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ABSTRACT 

For more accurate speaker identification in emotion-driven 

human-robot interaction, we suggest a unique method for 

combining linguistic information and acoustic to improve 

automated speech recognition (ASR) performance. This study 

creates a model with two primary components and divides 

emotional states into seven distinct categories. Contour, pitch, 

and energy spectrum characteristics are important criteria for 

analysis in the first component, which focuses on emotion 

identification from audio information. Using emotional 

phrases, the second component uses linguistic information to 

identify emotions in conversational material. We investigate a 

number of classification techniques, such as neural networks, 

auxiliary vector machines, linear classifiers, and Gaussian 

mixture models, in order to assess the efficacy of our 

methodology. The accuracy with which these methods can 

categorize emotional states is the basis for their evaluation. 

Ultimately, a neural network is used to combine soft 

judgments from language and auditory models, guaranteeing a 

more thorough and reliable emotion identification system.  

Two corpora of emotional speech are used for training and 

validation in order to evaluate performance. When compared 

to models that just use individual variables, the results show 

that combining language and auditory information greatly 

improves the accuracy of emotion identification. Enhancing 

ASR reliability and maximizing human-robot interaction 

depend on improvements in speaker emotion recognition, 

which this development helps to achieve. We also go over 

how our strategy stacks up against other approaches, 

emphasizing quantifiable benefits from our integration 

approach. The results show how well our model can identify 

emotions in a variety of speech situations, opening the door 

for more sophisticated and sensitive speech recognition 

systems. This work advances the creation of more responsive 

and intuitive human-robot communication by improving 

emotion identification algorithms, which is important for 

applications in assistive technology, customer service, and 

healthcare. 
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1. INTRODUCTION 
At present, interest is growing in the detection, recognition 

and interpretation of user emotions during interactions 

between humans and machines. Individually, many 

applications exist in information retrieval and medical 

analytics [2]. In our work, we have focused on applying ER 

inthe vehicular environment i.e., to provide in-vehicle systems  

with awareness about drivers mood be it for initiating safety 

strategies, enable proactive help or error forgiveness based on 

driver emotions. For human-computer interaction targeted 

research, non-invasive developments seem to have benefited 

from more attention due to the emotion user comfort level 

control and specific convenience it brings. While speech 

analysis and imitation seem to be the most promising, voice 

will be the input channel of this investigation. The sound 

characteristics of emotional speech is largely responsible 

regarding the advancements made within speech emotion 

identification. The integration of linguistic and auditory 

information appears to be the most reasonable result, but 

newer techniques have focused more on the verbal content 

itself [3–4]. Therefore, we aim to integrate these two 

knowledge sources as robustly as possible in the work that is 

presented. First, using only acoustic information, our goal is 

to demonstrate the best classification method and feature set 

in comparison that honors speaker autonomy and good 

performance. We then concentrate on linguistic data. We offer 

a belief network-based approach for emotional sentence 

recognition, while other works use the conditional 

probabilities of individual words in a statement to predict the 

probability of an emotion. This method's concept is to frame 

the entire speech as a denial of a feeling, letting the speaker 

specify the extent of the denial. Take this statement into 

consideration: "I don't feel good at all." Furthermore, "too" 

indicates the true degree whereas the phrase "good" 

isdisregarded. This talk on language- and sound-based 

emotion identification is followed by a new method for 

combining the two. We suggest soft-decision fusion, which 

retains current knowledge for the ultimate decision-making 

process, in contrast to the majority of fusion operations that 

have been carried out thus far, which use late semantic fusion. 

We will take into consideration given that there is currently no 

consensus on a general scheme for classifying emotions in 

technical applications and that researchers in the field of 

automatic emotion recognition frequently employ the user's 

discrete emotional states, the MPEG4 standard names the 

following emotional states: anger, joy, disgust, fear, sadness, 

and surprise. Immobility state is frequently divided into a 

neutral condition to complete this set. Within our 

investigation, we have selected these seven emotions for 

international comparison [5] [6]. Emotional assessment must 

adhere to the discussion statement in its entirety. 
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Figure 1: Speech Emotion Recognition 

2. EMOTIONAL SPEECH CORPUS 
The FERMUS III project, which focuses on emotion 

recognition in automotive environments, collected the 

emotional speech corpus. The AKG-1000S MK-II dynamic 

microphone was used to record the audio in an acoustically 

isolated space. The corpus consists of statements made by 13 

participants—one of whom was female— in both German and 

English. In order to reduce the impact of actors' expectations, 

2,829 staged emotional samples were gathered over the course 

of a year and make up the first portion of the corpus. These 

examples provide as a baseline dataset for prosodic and 

linguistic analysis training and assessment. Although these 

produced emotions are a good place to start, real emotions 

give a more accurate portrayal, especially when taking the 

conversational context into account. Seven hundred utterances 

taken from automobile infotainment voice interface 

conversations make up the second component of the corpus, 

which is meant to be evaluated for fusion. Other than 

contempt and melancholy, the project's main focus was on 

emotions, thus more usability tests were carried out to make 

sure that every emotion in the dataset was distributed fairly. 

At the conclusion of the test series, speakers were asked to 

reorder their own samples using a random arrangement to 

verify accuracy of emotions stated. The average results 

demonstrated that, at just 2.11%, the overall standard 

variation between human classifiers was very small. The 

figures utilize the following abbreviations: dis for disgust, fea 

for fear, ang for anger, neu stands for neutral, sad for 

melancholy, sur for surprise, and joy for delight. 

Emotion Ang Dis Fea Joy Ntl Sad Sur 

Error, % 7.9 19.8 18.6 14.6 16.6 23.8 12.4 

Figure 2: Human reclassification error rates, mean 

16.31%. 

3 ACOUSTIC FEATURE SET 
In this work, we focus on the learned static features due to 

their better classification performance. Since a wide variety of 

noises might affect the raw pitch and energy contours, we first 

compute them. Spectral qualities, on the other hand, seem 

unduly dependent regarding phonemes and, thus, the phonetic 

content of the speech. Assuming phonetic content 

independence throughout acoustic analysis has the 

disadvantage of this dependence. Thus, we only take into 

account spectrum energy in the 251–651 Hz range while 

including spectral data. Using a Hamming window technique, 

we examine a speech frame every 10 ms lasting 20 ms. The 

energy figure is comparable to the frame's log-average energy. 

The Mean Amplitude The distinction Pitch is determined 

using function contour (AMDF). Because of its summing 

restriction, Compared to the autocorrelation function, the first-

order AMDF offers a quicker solution. This method, like all 

height estimate techniques, depends on variations from the 

initial height, which can only be determined by evaluating the 

larynx. AMDF exhibits sensitivity to dominating formants but 

resilience against noise. We apply low-pass filtering using a 

symmetric moving average filter with a width of three to 

smooth down sharp edges before statistical analysis. 

Subsequently, we use the contour to extract higher-level 

characteristics by taking its mean and adjusting it to its 

standard deviation. We approximate the temporal 

characteristics of voiced sounds relative to the pitch contour 

zero level because unvoiced sounds are inharmonic. The 

calculation of silence time relies on a threshold energy value. 

We first took into consideration a thorough set of more than 

200 features, in light of the continuing discussion over the 

ideal set of global static properties. The components of our 

finished feature vector in 33 dimensions are listed the 

following table. These characteristics are classified using 

linear discriminant analysis. A straight comparison shows that 

using all terrain-related features results in an accurate 

recognition percentage of 69.80%, whereas using only 

energy-related features results in a rate of 36.58%. 

 
Figure 3: A linear discriminant analysis is used to rank the 

auditory characteristics. 
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3.1 Classification of Acoustic Sets 
Techniques for acoustic layer classification are investigated: 

For each method, the best parameter settings and results are 

discussed. 

3.2 Linear Classifiers 
As a benchmark for performance, a basic classifier based on a 

Euclidean distance metric that finds the closest mean class 

vector (kMeans) was employed. In a later phase, k-nearest 

neighbor (kNN) classifiers were also assessed. The k closest 

references to the input vector cast a majority vote, which 

determines the outcome. When was set to 1, the best outcome 

was chosen directly, resulting in the highest performance. The 

outcomes produced by these classifiers amply demonstrate the 

nonlinear character of the issue and the need for a more 

sophisticated strategy. 

3.3 Gaussian Mixture Models 
By combining a variety of weighted Gaussians, GMMs offer a 

reliable estimate of the probability distribution function of the 

first observed feature. An method was optimized was used to 

determine the mixing coefficients. GMM is used to represent 

each emotion, and the maximum likelihood model is used to 

guide decision-making. With 16 combinations, the greatest 

recognition result was obtained. 

3.4 Neural networks 
Using neural networks is conventional practice for classifying 

templates. They are renowned for their selective learning, 

independent weight capabilities, and nonlinear transfer 

functions. In light of the limited amount of accessible 

information for emotion training, its better performance on a 

short training set than GMM appears to be beneficial.The 

number of input characteristics was represented by 33 input 

neurons in the multi-layer perceptron, which had seven output 

neurons for every emotion and a sigmoid transfer function in 

the buried layer. The concealed layer's optimal performance 

was seen when 100 neurons were used. The softmax function 

was employed in order to standardize the output after the fact. 

Cross-entry as a mistake in learning, 1000 repetition 

distribution function as well as several cross-checks were 

employed. 

3.5 Vector machine support 
Support vector machines (SVM) have garnered much 

attention lately for classification challenges because of their 

great generalization abilities resulting from structural risk 

minimization-based training. Using a mapping function that 

allows for linear separability, SVMs convert feature vectors 

that are entered into a feature space that is usually high-

dimensional in order to solve nonlinear issues. The separation 

hyperplane between two class borders is properly positioned 

by the approach to ensure optimum classification 

performance. Support vectors define this hyperplane, reducing 

the number of required references. There are several 

approache handling issues. In assessment, we are offered 3 

distinct methods: first, comparing each class's SVM to all 

others and choosing the one with the biggest separation from 

the others; The second method involves putting the distances 

into a multilayer perceptron (MLP), which has seven inputs, 

400 hidden neurons, and matching outputs. The third method 

involves using a Multi-Layer SVM (ML-SVM), the idea of 

which is depicted in the diagram that follows. The MLP is 

described in sections. 

 

acoustic feature vector 

 

Figure 4: Best synchronization of emotions utilizing ML-

SVMs. 

Until only one class is left, the two-class choice procedure is 

repeated at each tier. Accurate identification depends critically 

on how emotion groups are arranged and how the layer 

structure is put together. According to our analysis, classes 

that are challenging to divide up should be separated last. This 

can be accomplished automatically with confusion matrices 

from the original SVM technique, or based on expert 

knowledge. This method's drawback, though, is that it cannot 

determine confidence for individual classes, which renders it 

inappropriate for merging. As a mapping function, the radial 

basis function kernel worked the best. 

3.6 Classification Results 
The classifier was assessed on a big corpus of voice data. 

Over the course of three cycles, two thirds, two-thirds of the 

data were used for training, while the remaining one-third was 

used for testing. The average error rates are shown in the table 

below, with standard deviations varying between ±0.01% and 

±0.03%.With an exclusive training that is dependent on the 

speaker (S DEP) and evaluation that is independent of the 

speaker (S IND) were both taken into consideration. 

   Classifiers      S IND, 

     Error, % 

       S DEP, 

       Error, % 

    kMeans 

    kNN 

     57.04 

     30.41 

       27.38 

       17.39 

    GMM      25.16        10.89 

    MLP      26.84         9.35 

    SVM      23.88         7.05 

    SVM-MLP           24.55         11.3 

    ML–SVM      18.71         9.05 
Figure 5: Comparison of the categories of acoustic 

features. 

4. LANGUAGE INFORMATION 
Usually, emotional information is only partially conveyed by 

a user's speech. Even in cases where emotional content is 

present, it often only shows up in little doses throughout the 

whole speech. Therefore, to efficiently discover keywords and 

sentiment expressions in natural language, a tracking strategy 

is essential. We use a typical (ASR.) system using a model 

based on a zero-gram hidden Markov model that offers the top 

n theories, including one-word confidence scores, to assess 

spoken language. Because belief networks are capable of 

handling ambiguous and partial data, we chose them as the 

mathematical foundation for our investigation. Though this 

page provides only a cursory introduction to belief network 

theory, it is becoming more and more popular as a solution to 

problems with pattern recognition. A belief network is made 
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up of a number of nodes that each have a limited number of 

alternative states and represent state variables, X. The directed 

edges that link these nodes indicate the conditional 

probabilities between every node as well as the parent node. 

The combined probability distribution represents the 

network's whole structure and conditional probabilities. 

Calculating the distribution may be done as follows, where N 

is the overall quantity of random variables. 

P(X1,..., XN ) = ÕP(Xi |parents(Xi )) ………              (1) 

 The network may infer the status of certain inquiry variables 

according to evidence variable observations. The objective is 

to identify the sentiment hypothesis that increases the 

likelihood of a collection of words given the acoustic data, 

much like in conventional techniques to natural speech 

interpretation. Every emotion has a unique network that 

represents it. During the initialization phase, root probabilities 

are equally distributed, corresponding to the prior probability 

of each emotion. A maximum likelihood choice is reached if 

emotional language data is understood independently. If not, 

each emotion's root probability is sent to a higher-level fusion 

algorithm, which works similarly to the method for acoustic 

confidence. The following graphic shows how the hierarchical 

clustering reduces mistakes to 18.9%: at the bottom four 

levels, words cluster together with superwords, followed by 

sentences, supersentences, and feelings. 

 

Figure 6: Using belief networks to identify phrases. 

―...I don't feel well at all....― 

Evidence supplied into the network at the word level 

according to the degree of confidence in the words that are 

actually seen. Tradition dictates that definite evidence be 

extended as uncertain evidence by integrating the ASR 

hypotheses' confidence level. Using a large corpus of 

manually labeled emotions, the training phase computes the 

numerical contribution P(ej|w) of each word w to the 

perception of emotion ej derived on the emotion's frequency 

of occurrence during observed speech. 

4.1 Gentle integration of the solution 
In this section, we focus on integrating the verbal and auditory 

datawe've gathered. Some studies suggest combining these 

sources using a late semantic Boolean OR approach, but this 

method is limited when dealing with more than two classes. 

Instead, we propose a more sophisticated approach: first, we 

calculate a paired average rating for every feeling informed by 

both sound and linguistic scores. Then, we use an adjacent 

maximum likelihood solution to make the final decision. This 

method has the advantage of using soft scores from both 

aspects before reaching a conclusion. However, this simple 

fusion method doesn't account for the varying levels of 

confidence in acoustic and linguistic estimations for each 

emotion.To address this, we adopt a more discriminative 

approach that considers all available emotion confidences in 

one decision process. We recommend using a Multi-Layer 

Perceptron (MLP) for this fusion task, as introduced in section 

3.1. The MLP takes a 14-dimensional input feature vector, 

which includes seven confidence measures from both sound 

and language evaluations. The final sentiment probability is 

generated by the seven output neurons using a softmax 

function. Our tests demonstrated that optimal results were 

attained with 100 hidden neurons. MLP was trained on a 

separate dataset from the original training set, and its 

effectiveness was evaluated using a third dataset. The results, 

as shown in the table, were obtained utilizing the FERMUS 

III dialogue corpus with the best setup. Importantly, 12% of 

the statements included solely auditory details regarding the 

concealed emotion. The performance gain achieved by using 

the MLP-based fusion over the means-based fusion is evident, 

highlighting the benefits of our proposed approach. 

Model Acoustic 

Information 

Language 

Information 

Fusion 

by means 

Fusion 

by MLP 

Error., %    25.7    40.3    16.8     7.9 

Figure 7: Performance enhancement refers to means-

based and MLP integration. 

5. CONCLUSION 
Combining linguistic and auditory information has greatly 

propelled the field of speech emotion recognition (ser). By 

integrating these different approaches, researchers have made 

significant advancements in accurately recognizing human 

emotions through speech. A significant study conducted by 

Schuller et al. proposed a hybrid model that combines 

acoustic features, including pitch, energy, and spectral 

contours, with linguistic cues identified through belief 

networks. This method resulted in a significant decrease in 

error rates, achieving an impressive 7.9% error rate, 

underscoring the effectiveness of multimodal analysis in 

speech recognition. Researchgate: Support vector machines 

(svms) have gained recognition as a dependable classification 

method in ser due to their ability to handle complex data and 

their capacity to generalize well. When used to evaluate well-

ranked acoustic features, svms have shown excellent accuracy 

in identifying emotional states. Additionally, incorporating 

linguistic cues, such as emotional keywords identified through 

belief networks, improves the system's performance. The 

achievement of integrating acoustic and linguistic data 

emphasizes the significance of multimodal analysis in speech 

recognition systems. By combining the analysis of both the 

words spoken (linguistic content) and the way they are spoken 

(acoustic features), these models can achieve a higher level of 

accuracy in understanding the speaker's emotional state. This 

progress has the potential to be applied in various fields, such 

as human-computer interaction, mental health monitoring, and 

customer service, where comprehending human emotions is of 

utmost importance. 

6. REFERENCES 
[1] Emotion recognition in human-robot interaction. Inf. Sci. 

2020, 509, 150–163.  

[2] Hansen, J.H.; Cairns, D.A. Icarus: Source generator 

based real-time recognition of speech in noisy stressful 

and lombard effect environments. Speech Commun. 

1995, 16, 391–422.  



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.5, May 2025 

34 

[3] Koduru, A.; Valiveti, H.B.; Budati, A.K. Feature 

extraction algorithms to improve the speech emotion 

recognition rate. Int. J. Speech Technol. 2020, 23, 45–55.  

[4] Zheng, W.; Zheng, W.; Zong, Y. Multi-scale discrepancy 

adversarial network for crosscorpus speech emotion 

recognition. Virtual Real. Intell. Hardw. 2021, 3, 65–75.  

[5] Schuller, B.; Rigoll, G.; Lang, M. Speech emotion 

recognition combining acoustic features and linguistic 

information in a hybrid support vector machine-belief 

network architecture. In Proceedings of the 2004 IEEE 

International Conference on Acoustics, Speech, and 

Signal Processing, Montreal, QC, Canada, 17–21 May 

2004; pp. 577–580.  

[6] Spencer, C.; Koç, İ.A.; Suga, C.; Lee, A.; Dhareshwar, 

A.M.; Franzén, E.; Iozzo, M.; Morrison, G.; McKeown, 

G. A Comparison of Unimodal and Multimodal 

Measurements of Driver Stress in Real-World Driving 

Conditions; ACM: New York, NY, USA, 2020.  

[7] France, D.J.; Shiavi, R.G.; Silverman, S.; Silverman, M.; 

Wilkes, M. Acoustical properties of speech as indicators 

of depression and suicidal risk. IEEE Trans. Biomed. 

Eng. 2000, 47, 829–837.  

[8] Uddin, M.Z.; Nilsson, E.G. Emotion recognition using 

speech and neural structured learning to facilitate edge 

intelligence. Eng. Appl. Artif. Intell. 2020, 94, 103775.  

[9] Jahangir, R.; Teh, Y.W.; Hanif, F.; Mujtaba, G. Deep 

learning approaches for speech emotion recognition: 

State of the art and research challenges. Multimed. Tools 

Appl. 2021, 80, 23745–23812.  

[10] Fahad, M.S.; Ranjan, A.; Yadav, J.; Deepak, A. A survey 

of speech emotion recognition in natural environment. 

Digit. Signal Process. 2021, 110, 102951.  

[11] Jahangir, R.; Teh, Y.W.; Mujtaba, G.; Alroobaea, R.; 

Shaikh, Z.H.; Ali, I. Convolutional neural network-based 

cross-corpus speech emotion recognition with data 

augmentation and features fusion. Mach. Vis. Appl. 

2022, 33, 41.12. Ayadi, M.E.; Kamel, M.S.; Karray, F. 

Survey on speech emotion recognition: Features, 

classification schemes, and databases. Pattern Recognit. 

2011, 44, 572–587.  

[12] Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Deng, L.; 

Penn, G.; Yu, D. Convolutional neural networks for 

speech recognition. IEEE/ACM Trans. Audio Speech 

Lang. Process. 2014, 22, 1533–1545.  

[13] Trigeorgis, G.; Ringeval, F.; Brueckner, R.; Marchi, E.; 

Nicolaou, M.A.; Schuller, B.; Zafeiriou, S. Adieu 

features? end-to-end speech emotion recognition using a 

deep convolutional recurrent network. In Proceedings of 

the 2016 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), Shanghai, 

China, 20–25 March 2016; pp. 5200–5204.  

[14] Anvarjon, T.; Kwon, S. Deep-net: A lightweight CNN-

based speech emotion recognition system using deep 

frequency features. Sensors 2020, 20, 5212.  

[15] Rybka, J.; Janicki, A. Comparison of speaker dependent 

and speaker independent emotion recognition. Int. J. 

Appl. Math. Comput. Sci. 2013, 23, 797–808.  

[16] Akçay, M.B.; Oğuz, K. Speech emotion recognition: 

Emotional models, databases, features, preprocessing 

methods, supporting modalities, and classifiers. Speech 

Commun. 2020, 116, 56–76.  

[17] Zhang, S.; Tao, X.; Chuang, Y.; Zhao, X. Learning deep 

multimodal affective features for spontaneous speech 

emotion recognition. Speech Commun. 2021, 127, 73–

81. 

[18] Pawar, M.D.; Kokate, R.D. Convolution neural network 

based automatic speech emotion recognition using 

Melfrequency Cepstrum coefficients. Multimed. Tools 

Appl. 2021, 80, 15563–15587.  

[19] Issa, D.; Demirci, M.F.; Yazici, A. Speech emotion 

recognition with deep convolutional neural networks. 

Biomed. Signal Process. Control. 2020, 59, 101894.  

[20] Sajjad, M.; Kwon, S. Clustering-based speech emotion 

recognition by incorporating learned features and deep 

BiLSTM. IEEE Access 2020, 8, 79861–79875.  

[21] Badshah, A.M.; Rahim, N.; Ullah, N.; Ahmad, J.; 

Muhammad, K.; Lee, M.Y.; Kwon, S.; Baik, S.W. Deep 

features-based speech emotion recognition for smart 

affective services. Multimed. Tools Appl. 2019, 78, 

5571– 5589.  

[22] Er, M.B. A Novel Approach for Classification of Speech 

Emotions Based on Deep and Acoustic Features. IEEE 

Access 2020, 8, 221640–221653.  

[23] Nicholson, J.; Takahashi, K.; Nakatsu, R. Emotion 

recognition in speech using neural networks. Neural 

Comput. Appl. 2000, 9, 290–296. 

[24] Noroozi, F.; Sapiński, T.; Kamińska, D.; Anbarjafari, G. 

Vocal-based emotion recognition using random forests 

and decision tree. Int. J. Speech Technol. 2017, 20, 239–

246. 

 

IJCATM : www.ijcaonline.org 


