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ABSTRACT 

Field verification and maintenance of offshore structures, 

including subsea pipelines, risers, and wind turbine 

foundations, are required to keep the operations safe, protect 

the environment, and prolong the life of the assets. Historically, 

inspections concentrated on diver commentaries and physical 

documents and photographs, which, although rudimentary, 

suffered from subjectivity, inconsistency, and long-range data 

storage. Software for inspections was a positive development, 

which, for the first time, enabled standardized performance for 

data capture, systematization of data and metadata, and 

integration of ROV and sensor data. Systems like FDVR, 

COABIS, and SENSE enhanced the ability of data capture and 

retention and, thereby, improved the decision-making for 

operators and regulators. In recent years, the offshore sector has 

been going through a new phase because of the influence of 

artificial intelligence and machine learning. These models are 

capable of assisting with anomaly detection, corrosion 

assessment, and fatigue prediction with abundant multiple 

untidy data from video, ultrasonic, acoustic, and various 

environmental sensors. More of these machine-learning 

systems are used within the digital twin technology and 

framework, which helps with real-time observation and 

monitoring, and proactive warning systems. More advanced 

subsea analytical systems, combined with conventional 

inspection data, allow operators to transition from unplanned 

maintenance to proactive predictive maintenance, which 

optimizes asset management, minimizes unplanned outages, 

and significantly increases safety. This analyzes the evolution 

of offshore inspection practices from manual to AI-driven 

approaches and the continuities between traditional inspection 

records and modern inspection predictive data systems. While 

challenges related to data quality and standardization, 

workforce training, and data security protection are recognized, 

the potential gains in resilience, cost effectiveness, and 

regulatory compliance are compelling. Integration of legacy 

data with digital inspection systems and AI-driven analytics 

evokes a paradigm shift in offshore infrastructure management 

by utilizing data as the principal element for safe, economical, 

and environmentally responsible operations. 
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1. INTRODUCTION 
The most critical aspect of offshore infrastructure is the 

sustained safe operation of coupled oil and gas production 

systems with renewable assets (Amaechi et al., 2022; 

Mahmood et al., 2023). Subsea energy interlinks of pipelines, 

risers, manifolds, and wind turbine foundations are perhaps the 

most sophisticated offshore structures, and the harshest and 

most unpredictable of Earth’s environments (KM et al., 2022; 

Zhang et al., 2024). These include high-altitude and high-

pressure conditions, dynamic ocean currents, corrosion-

inducing seawater, and mechanical fatigue from waves and 

wind (Liu et al., 2023; Yu et al., 2023), which ultimately lead 

to degradation and failure. Any one of these assets having a 

structural or functional failure can result in enormous 

environmental pollution, production downtime, and risks to 

human life. This is why, for a long time, offshore asset 

management has been synonymous with the practice of 

monitoring the integrity of assets and decay signals to the point 

of maintaining critical infrastructures and extending their 

operational life (Adewoyin, 2022; Igbadumhe and Feijo, 2023). 

The essence of these practices is data. Data becomes the only 

proof of the condition of an asset at a specific point in time and 

a factual basis around which informed understanding of risk 

and its management, maintenance scheduling, and regulatory 

compliance are built (Sasidharan et al, 2022; Kothandapani, 

2022; Cornwell et al, 2023). The data recorded in diver logs 

(Dalhatu et al., 2023), remotely operated vehicles (ROV) 

surveys, data classified and analyzed Form of Non Destructive 

Testing (NDT), and sensory equipment are the decisive 

components of the inspection. Inspection depends on the 

effectiveness of the data. The evolution of data in offshore 

inspection within the last decades has transformed the 

perception of asset integrity from record keeping to a digital, 

holistic approach. Advanced operators no longer wait for 

failure to occur to begin maintenance scheduling; they are able 

to monitor and analyze data in real time to schedule proactive 

and predictive maintenance (Sandu et al., 2023; Zhou et al., 

2024). 

Records of the initial stages of offshore inspections focused on 

the use of written logs and annotated pictures, which were then 

put together in a report. This practice had a myriad of 

limitations owing to the subjectivity and difficulty in recording 

a reliable historical record, and discrepancies across inspectors. 

They were, to an extent, unprecedented in their use of tactile 

and visual methods of assessment. The expansion of the 

offshore sector in scale and complexity brought on abundant 

demand for standardization and accessibility of inspection data, 

which catalyzed the use of digital inspection platforms. Such 

systems brought in the use of centralized repositories and 

structured metadata formats, which visual, acoustic, and 

measurement data into cohesive inspection packages. 

Enhancement in traceability and consistency across inspection 

campaigns, the software platforms such as COABIS, SENSE, 

and Field Data Validation and Reporting (FDVR) augmented 

https://ijca.phdfocus.com/mtsAuthor/paper/75e25b77-95cf-4239-8f43-a8c1ff5bb4be/
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regulatory oversight and improved inter-campaign 

comparability. 

The fourth industrial revolution is heavily influenced by 

artificial intelligence (AI) and predictive analytics. Algorithms, 

paired with digital twin technology, have advanced to the point 

where inspection data is more than a series of still images of 

the condition of an asset (Hosamo et al., 2022; Hagen and 

Andersen, 2024). Inspection data is now processed in real-time 

and is used to identify anomalies, corrosion rates, simulate 

structural fatigue, and warn of potential asset failure. AI 

systems analyze and synthesize datasets that comprise high-def 

ROV videos, cathodic protection scans, environmental data, 

and ultrasound scans to construct an asset integrity assessment 

(Abdullah et al., 2024; Garrison et al., 2024). Thus, the 

evolution data is not only technological but has now become a 

strategic asset in the efficiency, uptime, cost, and safety 

optimization of offshore operations. 

This is intended to document the changes to deep-sea 

inspection methods of the use of paper logs through manual 

inspection and the use of software to perform digital 

inspections, to the current use of software, and the onboarding 

of AI-powered predictive systems. This also illustrates the 

transformation of data from an obsolete and passive record to a 

pivotal and versatile facilitator of proactive asset management. 

This paper attempts to make a case for the critical role that data-

centric strategies and frameworks play in ensuring resilience 

and sustainability within the Offshore Sector. Considered 

Holistically, the stakes of integrity management for regulatory 

compliance and the multifaceted offshore industry remain 

unparalleled (Bechtsis et al., 2022; Ake, 2024). 

2.1 Evolution of Offshore Inspection Data 

Practices 
The management of asset integrity is constantly evolving, as is 

the management of inspection data, and the offshore energy 

industry is no exception. Inspection data is being collected, 

managed, and utilized in previously unprecedented manners. 

Reliance in the offshore industry and the sophistication of 

structures have fueled advancement in offshore infrastructure, 

as has the rapid growth of structural engineering and digital and 

analytical technologies. Inspection practices have changed over 

the decades; instead of utilizing handwritten records and diver 

logs, smart and data-driven predictive approaches alongside 

advanced AI technology within digital twin frameworks are 

being utilized, as shown in Figure 1. The use of AI in inspection 

systems predicts data more accurately, contributing to decision-

making. Differentiating between manual logs and records, 

digital inspection, and AI-based predictive systems illustrates 

the evolution of inspection data collection in offshore settings 

(Mahadevkar et al., 2024; Jenifer et al., 2024). 

Record keeping in the offshore operations in the early decades 

relied largely on diver surveys. Critical sections of offshore 

operations were captured and documented through handwritten 

logs, sketches, and even film documentation (Nigam et al., 

2021; Balasubramanian, 2023). These logs and reports were the 

primary evidence of the operational assets in their working 

condition, as they were thoroughly compiled into the technical 

dossiers to be sent to regulators and operators for operational 

review and compliance. 

Manual techniques remain invaluable for understanding the 

condition of underwater infrastructures; however, these 

techniques are far from perfect. Subjectivity in the human 

perception process introduced unnecessary gaps into the 

inspections; two divers could look at the same structures and 

see two completely different things, and still report the same 

anomalies. Interpretation of the write-ups after inspections had 

no meaning as the documents often were vague. Documents 

lacked structure and organization, and thus, the storage and 

paperwork were difficult to manage due to the fact that the 

underlying parameters and their various forms made it prone to 

losing data in floods and fires, files could simply be misplaced, 

and lastly, the preservation of the archives was done poorly. 

 

Figure 1: Evolution of Offshore Inspection Data Practices 

The variability of each inspection cycle is also a critical factor. 

Language and formatting of documents provided in the 

inspections made it difficult to analyze and detect deterioration 

in the structures over periods of time (Lamm et al., 2022; 

Musaev et al., 2023). Photographs, when provided, were often 

missing critical elements such as the depth of the picture of the 

structure, the area where the structure was, or the weather. 

During the late 1970s and 1980s, these structures became more 

complex, and the inefficiencies observed in the 10 years prior 

were no longer acceptable. The need for precise and clear 

digital inspection documents shifted the way we approach 

inspections. 

The 1990s saw the beginning of offshore inspections evolving 

from relatively rudimentary processes to much more advanced 

practices with the advent of computerized logging systems. The 

initial forms of digital systems overlaid paper logs with 

structured databases of the logs, which subsequently made 

inspections much more organized and easier to access. These 

systems supported the user in standardizing the use of other 

terminology, consistent templates, and incorporating metadata 

databases about the logs, such as GPS, Datetime, and other 

environmental data (Sidol et al., 2021, and Shao et al., 2023). 

The use of ROVs in workflows as systems with video cameras, 

sonar, and elementary NDT sensors was a crucial development. 

ROVs augmented the ability to gather hundreds of data points 

in real time from high-risk subsea locations. With the ability to 

digitally preserve and later analyze complex systems, ROVs 

improved the ability of engineers and other stakeholders to 

conduct subsea analysis (Jahanbakht et al, 2021; Kabanov and 

Kramar, 2022). Driverless operations improved the safety and 

reliability of subsea inspections. 

Specialized software platforms like COABIS, Field Data 

Validation and Reporting (FDVR), and SENSE made perimeter 

inspections and other inspections more digitalized COABIS 

and SENSE made captures and real-time annotations of videos 

and reports automated. All of them, by centralizing digital 

stores, made tracing multiple inspections more efficient. They 
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also enabled cross-operator, cross-field, and condition 

benchmarking of assets (Frank, 2022, Ellahi et al., 2023). 

The digital inspection software streamlined workflows. It also 

integrated devices into the databases to cut redundancy and 

print errors. All (or most) of them made past inspection data 

reliable for audits, so it kept the data accessible even after 

multiple time spans. It even made benchmarking easier for 

multiple operators, which improved safety and efficiency 

industry-wide. Digital systems made compliance with 

regulations easier, especially in the case of the U.K. and 

Norway, where evidence-based validation of offshore integrity 

management was required. 

Progressing from earlier stages, digital inspection systems were 

still mostly descriptive. They were capable of recording and 

storing data, but offered little in the way of predictive 

forecasting and insight generation. More advanced methods 

were needed to capture and correlate data generated during 

inspections and provided by ROVs and sensors to gain 

actionable intelligence from the inspection data generated from 

ROVs and sensors (Xiang et al., 2022; Ma et al., 2023).   

The most recent phase of the development of offshore 

inspection practice is the application of artificial intelligence 

and predictive analytics to offshore inspections (Fazle et al., 

2023; Aditiyawarman et al., 2023). Machine learning is 

becoming critical for anomaly detection and condition 

forecasting, due to the growing abundance of quality and 

volume data streams provided by ROVs, AUVs, and subsea 

sensors. 

AI technologies can analyze different types of data, including 

sounds, measurements of the ultrasonic thickness of walls, 

cathodic protection readings, and videos. These and many other 

types of data can be merged together to form large databases, 

containing the information about the interactions of 

mechanical, chemical, and environmental factors which lead to 

the degradation of a particular substrate, as shown in Table 1. 

With the help of the machine learning derived algorithms, the 

datasets can monitor the early stages of the coating corrosion, 

coating detachment, and any possible structural weakness 

which other people would not be able to notice (Islam et al., 

2022, Gbagba et al., 2023).  

Digital twin frameworks construction has further enhanced the 

offshore inspection capability of Artificial Intelligence.  These 

are real-time smart models of physical assets that are updated 

and improved with data from inspections and sensors. 

Equipped with the appropriate predictive analytics algorithms, 

predictive models can help operators determine degradation 

processes, estimate time to failure, and assess the impact of 

various maintenance action plans on the system. Predictive 

models help overcome the limitation of relying on historical 

data and past trends observed in the description models, which 

do not offer actionable strategies to ensure sustainability 

(Kubrak et al., 2022, Ahern et al., 2022.) 

The benefits associated with AI-driven predictive systems are 

profound. The ability to identify failure hindrances at early 

stages enables maintenance to be planned and scheduled before 

breakdowns and other expensive malfunctions. This decreases 

unplanned downtime, increases the safety of operations, and 

prolongs the life of offshore assets. Predictive systems improve 

the efficiency of costs by optimizing the scheduling of 

inspections of components of higher risk tiers (Suryadevara 

2021; Korada and Somepalli 2022). Furthermore, AI improves 

the specificity and consistency of detecting anomalies, which 

lessens the reliance on the assessment of a single inspector.   

Still, challenges persist with completely realizing the potential 

of systems driven by Artificial Intelligence. The quality of data, 

the standardization of operators, and the available 

interoperability of software platforms are real concerns. The 

workforce needs to be trained so that engineers can understand 

and implement the AI insights that are generated. 

Cybersecurity becomes a critical scenario in the hands of 

engineers as more data about inspections is being collected and 

stored in the cloud systems (Dhoni and Kumar 2023; 

Karunamurthy et al., 2023). 

The development of operational procedures for offshore 

inspection data still strives for enhanced dependability, 

effectiveness, and safety workflows. Subjectivity and limited 

comparability impacted the formulation of documenting asset 

condition by the use of Manual logs, coupled with paper 

records. Furthermore, the introduction of digital inspection 

software augmented the use of standardization, traceability, 

and data assimilation, especially with ROVs and organized 

databases. Today, AI-based predictive systems profoundly shift 

the paradigm by using proactive asset management through 

sensor fusion and digital twin integration for anomaly 

detection. These examples position data as more than a data 

record, as evidenced by these advances, but rather as a 

predictive asset for forecasting and counter-risking in more 

intricate offshore environments (Rawson and Brito, 2022; 

Hadjoudj and Pandit, 2023). 

Table 1: AI-Based Predictive Systems 

Theme Key Aspects Benefits Challenges 

Emergence 

of Machine 

Learning 

and 

Artificial 

Intelligence 

in Anomaly 

Detection 

- Deployment 

of supervised 

and 

unsupervised 

ML models.- 

Automated 

classification 

of defects in 

subsea 

pipelines, 

welds, and 

structures.- Use 

of AI for 

anomaly 

pattern 

recognition 

beyond human 

capability. 

- Detects 

subtle and 

early-stage 

anomalies.- 

Enhances 

accuracy and 

consistency in 

inspections.- 

Reduces 

reliance on 

manual 

interpretation. 

- Requires 

large, high-

quality training 

datasets.- 

Potential for 

algorithmic bias 

and false 

positives.- High 

computational 

demand. 

Integration 

of Sensor 

Fusion with 

Predictive 

Analytics 

- Combining 

acoustic, 

ultrasonic, 

thermal, and 

visual sensors.- 

Cross-

validation of 

anomalies 

across multiple 

data sources.- 

Advanced 

analytics 

- Improves 

reliability of 

anomaly 

detection.- 

Reduces 

uncertainty 

through 

multimodal 

confirmation.

- Enables 

continuous 

monitoring 

- Complex 

calibration of 

heterogeneous 

sensors.- 

Synchronizatio

n and data 

alignment 

issues.- Higher 

system 

integration 

costs. 
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Theme Key Aspects Benefits Challenges 

pipelines for 

real-time 

decision 

support. 

even in noisy 

environments. 

Application 

in Digital 

Twin 

Framework

s for 

Continuous 

Condition 

Monitoring 

- Virtual 

replication of 

offshore assets 

using AI-

enhanced 

models.- Real-

time 

synchronizatio

n between 

physical and 

digital asset 

states.- 

Simulation of 

degradation 

and failure 

scenarios. 

- Enables 

predictive 

maintenance 

strategies.- 

Facilitates 

long-term 

asset lifecycle 

planning.- 

Provides 

visualization 

for operator 

training and 

risk 

assessment. 

- High demand 

for 

computational 

power and 

storage.- 

Dependence on 

accurate 

baseline 

models.- 

Cybersecurity 

and data 

integrity 

concerns. 

Advantages

: Early 

Failure 

Prediction, 

Reduced 

Downtime, 

and 

Optimized 

Inspection 

Scheduling 

- Forecasting 

equipment 

failure before 

critical 

breakdown.- 

Automating 

inspection 

planning based 

on risk levels.- 

Adaptive 

scheduling 

aligned with 

real-time asset 

health. 

- Minimizes 

unplanned 

maintenance 

costs.- 

Increases 

offshore 

operational 

efficiency.- 

Extends asset 

lifespan while 

ensuring 

safety. 

- Requires 

cultural and 

organizational 

shift toward 

data-driven 

maintenance.- 

Initial 

investment in 

AI 

infrastructure is 

high.- 

Uncertainty in 

regulatory 

acceptance. 

 

2.2 Bridging Traditional Inspection with 

Smart Subsea Analytics 
Customarily, the offshore energy sector relied on manual 

inspection logs, observing divers, and reports on the condition 

of subsea infrastructure done at varying intervals. Though these 

methods have worked in the past, the complexity of aging 

assets, coupled with growing operational complexity and the 

industry's shift toward renewables, makes these techniques less 

than useful. Recent advancements in smart subsea analytics 

driven by AI, the cloud, and real-time sensors provide the 

opportunity to change inspection workflows from reactive to 

predictive frameworks. Bridging the observational inspection 

legacy data, upon which historical asset integrity management 

rests, with current digital technologies is a significant 

challenge, as shown in Table 2. These transition strategies, 

bordering technologies, and case studies on the effective 

incorporation of traditional inspection with advanced smart 

subsea analytics. 

For most offshore operators, decades worth of inspection logs, 

diver notations, and disparate data formats that are either frozen 

in static reports and spreadsheets, or archived are a common 

occurrence. It is imperative that these legacy datasets are 

reformed into usable digital assets with structured data 

curation, metadata tagging, and systems for digitization. Data 

governance policies that clarify ownership, quality control and 

procedures, and standardization across the organization must 

be a primary focus. To contextualize the methodology of 

Kumaran and Machireddy, companies are increasingly 

utilizing Extract-Transform-Load (ETL) pipelines to convert 

unstructured inspection data into defined databases. Another 

strategy for improvement focuses on the digitization of 

prioritized, high-value datasets like corrosion reports and 
ultrasonic testing logs, as these predictive models contain 

critical information. In this manner, organizations are able to 

develop inspection databases that provide advanced analysis 

based on historical data. 

Table 2: Bridging Traditional Inspection with Smart 

Subsea Analytics 

Theme Key Aspects Benefits Challenges 

Transition 

Strategies for 

Companies 

with Legacy 

Inspection 

Data 

- Migration of 

paper-

based/manual 

logs into 

digital 

databases.- 

Standardizatio

n of archival 

inspection 

formats.- 

Training 

workforce to 

integrate 

historical data 

into modern 

systems. 

- Preserves 

decades of 

operational 

knowledge.- 

Enables trend 

analysis and 

predictive 

modeling.- 

Reduces 

redundancy in 

future 

inspections. 

- Data 

inconsistency 

and quality 

gaps.- High 

cost of 

digitization.- 

Resistance to 

organizationa

l change. 

Photogrammetr

y and 3D 

Reconstruction 

of Historical 

Records 

- Converting 

old 2D 

inspection 

images into 

3D digital 

twins.- 

Reconstructio

n of subsea 

assets for 

baseline 

comparison.- 

Integration 

with GIS and 

CAD systems. 

- Provides 

visual 

continuity 

between past 

and present 

asset states.- 

Enables 

precise defect 

growth 

tracking.- 

Enhances 

training and 

simulation 

accuracy. 

- Technical 

difficulty in 

aligning low-

resolution 

historical 

images.- 

Computation

al resource 

demands.- 

Need for 

skilled image 

processing 

experts. 

Combining 

Structured 

Metadata with 

Real-Time 

Sensor Data 

- Tagging 

legacy records 

with metadata 

(location, 

asset type, 

defect class).- 

Linking 

metadata with 

real-time 

ROV/AUV 

sensor 

streams.- 

Multi-layered 

data analytics 

pipelines. 

- Creates a 

holistic asset 

integrity 

profile.- 

Improves 

anomaly 

detection and 

failure 

prediction.- 

Supports 

cross-platform 

data 

interoperabilit

y. 

- Metadata 

gaps in 

historical 

datasets.- 

Complexity 

in integrating 

heterogeneou

s data 

sources.- 

Cybersecurit

y 

vulnerabilitie

s. 
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Theme Key Aspects Benefits Challenges 

Role of Cloud 

Platforms and 

Edge 

Computing 

- Cloud 

storage for 

historical and 

real-time 

datasets.- 

Edge devices 

for on-site 

preprocessing 

of sensor 

data.- Remote 

dashboards 

for global 

collaboration 

and decision-

making. 

- Reduces 

latency in 

anomaly 

detection.- 

Scalable and 

secure data 

management.- 

Enables 

remote 

inspections 

and reduces 

offshore 

travel. 

- Bandwidth 

limitations in 

offshore 

environments

.- High 

dependency 

on network 

reliability.- 

Data 

governance 

and 

regulatory 

compliance 

concerns. 

Reconstructions and photogrammetry have advanced 

sufficiently in skill and depth to convert analog records from 

visual inspections and convert them into digital, analyzable 

formats.  Adding to digital photogrammetry structures, 

operators can also create digital twins from ROV video footage. 

These digital twins from subsea structures yield discrete and 

3D geometric measurements. In addition to geometry, these 

twins can also show a change in state over time, especially 

when the historical datasets are augmented with modern 

datasets (Yu et al., 2021; Ronchi et al., 2023).  An application 

of such a method would be if we take a 3D digital 

reconstruction model created using divergent underwater 

photographs of a site captured in the 1990s and juxtapose it 

with modern ROV models. We can geographically record the 

evolution of submerged structures in corals, the extent of rust, 

and even structural collapses.  Standardized spatial datasets 

created using photogrammetry also record spatial data of 

legacy records. Such records can be aligned with modern 

inspection techniques such as laser and sonar scanning.  The 

captured analog data can be embedded into frameworks of 

digital asset management systems, also termed as ‘rescued’ 

data. 

Instruments of subsea analytics depend on the integration of 

different data sets. Digitized onboard documentation can be 

improved and enriched by correlating it with real-time data 

generated by remote-operating vehicles (ROVs), autonomous 

underwater vehicles (AUVs), and dedicated monitoring 

systems. Structured metadata like the date and place of the 

inspection, the prevailing environmental parameters, and the 

type of defect helps derive context for real-time interpretation. 

As an example, an attempt to relate real-time cathodic 

protection and ultrasonic thickness measurements to a historic 

record that describes the onset of corrosion on a weld on a 

pipeline would make better sense if the record were to be 

metaphysically enriched with corrosion indication and 

protection data. Fusing metadata streams with defect inspection 

data enhances analytics by means of real-time stream access, 

lagged and correlated access for temporal trend-analysis, and 

the application of machine learning for predictive analytics 

(Nizam et al., 2022; Liang et al., 2023). The marriage of legacy 

information and contemporary data provides a bedrock for risk-

informed decisions for offshore asset management. 

More extensive data records need to be stored, processed, and 

accessed quickly. In response, many companies use cloud 

technology because it allows users to easily and quickly 

electronically store, operate, and manage examination 

databases, AI models, and collaborate worldwide. Cloud-based 

digital twins allow users from many locations to electronically 

store, analyze, and collaboratively view repair virtual models 

in almost real-time. In addition to cloud technology, edge 

computing supplies data processing almost in real-time and 

close to the underwater sites of interest (Periola et al., 2022; 

Dar et al., 2023). AI-enabled remotely operated vehicles 

(ROVs), for instance, can analyze video in real-time, flagging 

possible defects and then sending only compressed data sets to 

the cloud for further examination and study, thanks to edge 

processors. This edge computing in cloud technology system 

allows for quicker offshore decisions while also creating much 

less lag, lower bandwidth demand, and examining data in a 

quicker sequence remotely. This edge computing in cloud 

technology system allows for faster offshore decisions while 

also creating much less lag, lower bandwidth demand, and 

faster examination of remote data sets. These two models, edge 

and cloud computing, together provide a holistic solution that 

integrates digital measurement and analysis systems while also 

digitalizing standard measurement and analysis processes. 

An example of this change is how diver logs and ROV 

inspection datasets are integrated for corrosion prediction. 

Diver logs tend to lack a standardized causation and are often 

hyperdescriptive. Still, they provide a valuable qualitative 

description of the asset’s condition. Once digitized, descriptive 

diver logs can be indexed with metadata and cross-referenced 

with ROV inspection datasets to yield ultrasonic thickness and 

cathodic protection measurements. Feeding the datasets into 

machine learning algorithms allows operators to predict 

corrosion rates for varying corrosion rates for different 

environmental and operational scenarios. These models are 

better than modern sensor data analyses because they utilize 

historical baselines capturing asset-specific degradation 

baselines Gadam and Upadhyay, 2023; Bienert et al., 2023). 

For example, a North Sea offshore operator incorporated ROV 

cud photogrammetry datasets with three decades of diver logs 

to train a neural network predicting corrosion hotspots with 

over 85% accuracy. This illustrates the importance of coupling 

the old inspection methods with modern analytical techniques. 

The combination of traditional inspection with smart subsea 

analytics is as much a technological imperative as it is an 

operational opportunity. Digitization and the standardization of 

legacy inspection records and data as part of the transition 

strategy enable advanced analytics adoption, just as 

photogrammetry and 3D reconstruction of historical images 

provide new value. Embedding structured metadata with sensor 

data provides enhanced situational awareness, and cloud-edge 

computing frameworks support effective, remote, and 

cooperative decision processes. Case studies, such as the 

application of AI models with diver log and ROV dataset 

integration, illustrate the value of this convergence for 

predictive corrosion management. It is the offshore industry’s 

ability to merge legacy inspection analytics with smart 

diagnostics that will determine the ability to be resilient, cost-

effective, and sustainable to asset integrity management in an 

operationally and environmentally stressed business climate 

(Rehman and Islam, 2023; Attah et al., 2023). 

2.3 Challenges and Limitations 

The management of the integrity of offshore infrastructures has 

evolved significantly from manual inspection logs to the use of 

digital technology, and most recently to the use of AI-driven 

predictive systems. However, these advancements do come 

with a fair share of issues. The offshore environment indeed 
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possesses its own set of challenges from the engineering, 

economic, and regulatory standpoints, which makes advanced 

inspection driven by data use very effective (Ezeanochie et al., 

2022; Ofoedu et al., 2022). The concerns of these challenged 

can roughly be categorized into four, which are; the data 

accuracy and standardization issues, the exorbitant prices of 

advanced sensors and AI systems fusion, the complex data 

require specialized workers to decipher, and the unavoidable 

cloud-based systems that increases the complexity and data 

control issues to the users, that incite a fear of the growing 

cybersecurity threats as shown in figure 2. 

The most important part of inspection work is the information 

that has to be collected and the authenticity of that information. 

Inspections that are done offshore use a variety of data 

conducting tools, which include high-quality videos, 

ultrasound to measure the thickness of walls and cups, invasive 

and non-invasive sensors to measure cathodic protection, and 

even environmental sensors. The other data sets that can be 

collected are abundant, satisfying the requirements of 

inspection that can be set. The only thing that poses a challenge 

is the calibration of the data collected and its comparability 

depending upon the operators, assets, and time intervals (Idowu 

et al., 2022, Sarker et al., 2022). 

Sensor readings that are influenced by environmental factors 

such as turbidity, growth of marine organisms, and equipment 

issues are also unable to record quality data. Faulty and careless 

human actions like misreading logged data, inconsistent 

calibrations, and visual data anomalies add much deviation and 

loss in precision (Liu et al., 2021; Gore et al., 2021). Even in 

modern digital forms, context, as well as metadata such as time, 

environmental factors, and geolocation, are not always 

thoroughly captured, thus hindering the reconstruction and 

validation of inspection data.  

Standardization also remains an important concern. Different 

operators are known to apply their proprietary formats to the 

data and even create novel names to describe data structures 

and reporting schemas. This lack of harmonization hinders the 

integration of inter-company datasets, inspections, and cross-

sector benchmarks. Despite attempts by regulators and industry 

consortia to standardize protocols, adoption remains patchy in 

the developed world, where regulatory oversight is lacking. 

The effectiveness of advanced analytics and AI is also limited 

without consistent standards, as the absence of reliable data, 

fragmentation, or poor-quality data leads to unreliable 

predictions (Balahur et al., 2022; Rangineni et al., 2023). 

 

Figure 2: Challenges and Limitations 

Another equally significant barrier to adoption remains the 

cost. High-resolution sensors like multi-beam sonar systems 

and advanced ultrasonic probes, or hyperspectral imaging 

systems, come at a significant cost (Sun et al, 2021; Kamolov 

and Park, 2021). Multi-beam sonar systems and advanced 

ultrasonic probes, or hyperspectral imaging systems, are 

typically deployed at sites using advanced, specialized 

remotely operated vehicles (ROVs) or autonomous underwater 

vehicles (AUVs), and thus, multi-beam sonar systems and 

advanced ultrasonic probes, or hyperspectral imaging systems, 

significantly increase operational complexity and cost.   

The added costs associated with augmenting workflows with 

AI Inspection systems do not help the situation either. Machine 

Learning adoption involves the collation of massive data, 

which needs to be properly organized, labeled, and categorized, 

and therefore trained. The data inspection involves the 

incorporation of digital twin systems and the associated tech in 

the twin systems, which then merges and aligns with the 

systems beside the twin docs, which then merges spacecraft 

systems. There are also infrastructures associated with twin 

tech, which include massive resources, expensive processing 

costs of inspection data (Zhao et al, 2022; Mihai et al., 2022). 

The shipping businesses in new emerging markets cannot 

monetize the systems at scale. 

Predictive analytics have benefits that include reduced 

downtime, lowered costs by extension of asset life, and reduced 

occurrence of catastrophic failures. The benefits are enough to 

offset the initial costs, but the cost still tends to create some 

resistance. As studies tend to fulfill the immediate operational 

needs before attending to strategic investments, even in much 

stable energy markets which have volatile budget restraints 

(Gabor, 2021; Akpe, 2022). So, cost remains the primary 

barrier to the equitable use of AI inspection technologies in the 

global offshore sector. 

In the use of AI and predictive analytics for offshore 

inspections, the attributes of the software and hardware are just 

a fraction of the requirements. Expertise in capturing and 

analyzing the outputs of the complex algorithms generated by 

the software remains critical. Anomalies can be detected and 

degradation predicted through machine learning. However, 

they have no value unless they are contextualized to convert the 

prediction into a maintainable, actionable strategy. 

There have always been gaps that need to be filled strategically 

in the offshore sector, and they have increased. A proportion of 

engineers and inspectors are very experienced in traditional 

inspections, but they lack the knowledge of data science, 

machine learning, and operating digital twins. There is a need 

to have investment specifically in the form of workforce 

frameworks that specialize in offshore engineering, together 

with advanced analytics to eliminate the gaps (Oksavik, 2021; 

Hazrat, 2023). 

Furthermore, the use of AI can breed issues of contextual trust 

and diffusion of accountability. In the case where an 

algorithm’s forecasts contradict the judgments made by a 

human analyst, the person administering the AI decides which 

input to use. In reality, there is no use case of AI that does not 

depend on a workforce capable of interacting with the outputs 

of AI on a critical level. In the absence of such a workforce, 

there is the risk that the AI is underused or, in the worst case, 

not used at all. Both cases decrease the worth of the predictive 

systems. Consequently, there is a need to build a workforce that 

can integrate human wisdom with that of machines to capture 

the full value of data-led inspection (Johnson et al., 2021; 

Adekunle et al., 2021). 

Data quality and standardization issues

High costs of advanced sensors and AI 
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Need for skilled workforce to interpret 
AI outputs

Cybersecurity and data sovereignty 
concerns in cloud-based systems



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.50, October 2025 

43 

With the increase in the amount of inspection data that is stored 

in the cloud, issues of cybersecurity and data sovereignty have 

become more pronounced.  Cloud systems have infrastructural 

lacunae. Cloud systems are appealing because of the way they 

are able to scale and become extremely accessible, in addition 

to providing the ability to integrate real-time monitoring to 

widely distributed geographical assets (George, 2022; Oladosu 

et al., 2023). Cyberattacks aimed at critical infrastructure data 

can have the ability to disable workflows, endanger safety 

measures, and have the ability to induce industrial espionage.  

In the worst case, advanced persistent threats can alter and 

manipulate inspection data to hide structural inadequacy, 

resulting in disaster. 

Sovereignty is another aspect that adds complexity. Offshore 

operators often work across various jurisdictions, each with 

various laws regarding the storage, sharing, and transmission 

of sensitive information. European Union General Data 

Protection Regulation (GDPR) is one of the frameworks that 

applies stringent stipulations on the management of certain 

information, and other regions do not have well-defined 

parameters. The complexity of these arrangements is 

highlighted when used by multinational companies that attempt 

to balance cross-border cloud storage solutions (SHARMA et 

al., 2021; Mercurio and Yu, 2022). 

In addition, the cloud-based systems raise certain issues on 

ownership and control over the inspection data. Protecting 

sensitive data from being misused and accessed without 

authorization is a great challenge to the operators when data is 

stored, analyzed, and processed using AI by third-party service 

providers. This challenge is only resolved when there are 

adequate political, economic, and social security systems that 

work as cohesive frameworks. The processes are needed 

inherently, but are also complex and raise cost issues. 

The transformation of offshore inspection practices, on the 

other hand, in adapting AI has a few obstacles on the way. High 

costs of adopting such technologies as machine learning mean 

widespread implementation on a mass scale is economically 

unrealistic. It is also true that, ruling out the entire reliance on 

human expertise, machine learning comes with its own set of 

challenges, such as the inability to interpret AI outputs. 

Subjects such as Cyber Security become a real issue when 

talking about the storing of sensitive cloud-based offshore 

inspection data. Only through collaboration can regulatory 

bodies, operators, technologists, and other institutions remedy 

such challenges. Only through such a remedy can the offshore 

sector benefit from inspection data without militarized 

guarding of its assets and operations. 

2.4 Future Outlook 

Offshore asset inspection and asset integrity management are 

dynamically changing due to advancements in robotics, data 

analytics, and digital infrastructure, as shown in Figure 

3(Gower, 2023; Sinha, 2023). The traditional models of 

inspection and cost for offshore energy systems, which include 

deep-water oil and gas facilities as well as floating wind farms, 

are becoming unresponsive as inspection scales and systems 

evolve more rapidly to diversify. A more optimistic assessment 

identifies three trends: development of autonomous inspection 

systems; movement toward globally standardized inspection 

databases, and predictive analytics more deeply integrated with 

resilience frameworks from the DOE and DHS. Each of these 

trends has significant implications for how offshore assets are 

monitored, maintained, and protected from operational and 

environmental threats. 

The next generation of subsea inspection technology will hinge 

on AUV and ROV hybrids with machine learning capabilities. 

These robotics platforms can better sustain margin 

performance while enhancing safety superbly by reducing the 

tethered and surface vessel supports. AUV-ROV hybrids are 

already equipped with AI systems designed for autonomous 

navigation, adaptive mission planning, and real-time defect 

detection. These vehicles with onboard processing can flag in 

situ anomalies. Thus, the surface team is clogged by minimized 

volumes of raw data below real-time decision-making by the 

inspection systems (Ford et al., 2022; Caldwell, 2023). In the 

future, fleets of autonomous robotic inspection systems can 

barrage subsea infrastructure continually for early signs of 

corrosion, structural degradation, and the accumulation of 

marine growth. In a more profound societal sense, this shift 

increases the large societal structural frame with viable avenues 

for continuing growth to position AI robotics systems as pivotal 

for the offshore energy transition. 

 

Figure 3: Future Outlook 

A worldwide focus that is equally important is the movement 

towards unified databases of inspections. Inspection data is still 

held in silos across different operators, regions, and regulatory 

frameworks, with almost no ability to work across regulatory 

frameworks. These data siloes inhibit the likelihood of 

benchmarking, mutual learning, and oversight across different 

jurisdictions. Greater initiatives focus on the offshore industry 

with the development of unified data taxonomies, structures of 

metadata, and reporting treaties to enable seamless cross-

industry data exchange. International bodies like the 

International Maritime Organization and the International 

Association of Oil & Women in Oil and Gas Producers are in a 

strong position to lead this work, with collaborative industry 

consortia. Unified databases would be advantageous for the 

cross-industry to improve advanced machine learning tools for 

greater data saturation. Predictive maintenance in the offshore 

regulator industry would be greatly enhanced with unified 

global data frameworks, which would also strengthen trust 

among various regulators, operators, and stakeholders (Zhu and 

Liyanage, 2021; Nwulu et al., 2023). 

Offshore inspection predictive analytics complements the 

resilience goals advocated by the DOE and DHS (Hummel and 

DiRenzo, 2023; Radvanovsky and McDougall, 2023). Both 

agencies stress the critical need for disruption-anticipating, 

smart infrastructure that can address operational hurdles like 

equipment failures, extreme environmental conditions, and 

severe cyber-physical threats. Machine learning algorithms, 

digital twin technology, and sensor fusion-enabled predictive 
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analytics can estimate the degradation of an asset and anticipate 

strategic response behaviors to a wide range of simulated asset 

scenarios. For instance, predictive corrosion models can 

identify vulnerable pipeline sections before failure occurs, and 

digital twin models can simulate the strategic execution of 

emergency repairs to minimize operational disruptions. These 

digitally enabled capabilities, when aligned with resilience 

frameworks, allow offshore operators to integrate with and 

support broader, national, and international energy, 

infrastructure, and environmental resilience goals. The 

integration of predictive analytics with resilience initiatives 

will, in turn, stimulate offshore energy system investments, 

facilitate digital regulatory frameworks, and improve public 

trust in these systems (Argyroudis et al., 2022; Mintoo et al., 

2022). 

The forthcoming paradigm for offshore inspection seems 

technologically advanced while predicting the fractures in 

robotics, standardization, and predictive resilience. 

Autonomous inspection systems, anticipating more reach, more 

efficient, and safer monitoring of subsea ecosystems, will have 

global databases on predictive analytics for DOE and DHS 

smart infrastructure to solve the problems of interoperability 

and cross-border data collaboration. Offshore assets will, 

therefore, be optimally and smartly, as well as dynamically 

managed, predicting the evolving threats based on the analytics 

(Spaniel, 2022; Evans et al., 2022). These frameworks will 

make offshore inspection frameworks more reactive in essence, 

yet more intelligent and coordinated on a global scale. The 

offshore industry, therefore, equipped with more sophisticated 

tools to monitor the health of aging assets, will be able to aid 

the energy transition with more renewable sources, as well as 

maintain the domain with more sustainable and distributed 

resilient energy infrastructure across the globe. 

3. CONCLUSION 
The development of practices for inspecting the energy systems 

offshore shows a change in how these practices are carried out, 

especially how marine infrastructures are integrated. The first 

method of recording the subsea systems manually, where a 

recording shift attendant accompanied a diver down, illustrated 

the rudimentary practices that would come to define subsea. 

The process of recording these manually came with several 

pros and minuses, subjectivity, data erosion, and the limits of 

foggy composites. Accuracy in the process was and still is 

revered, however, regardless of data standards in imagery or 

recollection. The diversification of subsea inspections brought 

engagement of ROVs with digital platforms built into SOVs 

(Submersible Optical Vehicles). Devices such as Coabis, 

FDVR, Sense, and other structured software digitized the lore 

of the as-built detection and inspection, while standard metrics 

still lag. The Merit of modern, integrated, offshore structures 

with Artificial Intelligence suggests a new frontier in 

inspections where a digital twin device was integrated into 

subordinate, rigid ROVs that are deployed subsea. Operations 

and methodologies of inspection can now track and forecast 

failures, optimize maintenance, and identify critical points in 

safety protocols.   

The shift from legacies of the past to the new approaches that 

are brought out should be identified as a fusion, not a deletion. 

Old accounts, regardless of inaccuracy, set the framework to 

design the new systems that would capture the erosion in 

structures, systems, and safety with great depth. The new 

systems would need the old data to ensure maximum coherence 

with modern digital and AI models. 

The vision, which seems more plausible in the case of future 

offshore inspection, would be a framework that is fully data-

driven and predictive while also being sustainable. This vision 

would incorporate offshore data standards, robust cross-

governance frameworks, and cross-sector interoperable 

collaboration between diverse regions and technologies. In 

addition, real-time data based on sensor fusion, AI autonomy, 

and cloud-based data management systems would be the 

expected standard. Integrating frameworks with sustainability 

and resilience, offshore inspections would be expected to 

advance towards more proactive rather than reactive problem-

solving in energy infrastructure stewardship. This 

‘realignment’ in approach is best reflected in the AI predictive 

models and handwritten diver logs divergence. This has 

resulted in a vision that is more technologically advanced, 

while also being safer and reliable concerning offshore 

operations. 
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