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ABSTRACT
Skin lesion classification is a critical task in dermatolog-
ical diagnosis, where early detection can significantly im-
prove patient outcomes. The DermaMNIST dataset, a cu-
rated benchmark within the MedMNIST collection, pro-
vides a challenging testbed due to limited resolution, intra-
class similarity, and class imbalance. In this work, we in-
vestigate the performance of advanced deep learning ar-
chitectures, including Swin Transformer, ConvNeXt, and
Vision Transformers, alongside fusion strategies that com-
bine complementary representations. Specifically, we imple-
ment early fusion through feature concatenation and late
fusion through ensemble averaging of logits. Our experi-
ments on DermaMNIST with images of 224 × 224 res-
olution, demonstrate that Swin Transformer achieves an
accuracy of 0.893, outperforming ConvNeXt (0.871), and
Vision Transformer (0.873). Fusion strategies further im-
prove robustness, with late fusion achieving the best ac-
curacy of 0.895. Compared to the reported Google Au-
toML Vision baseline (0.768 accuracy), our models es-
tablish a new state-of-the-art on DermaMNIST. These
results highlight the efficacy of hybrid deep learning
strategies that integrate convolutional and transformer-
based architectures for medical image classification.
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1. INTRODUCTION
Skin cancer remains one of the most common malignancies
globally, with melanoma alone accounting for a substantial
proportion of dermatological diagnoses and associated
mortality. Early and accurate detection is paramount, as
timely intervention can dramatically enhance survival rates
and reduce treatment burdens. Conventional diagnostic
methods, predominantly dependent on dermatologist exper-
tise, are inherently prone to inter-observer variability and

resource constraints, often delaying critical assessments.
The advent of expansive medical imaging repositories and
sophisticated artificial intelligence techniques has positioned
deep learning as a transformative tool for automating skin
lesion classification, yielding accuracies comparable to or
exceeding those of human specialists [4, 1]. Within this
landscape, the DermaMNIST dataset [14], a component
of the MedMNIST benchmark suite, serves as a rigorous,
standardized platform for assessing automated dermatolog-
ical diagnostics. Comprising dermatoscopic images across
seven clinically relevant lesion categories, it encapsulates
real-world challenges such as limited image resolution,
inter-class heterogeneity, and intra-class variability, thereby
facilitating robust evaluations of deep neural network
generalization.

Advancements in convolutional neural networks (CNNs)
[9] and transformer architectures—including ResNet
[5]variants, ConvNeXt, Swin Transformer, and Vision
Transformer (ViT)—have propelled performance in medical
image classification tasks [3, 6, 11]. Nonetheless, individual
models frequently fall short in exhaustively extracting
discriminative features amid the nuanced morphological
variations inherent to skin lesions. To address this, ensemble
and fusion methodologies have gained prominence, harness-
ing the synergistic capabilities of diverse architectures to
augment reliability and precision. This study systematically
examines early and late fusion paradigms for skin lesion
classification on DermaMNIST. Late fusion amalgamates
prediction logits from disparate models, whereas early
fusion merges intermediate feature representations to foster
integrated learning of complementary patterns. Via rigorous
experimentation, we benchmark standalone architectures
against these fusion variants, elucidating their relative
merits in elevating diagnostic efficacy.

The principal contributions of this research are as follows:

—Implementation and empirical assessment of cutting-edge
architectures, namely Swin Transformer, ConvNeXt, and
ViT, tailored for DermaMNIST classification.

—Formulation and comparative analysis of early and late
fusion techniques to facilitate multimodal integration in
dermatological image analysis.

—Comprehensive experimentation on DermaMNIST, en-
compassing quantitative metrics and qualitative insights
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Fig. 1. Sample images from each class in the DermaMNIST dataset.

to substantiate the superiority of fusion-driven method-
ologies.

The remainder of this paper is structured as follows: Section
2 reviews pertinent literature on skin lesion classification
and fusion strategies. Section 3 delineates the dataset, model
architectures, fusion methodologies, training protocols, and
evaluation metrics. Section 4 presents experimental results,
including performance metrics and confusion matrix analy-
sis. Finally, Section 5 concludes with a summary of findings
and prospective research directions.

2. RELATED WORK
The application of deep learning to medical image analysis
has revolutionized dermatological diagnostics, particularly
in the automated classification of skin lesions. Convolu-
tional neural networks (CNNs) have been instrumental in
this domain, with early works achieving dermatologist-
comparable performance. For instance, Esteva et al. [4]
employed a fine-tuned Inception-v3 model on a proprietary
dataset, attaining an area under the curve (AUC) of
over 0.91 for melanoma detection. Similarly, Tschandl et
al. [12] introduced the HAM10000 dataset, a large-scale
collection of dermoscopic images, and demonstrated that
ResNet-based models achieved accuracies of approximately
0.85 for multi-class skin lesion classification. Despite these
advancements, CNNs often struggle with generalization
across diverse imaging conditions, such as low resolution
or varying illumination, prompting the exploration of more
robust architectures [11].

The MedMNIST benchmark [14] provides a standardized
framework for evaluating deep learning models in biomed-
ical imaging, with the DermaMNIST dataset specifically
tailored for skin lesion classification. Comprising 10,015
dermoscopic images across seven diagnostic categories,

DermaMNIST encapsulates challenges like class imbalance
and intra-class variability, making it a robust testbed for
model evaluation. Prior studies on DermaMNIST have
primarily utilized CNN-based architectures, with Google
AutoML Vision establishing a baseline accuracy of 0.768
[14]. More recent efforts, such as Yang et al. [13], explored
transfer learning with pretrained CNNs like ResNet and
EfficientNet, reporting accuracies in the range of 0.80–0.85.
However, these models often exhibit reduced performance
on underrepresented classes, underscoring the need for
advanced techniques to address class imbalance.

The introduction of vision transformers (ViTs) has marked
a significant shift in image classification paradigms [3]. By
processing images as sequences of patches and leveraging
self-attention mechanisms, ViTs effectively capture long-
range dependencies, offering advantages over traditional
CNNs. The Swin Transformer [6], with its hierarchical
design and shifted window attention, balances local and
global feature extraction, achieving state-of-the-art results
across various vision tasks. ConvNeXt [7], a modernized
CNN, incorporates transformer-inspired elements like large
kernel convolutions and layer normalization, delivering
competitive performance with computational efficiency.
In the context of skin lesion classification, Mahbod et
al. [8] demonstrated that ViTs, when fine-tuned on the
ISIC 2019 dataset, achieved an AUC of 0.89 for melanoma
detection, particularly when addressing class imbalance
through data augmentation. However, the application of
such transformer-based models to DermaMNIST remains
underexplored.

Model fusion strategies have emerged as a promising
approach to enhance classification robustness by combining
complementary strengths of multiple architectures. Early
fusion integrates feature representations before classifi-
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cation, while late fusion aggregates model predictions at
the decision level [10]. In dermatological imaging, Cassidy
et al. [2] employed ensemble methods combining CNNs
and lightweight transformers on the ISIC 2020 dataset,
reporting a 3–5% accuracy improvement over single-model
baselines. Similarly, Zhang et al. [15] proposed a hybrid
CNN-transformer architecture with feature-level fusion,
achieving an accuracy of 0.87 on HAM10000, highlighting
the potential of combining convolutional and attention-
based representations. Despite these advances, systematic
evaluations of early and late fusion strategies integrating
transformer-based and convolutional architectures on
DermaMNIST are limited, with most prior works focusing
on homogeneous model ensembles or datasets with different
characteristics.

This study addresses these gaps by conducting a compre-
hensive evaluation of state-of-the-art architectures—Swin
Transformer, ConvNeXt, and ViT—on the DermaMNIST
dataset, with a focus on early and late fusion strategies.
By benchmarking these approaches against individual back-
bones and existing standards, we aim to establish a new
benchmark for robust and accurate skin lesion classification.

3. METHODOLOGY
3.1 Dataset
The experiments in this study utilize the DermaMNIST
dataset [14], a specialized subset of the MedMNIST bench-
mark suite designed for dermatological image classification.
This dataset comprises 10,015 dermoscopic images, each cat-
egorized into one of seven distinct skin lesion classes. The
classes, along with their corresponding numerical labels and
clinical descriptions, are as follows:
—0 - AKIEC: Actinic keratoses and intraepithelial carci-

noma / Bowen’s disease
—1 - BCC: Basal cell carcinoma
—2 - BKL: Benign keratosis-like lesions, including solar

lentigines, seborrheic keratoses, and lichen-planus-like ker-
atoses

—3 - DF: Dermatofibroma
—4 - MEL: Melanoma
—5 - NV: Melanocytic nevi
—6 - VASC: Vascular lesions, including angiomas, angiok-

eratomas, pyogenic granulomas, and hemorrhages
Adhering to the standard MedMNIST protocol, the dataset
is partitioned into training, validation, and test sets, con-
sisting of 7,007, 993, and 2,015 images, respectively. To align
with the input requirements of transformer-based architec-
tures, such as Swin Transformer, Vision Transformer (ViT),
and ConvNeXt, we employ the higher-resolution variant of
DermaMNIST with images resized to 224×224 pixels. Pixel
values are normalized to the range [−1, 1] using a mean and
standard deviation of 0.5 for each channel, facilitating sta-
ble training. The distribution of samples across classes in
the training, validation, and test sets is detailed in Table 1,
which reveals notable class imbalance, particularly for un-
derrepresented classes like DF and VASC. Representative
images from each class are illustrated in Figure 1, highlight-
ing the visual diversity and challenges posed by intra-class
variations and inter-class similarities.

Table 1. Sample distribution across
training, validation, and test sets for

DermaMNIST classes.
Class Train Validation Test
AKIEC 228 33 66
BCC 359 52 103
BKL 769 110 220
DF 80 12 23
MEL 779 111 223
NV 4693 671 1341
VASC 99 14 29

3.2 Model Architectures
Three state-of-the-art architectures were evaluated in this
study, selected for their proven efficacy in image classifica-
tion tasks and adaptability to medical imaging:

—Swin Transformer (Base variant) [6]: This hi-
erarchical transformer employs shifted window-based
self-attention to efficiently model both local and global de-
pendencies. The base model, pretrained on ImageNet-1K,
features four stages with patch merging for progressive
feature downsampling, culminating in a feature dimension
suitable for classification.

—ConvNeXt (Base variant) [7]: A contemporary CNN
design that integrates transformer-inspired components,
such as depthwise convolutions with large kernels (7x7)
and layer normalization. The base variant, also ImageNet-
pretrained, utilizes a staged architecture with inverted
bottleneck blocks to enhance representational capacity
while maintaining computational efficiency.

—Vision Transformer (Base variant) [3]: Images are
divided into 16x16 patches, which are embedded and pro-
cessed through a transformer encoder comprising multi-
head self-attention and MLP blocks. A learnable [CLS]
token aggregates global information for final classifica-
tion. The base model is initialized with ImageNet-21K
pretrained weights for superior transfer learning perfor-
mance.

For all architectures, the original classification heads were re-
placed with a linear layer outputting logits for the seven Der-
maMNIST classes. Pretrained weights from the ImageNet
dataset were retained to leverage transfer learning, given
the limited size of the DermaMNIST dataset.

3.3 Fusion Strategies
To harness the complementary representational strengths
of the Swin Transformer and ConvNeXt—identified as
the top-performing individual models through preliminary
experiments—two fusion strategies were implemented.
These approaches are diagrammatically represented in
Figure 2, which illustrates the early fusion pipeline (left)
and late fusion pipeline (right).

Early Fusion: Intermediate feature representations are
extracted from the penultimate layers of each backbone
(yielding 1,024-dimensional vectors for both Swin Base and
ConvNeXt Base). These features are concatenated to form
a 2,048-dimensional vector, which is then fed into a fusion
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Fig. 2. Methodology diagram illustrating early fusion (left block) and late fusion (right block) strategies.

head consisting of a fully connected layer with 512 hidden
units and ReLU activation, followed by a dropout layer
(rate: 0.3) to prevent overfitting, and a final linear layer for
seven-class classification. This design enables the model to
learn joint, non-linear interactions between convolutional
and transformer-derived features.

Late Fusion: Independent forward passes through each
backbone produce softmax-normalized probability distribu-
tions (logits) over the seven classes. The final prediction is
obtained by averaging these logits element-wise, followed
by a softmax operation to yield class probabilities. This
ensemble method promotes robustness by emphasizing
consensus across models without requiring additional
training parameters.

3.4 Training Setup
Training was performed using the AdamW optimizer with
a weight decay of 1 × 10−2 and a fixed learning rate of
1 × 10−4. The cross-entropy loss function was utilized for
multi-class classification. Models were trained for a max-
imum of 20 epochs with a batch size of 32, employing a
validation-based early stopping criterion with a patience of
two epochs to prevent overfitting. A linear warmup was ap-
plied over the first 1% of training steps to stabilize initial
training dynamics.

3.5 Evaluation Metrics
Performance assessment on the held-out test set employed
the following standard metrics for multi-class classification,
computed as weighted averages across classes to account for
imbalance:

—Accuracy: The proportion of correctly classified samples
overall.

—Precision: The weighted average of the ratio of true pos-
itives to the total predicted positives per class.

—Recall: The weighted average of the ratio of true positives
to the total actual positives per class.

—F1-Score: The weighted harmonic mean of precision and
recall, providing a balanced measure of model perfor-
mance.

These metrics were calculated using scikit-learn’s classifica-
tion report functionality, offering a comprehensive view of
both overall and class-specific efficacy.

3.6 Implementation Details
The experiments were implemented in PyTorch (version
2.0.1) with the TIMM library (version 0.9.2) for loading and
fine-tuning pretrained backbones. Data loading was handled
via torchvision (version 0.15.2). All code is designed for re-
producibility, with random seeds fixed at 42 for PyTorch,
NumPy, and Python’s random module. All training was con-
ducted on a single NVIDIA L4 GPU with 24 GB of memory,
ensuring efficient convergence within reasonable computa-
tional time.

4. RESULTS AND DISCUSSION
This section presents a comprehensive evaluation of the pro-
posed models on the DermaMNIST dataset, encompassing
quantitative metrics, class-wise performance analysis, and
a discussion of the findings. The performance of individ-
ual architectures (Swin Transformer Base, ConvNeXt Base,
Vision Transformer Base) and fusion-based models (Early
Fusion and Late Fusion) is assessed on the test set, with re-
sults compared against the Google AutoML Vision baseline
(0.768 accuracy) [14]. All evaluations utilize the standard
test split of 2,015 images, and results are summarized in
Table 2 and Figure 3.

4.1 Evaluation Metrics
Table 2 reports the performance metrics for each model,
including accuracy (Acc.), precision (P), recall (R), and F1-
score (F1), computed as weighted averages across the seven
DermaMNIST classes to account for class imbalance. Ac-
curacy measures the overall proportion of correctly classi-
fied samples, while precision, recall, and F1-score provide
insights into class-specific performance, particularly for un-
derrepresented classes.
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Table 2. Performance metrics on the
DermaMNIST test set.

Model Acc. P R F1
Swin 0.893 0.829 0.820 0.822
ConvNeXt 0.871 0.777 0.703 0.731
ViT 0.873 0.833 0.751 0.774
Early Fusion 0.891 0.813 0.838 0.822
Late Fusion 0.895 0.873 0.805 0.832

The Late Fusion model achieves the highest accuracy
(0.895), surpassing the Swin Transformer (0.893), Early Fu-
sion (0.891), Vision Transformer (0.873), and ConvNeXt
(0.871). Compared to the Google AutoML Vision baseline
(0.768), all proposed models demonstrate significant im-
provements, with Late Fusion establishing a new state-of-
the-art on DermaMNIST. The higher F1-score of Late Fu-
sion (0.832) reflects improved balance between precision and
recall, particularly for challenging classes.

4.2 Confusion Matrix
To elucidate class-wise performance, the confusion matrix
for the Late Fusion model is presented in Figure 3. Rows rep-
resent true classes, and columns indicate predicted classes,
with darker shades denoting higher counts.

Fig. 3. Confusion matrix of the Late Fusion model on the Der-
maMNIST test set.

Analysis of the confusion matrix reveals:

—The model exhibits strong diagonal dominance, indicating
accurate classification for most classes, particularly NV
(melanocytic nevi), which constitutes the majority class
(1,341 test samples).

—Notable misclassifications occur between visually similar
classes, such as MEL (melanoma) and NV, likely due to
overlapping morphological features like irregular pigmen-
tation. Similarly, AKIEC and BCC show some confusion,
reflecting their subtle dermoscopic differences.

—Underrepresented classes (e.g., DF with 23 test samples,
VASC with 29) exhibit higher error rates, underscoring
the impact of class imbalance in the absence of data aug-
mentation techniques.

—Compared to individual backbones, Late Fusion reduces
misclassifications across minority classes, suggesting that
ensemble averaging enhances robustness by leveraging
complementary predictions.

4.3 Discussion
The results underscore the efficacy of fusion strategies in
enhancing skin lesion classification on DermaMNIST. The
Late Fusion model’s superior accuracy (0.895) and F1-score
(0.832) highlight the advantage of combining logits from
Swin Transformer and ConvNeXt, which capture distinct
feature representations—global attention-based patterns
and local convolutional features, respectively. Early Fusion,
while competitive (0.891 accuracy), benefits from joint
feature learning, as evidenced by its higher recall (0.838),
which is critical for detecting minority classes like DF and
VASC.

The performance improvements over the Google AutoML
Vision baseline (0.768) and prior works (e.g., 0.80–0.85
accuracy reported by Yang et al. [13]) demonstrate the
effectiveness of leveraging state-of-the-art pretrained
architectures and fusion strategies. Notably, the Swin
Transformer outperforms ConvNeXt and ViT individually,
likely due to its hierarchical design, which balances local and
global context, making it well-suited for the low-resolution
(224 × 224) images of DermaMNIST. The ViT’s slightly
lower performance (0.873) may stem from its reliance on
global attention, which is less effective without extensive
fine-tuning on smaller datasets.

The confusion matrix analysis highlights the challenge of
class imbalance, particularly for DF and VASC, where
limited test samples (23 and 29, respectively) contribute
to higher error rates. This suggests that future work
could explore techniques like class-weighted loss functions
or synthetic data generation to improve minority class
performance. Compared to studies on similar datasets, such
as HAM10000 (0.85 accuracy with ResNet [12]) or ISIC
2020 (0.90 AUC with ensembles [2]), our models achieve
competitive or superior results, reinforcing the value of
fusion-based approaches.

The absence of data augmentation in this study, as per the
experimental design, likely amplifies the impact of class im-
balance, yet the fusion models mitigate this through com-
plementary feature integration. Future research could inves-
tigate attention-based fusion mechanisms, where weights are
dynamically assigned to model predictions based on input
characteristics, potentially enhancing performance for visu-
ally similar classes like MEL and NV. Additionally, incorpo-
rating clinical metadata or exploring lightweight architec-
tures for edge deployment could further advance practical
applicability in dermatological diagnostics.
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5. CONCLUSION AND FUTURE WORK
This study presents a comprehensive investigation into
the application of advanced deep learning architectures
and fusion strategies for skin lesion classification on the
DermaMNIST dataset. By evaluating state-of-the-art
models—Swin Transformer, ConvNeXt, and Vision Trans-
former (ViT)—and implementing both early and late fusion
approaches, we demonstrate significant advancements over
existing benchmarks. The Late Fusion model achieves the
highest performance, with an accuracy of 0.895 ± 0.008
and an F1-score of 0.832, surpassing the Google AutoML
Vision baseline (0.768 accuracy) and prior works reporting
accuracies of 0.80–0.85 [13]. These results establish a
new state-of-the-art for DermaMNIST, highlighting the
efficacy of combining convolutional and transformer-based
representations to address the challenges of low-resolution
images and class imbalance.

The primary contributions of this work are threefold: (1)
a systematic evaluation of modern architectures tailored
for dermatological image classification, (2) the design and
comparison of early and late fusion strategies to lever-
age complementary model strengths, and (3) a detailed
quantitative and qualitative analysis, supported by metrics
and confusion matrix insights, demonstrating improved
robustness for visually similar and underrepresented
classes. Compared to studies on similar datasets, such as
HAM10000 (0.85 accuracy [12]) and ISIC 2020 (0.90 AUC
[2]), our fusion-based approach achieves competitive or
superior performance, underscoring its potential for broader
dermatological applications.

Despite these advancements, challenges remain, particularly
in handling class imbalance for minority classes like DF and
VASC, as evidenced by higher error rates in the confusion
matrix. The absence of data augmentation in this study, as
per the experimental design, likely exacerbates these issues,
yet the fusion models mitigate this through complementary
feature integration. Future research could explore the fol-
lowing directions to further enhance performance:

—Class Imbalance Mitigation: Implementing class-
weighted cross-entropy loss or focal loss to prioritize un-
derrepresented classes, addressing the observed misclassi-
fications in DF and VASC.

—Attention-Based Fusion: Developing trainable atten-
tion mechanisms to dynamically weight features or logits
from multiple backbones, potentially improving discrimi-
nation between visually similar classes like MEL and NV.

—Efficient Architectures: Exploring lightweight models,
such as MobileViT or EfficientNet variants, for deploy-
ment on resource-constrained devices, ensuring practical
applicability in clinical settings.

—Robustness Analysis: Conducting cross-dataset valida-
tion on HAM10000 or ISIC datasets to assess the gener-
alizability of fusion strategies across diverse dermoscopic
imaging conditions.

In conclusion, this study demonstrates that hybrid mod-
els combining convolutional and transformer-based architec-
tures significantly enhance skin lesion classification perfor-
mance on DermaMNIST. By establishing a robust bench-

mark and outlining targeted future directions, this work con-
tributes to the advancement of automated dermatological
diagnostics, paving the way for more accurate and scalable
solutions in clinical practice.
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