
International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.51, October 2025

History and Milestone Developments in Computer
Chess Algorithms from 1947 -1986

Evarista Onokpasa
University of Jos

Jos, Nigeria

ABSTRACT
According to Shannon there are ”at least 10120 ways to play the
game of Chess from start to finish. A computer operating at the rate
of one variation per micro-second would require over 1090 years to
calculate the first move!”[5]. This brings to the fore the importance
of applying efficient algorithms, heuristics and data structures in
the design of computer chess engines. Much work has been done in
the development of computer chess algorithms. This paper takes a
journey on the history of a few famous, published algorithms for
computer chess. It considers in a concise manner, the strategies
conceived and applied in designing different chess engines from
1947-1986 (the eras of foundational computer chess and the start
of computer chess championships). These strategies, include chess
knowledge, game tree search, tree pruning strategies, the use of
evaluation, transposition and refutation tables, as well as special-
ized hardware designed to optimize strength of play of computers.

General Terms
Algorithms, Heuristics

Keywords
Chess, strategies, game tree, tree pruning and evaluation functions

1. INTRODUCTION
The first true Chess automaton was built in 1914 by Leonardo Tor-
res y Quevedo in Spain [5]. This machine had the ability to play
chess end games with a king and a rook and it ensures it check-
mates the opponent in a few moves. Prior to this was an automaton
built by Baron Wolfgan Von Kempelen, which seemed to have the
capability to play the game of chess autonomosly, but was later
found to be a sham. A human operator was hidden in the machine
[16]. Starting from Shannon’s work to date, computer chess has in-
volved strategies and game tree search, tree prunning, game state
evaluation and statistical analysis. The next section takes each one
of these and brings out the key elements involved in the computer
chess design.

2. DEFINITION OF CHESS TERMS
Chess Positions
A chess position contains all the information of a game’s state, for
example:

(1) A statement of the positions of all pieces on the board.
(2) A statement of which side, White or Black, has the move.
(3) A statement as to whether the king and rooks have moved (this

determines if a castling move can still be done or not)
(4) A statement of the number of moves made since the last pawn

move or capture.(50 moves after this, the game ends in a draw,
this is called the 50 move draw rule).

Using algebraic notation(every square is labeled using the intersec-
tion of the files (defined with the lower case letters a, b, c, ..., h)
and ranks (defined with the numbers 1, 2,...,8)), we can represent
the chess game from start to the current state shown in Figure 1.
King, Queen, Knight, Bishop, Rook represented with the alphabets
K, Q, N, B and R respectively. There are no letter representation for
Pawns. A label for a square on the board e.g. e4 suffices to indicate
a pawn moved to square e4. To denote moves for other pieces the
alphabets are followed by the target square. Below is the notation
of the first 2 ply for the chess game state shown in Figure 1

white moves black moves
e4 e5
f6 Nf3

Strategies
A Strategy is a sequence of planned moves a player takes to attain a
game state with a better evaluation than his opponent. This strategy
must take into consideration the possible responses from the oppo-
nent. Thus if at game state P, White’s choices for a good play are
dependent on the stage of the game and the stages are classed in 3:
The opening, the mid-game and end-game.
Ply
A half-move i.e. a single player’s turn.
Game tree
This is a tree- like representation of all possible move sequences in
a game.
Variation
A variation in chess is simply a branch of possible moves—either
theoretical (openings), practical (middlegame plans), or forced
(tactical/endgame sequences).
En prise

7

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.51, October 2025

This means a piece is undefended and able to be captured by the
opponent.
En passant
This describes the capture by a pawn of an enemy pawn on the
same rank and an adjacent file that has just made an initial two-
square advance.
Quiescence search
A deeper search performed at the end of a standard search (like
alpha-beta pruning) to resolve tactical situations before evaluating
the position.
Refutation move
A refutation is a move or combination of moves that exposes the
weakness in an opponent’s strategy.
Move generation Move generation is the process of creating a list
of all legal chess moves for a given board position

3. EARLY WORK ON COMPUTER CHESS
ALGORITHMS FROM 1947 TO 1969

3.1 Shannon’s work
In 1949, Shannon presented a paper that described designing com-
puters to play chess, with a chess strategy. These would include
rules of thumb already known to human players. He defined a strat-
egy for chess as ”a process for choosing a move in any given posi-
tion.”
He described 2 strategies, “type A” and “type B”. The type A strat-
egy, the program that did a complete search of the chess game tree
(using a simple evaluation function) to a given depth, this search
type is predictable, the same game position always produces the
same move. The type B program searches selectively by eliminat-
ing branches (using forward pruning) that appear to be less advan-
tageous and investigating only a few promising branches and inves-
tigating each one to deeper plies. Shannon went further to explain
some computer chess concepts of chess positions, evaluation func-
tions, variations in play and style.
Approximate Evaluation Functions The term ”approximate” is
used to describe evaluation function in chess as there are no ex-
act functions to rate or evaluate a chess game state. The evaluation
functions defined for the game of chess are based on assertions and
information gathered from a study of countless games, to produce
principles which can define the strength of a play or value of a game
state. Some examples of these principles are:

(1) Assigning values numeric values to each chess piece, e.g. King
= 200, Queen = 9, rook = 5, bishop = 3, etc.

(2) Material Advantage i.e. Summing up the numeric value of each
players’ pieces and obtaining the difference.

(3) Mobility of chess pieces (i.e. how many possible moves each
piece can make), higher mobility attracts higher rating.

(4) Backward, isolated and doubled pawns have lower ratings.
(5) An undefended or exposed King is assigned a lower value than

otherwise.

For more of these principles see [5] Thus an evaluationf(S) for a
game state S can be summarised as

f(S) = r(W)− r(B)

where r(W) and r(B) are the ratings for White pieces and Black
pieces respectively, based on the evaluation principles. Thus if
f(S) > 0 white has a more favorable evaluation, if f(S) < 0 black
is at an advantage. Shannon’s evaluation function for a player Y is

summarized below:

r(Y) = 200K+9Q+5R+3(B+N)+P−0.5(D+C+I)+0.1M

where Y has K, Q, R, B, N, P number of Kings, Queens, Rooks,
Bishops, Knights and Pawns respectively. D, C and I stand for Dou-
bled, backward and Isolated pawns which have a negative effect on
the ratings and M are the total number of legal moves for all the
pieces for Y. Using this evaluation function, the evaluation for the
game state for Figure 1, indicates an advantage for black:

r(W) = 200 + 9 + 5 + 3 + 8− 0.5(0 + 0 + 1) + 0.1× 24

r(B) = 200 + 9 + 5 + 3 + 8− 0.5(0 + 0 + 0) + 0.1× 24

f(S) = −0.5

Fig. 1. A chess game state example

Shannon’s strategy
Shannon [5] details a strategy which uses a one-move look ahead.
This involves evaluating the next game state Px(S) for all possible
legal moves Px, x = 0, 1,, r, r ∈ N , for the current player.
With this one-move look ahead the white player can choose the
move for which f(Px(S)) is maximum, or the minimum in the
case of a black player. This look ahead strategy of evaluating pos-
sible game board states for every legal move can be extended to
2, 3, 4, ... depending on how much resources (cpu time, computa-
tional speed and memory) are available to carry out the evaluations
inorder to make a move of maximal advantage. Figure 4 shows an
example of a two-ply look ahead for which the white player can
make the move of maximal advantage, while considering the opti-
mal move for his opponent. After 1-ply it appears the move of max-
imal advantage for player Y is P2 which gives the highest score of
21. However the opponent can respond with move P2A to obtain
a maximum score of -4. For player Y this would have resulted in
the worst game state after the second ply. With the evaluation of
the game states after 2-ply it is clear that if both players aim at ob-
taining an optimal game state. Player Y must make the move for
which the minimum value is maximum (this is the minimax algo-
rithm [27]), that corresponds to P3 for player Y . Thus, it is clear
that the deeper the search the better the strength of play. Shannon’s
type A strategy involves a tree search of depth 4 (i.e. 4-ply look
ahead) but this is basically brute-force approach as experienced hu-
man chess players would not need to consider all possible moves to

8

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.51, October 2025

a given depth to make strong moves. So, Shannon proposed a Type-
B Strategy which involves eliminating branches of the tree which
are not considered viable options to obtain a favorable game state.

3.2 Turing’s hand simulation
Turing defined a computer chess algorithm which was not imple-
mented on a computer but was simulated by hand. He defined a
scoring function based mainly on material advantage (with value
attached to each piece) and if a tie occurs for different moves, then
a positional value is calculated based on the side to move. This
positional value is calculated based on mobility, piece safety, king
safety, castling etc. Turing’s strategy analyzes all moves to a depth
of 2 plies. Recapturing moves, capture of an undefended piece, cap-
ture of a piece of higher value, checkmates are giving priority for
further analysis. He also defined a “dead” position as one in which
neither side can immediately gain my making a capture.

3.3 Bernstein Chess Program
In 1958 a program for IBM 704 was written and the evaluation
function was based on human-like chess moves and decisions.
Moves where based on questions skilled human players ask[1]:

(1) Is the King in Check? If yes, can the king safely capture the
checking piece(offense), interpose (defense) or move away?

(2) Are there exchanges to acquire material advantage for me
or my opponent?(This may require an offensive (capturing a
piece) or defensive (moving one’s piece away or interposing a
piece of lesser value))

(3) Can I castle?
(4) Can I advance a minor piece?
(5) Can I occupy an open file?
(6) Can I create a pawn chain using my piece?
(7) Can I move a pawn?
(8) Can I move a piece?

These questions were the basis for the game state evaluation and
look-ahead in the game tree (restricted to 4-ply maximum look-
ahead). The Bernstein algorithm is similar to Shannon’s as it con-
siders factors such as material advantage, mobility of pieces, king
safety and control of key squares on the board.

3.4 Newell et al and the Alpha-Beta algorithm
Alan Newell, John Shaw and Herbert Simon [2] produced a chess
program which based its move on specific goals e.g

—king safety,
—material balance,
—center control,
—piece development,
—king-side attack,
—promotion etc

. It also uses a set of move generators ”similar to Bernstein’s pro-
gram, except that here they are used exclusively to generate alter-
native moves not continuations...as these are generated by a sep-
arate set of analysis generators”. An evaluation of each move is
explored using alpha-beta pruning to optimise the minimax game
tree search. This involves eliminating branches for moves which are
meaningless or disadvantageous. To illustrate the alpha-beta prun-
ing, consider the game tree in 4. Suppose the tree from S is exam-
ined breadth-wise, from P1 to P4 and the possible scores for each

Table 1. Safe checking moves
move response n value

Qh1# Kf2, Ke2, Kd2 3
Qa5# Nc3, Kf1, Ke2, Kf2 4
Qe4# Nc3, Kf1, Ke2, Kf2 4
Qe5# Ne3, Kf1, Kd2, Kf2 4
Qe6# Ne3, Kf1, Kd2, Kf2 4

response by the opponent, are considered in the same order. The
best possible reply to P1, P1B gives the score 2, this is retained as
the backup score. Next P2 is examined, the first move P2A gives
a score −4 which is worse than P1B , thus all other possible re-
sponses to P2, P2B and P2C are eliminated/pruned. Moving on to
P3,P4 all responses have a minimum greater than the backup score
thus the branches are retained. Alpha cut-offs and Beta cut-offs are
pruning which occur at odd and even plies respectively.

3.5 A Chess Mating Program
G. Baylor’s, H. Simon’s and P. Simon’s work produced MATER
I[32]. This program was then revised during 1964 by Baylor into a
second version, MATER II. Both programs are designed to analyse
chess positions, with checkmating the opponent as the goal.This
mater program employs heuristics in move selection in a manner
similar to those utilized by human players. Some of these strategies
include:

—Restricting the opponents mobility(e.g.in a checkmate the oppo-
nents king has zero mobility)

—Gaining control over any connected squares around the oppo-
nents king that are free of enemy pieces.

Mater I primarily searched for checking moves, while Mater II
focused on moves that either threatened checkmate in one move
or most effectively restricted the opponent’s mobility. The search
would only continue along a chosen path as long as the opponent’s
mobility continued to decrease. In Mater II if a number of check-
ing moves (m1,m2, ...) are generated, they are ordered based on
the number of legal replies (n1, n2, ...) that are available to the op-
ponent. Moves with fewer legal replies are rated higher than those
with more legal replies (in a way this was the basis for evaluating
a move). If the number of legal replies to m1 and m2 are n1 and
n2 respectively and n2 < n1, then m2 is rated higher than n2. If
a move has zero replies from the opponent, a checkmate has been
achieved and this move is selected, otherwise the move with the
highest rating is further explored, provided the opponents mobility
is further restricted. However, if along the path all possible check-
ing moves have a rating lower than preceding moves, this move or
node is discarded, the search goes back up the tree, thus the search
is carried out in depth-first search and the discarded node is con-
sidered a dead end. Consider the end-game situation in Figure 3
with Black to move with the aim of either checking or exchanging
White pieces. The analysis is as follows using Standard Algebraic
Notation (SAN)[12]. Safe checking moves or exchanges are Qh1#,
Qa5#, Qe4#, Qe5#, Qe6# the corresponding moves to relieve the
checking are shown in Table 1.

3.6 The Kotok-McCarthy Chess Program Versus ITEP
John McCarthy and Alan Kotok [17] developed a chess program
which was in 1967, matched against the ITEP Chess Program de-
veloped in Moscow [19]. The Kotok-McCarthy chess program uti-
lized Shannon’s type-B strategy, alpha-beta pruning with forward
pruning. It also applied an evaluation function which was based on

9

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.51, October 2025

Fig. 2. A 2-ply game tree. Scores are shown at the nodes after 1-ply and after 2-ply. P1,2,...,4 show the possible moves for the player Y from game state S.
PNX , N ∈ {1, 2, 3, 4}, X ∈ {A,B,C} show the possible moves for the opponent. The numbers at the nodes are the game state values after the moves.

Fig. 3. Sample end game situation

material balance, center control and piece development. The pro-
gram had the capability of searching to an 8-ply depth. The ITEP
program was based on Shannon’s type-A strategy. The match be-
tween these 2 machine was a test of the two strategy’s by Shannon
- type-A and type-B. Out of 4 games played ITEP drew 2 and won
2. With the outcome of the match, one might be drawn to con-
clude that the type-A strategy is superior to the type-B, however,
the ITEP program used a search depth of 3-ply to obtain the draw
and 5-ply for the wins. On the other hand, it seems that the Kotok-
McCarthy program’s tree search technique was modified just be-
fore the match, but the adjustments made were not effective in se-
lectively pruning moves which led to weak moves [20]. Create a
table to show development in each era, do not forget to mention the
weaknesses in each of the algorithms

3.7 Mac Hack Six Chess Program
Mac Hack Six was produced at MIT’s Artificial Intelligence Lab-
oratory by Richard Greenblatt, Stephen Crocker and Donald East-
lakein 1967 [7]. Shannon’s type-B strategy was applied to Mack
Hack Six along with forward prunning and alpha-beta algorithm.
The program also incorporated book openings by chessmasters.
The main components of Mac Hack Six’s design are:

—Plausible move generator According to [7] about “50 identi-
fiable heuristics” are used in computing the plausibility. Each
square on the chess board is assigned a value e.g squares close
to the center and the opponent’s king are assigned higher values.
Pieces are also assigned developmental values i.e. the value of
a “piece at a position is the sum of all the values of the squares
it attacks plus values of actual attacks on enemy pieces” as well
as putting an opponent’s piece en prise. Thus a plausible move
involves calculating the difference between the current develop-
mental value and new developmental value. This is one key com-
ponent used in the tree evaluation.

—Evaluation of the Board The board value S is given by:

S = B +R+ P +K + C

B = material balance = total value of white pieces - value of
black pieces

R = piece exchange ratio={N/(T − 1)} ∗ 1/8 ∗M (where N
is the ratio of white material to black material at the node evalu-
ated, T is ratio of white to black materia at the top node of the
tree, M is the material for one side at the beginning of the game.)

P = pawn structure (values are attached to pawns based on
factors e.g. defended, doubled, backward etc)

K = king safety (If the queens have been captured this value
is zero otherwise this is calculated as 8 times the difference
between the ranks of the kings)

C = center control(+1 if there is at least one white pawn and
no black in the center-four-squares and - 1 if there is at least one
black pawn and no white pawn in the center-four-squares and
zero otherwise)

—Feedover conditions
These are conditions where a player must make one or more of
the following decision: save a piece, exchange a piece, sacrifice
a piece or relieve a check when one or more of his pieces are en
prise. The program identifies 3 possible conditions:
(1) The side to move has a piece enprise and is in check or the

enprise is pinned
(2) The side to move has more than one piece enprise
(3) Both sides have one piece enprise, the enprise piece of the

side to move is not pinned but that of the opponent is pinned.

10

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.51, October 2025

Fig. 4. Game tree analysis for Mater II, using the end game state in Figure 3. Moves which place the opponent’s king in check, with minimum reply options
for the opponent are given priority for analysis. Qh1# in ply 1 is the best move with minimum reply (3), if it further restricts the opponents mobility, the path is
investigated in more depth, otherwise the path is retraced (Qh1# is later discarded because further investigation leads to Qh2# and Qh6# with minimum reply
of 5 and 6 respectively - which is worse than the rating of Qh1#). With Qh1# discarded, Qa5# is analysed next.

—Width of the Search
The width of the search of the game tree is fixed at 6 for normal
play at any ply. For tournaments the width is place at 15, 15,
9, 9, 7, for each node at ply 1, 2, 3, 4, 5 repspectively and 7 at
depths 6 and greater. However these numbers can vary based on
the following heuristics/conditions:
(1) All safe checks have been examined and all captures inves-

tigated at ply 1 and 2.
(2) Moves which expose the side to move to a checkmate are

ignored.
(3) Some key pieces are prioritized to investigate a minimum

number of their plausible moves.

—Alpha-beta pruning The alpha-beta algorithm is applied in the
Mac Hack Six program. This algorithm as discussed in Section
3.4 discards a branch in the game tree if the move leads to a
worse value for the side to move than a previously considered
move. This pruning technique speeds up the game tree search
tremendously!

—Hash coding The application of hash coding is a major advance-
ment in the Mack Hack Six, same board game positions are never
evaluated twice. if a board state is revisited its evaluation is sim-
ply retrieved from the hash table which speeds up the computer
play.
In 1967, Mac Hack VI competed in the Boston Amateur champi-
onship against human players, winning two games and drawing
two games. Mac Hack VI made record: This was the first time
a computer won a game in a human tournament! In 1968 Mac
Hack VI achieved a rating of 1529, above the average rating in
the USCF of about 1500 [24].

4. COMPUTER CHESS CHAMPIONS IN THE
1970S AND 1980S

4.1 CHESS 3.0, 3.5, 3.6, 4.0 and 4.5
CHESS 3.0 was written by Larry Atkin, Keith Gorlen and David
Slate in 1969. It was top both in the First United States Computer
Chess Championship and ACM (Association for Computing Ma-
chinery) championship in 1970 [18]. CHESS 3.0 search engine was
designed using the alpha-beta algorithm and an opening book pro-
gram which was used to select opening moves.
CHESS 3.5 came as an improvement to CHESS 3.0 and like its pre-
decessor, it won the ACM 1971 championship. Its design performs
a depth first search to a fixed number of plies, and uses the evalua-
tion function score to select the best moves to be searched at each
depth. It uses only evaluation function as the basis for move selec-
tion and as a result misses some moves such as “sacrificial or com-
binatorial” moves which could lead to greater positional advantage
at deeper plies. It also uses fixed width w search, at a given depth d
except for a “fallback” search at ply 1 which increase the number of
moves searched to a value v > w to ensure that a defensive move is
found against an opponents threat [9]. Next came CHESS 3.6 which
employed the Shannon type-B strategy using ”depth-first search,
α-β and fixed depth trees” [26]. However, it performed woefully in
the ACM 1973 championship. This was mainly as a result of hav-
ing a ”A primitive position evaluation function” and its plausible
move generator which explored only the top best moves.
CHESS 3.6 was abandoned, and in 1973 CHESS 4.0 was released,
which came second in the First World Computer Championship in
1974 . According to [26], modifying the evaluation program in 3.6

11

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.51, October 2025

was a challenge, to overcome this, CHESS 4.0’s tree search and
evaluation function where embedded in one program and the tree
search employed full width search.
Next in line was CHESS 4.5 which used bit boards (i.e. a set of 64
binary bit string which contains information of a current chess posi-
tion e.g. a bit board can contain information of all squares attacked
by the white queen, all squares set to 1 are the squares attacked
by the white queen, thus each bit represents a square). Bit boards
helped to improve speed of chess position evaluation. Hash tables
were used to store computed values for functions with high CPU
overhead, while ensuring that a quick table assessor method was
implemented. In 4.5 the evaluation function embedded several fac-
tors e.g. material balance, hung pieces(i.e. pieces that are in danger
of being captured by the player to move), positional evaluation (this
funcion assigns values to pieces based on the squares they occupy),
piece and position centered evaluation e.g. Bonuses for rooks for
square control(number of squares attacked by the rook), kings are
evaluated for safety from attack. The tree search technique in 4.5
is split in 2 parts: the base module and the full module. Base mod-
ule conducts its search from the current board position (i.e. ply-0)
by searching book opening moves, if not found all legal moves are
generated and captures and hung pieces are analysed, then the ply-
1 search is done using the evaluation function and the moves are
ordered by the scores obtained. Next is ply-2 which is searched
using the full module, the full module does a repetition check
which ensures that moves down a line are nor repeated. It checks
the transpositions/refutations (the hash table which stores best re-
sponse (moves/refutations) for unique chess position explored) for
a match, if found retrieves the value. The full module gives priority
to searching moves with check evasion, captures, killer moves, and
a considerable number of other heuristics of which the details can
be found in [18]. CHESS 4.5 was designed to search to a depth of
up to 10 plies and thus had a degree of brute-force advantage in tree
search depth. The use of transposition/refutation tables aided in im-
proving its search speed for best moves along with various heuris-
tics employed. However according to the authors, CHESS 4.5 had
very little knowledge base (of the game of chess), likely as a result
of the computational limitation at the time.

4.2 Mr. Turk
Work began on Mr. Turk in 1967 by Garry Boos, James Mundstock
and their team at the University of Minnesota. This chess engine is
particularly interesting as it attempts to imitate human chessmas-
ters’ style of play. The program included opening game and middle
game evaluation and human chess player look-ahead analysis i.e.
analyse one line (seemingly the best for both sides) as deeply as
possible “until it is shown it is no longer the best line”[9]. This one
line look-ahead, according to [10] “is better than alpha beta prun-
ing” as it is able to find the main variation relatively quicker. Its
main weakness though, was its search tree, which has a maximum
width and depth of 5. This placed a major limitation on the number
of good moves it could find.

4.3 TECH
TECH, created by James Gillobly was the second best performing
chess engine in the 1971 and 1972 ACM (Association for Com-
puting Machinery) chess championship [18]. It uses brute-force
exhaustive search to investigate all possible plays 6-ply deep, be-
fore selecting the move with maximum advantage. It does this until
the endgame. TECH was not endowed with knowledge of opening
moves, nor end-game moves, it simply applies material balance for
its position evaluation and utilizes “the brute force of the computer

in analyzing numerous positions, rather than attempting to apply
‘intelligence’”[15]. Thus TECH set the standard for chess engines
which enforce exhaustive search to specific depth by taking advan-
tage of the processing speed of computers at the time.

4.4 OSTRICH
The chess program OSTRICH, was first developed in 1971 at
Columbia University by George Arnold and Munroe Newborn and
later refined in 1975 by Newborn [23]. It was 3rd best in the ACM
1972 championship [18]. It uses Shannon’s type-B strategy along
with the alpha-beta and gamma algorithms. OSTRICH has 3 sep-
arate programs: a BOOK program (for opening moves which was
restricted to a maximum of 5 moves), CHESS playing program (for
opening (if seleced by the human operator) and mid-game play) and
END GAME program (for end game play to force a checkmate).
According to [23], CHESS was built in 5 main parts:

—An input/output controller for user communication and to control
tree size which would be used to determine moves.

—A move tree generator, used during a game play to search
through the game tree.

—A move rating segment, which assigns a plausibility score to
each move and ranks them in a list and maximizes cut offs of
dead end moves.

—An update part for the entire program, for all pointers and lists.

After legal moves are generated, they are assigned values or a plau-
sibility score. This score is based on a number of factors, such as
captures, castling, attacks etc. After the plausibility scores are ob-
tained, the moves are ordered and updated using this score, thus
the search tree is traversed breadthwise in this order. At termi-
nal nodes, a special scoring is done based on components such as
board material, material ratio, castling, board control, minor piece
development, king defense etc. Another key feature in the design
of OSTRICH is the implementation of the gamma algorithm which
involves terminating a search down a path for which the move se-
quence down that path leads to a worse position than the best move
found at a branch higher up the tree. The node at the point of ter-
mination is assigned a terminal node score.

4.5 KAISSA
KAISSA was written by Mikhail Domskoy and his team as an im-
provement to the ITEP program in 1972 and won the First World
Computer Chess Championship in 1974 [18, 23]. This program was
designed to search the game tree extensively (maximum depth of
30) and apply tree pruning techniques at every level of the game
tree search (i.e. increase depth and reduce width of the game tree).
It applies the min-max algorithm and α-β heuristics to prune the
tree at non-terminal nodes. One of these heuristics involves setting
an evaluation limit for possible chess moves before the game tree
search begins, thus all moves with values outside this limit are not
included in the game tree. However, setting this limit may result in
a decrease in a number of forcing moves and other tactical moves.
The program also employed a move ordering consideration. This
ordering is based on the assumption that if a move is best in several
variations, then it would be the best move for the current variation
being considered [3]. For each level 10 moves are stored as best
moves and placed at the head of the move list. This greatly helped
to reduce CPU-time in the tree search.

12

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.51, October 2025

4.6 Belle
The first version of Belle was written in 1973 and was revised in
1974, 1978 and 1980 [6]. It won the 1978, 1980, 1981 and 1982
ACM championships as well as the 1982 world championship [18].
It was the first computer to become a Chess master. The 1980 ver-
sion had specially designed hardware, utilizing the modern VLSI
microchip technology, which gave it speed advantage, having the
ability to search about 160,000 chess positions per second.
The custom Belle hardware has the α-β search and move genera-
tion encoded in the hardware. Belle is also endowed with opening
book moves that are used for the first few moves in a game. It is de-
signed such that there are specific registers to store material values
for all pieces on the board, accumulators for incremental evalua-
tion, which is updated each time a move is made, board positions
are stored using 48-bit hash code, which aids a fast evaluation of
the current board position. It also employs a transposition table,
which aids quick retrieval of evaluated positions and checks for al-
ready evaluated positions to prevent repetitions. In order to select
a best move, it does a full width α-β search and at terminal nodes
it does a quiescence search for captures, check reliefs etc. A look
up on the transposition is done at non-quiescent terminal nodes, to
check for repetitions in a descendant node inorder to call a draw or
to update the α-β parameters. Belle’s major advantage over other
computer chess engine was its processing speed. This advantage
was also taken by the next chess engine to be considered - Cray
Blitz.

4.7 Cray Blitz
Cray Blitz developed in 1975 became the 4th and 5th World Com-
puter Chess Champion. Similar to Belle’s engine, Cray Blitz does
a full-width tree search. However, it uses ”iterative deepening al-
gorithm for timing control” [14]. Cray Blitz beat Belle at the 4th
World Computer Chess Championship, even though Belle had a
faster node search speed per second (160,000 nodes/sec against
50,000 nodes/sec), Cray Blitz had a unique method of eliminating
quiescent searches (at the depth limit) which it considers as futile,
this reduces the search tree width at the quiescent depth. However
it goes 2 plies deeper at quiescent depth to find checks and avoid
mates.
Cray Blitz maintains 3 hash tables: a transposition table, a pawn
hash table and a king safety table. The transposition table prevent
repeated evaluation of an identical or similar chess positions. It
maintains a lower/upper bound value for good positions, any po-
sition which falls out of range is cutoff. This helps to save time to
generate moves for positions which are not fit for consideration.
“It stores the position, its value and a suggested best move for the
position” [14].
Pawn structure information is stored separately in the pawn hash ta-
ble. This helps to avoid repeating pawn structure evaluation, saving
evaluation time. Evaluating the King’s safety, defense and attack
can result in considerable overhead cost. Having this information
stored in the King safety hash table greatly reduces this cost, as
many of the king safety positions are similar.
Another key feature is its multiprocessing algorithm. The search
tree is split into subtrees at ply-1 and shared between the multipro-
cessors and examined for best moves. Every ply move which has
been examined is marked as a tried move, if it is better than the cur-
rent best, this is saved as the new current best move and the score
is shared with the other processor to increase alpha-beta cutoffs.
One down-side to this algorithm is that, when one processor exam-
ines the current best move, the other has to examine the second,

third, fourth, etc. If the latter obtains a better score before the tim-
ing elapses, this move is stored as the best, even when the former
has not been fully examined and may have obtained the best score.
This challenge can be handled by giving extra time to examine the
first move to completion.
A cleverly designed scoring function for endgames involving
pawns. These functions are designed according to different
endgame variations e.g. A pawn and king vs. king, passed pawns
and King vs. King, passed pawns and king on both sides etc. The
function includes counting steps for pawns to reach promotion and
determine if this can be stopped by opponent king or protected by
its own king, pawn races(first side to promote a pawn) was also
factored into the scoring function.

4.8 HiTech
HiTech was built in Carnegie Mellon University in the 1980s and it
became the first computer to achieve a USCF(United States Chess
Federation) Senior master rating [4]. It won the North Ameri-
can Computer Chess Championship (NACCC) (formerly known
as ACM) in 1985, 1987 and 1988. It had the ability to search
175,000 chess positions per second—[13]. In HiTech, the search
engine was etched into its specialized hardware with the use of
Very Large-Scale Integration (VLSI) design principles. Generat-
ing moves, evaluating positions, ordering and selecting moves were
done using parallel processing, which greatly sped up the pro-
cesses [8]. A typical move generation could take up to 4000 move
computations using about 16,000 wires of cpu hardware for the
logic computations. These computations would require about 2000
packages with the TTL(Transistor-Transistor Logic) technology at
the time but with the VLSI technology (where several thousand
gates could be implemented on one chip) move generation compu-
tation could be split between just 64 chips! Hitech was more than a
brute-force machine which had the ability to search through many
variations quickly, it was also blessed with chess knowledge which
enabled it play good tactical chess.
The key components of the Hitech chess engine are its move gen-
eration, ordering and selection. All possible moves to a square on
the board is handled by a chip, thus 64 chips generate the moves
for the 64 squares on the board. The generated moves are then or-
dered based on a number of heuristics which determines the value
of moves e.g. moves involving a capture has a value equal to the
value of the captured piece, if a recapture occurs, then the value of
the move is the difference between the piece and its capture, mov-
ing to safe squares have a higher priority over recaptures, moving
enprise pieces to safe squares are also highly valued as well as mov-
ing pieces to centre squares to gain more board control. The move
ordering is done per position basis, so each time a move is made,
the move ordering is recalculated and updated. Here is an example
of one heuristic order value calculation of a move Vo based on the
destination square.

Vo =


0, safe squares

C, a piece is captured

C −M, a recapture occurs

C −M +Ex, a sequence of exchanges occurs

where C is the value of the captured piece, M is the vale of the
moving piece, Ex is the material value difference when a sequence
of exchanges occur.
In move selection, the Hitech engine has a detailed evaluation func-
tion for its positional evaluation. Some parts of its evaluation func-

13

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.51, October 2025

tion has components similar to that of Mac Hack VI such as mate-
rial balance, pawn structure (isolated pawn, backward pawn, dou-
bled pawn, open and semi-open files, passed pawn and king safety).
Also included is board control (calculated as

∑
i wi ·vpi ·ci, where

i ranges over all squares wi is the weight of the square, vpi is
the value assigned to the piece occupying the square and ci is the
control factor) and mobility (given by

∑
p fp(

∑
d c(d)) where p

ranges over all pieces, d ranges over all legally accessible squares
and fp the number of safe squares p can access)[8].
Hitech’s performance rests mainly on its detailed position evalua-
tion function which embeds considerable amount of chess knowl-
edge and its search speed

5. DISCUSSION
Shannon classified game tree search into 2 basic classifications.
One was a brute force search of the entire game tree width and
depth to determine the best move using min-max algorithm (ma-
chine style). The other was a strategic in-depth line of investigation
of a series of moves to determine it’s viability (human style). Both
search styles were further improved with the use of Newell et al’s
application of alpha-beta pruning to the game tree search. Build-
ing in chess knowledge: opening, mid-game and end-game moves
into chess engines, endowed machines with more strategic style
of play as seen in the case of Ostrich, but in championships Os-
trich has been beaten by machines with less chess knowledge and
more brute force search. In brute force search of the chess game
tree some computations are a waste of computational effort e.g. nu-
merous variations in chess have same evaluation, best-response and
refutation, evaluating similar variations is simply a duplication of
effort. The use of Hash tables to store these computed results elim-
inates re-computation for similar variations, thus improving search
and response speed.
VLSI micro chip technology, equipped chess engines with greater
search and response speed. The computer chess tournament results
from the early 1980s, showed the superiority of chess engines de-
signed with the VLSI hardware. They could traverse the width of
game tree to deeper plies at a faster speed than their rival chess
engines. Crayblitz, Belle, HiTech took advantage of this technol-
ogy in their design. It is interesting to note that most of the chess
engines which dominated the championships are those which took
advantage of improved computational speed to search deeper down
the game tree, with the inclusion of pruning techniques as in the
cases of ITEP, Kaissa, Chess 4.5, Cray Blitz, Belle and HiTech.
Mr. Turk was designed to analyse one line down the tree as deeply
as possible until it is found not to be viable. The authors of Mr.
Turk claim that it’s more efficient than the alpha beta pruning [9]
as it finds the main variation relatively quicker however, it was the
least performing chess engine in the 1971 ACM championship. Its
poor performance may have been as a result of the limitation placed
on the tree depth (5 plies). This gives rise to an important question:
Is a full width, alpha-beta and relatively deeper ply search of the
game tree, a necessary condition in the design of a computer chess
champion? Can a chess engine designed with Shannon’s type B
strategy outperform that designed with type A of same tree depth
and other conditions being equal? Modern machines may already
have answers to these questions.

6. SUMMARY OF CHESS PROGRAMS AND
ALGORITHMS FROM 1947-1986

The first 25 years in computer chess development have witnessed
impressive developments, from Shannon’s simple chess position

evaluation function involving just material advantage to HiTech’s
detailed move generation, ordering and selection, and intricate po-
sition evaluation function. At the time Turing penned down his con-
ceptual chess algorithm which analyzed moves to a depth of 2 plies,
he may never have imagined that in less than 2 decades machines
would be able to analyze chess game trees to a depth of 30 plies
(as in KAISSA)! These developments in chess engine designs are
summed up in Table 2.

14

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.51, October 2025

Table 2. Chess engines (Implemented/Conceptual), major features and win rate
Chess Engine
(Implemented/Conceptual)

Main Features Win ratio (calculated us-
ing beta-binomial model
(Beta(5, 5) [21])

Shannon’s Type A Simple game state evaluation based on material advantage and one move min-max look-
ahead

−

Shannon’s Type B Same Evaluation as type A with application of forward pruning of the game tree, to in-
vestigate only a few promising branches

−

Turing’s hand Simulation Material advantage for state evaluation and positional evaluation for ties in state evalua-
tion and 2-ply deep look-ahead.

−

Bernstein’s 4-ply look-ahead with game state evaluation based on human-like reasoning. −
Newell et al’s Goal based evaluation and game tree search optimization using alpha-beta pruning −
Baylor et al’s Goal based evaluation to achieve a checkmate −
Kotok-McCarthy’s Shannon’s type-B strategy with alpha-beta and forward pruning ≈ 0.43

ITEP Shannon’s type-A strategy with full width search ≈ 0.57 [25]
Mac Hack Six Detailed game state evaluation involving material balance, king safety, pawn structure,

center control and other tactical factors, fixed width search and alpha-beta pruning
≈ 0.64 [11]

CHESS 3.0 In-built chess knowledge for opening moves and alpha-beta pruning. 0.62 [30]
CHESS 3.5 Depth first-search of game tree to fixed depth and fixed width 0.62 [31]
CHESS 3.6 Same as 3.5, with the addition of alpha-beta pruning 0.62 [31]
CHESS 4.0 Same as 3.6 but with an improvement to program structure to improve execution speed ≈ 0.64 [28]
CHESS 4.5 Bit boards for game state representation, hash tables for computed state evaluation and

more detailed (compared with 4.0) evaluation function
0.64 [29]

MR. TURK Human-like look-ahead analysis with opening and middle game evaluation 0.38 [22]
TECH Fixed depth, full width brute-force search ≈ 0.55 [15]
OSTRICH In-built chess knowledge of opening, middle and end game moves. Evaluation of moves

involves plausibility analysis and reordering in the game tree. Alpha-beta and gamma
algorithms optimize the game tree search.

≈ 0.45 [18]

KAISSA Extensive game tree search to maximum depth of 30 plies, with alpha-beta pruning and
move ordering

≈ 0.64 [18]

Belle Full width alpha-beta search with the use of transposition tables for retrieval of evaluated
positions. Specialized hardware for quick evaluations

≈ 0.66 [18]

Cray Blitz Full-width tree search with iterative deepening algorithm. Use of transposition tables for
quick retrieval and custom hard ware for speedy evaluations

≈ 0.71 [18]

Hitech Serial and parallel position evaluation using VLSI chips, detailed evaluation 0.72 [18]

7. FUTURE WORK
Computer chess is a field that is continually improving. The his-
tory considered so far, covers the early days of programming com-
puter chess. This research has shown that brute force machines have
dominated computer chess championships in this era. Are the more
modern engines able to apply better heuristics and use less force in
their search of good moves? The next research paper would bring
the history of computer chess engines up to date and attempt to
answer this question.

8. REFERENCES
[1] Bernstein A., Roberts M. de V., Arbuckle T., and Belsky M.

A. Chess Playing Program for the IBM 704. Western Joint
Computer Conference, 157-159, 1958.

[2] Newell A., Shaw J. C., and Simon H. A. Chess-playing Pro-
grams and the Problem of complexity. IBM J. Res. Dev.,
2(4):320–335, October 1958.

[3] Arlazarov V.L. Donskoy M.V. Adelson-Velskiy, G.M. Some
methods of controlling the tree search in chess pro-
grams. In: Levy, D. (eds) Computer Chess Compendium.
Springer, New York, NY. https://doi.org/10.1007/978-1-4757-
1968-0 14, 1988.

[4] Berliner H. J. Hitech Becomes First Computer Senior Master.
AI Magazine, 9(3):85, Sep. 1988.

[5] Shannon C. Programming a Digital Computer for Playing
Chess. Philosophical Magazine Ser.7, Vol. 41, No. 314 -
March, 1950.

[6] Condon J. and Thompson K. Belle Chess Hardware. In: Levy,
D. (eds) Computer Chess Compendium. Springer, New York,
NY. https://doi.org/10.1007/978-1-4757-1968-0 28, 1988.

[7] Greenblatt R. D., Eastlake D. E., and S. D. Crocker. The
Greenblatt Chess Program. Proceedings of the FJCC, 31,
801-810., 1967.

15

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.51, October 2025

[8] Ebeling C. All the Right Moves: A VLSI Architecture for
Chess. PhD thesis, Carnegie Mellon University, Pittsburgh,
PA, May 1986. Ph.D. Thesis. Winner of the 1986 ACM Doc-
toral Dissertation Award. Later published by MIT Press in the
ACM Distinguished Dissertation Series (1987).

[9] Boos G., Cooper D. W., Gillogly J. J., Levy D. N. L., Ray-
mond H., Slate D. J., Smith R. C., and Mittman B. Computer
Chess Programs (panel). Proc. 1971 Annual ACM Confer-
ence, 25, 97-102., 1971.

[10] Boos G., Cooper D. W., Gillogly J. J., Levy D. N. L., Ray-
mond H., Slate D. J., Smith R. C., and Mittman B. Computer
Chess Programs (panel). Proc. 1971 Annual ACM Confer-
ence, 25, p.100. par. 8, 1971.

[11] Richard D. Greenblatt and Donald E. Eastlake III. The green-
blatt chess program (mac hack vi). SIGART Newsletter, (6):8,
October 1967.

[12] Davidson H.A. A Short History of Chess. David McKay:
Dysart, UK, 2012.

[13] Hsu, F. Two designs of functional units for vlsi based chess
machines. Technical Report CMU-CS-86-103, Carnegie Mel-
lon University, Department of Computer Science, Jan 1986.

[14] Hyatt, R.A., Gower, A.E. and Nelson, H.L. Cray blitz.
In: Levy, D. (eds) Computer Chess Compendium. Springer,
New York, NY. https://doi.org/10.1007/978-1-4757-1968-
0 10, 1988.

[15] Gillogly J.J. The Technology Chess Program. Artificial Intel-
ligence, 1972.

[16] Harkness K. and Battell J. S. This made Chess History. Chess
Review. February-November, 1947.

[17] Kotok, A. A Chess Playing Program for the IBM 7090 Com-
puter, pages 48–55. Springer New York, New York, NY, 1988.

[18] Levy, D., editor. Computer Chess Compendium. Springer-
Verlag, Berlin, Heidelberg, 1988.

[19] Adel’son-Vel’skii G. M., Arlazarov V. L., Bitman A. R., Zhiv-
otovskii A. A., and Uskov A. V. Programming a Computer to
Play Chess. Russian Math. Surveys, 25:2 (1970), 221–262,
1970.

[20] Botvinnik M. M. Computers, Chess and Longrange planning.
New York: Springer Verlag, 1970.

[21] Taboga M. Beta-binomial distribution, 2021. Accessed: 2025-
10-13.

[22] B. Mittman. Computer chess programs (panel). PDF archived
at The Computer History Museum, 1971.

[23] Newborn M. Computer Chess. New York: Academic Press,
1975.

[24] Newborn, M. Mac Hack and Transposition Tables.In: Kas-
parov versus Deep Blue. Springer, New York, NY, 1997.

[25] SIGART. Progress report on the kotok–mccarthy vs. itep
chess match. SIGART Newsletter, (4):11, June 1967.

[26] Slate D. J. and Atkin L. R. CHESS 4.5—The Northwestern
University chess program, pages 82–118. Springer New York,
New York, NY, 1983.

[27] Van Den Herik, J. Computer Chess, the Chess World, and Ar-
tificial Intelligence. Ph.D. thesis, Delft University of Technol-
ogy. Academic Service, The Hague. ISBN 90 62 33 093 2. (in
Dutch), 1983.

[28] Atkin L. W. and Slate D. J. Chess 4.0 at the 1973 ACM north
american computer chess championship. In Proceedings of

the 4th Annual ACM North American Computer Chess Cham-
pionship, New York City, NY, 1973. Association for Comput-
ing Machinery (ACM).

[29] Atkin L. W. and Slate D. J. Chess 4.5 at the 2nd world com-
puter chess championship. In Proceedings of the 2nd World
Computer Chess Championship, Toronto, Canada, 1976. In-
ternational Federation for Information Processing (IFIP).

[30] Atkin L. W., Slate D. J., and K. D. Gorlen. Chess 3.0:
Northwestern university chess program. In Proceedings of the
1st Annual ACM North American Computer Chess Cham-
pionship, pages 1–3, ACM National Conference, Houston,
Texas, 1970. Association for Computing Machinery (ACM).

[31] Atkin L. W., Slate D. J., and Gorlen K. Chess 3.5 and 3.6 at the
1972 ACM north american computer chess championship. In
Proceedings of the 3rd Annual ACM North American Com-
puter Chess Championship, Sheraton Boston Hotel, Boston,
MA, 1972. Association for Computing Machinery (ACM).

[32] Baylor G. W. A Computer Model of Checkmating Behaviour
in Chess. In A. D. De Groot and W. R. Reitman, editors,
Heuristic Processes in Thinking. Nauka, Moscow, 1966.

16

	Introduction
	Definition of Chess Terms
	Early work on Computer Chess Algorithms from 1947 to 1969
	Shannon's work
	Turing's hand simulation
	Bernstein Chess Program
	Newell et al and the Alpha-Beta algorithm
	A Chess Mating Program
	The Kotok-McCarthy Chess Program Versus ITEP
	Mac Hack Six Chess Program

	 Computer Chess Champions in the 1970s and 1980s
	CHESS 3.0, 3.5, 3.6, 4.0 and 4.5
	Mr. Turk
	TECH
	OSTRICH
	KAISSA
	Belle
	Cray Blitz
	HiTech

	Discussion
	Summary of chess programs and algorithms from 1947-1986
	Future Work
	References

