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ABSTRACT

Field verification and maintenance of offshore structures,
including subsea pipelines, risers, and wind turbine
foundations, are required to keep the operations safe, protect
the environment, and prolong the life of the assets. Historically,
inspections concentrated on diver commentaries and physical
documents and photographs, which, although rudimentary,
suffered from subjectivity, inconsistency, and long-range data
storage. Software for inspections was a positive development,
which, for the first time, enabled standardized performance for
data capture, systematization of data and metadata, and
integration of ROV and sensor data. Systems like FDVR,
COABIS, and SENSE enhanced the ability of data capture and
retention and, thereby, improved the decision-making for
operators and regulators. In recent years, the offshore sector has
been going through a new phase because of the influence of
artificial intelligence and machine learning. These models are
capable of assisting with anomaly detection, corrosion
assessment, and fatigue prediction with abundant multiple
untidy data from video, ultrasonic, acoustic, and various
environmental sensors. More of these machine-learning
systems are used within the digital twin technology and
framework, which helps with real-time observation and
monitoring, and proactive warning systems. More advanced
subsea analytical systems, combined with conventional
inspection data, allow operators to transition from unplanned
maintenance to proactive predictive maintenance, which
optimizes asset management, minimizes unplanned outages,
and significantly increases safety. This analyzes the evolution
of offshore inspection practices from manual to Al-driven
approaches and the continuities between traditional inspection
records and modern inspection predictive data systems. While
challenges related to data quality and standardization,
workforce training, and data security protection are recognized,
the potential gains in resilience, cost effectiveness, and
regulatory compliance are compelling. Integration of legacy
data with digital inspection systems and Al-driven analytics
evokes a paradigm shift in offshore infrastructure management
by utilizing data as the principal element for safe, economical,

and environmentally responsible operations.
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1. INTRODUCTION

The most critical aspect of offshore infrastructure is the
sustained safe operation of coupled oil and gas production

systems with renewable assets (Amaechi et al., 2022;
Mahmood ef al., 2023). Subsea energy interlinks of pipelines,
risers, manifolds, and wind turbine foundations are perhaps the
most sophisticated offshore structures, and the harshest and
most unpredictable of Earth’s environments (KM et al., 2022;
Zhang et al., 2024). These include high-altitude and high-
pressure conditions, dynamic ocean currents, corrosion-
inducing seawater, and mechanical fatigue from waves and
wind (Liu et al., 2023; Yu et al., 2023), which ultimately lead
to degradation and failure. Any one of these assets having a
structural or functional failure can result in enormous
environmental pollution, production downtime, and risks to
human life. This is why, for a long time, offshore asset
management has been synonymous with the practice of
monitoring the integrity of assets and decay signals to the point
of maintaining critical infrastructures and extending their
operational life (Adewoyin, 2022; Igbadumhe and Feijo, 2023).

The essence of these practices is data. Data becomes the only
proof of the condition of an asset at a specific point in time and
a factual basis around which informed understanding of risk
and its management, maintenance scheduling, and regulatory
compliance are built (Sasidharan et al, 2022; Kothandapani,
2022; Cornwell et al, 2023). The data recorded in diver logs
(Dalhatu et al., 2023), remotely operated vehicles (ROV)
surveys, data classified and analyzed Form of Non Destructive
Testing (NDT), and sensory equipment are the decisive
components of the inspection. Inspection depends on the
effectiveness of the data. The evolution of data in offshore
inspection within the last decades has transformed the
perception of asset integrity from record keeping to a digital,
holistic approach. Advanced operators no longer wait for
failure to occur to begin maintenance scheduling; they are able
to monitor and analyze data in real time to schedule proactive
and predictive maintenance (Sandu et al., 2023; Zhou et al.,
2024).

Records of the initial stages of offshore inspections focused on
the use of written logs and annotated pictures, which were then
put together in a report. This practice had a myriad of
limitations owing to the subjectivity and difficulty in recording
areliable historical record, and discrepancies across inspectors.
They were, to an extent, unprecedented in their use of tactile
and visual methods of assessment. The expansion of the
offshore sector in scale and complexity brought on abundant
demand for standardization and accessibility of inspection data,
which catalyzed the use of digital inspection platforms. Such
systems brought in the use of centralized repositories and
structured metadata formats, which visual, acoustic, and
measurement data into cohesive inspection packages.
Enhancement in traceability and consistency across inspection
campaigns, the software platforms such as COABIS, SENSE,
and Field Data Validation and Reporting (FDVR) augmented
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regulatory  oversight and improved inter-campaign
comparability.

The fourth industrial revolution is heavily influenced by
artificial intelligence (AI) and predictive analytics. Algorithms,
paired with digital twin technology, have advanced to the point
where inspection data is more than a series of still images of
the condition of an asset (Hosamo et al., 2022; Hagen and
Andersen, 2024). Inspection data is now processed in real-time
and is used to identify anomalies, corrosion rates, simulate
structural fatigue, and warn of potential asset failure. Al
systems analyze and synthesize datasets that comprise high-def
ROV videos, cathodic protection scans, environmental data,
and ultrasound scans to construct an asset integrity assessment
(Abdullah er al., 2024; Garrison et al., 2024). Thus, the
evolution data is not only technological but has now become a
strategic asset in the efficiency, uptime, cost, and safety
optimization of offshore operations.

This is intended to document the changes to deep-sea
inspection methods of the use of paper logs through manual
inspection and the use of software to perform digital
inspections, to the current use of software, and the onboarding
of Al-powered predictive systems. This also illustrates the
transformation of data from an obsolete and passive record to a
pivotal and versatile facilitator of proactive asset management.
This paper attempts to make a case for the critical role that data-
centric strategies and frameworks play in ensuring resilience
and sustainability within the Offshore Sector. Considered
Holistically, the stakes of integrity management for regulatory
compliance and the multifaceted offshore industry remain
unparalleled (Bechtsis et al., 2022; Ake, 2024).

2.1 Evolution of Offshore Inspection Data

Practices

The management of asset integrity is constantly evolving, as is
the management of inspection data, and the offshore energy
industry is no exception. Inspection data is being collected,
managed, and utilized in previously unprecedented manners.
Reliance in the offshore industry and the sophistication of
structures have fueled advancement in offshore infrastructure,
as has the rapid growth of structural engineering and digital and
analytical technologies. Inspection practices have changed over
the decades; instead of utilizing handwritten records and diver
logs, smart and data-driven predictive approaches alongside
advanced Al technology within digital twin frameworks are
being utilized, as shown in Figure 1. The use of Al in inspection
systems predicts data more accurately, contributing to decision-
making. Differentiating between manual logs and records,
digital inspection, and Al-based predictive systems illustrates
the evolution of inspection data collection in offshore settings
(Mahadevkar et al., 2024; Jenifer et al., 2024).

Record keeping in the offshore operations in the early decades
relied largely on diver surveys. Critical sections of offshore
operations were captured and documented through handwritten
logs, sketches, and even film documentation (Nigam et al.,
2021; Balasubramanian, 2023). These logs and reports were the
primary evidence of the operational assets in their working
condition, as they were thoroughly compiled into the technical
dossiers to be sent to regulators and operators for operational
review and compliance.

Manual techniques remain invaluable for understanding the
condition of underwater infrastructures; however, these
techniques are far from perfect. Subjectivity in the human
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perception process introduced unnecessary gaps into the
inspections; two divers could look at the same structures and
see two completely different things, and still report the same
anomalies. Interpretation of the write-ups after inspections had
no meaning as the documents often were vague. Documents
lacked structure and organization, and thus, the storage and
paperwork were difficult to manage due to the fact that the
underlying parameters and their various forms made it prone to
losing data in floods and fires, files could simply be misplaced,
and lastly, the preservation of the archives was done poorly.

Manual Logs
Digital and Paper-
Inspection Based
Software Records

Al-Based
Predictive
Systems

Figure 1: Evolution of Offshore Inspection Data Practices

The variability of each inspection cycle is also a critical factor.
Language and formatting of documents provided in the
inspections made it difficult to analyze and detect deterioration
in the structures over periods of time (Lamm et al., 2022;
Musaev et al., 2023). Photographs, when provided, were often
missing critical elements such as the depth of the picture of the
structure, the areca where the structure was, or the weather.
During the late 1970s and 1980s, these structures became more
complex, and the inefficiencies observed in the 10 years prior
were no longer acceptable. The need for precise and clear
digital inspection documents shifted the way we approach
inspections.

The 1990s saw the beginning of offshore inspections evolving
from relatively rudimentary processes to much more advanced
practices with the advent of computerized logging systems. The
initial forms of digital systems overlaid paper logs with
structured databases of the logs, which subsequently made
inspections much more organized and easier to access. These
systems supported the user in standardizing the use of other
terminology, consistent templates, and incorporating metadata
databases about the logs, such as GPS, Datetime, and other
environmental data (Sidol ef a/., 2021, and Shao et al., 2023).

The use of ROVs in workflows as systems with video cameras,
sonar, and elementary NDT sensors was a crucial development.
ROVs augmented the ability to gather hundreds of data points
in real time from high-risk subsea locations. With the ability to
digitally preserve and later analyze complex systems, ROVs
improved the ability of engineers and other stakeholders to
conduct subsea analysis (Jahanbakht et al, 2021; Kabanov and
Kramar, 2022). Driverless operations improved the safety and
reliability of subsea inspections.

Specialized software platforms like COABIS, Field Data
Validation and Reporting (FDVR), and SENSE made perimeter
inspections and other inspections more digitalized COABIS
and SENSE made captures and real-time annotations of videos
and reports automated. All of them, by centralizing digital
stores, made tracing multiple inspections more efficient. They
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also enabled cross-operator, cross-field, and condition
benchmarking of assets (Frank, 2022, Ellahi et al., 2023).

The digital inspection software streamlined workflows. It also
integrated devices into the databases to cut redundancy and
print errors. All (or most) of them made past inspection data
reliable for audits, so it kept the data accessible even after
multiple time spans. It even made benchmarking easier for
multiple operators, which improved safety and efficiency
industry-wide. Digital systems made compliance with
regulations easier, especially in the case of the UK. and
Norway, where evidence-based validation of offshore integrity
management was required.

Progressing from earlier stages, digital inspection systems were
still mostly descriptive. They were capable of recording and
storing data, but offered little in the way of predictive
forecasting and insight generation. More advanced methods
were needed to capture and correlate data generated during
inspections and provided by ROVs and sensors to gain
actionable intelligence from the inspection data generated from
ROVs and sensors (Xiang et al., 2022; Ma et al., 2023).

The most recent phase of the development of offshore
inspection practice is the application of artificial intelligence
and predictive analytics to offshore inspections (Fazle et al.,
2023; Aditiyawarman et al., 2023). Machine learning is
becoming critical for anomaly detection and condition
forecasting, due to the growing abundance of quality and
volume data streams provided by ROVs, AUVs, and subsea
sensors.

Al technologies can analyze different types of data, including
sounds, measurements of the ultrasonic thickness of walls,
cathodic protection readings, and videos. These and many other
types of data can be merged together to form large databases,
containing the information about the interactions of
mechanical, chemical, and environmental factors which lead to
the degradation of a particular substrate, as shown in Table 1.
With the help of the machine learning derived algorithms, the
datasets can monitor the early stages of the coating corrosion,
coating detachment, and any possible structural weakness
which other people would not be able to notice (Islam et al.,
2022, Gbagba et al., 2023).

Digital twin frameworks construction has further enhanced the
offshore inspection capability of Artificial Intelligence. These
are real-time smart models of physical assets that are updated
and improved with data from inspections and sensors.
Equipped with the appropriate predictive analytics algorithms,
predictive models can help operators determine degradation
processes, estimate time to failure, and assess the impact of
various maintenance action plans on the system. Predictive
models help overcome the limitation of relying on historical
data and past trends observed in the description models, which
do not offer actionable strategies to ensure sustainability
(Kubrak et al., 2022, Ahern et al., 2022.)

The benefits associated with Al-driven predictive systems are
profound. The ability to identify failure hindrances at early
stages enables maintenance to be planned and scheduled before
breakdowns and other expensive malfunctions. This decreases
unplanned downtime, increases the safety of operations, and
prolongs the life of offshore assets. Predictive systems improve
the efficiency of costs by optimizing the scheduling of
inspections of components of higher risk tiers (Suryadevara
2021; Korada and Somepalli 2022). Furthermore, Al improves
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the specificity and consistency of detecting anomalies, which
lessens the reliance on the assessment of a single inspector.

Still, challenges persist with completely realizing the potential
of systems driven by Artificial Intelligence. The quality of data,
the standardization of operators, and the available
interoperability of software platforms are real concerns. The
workforce needs to be trained so that engineers can understand
and implement the AI insights that are generated.
Cybersecurity becomes a critical scenario in the hands of
engineers as more data about inspections is being collected and
stored in the cloud systems (Dhoni and Kumar 2023;
Karunamurthy et al., 2023).

The development of operational procedures for offshore
inspection data still strives for enhanced dependability,
effectiveness, and safety workflows. Subjectivity and limited
comparability impacted the formulation of documenting asset
condition by the use of Manual logs, coupled with paper
records. Furthermore, the introduction of digital inspection
software augmented the use of standardization, traceability,
and data assimilation, especially with ROVs and organized
databases. Today, Al-based predictive systems profoundly shift
the paradigm by using proactive asset management through
sensor fusion and digital twin integration for anomaly
detection. These examples position data as more than a data
record, as evidenced by these advances, but rather as a
predictive asset for forecasting and counter-risking in more
intricate offshore environments (Rawson and Brito, 2022;
Hadjoudj and Pandit, 2023).

Table 1: AI-Based Predictive Systems

Theme Key Aspects  Benefits Challenges

- Deployment

of supervised

and

unsupervised - Detects

ML models.-  subtle and - Requires
Emergence Automated early-stage  large, high-
of Machine classification  anomalies.- quality training
Learning  of defectsin ~ Enhances datasets.-

and subsea accuracy and Potential for
Artificial ~ pipelines, consistency in algorithmic bias
Intelligence welds, and inspections.- and false

in Anomaly structures.- Use Reduces positives.- High

Detection  of Al for reliance on  computational

anomaly manual demand.

pattern interpretation.

recognition

beyond human

capability.

- Combining - Improves - Complex

acoustic, reliability of calibration of

ultrasonic, anomaly heterogeneous
Integration thermal, and  detection.-  sensors.-
of Sensor  visual sensors.- Reduces Synchronizatio
Fusion with Cross- uncertainty  n and data
Predictive  validation of  through alignment

Analytics ~ anomalies multimodal  issues.- Higher
across multiple confirmation. system

data sources.- - Enables integration
Advanced continuous  costs.
analytics monitoring
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governance policies that clarify ownership, quality control and
procedures, and standardization across the organization must
be a primary focus. To contextualize the methodology of
Kumaran and Machireddy, companies are increasingly
utilizing Extract-Transform-Load (ETL) pipelines to convert
unstructured inspection data into defined databases. Another
strategy for improvement focuses on the digitization of
prioritized, high-value datasets like corrosion reports and
ultrasonic testing logs, as these predictive models contain
critical information. In this manner, organizations are able to
develop inspection databases that provide advanced analysis

Theme Key Aspects  Benefits Challenges
pipelines for  even in noisy
real-time environments.
decision
support.
- Virtual
replication of - Enz'ibl.es - High demand
offshore assets predictive for
using Al- maintenance .

L . computational
Application enhanced strategies.- ower and
in Digital ~ models.- Real- Facilitates p

. . storage.-
Twin time long-term
L . Dependence on
Framework synchronizatio asset lifecycle
. accurate
s for n between planning.- .

. . . baseline
Continuous physical and  Provides models.-
Condition digital asset visualization o

. Cybersecurity
Monitoring states.- for operator

. . . and data
Simulation of  training and interi
degradation risk grity
. concerns.

and failure assessment.

scenarios.

- Forecasting - Requires

equipment - Minimizes cultural and
Advantages failure before unplanned organizational
: Early critical maintenance shift toward
Failure breakdown.-  costs.- data-driven
Prediction, Automating Increases maintenance.-
Reduced inspection offshore Initial
Downtime, planning based operational investment in
and onrisk levels.- efficiency.- Al
Optimized Adaptive Extends asset infrastructure is
Inspection  scheduling lifespan while high.-
Scheduling aligned with  ensuring Uncertainty in

real-time asset safety. regulatory

health. acceptance.

2.2 Bridging Traditional Inspection with

Smart Subsea Analytics

Customarily, the offshore energy sector relied on manual
inspection logs, observing divers, and reports on the condition
of subsea infrastructure done at varying intervals. Though these
methods have worked in the past, the complexity of aging
assets, coupled with growing operational complexity and the
industry's shift toward renewables, makes these techniques less
than useful. Recent advancements in smart subsea analytics
driven by Al, the cloud, and real-time sensors provide the
opportunity to change inspection workflows from reactive to
predictive frameworks. Bridging the observational inspection
legacy data, upon which historical asset integrity management
rests, with current digital technologies is a significant
challenge, as shown in Table 2. These transition strategies,
bordering technologies, and case studies on the effective
incorporation of traditional inspection with advanced smart
subsea analytics.

For most offshore operators, decades worth of inspection logs,
diver notations, and disparate data formats that are either frozen
in static reports and spreadsheets, or archived are a common
occurrence. It is imperative that these legacy datasets are
reformed into usable digital assets with structured data
curation, metadata tagging, and systems for digitization. Data

based on historical data.

Table 2: Bridging Traditional Inspection with Smart

Subsea Analytics
Theme Key Aspects  Benefits Challenges
- Migration of
paper-
based/manual - Preserves
logs into decades of - Data
digital operational inconsistenc
Transition databases.-  knowledge.- and quali y
Strategies for Standardizatio Enables trend a sq- Hit}lll
Companies n of archival analysis and <g:o§ ¢ '0 ¢ &
with Legacy  inspection predictive disitization.-
Inspection formats.- modeling.- R egsis tance éo
Data Training Reduces orsanizationa
workforce to  redundancy in &
. 1 change.
integrate future
historical data inspections.
into modern
systems.
- Converting - Provides .
old 2D visual d;l;‘gi?lrll'rl;?L
inspection continuity aliening low-
images into  between past gning
. resolution
3D digital and present .
Photogrammetr | . historical
twins.- asset states.- .
y and 3D . images.-
. Reconstructio Enables .
Reconstruction . Computation
L nofsubsea  precise defect
of Historical al resource
assets for growth
Records . . demands.-
baseline tracking.-
. Need for
comparison.- Enhances skilled image
Integration  training and rocessin &
with GIS and simulation gx . &
CAD systems. accuracy. perts.
- Tagging
legacy records Createsa oo data
: holistic asset .
with metadata . . gaps in
. integrity . -
(location, rofile.. historical
asset type, {)m I‘O\;CS datasets.-
Combining defect class).- an(?mal Complexity
Structured Linking i~ in integrating
. ., detection and
Metadata with metadata with failure heterogeneou
Real-Time real-time cediction.- S data
Sensor Data ~ ROV/AUV gu orts ’ sources.-
sensor cropsz— latform Cybersecurit
streams.- data p
Multi-layered vulnerabilitie

data analytics
pipelines.

interoperabilit

S.
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Theme Key Aspects  Benefits Challenges
- Cloud .
storage for - Reduces iii?;?g;it?n
historical and latency in offshore
real-time anomaly .
datasets.- detection.- enl\;lirgoﬁl ments
Role of Cloud }fE()ig;nc_l:i\t/;ces S::::ll:rl:lga?tl:d dependency
gdatforms and preprocessing management.- ori'nle)t.\lyfrk
Co%ne puting of sensor Enables galtz; ity
data.- Remote remote
dashboards  inspections gozlfernance
for global and reduces o
collaboration offshore regula?ory
and decision- travel. compliance
concerns.

making.

Reconstructions and photogrammetry have advanced
sufficiently in skill and depth to convert analog records from
visual inspections and convert them into digital, analyzable
formats.  Adding to digital photogrammetry structures,
operators can also create digital twins from ROV video footage.
These digital twins from subsea structures yield discrete and
3D geometric measurements. In addition to geometry, these
twins can also show a change in state over time, especially
when the historical datasets are augmented with modern
datasets (Yu et al., 2021; Ronchi et al., 2023). An application
of such a method would be if we take a 3D digital
reconstruction model created using divergent underwater
photographs of a site captured in the 1990s and juxtapose it
with modern ROV models. We can geographically record the
evolution of submerged structures in corals, the extent of rust,
and even structural collapses. Standardized spatial datasets
created using photogrammetry also record spatial data of
legacy records. Such records can be aligned with modern
inspection techniques such as laser and sonar scanning. The
captured analog data can be embedded into frameworks of
digital asset management systems, also termed as ‘rescued’
data.

Instruments of subsea analytics depend on the integration of
different data sets. Digitized onboard documentation can be
improved and enriched by correlating it with real-time data
generated by remote-operating vehicles (ROVs), autonomous
underwater vehicles (AUVs), and dedicated monitoring
systems. Structured metadata like the date and place of the
inspection, the prevailing environmental parameters, and the
type of defect helps derive context for real-time interpretation.
As an example, an attempt to relate real-time cathodic
protection and ultrasonic thickness measurements to a historic
record that describes the onset of corrosion on a weld on a
pipeline would make better sense if the record were to be
metaphysically enriched with corrosion indication and
protection data. Fusing metadata streams with defect inspection
data enhances analytics by means of real-time stream access,
lagged and correlated access for temporal trend-analysis, and
the application of machine learning for predictive analytics
(Nizam et al., 2022; Liang et al., 2023). The marriage of legacy
information and contemporary data provides a bedrock for risk-
informed decisions for offshore asset management.

More extensive data records need to be stored, processed, and
accessed quickly. In response, many companies use cloud
technology because it allows users to easily and quickly
electronically store, operate, and manage examination
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databases, Al models, and collaborate worldwide. Cloud-based
digital twins allow users from many locations to electronically
store, analyze, and collaboratively view repair virtual models
in almost real-time. In addition to cloud technology, edge
computing supplies data processing almost in real-time and
close to the underwater sites of interest (Periola et al., 2022;
Dar et al., 2023). Al-enabled remotely operated vehicles
(ROVs), for instance, can analyze video in real-time, flagging
possible defects and then sending only compressed data sets to
the cloud for further examination and study, thanks to edge
processors. This edge computing in cloud technology system
allows for quicker offshore decisions while also creating much
less lag, lower bandwidth demand, and examining data in a
quicker sequence remotely. This edge computing in cloud
technology system allows for faster offshore decisions while
also creating much less lag, lower bandwidth demand, and
faster examination of remote data sets. These two models, edge
and cloud computing, together provide a holistic solution that
integrates digital measurement and analysis systems while also
digitalizing standard measurement and analysis processes.

An example of this change is how diver logs and ROV
inspection datasets are integrated for corrosion prediction.
Diver logs tend to lack a standardized causation and are often
hyperdescriptive. Still, they provide a valuable qualitative
description of the asset’s condition. Once digitized, descriptive
diver logs can be indexed with metadata and cross-referenced
with ROV inspection datasets to yield ultrasonic thickness and
cathodic protection measurements. Feeding the datasets into
machine learning algorithms allows operators to predict
corrosion rates for varying corrosion rates for different
environmental and operational scenarios. These models are
better than modern sensor data analyses because they utilize
historical baselines capturing asset-specific degradation
baselines Gadam and Upadhyay, 2023; Bienert et al., 2023).
For example, a North Sea offshore operator incorporated ROV
cud photogrammetry datasets with three decades of diver logs
to train a neural network predicting corrosion hotspots with
over 85% accuracy. This illustrates the importance of coupling
the old inspection methods with modern analytical techniques.

The combination of traditional inspection with smart subsea
analytics is as much a technological imperative as it is an
operational opportunity. Digitization and the standardization of
legacy inspection records and data as part of the transition
strategy enable advanced analytics adoption, just as
photogrammetry and 3D reconstruction of historical images
provide new value. Embedding structured metadata with sensor
data provides enhanced situational awareness, and cloud-edge
computing frameworks support effective, remote, and
cooperative decision processes. Case studies, such as the
application of Al models with diver log and ROV dataset
integration, illustrate the value of this convergence for
predictive corrosion management. It is the offshore industry’s
ability to merge legacy inspection analytics with smart
diagnostics that will determine the ability to be resilient, cost-
effective, and sustainable to asset integrity management in an
operationally and environmentally stressed business climate
(Rehman and Islam, 2023; Attah et al., 2023).

2.3 Challenges and Limitations

The management of the integrity of offshore infrastructures has
evolved significantly from manual inspection logs to the use of
digital technology, and most recently to the use of Al-driven
predictive systems. However, these advancements do come
with a fair share of issues. The offshore environment indeed
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possesses its own set of challenges from the engineering,
economic, and regulatory standpoints, which makes advanced
inspection driven by data use very effective (Ezeanochie et al.,
2022; Ofoedu et al., 2022). The concerns of these challenged
can roughly be categorized into four, which are; the data
accuracy and standardization issues, the exorbitant prices of
advanced sensors and Al systems fusion, the complex data
require specialized workers to decipher, and the unavoidable
cloud-based systems that increases the complexity and data
control issues to the users, that incite a fear of the growing
cybersecurity threats as shown in figure 2.

The most important part of inspection work is the information
that has to be collected and the authenticity of that information.
Inspections that are done offshore use a variety of data
conducting tools, which include high-quality videos,
ultrasound to measure the thickness of walls and cups, invasive
and non-invasive sensors to measure cathodic protection, and
even environmental sensors. The other data sets that can be
collected are abundant, satisfying the requirements of
inspection that can be set. The only thing that poses a challenge
is the calibration of the data collected and its comparability
depending upon the operators, assets, and time intervals (Idowu
et al., 2022, Sarker et al., 2022).

Sensor readings that are influenced by environmental factors
such as turbidity, growth of marine organisms, and equipment
issues are also unable to record quality data. Faulty and careless
human actions like misreading logged data, inconsistent
calibrations, and visual data anomalies add much deviation and
loss in precision (Liu et al., 2021; Gore et al., 2021). Even in
modern digital forms, context, as well as metadata such as time,
environmental factors, and geolocation, are not always
thoroughly captured, thus hindering the reconstruction and
validation of inspection data.

Standardization also remains an important concern. Different
operators are known to apply their proprietary formats to the
data and even create novel names to describe data structures
and reporting schemas. This lack of harmonization hinders the
integration of inter-company datasets, inspections, and cross-
sector benchmarks. Despite attempts by regulators and industry
consortia to standardize protocols, adoption remains patchy in
the developed world, where regulatory oversight is lacking.
The effectiveness of advanced analytics and Al is also limited
without consistent standards, as the absence of reliable data,
fragmentation, or poor-quality data leads to unreliable
predictions (Balahur ef al., 2022; Rangineni et al., 2023).

Data quality and standardization issues

High costs of advanced sensors and Al
integration

Need for skilled workforce to interpret
Al outputs

Cybersecurity and data sovereignty
concerns in cloud-based systems

Figure 2: Challenges and Limitations

Another equally significant barrier to adoption remains the
cost. High-resolution sensors like multi-beam sonar systems
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and advanced ultrasonic probes, or hyperspectral imaging
systems, come at a significant cost (Sun et a/, 2021; Kamolov
and Park, 2021). Multi-beam sonar systems and advanced
ultrasonic probes, or hyperspectral imaging systems, are
typically deployed at sites using advanced, specialized
remotely operated vehicles (ROVs) or autonomous underwater
vehicles (AUVs), and thus, multi-beam sonar systems and
advanced ultrasonic probes, or hyperspectral imaging systems,
significantly increase operational complexity and cost.

The added costs associated with augmenting workflows with
Al Inspection systems do not help the situation either. Machine
Learning adoption involves the collation of massive data,
which needs to be properly organized, labeled, and categorized,
and therefore trained. The data inspection involves the
incorporation of digital twin systems and the associated tech in
the twin systems, which then merges and aligns with the
systems beside the twin docs, which then merges spacecraft
systems. There are also infrastructures associated with twin
tech, which include massive resources, expensive processing
costs of inspection data (Zhao et al, 2022; Mihai et al., 2022).
The shipping businesses in new emerging markets cannot
monetize the systems at scale.

Predictive analytics have benefits that include reduced
downtime, lowered costs by extension of asset life, and reduced
occurrence of catastrophic failures. The benefits are enough to
offset the initial costs, but the cost still tends to create some
resistance. As studies tend to fulfill the immediate operational
needs before attending to strategic investments, even in much
stable energy markets which have volatile budget restraints
(Gabor, 2021; Akpe, 2022). So, cost remains the primary
barrier to the equitable use of Al inspection technologies in the
global offshore sector.

In the use of Al and predictive analytics for offshore
inspections, the attributes of the software and hardware are just
a fraction of the requirements. Expertise in capturing and
analyzing the outputs of the complex algorithms generated by
the software remains critical. Anomalies can be detected and
degradation predicted through machine learning. However,
they have no value unless they are contextualized to convert the
prediction into a maintainable, actionable strategy.

There have always been gaps that need to be filled strategically
in the offshore sector, and they have increased. A proportion of
engineers and inspectors are very experienced in traditional
inspections, but they lack the knowledge of data science,
machine learning, and operating digital twins. There is a need
to have investment specifically in the form of workforce
frameworks that specialize in offshore engineering, together
with advanced analytics to eliminate the gaps (Oksavik, 2021;
Hazrat, 2023).

Furthermore, the use of Al can breed issues of contextual trust
and diffusion of accountability. In the case where an
algorithm’s forecasts contradict the judgments made by a
human analyst, the person administering the Al decides which
input to use. In reality, there is no use case of Al that does not
depend on a workforce capable of interacting with the outputs
of Al on a critical level. In the absence of such a workforce,
there is the risk that the Al is underused or, in the worst case,
not used at all. Both cases decrease the worth of the predictive
systems. Consequently, there is a need to build a workforce that
can integrate human wisdom with that of machines to capture
the full value of data-led inspection (Johnson et al., 2021;
Adekunle et al., 2021).
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With the increase in the amount of inspection data that is stored
in the cloud, issues of cybersecurity and data sovereignty have
become more pronounced. Cloud systems have infrastructural
lacunae. Cloud systems are appealing because of the way they
are able to scale and become extremely accessible, in addition
to providing the ability to integrate real-time monitoring to
widely distributed geographical assets (George, 2022; Oladosu
et al., 2023). Cyberattacks aimed at critical infrastructure data
can have the ability to disable workflows, endanger safety
measures, and have the ability to induce industrial espionage.
In the worst case, advanced persistent threats can alter and
manipulate inspection data to hide structural inadequacy,
resulting in disaster.

Sovereignty is another aspect that adds complexity. Offshore
operators often work across various jurisdictions, each with
various laws regarding the storage, sharing, and transmission
of sensitive information. European Union General Data
Protection Regulation (GDPR) is one of the frameworks that
applies stringent stipulations on the management of certain
information, and other regions do not have well-defined
parameters. The complexity of these arrangements is
highlighted when used by multinational companies that attempt
to balance cross-border cloud storage solutions (SHARMA et
al.,2021; Mercurio and Yu, 2022).

In addition, the cloud-based systems raise certain issues on
ownership and control over the inspection data. Protecting
sensitive data from being misused and accessed without
authorization is a great challenge to the operators when data is
stored, analyzed, and processed using Al by third-party service
providers. This challenge is only resolved when there are
adequate political, economic, and social security systems that
work as cohesive frameworks. The processes are needed
inherently, but are also complex and raise cost issues.

The transformation of offshore inspection practices, on the
other hand, in adapting Al has a few obstacles on the way. High
costs of adopting such technologies as machine learning mean
widespread implementation on a mass scale is economically
unrealistic. It is also true that, ruling out the entire reliance on
human expertise, machine learning comes with its own set of
challenges, such as the inability to interpret Al outputs.
Subjects such as Cyber Security become a real issue when
talking about the storing of sensitive cloud-based offshore
inspection data. Only through collaboration can regulatory
bodies, operators, technologists, and other institutions remedy
such challenges. Only through such a remedy can the offshore
sector benefit from inspection data without militarized
guarding of its assets and operations.

2.4 Future Outlook

Offshore asset inspection and asset integrity management are
dynamically changing due to advancements in robotics, data
analytics, and digital infrastructure, as shown in Figure
3(Gower, 2023; Sinha, 2023). The traditional models of
inspection and cost for offshore energy systems, which include
deep-water oil and gas facilities as well as floating wind farms,
are becoming unresponsive as inspection scales and systems
evolve more rapidly to diversify. A more optimistic assessment
identifies three trends: development of autonomous inspection
systems; movement toward globally standardized inspection
databases, and predictive analytics more deeply integrated with
resilience frameworks from the DOE and DHS. Each of these
trends has significant implications for how offshore assets are
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monitored, maintained, and protected from operational and
environmental threats.

The next generation of subsea inspection technology will hinge
on AUV and ROV hybrids with machine learning capabilities.
These robotics platforms can better sustain margin
performance while enhancing safety superbly by reducing the
tethered and surface vessel supports. AUV-ROV hybrids are
already equipped with Al systems designed for autonomous
navigation, adaptive mission planning, and real-time defect
detection. These vehicles with onboard processing can flag in
situ anomalies. Thus, the surface team is clogged by minimized
volumes of raw data below real-time decision-making by the
inspection systems (Ford et al., 2022; Caldwell, 2023). In the
future, fleets of autonomous robotic inspection systems can
barrage subsea infrastructure continually for early signs of
corrosion, structural degradation, and the accumulation of
marine growth. In a more profound societal sense, this shift
increases the large societal structural frame with viable avenues
for continuing growth to position Al robotics systems as pivotal
for the offshore energy transition.

Growing role of
autonomous
inspection
systems

Future
Outlook

esilience

through
predictive
analytics

Movement
toward globally
standardized
inspection
databases

aligned with

DOE & DHS
smart
astru

Figure 3: Future Outlook

A worldwide focus that is equally important is the movement
towards unified databases of inspections. Inspection data is still
held in silos across different operators, regions, and regulatory
frameworks, with almost no ability to work across regulatory
frameworks. These data siloes inhibit the likelihood of
benchmarking, mutual learning, and oversight across different
jurisdictions. Greater initiatives focus on the offshore industry
with the development of unified data taxonomies, structures of
metadata, and reporting treaties to enable seamless cross-
industry data exchange. International bodies like the
International Maritime Organization and the International
Association of Oil & Women in Oil and Gas Producers are in a
strong position to lead this work, with collaborative industry
consortia. Unified databases would be advantageous for the
cross-industry to improve advanced machine learning tools for
greater data saturation. Predictive maintenance in the offshore
regulator industry would be greatly enhanced with unified
global data frameworks, which would also strengthen trust
among various regulators, operators, and stakeholders (Zhu and
Liyanage, 2021; Nwulu et al., 2023).

Offshore inspection predictive analytics complements the
resilience goals advocated by the DOE and DHS (Hummel and
DiRenzo, 2023; Radvanovsky and McDougall, 2023). Both
agencies stress the critical need for disruption-anticipating,
smart infrastructure that can address operational hurdles like
equipment failures, extreme environmental conditions, and
severe cyber-physical threats. Machine learning algorithms,
digital twin technology, and sensor fusion-enabled predictive
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analytics can estimate the degradation of an asset and anticipate
strategic response behaviors to a wide range of simulated asset
scenarios. For instance, predictive corrosion models can
identify vulnerable pipeline sections before failure occurs, and
digital twin models can simulate the strategic execution of
emergency repairs to minimize operational disruptions. These
digitally enabled capabilities, when aligned with resilience
frameworks, allow offshore operators to integrate with and
support broader, national, and international energy,
infrastructure, and environmental resilience goals. The
integration of predictive analytics with resilience initiatives
will, in turn, stimulate offshore energy system investments,
facilitate digital regulatory frameworks, and improve public
trust in these systems (Argyroudis ef al., 2022; Mintoo et al.,
2022).

The forthcoming paradigm for offshore inspection seems
technologically advanced while predicting the fractures in
robotics, standardization, and predictive resilience.
Autonomous inspection systems, anticipating more reach, more
efficient, and safer monitoring of subsea ecosystems, will have
global databases on predictive analytics for DOE and DHS
smart infrastructure to solve the problems of interoperability
and cross-border data collaboration. Offshore assets will,
therefore, be optimally and smartly, as well as dynamically
managed, predicting the evolving threats based on the analytics
(Spaniel, 2022; Evans et al., 2022). These frameworks will
make offshore inspection frameworks more reactive in essence,
yet more intelligent and coordinated on a global scale. The
offshore industry, therefore, equipped with more sophisticated
tools to monitor the health of aging assets, will be able to aid
the energy transition with more renewable sources, as well as
maintain the domain with more sustainable and distributed
resilient energy infrastructure across the globe.

3. CONCLUSION

The development of practices for inspecting the energy systems
offshore shows a change in how these practices are carried out,
especially how marine infrastructures are integrated. The first
method of recording the subsea systems manually, where a
recording shift attendant accompanied a diver down, illustrated
the rudimentary practices that would come to define subsea.
The process of recording these manually came with several
pros and minuses, subjectivity, data erosion, and the limits of
foggy composites. Accuracy in the process was and still is
revered, however, regardless of data standards in imagery or
recollection. The diversification of subsea inspections brought
engagement of ROVs with digital platforms built into SOVs
(Submersible Optical Vehicles). Devices such as Coabis,
FDVR, Sense, and other structured software digitized the lore
of the as-built detection and inspection, while standard metrics
still lag. The Merit of modern, integrated, offshore structures
with Artificial Intelligence suggests a new frontier in
inspections where a digital twin device was integrated into
subordinate, rigid ROVs that are deployed subsea. Operations
and methodologies of inspection can now track and forecast
failures, optimize maintenance, and identify critical points in
safety protocols.

The shift from legacies of the past to the new approaches that
are brought out should be identified as a fusion, not a deletion.
Old accounts, regardless of inaccuracy, set the framework to
design the new systems that would capture the erosion in
structures, systems, and safety with great depth. The new
systems would need the old data to ensure maximum coherence
with modern digital and AI models.
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The vision, which seems more plausible in the case of future
offshore inspection, would be a framework that is fully data-
driven and predictive while also being sustainable. This vision
would incorporate offshore data standards, robust cross-
governance frameworks, and cross-sector interoperable
collaboration between diverse regions and technologies. In
addition, real-time data based on sensor fusion, Al autonomy,
and cloud-based data management systems would be the
expected standard. Integrating frameworks with sustainability
and resilience, offshore inspections would be expected to
advance towards more proactive rather than reactive problem-
solving in energy infrastructure stewardship. This
‘realignment’ in approach is best reflected in the Al predictive
models and handwritten diver logs divergence. This has
resulted in a vision that is more technologically advanced,
while also being safer and reliable concerning offshore
operations.
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