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ABSTRACT 

This research proposes a robust deep learning framework for 

the accurate classification of tomato leaf diseases by leveraging 

both original and augmented image datasets. The study utilizes 

a curated set of 1,200 original images spanning six distinct 

classes, five representing common tomato diseases (Early 

Blight, Bacterial Spot, Leaf Mold, Yellow Leaf Curl Virus, and 

Spider Mites) and one healthy class. Through systematic data 

augmentation, the dataset was expanded to 5,980 samples, 

enhancing model generalization. A comparative analysis of 

several convolutional neural network architectures was 

conducted, including a baseline CNN, a lightweight custom 

CNN, MobileNetV2, DenseNet121, InceptionV3, and the 

proposed VGG16-based transfer learning model. The VGG16 

model, optimized via fine-tuning, label smoothing, and 

regularization, achieved the highest accuracy of 99.83%. It 

demonstrated superior robustness in distinguishing between 

visually similar disease symptoms. This work reinforces the 

importance of tailored model architecture and data strategy in 

agricultural image analysis and contributes to the advancement 

of intelligent, field-deployable crop health monitoring systems. 
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1. INTRODUCTION 
Tomato (Solanum lycopersicum) is a globally important 

horticultural crop cultivated across diverse agroclimatic zones. 

It is not only a rich source of essential vitamins, minerals, and 

dietary antioxidants but also holds high economic value for 

both small-scale farmers and large-scale agricultural 

enterprises. Despite its significance, tomato production is 

highly vulnerable to a range of biotic stresses, particularly 

foliar diseases caused by fungi, bacteria, viruses, and mites [1-

3]. 

These diseases, if not detected and managed in time, can lead 

to severe yield losses and adversely affect the quality of the 

produce [4-8]. In this study’s, focus on the classification of five 

major tomato leaf diseases, along with healthy leaves, using 

deep learning-based image analysis. The selected diseases 

include Early blight, Bacterial spot, Yellow Leaf Curl Virus 

(TYLCV), Two-Spotted Spider Mite infestation, and Leaf 

mold. 

Early blight, caused by Alternaria solani, appears as concentric 

brown to black lesions on older leaves, resulting in tissue 

necrosis and early leaf drop. Bacterial spot manifests as small, 

water-soaked dark spots with yellow halos that can merge and 

form large necrotic areas. TYLCV, a viral disease transmitted 

by whiteflies, causes upward curling and yellowing of leaves, 

stunted plant growth, and reduced fruit setting. Spider mite 

infestation, particularly from Tetranychus urticae, leads to 

stippling, bronzing, and webbing on the leaf surface due to 

chlorophyll extraction. Leaf mold, caused by Fulvia fulva, 

presents as pale yellow patches on the upper surface and a 

velvety olive mold on the underside of leaves, commonly under 

humid conditions [8-12]. 

In contrast, a healthy tomato leaf is uniformly green, free from 

curling, discoloration, lesions, or pest activity making it a 

reliable visual reference for automated detection systems. 

Traditionally, tomato leaf diseases have been identified through 

manual inspection by trained experts. While this method may 

be effective in small-scale settings, it is time-consuming, 

subjective, and unsuitable for large-scale monitoring  [13-14]. 

Furthermore, visual similarities between disease symptoms 

often lead to misdiagnosis. In response to these limitations, 

researchers have explored automated disease recognition using 

computer vision and machine learning techniques. Earlier 

approaches relied on handcrafted features like color, texture, 

and shape, combined with classifiers such as Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), and Random 

Forest [1-2,15]. 

However, their performance was constrained by manual feature 

extraction, sensitivity to background noise, and limited 

adaptability to real-world conditions [16]. The emergence of 

deep learning, particularly Convolutional Neural Networks 

(CNNs), has brought a transformative shift in image-based 

classification tasks. CNNs are capable of learning complex 

spatial patterns directly from raw image data without requiring 

manual intervention [8, 14, 17-18]. 

In the field of plant disease recognition, deep CNN models such 

as MobileNetV2, DenseNet121, VGG16, ResNet50, and 

InceptionV3 have shown promising results, outperforming 

classical models in terms of accuracy and robustness [19-23] 

These architectures allow deeper feature extraction and better 
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generalization, especially when combined with techniques like 

transfer learning and data augmentation [12, 24-25]. 

To address the ongoing challenge of timely and accurate 

classification of tomato leaf diseases, this research explores and 

compares the performance of several deep learning models, 

including MobileNetV2, Lightweight CNN, VGG16, 

DenseNet121, and InceptionV3. The study utilizes a curated 

image dataset comprising five disease categories and one 

healthy leaf category, creating a six-class classification 

problem [21, 26]. 

Data augmentation strategies are employed to introduce 

variation and reduce the risk of overfitting, while transfer 

learning is used to leverage pretrained weights for better model 

convergence and performance [26-27]. The primary goal of this 

research is to identify the most accurate and computationally 

efficient model for tomato leaf disease classification, with the 

potential for deployment in real-time agricultural systems. 

Each model is evaluated based on classification accuracy, 

confusion matrix, and class-wise performance metrics. The 

findings of this work aim to assist farmers, agricultural 

technicians, and policymakers by providing intelligent, AI-

powered diagnostic tools for early disease detection, thus 

reducing crop losses and improving agricultural productivity 

[12,28]. 

This study presents a deep learning-based approach for 

classifying tomato leaf diseases using both custom and pre-

trained CNN architectures. A curated dataset with six classes 

was augmented to improve generalization. Models such as 

VGG16, MobileNetV2, and InceptionV3 were evaluated, with 

VGG16 achieving the highest accuracy. The research aims to 

enable scalable, efficient, and real-time disease detection to 

support intelligent decision-making in modern agriculture. 

The following is the structure of the paper. A brief summary of 

the several studies is given in Section 2. The 3. The Proposed 

Method is presented in Section 3, while Section 4 presents the 

Results and discussion. The Conclusion and Future Work are 

included in the last section. 

2. LITERATURE REVIEW  
The detection and classification of tomato leaf diseases have 

seen significant advancements over the past decade, evolving 

from traditional machine learning techniques to deep learning 

and transformer-based models optimized for real-world 

applications. 

Early Research and Traditional Machine Learning Approaches 

(2011–2015): Initial studies in tomato leaf disease detection 

relied on conventional machine learning algorithms such as K-

means clustering, Support Vector Machines (SVM), and 

Artificial Neural Networks (ANN). [1-2, 29-31] reported 

classification accuracies ranging between 83% and 95%, but 

these models depended on manual feature extraction based on 

color, texture, or shape. [16, 32-35] also explored ANN-based 

classifiers, highlighting their classification potential, although 

these models lacked scalability and failed to generalize well 

under varying environmental conditions due to their reliance on 

preprocessed or filtered datasets. 

Rise of CNN-Based Deep Learning Models (2016–2019): The 

introduction of Convolutional Neural Networks (CNNs) 

transformed plant disease detection by enabling automatic 

feature extraction and improving performance significantly. 

[36] and [8] leveraged pre-trained models such as AlexNet, 

VGG16, and GoogleNet, achieving over 99% accuracy on the 

PlantVillage dataset. [14] also demonstrated that deep CNNs 

reduced the complexity of preprocessing. [37-39] reinforced 

the generalization capability of CNNs across various plant 

disease datasets. However, these studies predominantly relied 

on the PlantVillage dataset composed of high-quality, lab-

captured images which limited real-world applicability. 

Emergence of Lightweight, Hybrid, and Real-Field CNN 

Models (2020–2023): To address the computational burden 

posed by large pre-trained networks, researchers began 

exploring lightweight and custom CNN architectures. [40-41] 

proposed a compact CNN comprising only three convolutional 

and pooling layers, achieving 91.2% accuracy, surpassing 

traditional architectures like VGG16 and MobileNet in 

efficiency and making it suitable for mobile deployment. 

However, these lightweight models struggled with robustness 

when tested on noisy or real-field datasets due to their 

dependence on curated inputs. In parallel, efforts were made to 

capture more complex spatial-temporal features through hybrid 

architectures. [23, 42-43] implemented object detection 

frameworks such as Faster R-CNN and Mask R-CNN, enabling 

both classification and precise localization of diseased regions. 

[19] utilized InceptionV3 with transfer learning to achieve a 

validation accuracy of 88.32%, while) [44] and [14] compared 

CNN, R-CNN, and Fuzzy-SVM models, identifying ResNet50-

based R-CNN as the most effective with a 96.73% accuracy. 

Recognizing the limitations of laboratory-controlled datasets, 

subsequent studies emphasized real-field data integration and 

ensemble learning strategies. [26] trained YOLOv5 on a 

combination of public and real-field images, achieving 93% 

accuracy and 95% mean Average Precision (mAP), 

outperforming Faster R-CNN and EfficientDet. Similarly, 

[21,34] developed a custom CNN that delivered 95.53% 

accuracy on a large dataset of over 14,000 tomato leaf images. 

[22] introduced an ensemble model combining MobileNet and 

DenseNet, which significantly enhanced performance, 

achieving 98.12% accuracy and outperforming standalone deep 

learning models in terms of precision, recall, and F1-score. 

State-of-the-Art Deep Learning and Transformer Models 

(2024): The latest phase in tomato disease detection has seen 

the integration of deep learning with transformer architectures 

and IoT-based systems. [12] achieved 99% accuracy using 

VGG16, while [24] enhanced model adaptability using data 

augmentation and deep feature fusion. [27] merged cloud-

based data acquisition with transfer learning using AlexNet, 

ResNet, and VGG16, achieving up to 93.7% accuracy. [28] 

improved YOLOv6 by adding CBAM and BiRepGFPN 

modules, enhancing the model's performance on small lesion 

detection. 

Research Gap and Future Scope 

Existing models focus on general plant disease classification 

and lack specialization for tomato leaf diseases. This work 

narrows this gap by targeting tomato-specific diseases with 

higher precision and relevance. 

Most reviewed models are trained on curated datasets and lack 

real-world validation. This work aims to integrate diverse, 

field-like tomato leaf images for better practical applicability 

and robustness. 

Prior studies show high accuracy but fail in real-time 

deployment due to heavy architectures. This work focus is on 

lightweight models suitable for mobile and edge devices for 

instant disease detection. 
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3. PROPOSED METHOD (VGG16-

BASED LEAF DISEASE 

CLASSIFICATION) 
In this research, the VGG16 model was selected as the primary 

architecture for tomato leaf disease classification due to its 

proven effectiveness in recent image classification studies. 

Compared to earlier research methods and classical machine 

learning approaches, VGG16 demonstrated superior accuracy 

and robustness on custom dataset. It is particularly well-suited 

for visual tasks involving fine-grained image differences, such 

as disease spot patterns on leaves. 

3.1 Dataset Description 
For this study, a custom image dataset was developed to 

classify six categories of tomato leaf conditions, including five 

disease-infected classes—Early Blight, Bacterial Spot, Yellow 

Leaf Curl Virus, Two-Spotted Spider Mite, and Leaf Mold—

alongside one Healthy Leaf class.  

 

Fig 1: Class wise sample image of the dataset. 

A total of 1,200 original images were collected, ensuring class-

wise representation of diverse visual symptoms. These images 

were further augmented using various techniques such as 

rotation, zoom, flipping, and brightness adjustments, resulting 

in an expanded dataset of 5,985 images. All images were 

resized to 128 × 128 pixels for model compatibility and 

computational efficiency. The final dataset was split into 80% 

for training, 10% for validation, and 10% for testing, ensuring 

balanced distribution across all six classes. Sample images 

from each category have been included to visually demonstrate 

the range of disease symptoms and healthy leaf characteristics, 

providing valuable context for the classification task. 

3.2 Model Architecture 
 The Visual Geometry Group at Oxford developed the deep 

convolutional neural network VGG16. It consists of 13 

convolutional layers and 3 fully connected layers, organized 

into five convolutional blocks. Each block includes two or three 

convolutional layers with 3x3 filters followed by a max pooling 

layer to reduce spatial dimensions. The ReLU activation 

function is applied after every convolution to introduce non-

linearity. After the convolutional blocks, the feature maps are 

flattened and passed through three dense (fully connected) 

layers. Dropout and regularization techniques are used to 

prevent overfitting. Finally, a softmax activation function is 

used at the output layer to classify images into one of the six 

target classes. 

The architecture of the proposed VGG16-based transfer 

learning model Table 1 is summarized below, 

Table 1: Custom VGG16 Model. 

Layer (Type) Output Shape 
Parameter

s 

InputLayer 
(None, 150, 

150, 3) 
0 

block1_conv1 (Conv2D) 
(None, 150, 

150, 64) 
1,792 

block1_conv2 (Conv2D) 
(None, 150, 

150, 64) 
36,928 

block1_pool 

(MaxPooling2D) 

(None, 75, 

75, 64) 
0 

block2_conv1 (Conv2D) 
(None, 75, 

75, 128) 
73,856 

block2_conv2 (Conv2D) 
(None, 75, 

75, 128) 
1,47,584 

block2_pool 

(MaxPooling2D) 

(None, 37, 

37, 128) 
0 

block3_conv1 (Conv2D) 
(None, 37, 

37, 256) 
2,95,168 

block3_conv2 (Conv2D) 
(None, 37, 

37, 256) 
5,90,080 

block3_conv3 (Conv2D) 
(None, 37, 

37, 256) 
5,90,080 

block3_pool 

(MaxPooling2D) 

(None, 18, 

18, 256) 
0 

block4_conv1 (Conv2D) 
(None, 18, 

18, 512) 
11,80,160 

block4_conv2 (Conv2D) 
(None, 18, 

18, 512) 
23,59,808 

block4_conv3 (Conv2D) 
(None, 18, 

18, 512) 
23,59,808 

block4_pool 

(MaxPooling2D) 

(None, 9, 9, 

512) 
0 

block5_conv1 (Conv2D) 
(None, 9, 9, 

512) 
23,59,808 

block5_conv2 (Conv2D) 
(None, 9, 9, 

512) 
23,59,808 

block5_conv3 (Conv2D) 
(None, 9, 9, 

512) 
23,59,808 

block5_pool 

(MaxPooling2D) 

(None, 4, 4, 

512) 
0 

GlobalAveragePooling2D (None, 512) 0 

Dropout_1 (None, 512) 0 

Dense_512 (None, 512) 2,62,656 

Dropout_2 (None, 512) 0 

Dense_256 (None, 256) 1,31,328 

Dropout_3 (None, 256) 0 

Output_Softmax (Dense) (None, 5) 1,285 

 

Total Parameters: 

Total params: 15,109,957 (~57.64 MB) 

Trainable params: 395,269 (~1.51 MB) 

Non-trainable params: 14,714,688 (~56.13 MB) 

3.3 Visual Overview of the Proposed 

Approach 
The following flowchart illustrates the complete research 

methodology adopted in this study. It outlines each key stage 

involved in the tomato leaf disease classification process, 

including data preparation, preprocessing, model design, 

training, evaluation, and comparison. This structured visual 
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representation provides a clear understanding of the proposed 

approach. The detailed workflow is depicted below in Figure 2. 

 

Fig 2: Research flowchart illustrating the stepwise 

methodology. 

3.4 Training Strategy 
The model was trained using transfer learning by freezing the 

initial VGG16 layers. The Adam optimizer and categorical 

cross-entropy loss were used, with early stopping and dropout 

techniques applied to prevent overfitting and improve 

generalization. 

3.5 Evaluation Metrics 
Model performance was evaluated using accuracy, precision, 

recall, F1-score, and confusion matrix to analyze class-wise 

predictions. Additionally, performance was monitored using 

validation loss trends, training accuracy curves, and 

classification reports to assess robustness, misclassification 

patterns, and overall generalization across all six tomato leaf 

disease categories. 

4. RESULT AND DISCUSSIONS 
In this research, a transfer learning-based VGG16 model was 

employed to classify tomato leaf diseases across six categories, 

including five major infections—Early Blight, Bacterial Spot, 

Leaf Mold, Spider Mites, and Tomato Yellow Leaf Curl 

Virus—along with a Healthy class. The model was customized 

by freezing the convolutional base and adding a Global 

Average Pooling layer(512 and 256 units respectively), 

followed by two fully connected dense layers with with ReLU 

activation and  dropout rates of 0.5 and 0.3, respectively, to 

mitigate overfitting. The final softmax layer outputs class 

probabilities for multiclass classification. The model was 

compiled using the Adam optimizer with an initial learning rate 

of 0.0001 and a categorical cross-entropy loss function with 

label smoothing. A total of 15,110,214 parameters were used 

during training, all of which were trainable. The final model 

size was 57.64 MB, making it lightweight enough for scalable 

applications. The model was trained for 50 epochs with a batch 

size of 16 and took approximately 3377 seconds to complete 

training.  

Performance evaluation revealed outstanding results, with an 

overall classification accuracy of 99.83% on the test dataset. 

Precision, recall, and F1-score for each class exceeded 99%, 

demonstrating the model’s robustness in identifying even 

visually similar diseases. For instance, the F1-score for the 

Spider Mites and Tomato Yellow Leaf Curl Virus classes were 

99.50% and 99.49%, respectively. Such high performance 

confirms the model's reliability and suitability for practical 

deployment. This model was selected after a thorough literature 

survey and demonstrates superior accuracy compared to 

previously reported architectures. 

Table 2 presents the classification report of the VGG16-based 

model, summarizing precision, recall, and F1-score for each 

tomato leaf disease class. 

Table 2: Classification Report of VGG16-Based Model. 

Class Precision 
Recal

l 

F1-

Score 

Suppor

t 

Early 

Blight 
1 1 1 100 

Healthy 

Leaf 
1 1 1 100 

Leaf Mold 1 1 1 99 

Two-

Spotted 

Spider Mite 

0.99 1 0.995 100 

Yellow 

Leaf Curl 

Virus 

1 0.99 0.995 100 

Bacterial 

Spot 
1 1 1 100 

Accuracy 0.998 

Macro Avg 0.998 0.998 0.998 599 

Weighted 

Avg 
0.998 0.998 0.998 599 

 

The training and validation performance of the proposed model 

is depicted in Figure 3, where it achieved 100% training 

accuracy and 99.83% validation accuracy with minimal loss. 

 

Fig 3: Training and validation accuracy and loss graph of 

the proposed model. 

The confusion matrix was produced, as seen in Figure 4, to 

assess the proposed model's classification performance across 

all tomato leaf disease categories. It makes it abundantly 

evident that the model produced few incorrect classifications 

and had a high forecast accuracy. The majority of these 

misclassifications were between visually comparable illness 

classes, where feature extraction was complicated by 

overlapping color patterns, texture similarities, and 

 
Start  

Data set : 6 Classes * 200, Split 80/10/10 

PreProcess:Resize, Augment, Normalize 

Model: VGG16 + Dense Layers 

Compile : Adam Optimizer, Crossentropy Loss 

Train: Freeze -→ Finetune, Callbacks Used 

Evaluate: Accuracy, Confusion Matrix 

Compare: CNN, MobileNetV2, DenseNet, InceptionV3 

Result: VGG16 Accuracy – 99.83% 

End 
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illumination differences in the input photos. The model 

successfully learnt the distinctive characteristics of each 

disease type, demonstrating its robustness and dependability 

for tomato leaf disease diagnosis in spite of these small errors, 

as evidenced by the overall distribution of properly identified 

occurrences.  

 

Fig 4: Confusion matrix of the proposed model. 

The AUC-ROC (Area Under the Receiver Operating 

Characteristic Curve) for the proposed model's evaluation is 

shown in Figure 5. At different threshold levels, the True 

Positive Rate (sensitivity) is shown compared to the False 

Positive Rate (1-specificity) using the ROC curve. An AUC-

ROC value of 100 (or 1.0) indicates that the proposed model 

achieved perfect classification performance, meaning it can 

completely distinguish between the positive and negative 

classes without any errors. In practical terms 

 

Fig 5: AUC-ROC curve of the proposed model. 

To contextualize the performance of proposed VGG16-based 

model, conducted a comparative evaluation of five alternative 

deep learning architectures. The Basic CNN achieved a 

commendable accuracy of 97.16%, demonstrating the potential 

of traditional convolutional layers when paired with sufficient 

preprocessing. The Lightweight CNN, optimized for 

efficiency, delivered a slightly lower accuracy of 94.82%, 

making it suitable for scenarios with limited computational 

resources. Among pre-trained transfer learning models, 

MobileNetV2 balanced speed and performance effectively with 

97.16% accuracy, while DenseNet121 outperformed 

MobileNetV2, achieving 97.83% accuracy and a 97.84% F1-

score, indicating strong class-wise consistency. Notably, 

InceptionV3 yielded superior results among the comparison 

models, with an accuracy of 98.83% and an F1-score of 

98.84%, reaffirming its strength in complex feature extraction. 

To contextualize the performance of proposed VGG16-based 

model, conducted an extensive experimental evaluation 

comparing it with five other deep learning architectures. The 

Basic CNN achieved a commendable accuracy of 97.16%, 

showcasing the effectiveness of traditional convolutional layers 

when combined with appropriate preprocessing techniques. 

The Lightweight CNN, designed for resource-constrained 

environments, delivered a slightly lower accuracy of 94.82%, 

indicating its suitability for real-time applications with limited 

computational capacity. Among the transfer learning models, 

MobileNetV2 offered a balanced trade-off between 

computational efficiency and performance, also achieving an 

accuracy of 97.16%. DenseNet121 surpassed MobileNetV2 

with a higher accuracy of 97.83% and an impressive F1-score 

of 97.84%, reflecting strong consistency across all disease 

classes. The most notable performance came from 

InceptionV3, which recorded the highest accuracy among the 

comparison models at 98.83%, along with an F1-score of 

98.84%, highlighting its strength in extracting complex 

features.  

The performance metrics derived from these experimental 

results are summarized in below Table 2, offering a clear 

comparison with proposed VGG16 model. 

Table 3: Comparative Table of Model Performance on 

Tomato Leaf Disease Classification. 

Models Accuracy Precision Recall 
F1-

Score 

Basic CNN 0.9716 0.9735 0.9733 0.9715 

Lightweight 

CNN 
0.9482 0.9489 0.9483 0.9482 

MobileNetV2 0.9716 0.9725 0.9716 0.9717 

DenseNet 0.9783 0.9791 0.9783 0.9783 

InceptionV3 0.9883 0.9887 0.9866 0.9867 

Proposed 

VGG16 
0.9983 0.9983 0.9983 0.9983 

 

Above table 3 presents a comparative analysis based on 

experimental study, showcasing the performance of various 

deep learning models for tomato leaf disease classification. The 

results are derived from practical implementation, where each 

model was trained and evaluated on the same dataset. The 

proposed VGG16 model demonstrated superior accuracy, 

precision, recall, and F1-score, outperforming all other models 

considered in the study. 

To visualize the comparative performance of all models, an 

accuracy-based bar graph is presented in Figure 6, highlighting 

the superior results of VGG16. 
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Fig 6: Accuracy comparison of various deep learning 

models 

Figure 7 presents a comparative analysis of all models using 

precision, recall, and F1-score metrics, offering deeper insights 

into the classification consistency and reliability across tomato 

leaf disease classes 

 
Fig 7: Comparison of precision, recall, and F1-score across 

all models for tomato leaf disease classification. 

Table 4: Comparative Table of Tomato Leaf Disease 

Detection Approaches. 

Author Year 
Models 

Used 

Reported 

Accuracy 

Best 

Performin

g Model 

Agarwal 

et al. 

[40] 

2020 

Lightweigh

t CNN (3 

Conv + 

Pool 

layers) 

91.20% 
Lightweig

ht CNN 

Uzma 

Farheen 

et al. 

[19] 

2022 

InceptionV

3 (Transfer 

Learning) 

88.32% 
Inception

V3 

Kokate 

et al. 

[21] 

2023 

Basic CNN 

(Custom, 

14,000 

images) 

95.53% 
Basic 

CNN 

Nazmun 

Nahar et 

al. [22] 

2023 

Ensemble 

(MobileNet

V2 + 

DenseNet) 

98.12% 

MobileNe

tV2 + 

DenseNet 

(Ensembl

e) 

Chakrab

orty et 

al. [12] 

2024 VGG16 99% VGG16 

Tiwari 

et al. 
2025 

Proposed 

VGG16 
99.83% 

Proposed 

VGG16 

 

 

Fig 8: Comparative Table of Tomato Leaf Disease 

Detection Approaches. 

In Table 4, and Figure 8 present a comparison of the proposed 

method and recent approaches for tomato leaf disease 

detection, highlighting the models and their accuracy 

performance metrics across different studies. This table offers 

a consolidated view to better understand the strengths and 

limitations of each method. 

These results align with findings from previous literature where 

transfer learning significantly enhanced plant disease 

classification accuracy. However, most of those studies relied 

on curated datasets and lacked real-field validation. In contrast, 

comparative analysis was performed on an augmented, field-

like tomato dataset with six classes, making the evaluation 

more robust. Figure 7 represents the comparative study of 

tomato leaf disease classification models. The proposed 

VGG16 model outperforms all other models, demonstrating 

that the improved architecture achieves the highest accuracy 

and is the most suitable for tomato leaf disease detection. 

Overall, while all tested models performed well, the VGG16-

based architecture remained the most effective in terms of 

accuracy, generalization, and deployment suitability. 

5. CONCLUSION AND FUTURE WORK 
This research delivers a comprehensive evaluation of various 

deep learning models for tomato leaf disease classification, 

demonstrating the effectiveness of architecture selection and 

data preparation. The proposed VGG16-based model, trained 

with transfer learning and supported by strong augmentation 

techniques, significantly outperformed other models in terms 

of precision, recall, and overall accuracy. Its ability to classify 

visually similar diseases with 99.83% accuracy showcases its 

practical applicability. 

Unlike earlier studies that used limited datasets or heavy 

models unsuitable for deployment, this work achieves a 

balance between accuracy and scalability. It shows that 

complex architectures aren’t always essential; effective fine-

tuning and data preparation can yield strong results. Although 

this study focused on six tomato leaf diseases, future work can 

extend to more diseases, different crops, and IoT-based 

environmental data. Deploying the model on mobile or edge 

devices can enable real-time detection, helping farmers make 

faster, data-driven decisions. In the future, integrating this 

approach with smart farming tools and predictive analytics 

could lead to a fully intelligent, sustainable agriculture system. 
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