Blood Cell 

Abnormality Detection in 

Federated Environment [2] 

Healthcare Vanilla & 

Weighted Avg 

Grad- 

CAM 

Acc. 94–96% Non-IID data 

impact not 

addressed 

ECG Monitoring with 

Federated Transfer 

Learning and XAI [4] 

Healthcare Weighted Avg Modified 

Grad- 

CAM 

Acc. 94.5% 

(noisy), 98.9% 

(clean data) 

Limited to MIT- 

BIH dataset; 

scalability 

Interpretable FL Model for 

Brain Tumor 

Classification [5] 

Healthcare Weighted Avg Grad- 

CAM, 

Saliency Maps 

Acc. 94% No tests on 

heterogeneous clients 

Pediatric 

Echocardiography with 

XAI and FL [3] 

Healthcare Not specified SHAP, 

Grad- 

CAM 

Case-based study Early-stage; 

clinical 

validation 

pending 

Federated XAI for 

Parkinson’s Disease [8] 

Healthcare FedAvg Fuzzy 

Rules + 

SHAP 

High accuracy on 

case study 

Trade-off: 

interpretability vs. 

accuracy 

LR-XFL: Logical 

Reasoning-based FL [9] 

Cross-domain Logic-driven 

rules 

Rule- 

based, 

intrinsic 

XAI 

Conceptual 

framework 

Scalability, 

robustness not 

tested 

Federated XAI Review 

(FED-XAI) [10] 

General Multiple SHAP, 

rule-based, 

hybrid 

Survey Lack of benchmarks, 

evaluation standards 

Federated Learning for 

Cybersecurity [32] 

Cybersecurity FedAvg + DP SHAP Acc. >90%, 

Privacy loss 

<5% 

Limited to 

benchmark 

datasets 

Credit Card Fraud 

Detection using DL + FL 

[6,28] 

Finance FedAvg SHAP, LIME Acc. ~99.9% Dataset imbalance, 

limited explainability 
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While Table 2 provides a comprehensive overview of existing 

federated learning and explainable AI studies, it remains 

difficult to discern how specific XAI techniques are distributed 

across application domains. To provide a clearer comparative 

perspective, a domain-wise visualization was constructed using 

only the empirical studies cited in this review. This heatmap 

aggregates the occurrence of each XAI method—such as 

SHAP, LIME, Grad-CAM, Saliency Maps, Fuzzy or Logic-

based rules, and intrinsic interpretable models—across key 

domains including healthcare, finance, and cybersecurity. The 

visualization highlights the concentration of post-hoc 

techniques in healthcare applications and the limited 

exploration of intrinsic interpretability in real-world federated 

settings. 

 
Fig 1: Heatmap of XAI methods usage across application domains (2018-2025) 

5. GAPS AND CHALLENGES 
There are still a number of research gaps at the nexus of FL and 

XAI, despite encouraging advancements. First, the majority of 

previous research is limited to small-scale federations and 

limited datasets, which limits its applicability to real-world 

deployments [1, 2, 5, 28, 32]. Heterogeneous, large-scale 

settings are still poorly understood. Second, both the fidelity of 

explanations and the accuracy of federated models are still under 

threat from non-IID data and client heterogeneity [7,10,12]. 

Third, although the majority of recent research is focused on 

post-hoc techniques like SHAP, LIME, and Grad- CAM 

[17,21,25], these techniques only offer approximations of model 

behavior and may not be consistent across federated clients. 

Despite their conceptual strength, intrinsic explainability 

techniques have to compromise on scalability and predictive 

performance [8,9,19]. 

The absence of standardized evaluation metrics for 

interpretability represents another significant gap. Qualitative 

case studies or visualizations are frequently presented in current 

works without systematic, quantitative benchmarks 

[14,15,25,26]. Furthermore, little is known about how FL 

parameters—like communication rounds, aggregation tactics, 

and privacy-preserving mechanisms—interact with explanation 

quality [7,32]. Lastly, there are still unresolved issues regarding 

explanations that compromise privacy and their susceptibility to 

hostile manipulation [30, 32]. 

6. FUTURE SCOPE 
In order to compare FL+XAI frameworks fairly across domains, 

future research should concentrate on creating standardized 

interpretability metrics [25,26]. It will be essential to develop 

privacy-preserving explanation strategies that guarantee 

accuracy without disclosing private information [30, 32]. 

Furthermore, hybrid approaches that balance accuracy, 

transparency, and scalability by combining post-hoc flexibility 

with intrinsic interpretability are required [8,9]. 

 

There is also potential in investigating domain-specific 

adaptations, such as feature-attribution techniques in finance 

where auditability is necessary for regulatory compliance [6,28] 

or rule-based or symbolic explanations for clinical 

interpretability in healthcare [3,4,5]. Likewise, cybersecurity 

applications require explanations that are resistant to hostile 

attacks [32]. Another approach is to combine explainability 

modules and federated frameworks with sophisticated 

architectures like transformers [23] and graph neural networks 

[22]. Last but not least, developing extensive benchmark 

datasets and simulation platforms for federated XAI would 

promote equitable evaluation of competing approaches, 

expedite research, and enable reproducibility [7,10]. 

7. CONCLUSION 
In order to develop AI systems that are both interpretable and 

privacy-preserving, federated learning and explainable AI must 

come together. Previous studies show encouraging outcomes in 

cybersecurity [32], healthcare [1–5,8], and finance [6,28], where 

XAI offers the transparency needed for accountability and trust, 

and FL permits collaborative training without jeopardizing 

sensitive data. Current research is dominated by post-hoc 

methods [17,21,25], but intrinsic approaches are becoming more 

popular [8,9,19]. Scalability, robustness, evaluation metrics, and 

privacy–interpretability trade-offs are still issues, though 

[7,10,12,30]. 

Although FL+XAI is still in its early stages, the direction of 

research suggests that it has a lot of promise. Future work can 

guarantee the deployment of reliable, transparent, and useful 

federated AI systems in high-stakes domains by filling in the 

existing gaps through standardized frameworks, hybrid 

approaches, and extensive evaluations. 
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