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ABSTRACT

This research proposes a robust deep learning framework for
the accurate classification of tomato leaf diseases by leveraging
both original and augmented image datasets. The study utilizes
a curated set of 1,200 original images spanning six distinct
classes, five representing common tomato diseases (Early
Blight, Bacterial Spot, Leaf Mold, Yellow Leaf Curl Virus, and
Spider Mites) and one healthy class. Through systematic data
augmentation, the dataset was expanded to 5,980 samples,
enhancing model generalization. A comparative analysis of
several convolutional neural network architectures was
conducted, including a baseline CNN, a lightweight custom
CNN, MobileNetV2, DenseNetl121, InceptionV3, and the
proposed VGG16-based transfer learning model. The VGG16
model, optimized via fine-tuning, label smoothing, and
regularization, achieved the highest accuracy of 99.83%. It
demonstrated superior robustness in distinguishing between
visually similar disease symptoms. This work reinforces the
importance of tailored model architecture and data strategy in
agricultural image analysis and contributes to the advancement
of intelligent, field-deployable crop health monitoring systems.
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1. INTRODUCTION

Tomato (Solanum lycopersicum) is a globally important
horticultural crop cultivated across diverse agroclimatic zones.
It is not only a rich source of essential vitamins, minerals, and
dietary antioxidants but also holds high economic value for
both small-scale farmers and large-scale agricultural
enterprises. Despite its significance, tomato production is
highly vulnerable to a range of biotic stresses, particularly
foliar diseases caused by fungi, bacteria, viruses, and mites [1-
3].

These diseases, if not detected and managed in time, can lead
to severe yield losses and adversely affect the quality of the
produce [4-8]. In this study’s, focus on the classification of five
major tomato leaf diseases, along with healthy leaves, using
deep learning-based image analysis. The selected diseases
include Early blight, Bacterial spot, Yellow Leaf Curl Virus

(TYLCV), Two-Spotted Spider Mite infestation, and Leaf
mold.

Early blight, caused by Alternaria solani, appears as concentric
brown to black lesions on older leaves, resulting in tissue
necrosis and early leaf drop. Bacterial spot manifests as small,
water-soaked dark spots with yellow halos that can merge and
form large necrotic areas. TYLCV, a viral disease transmitted
by whiteflies, causes upward curling and yellowing of leaves,
stunted plant growth, and reduced fruit setting. Spider mite
infestation, particularly from Tetranychus urticae, leads to
stippling, bronzing, and webbing on the leaf surface due to
chlorophyll extraction. Leaf mold, caused by Fulvia fulva,
presents as pale yellow patches on the upper surface and a
velvety olive mold on the underside of leaves, commonly under
humid conditions [8-12].

In contrast, a healthy tomato leaf is uniformly green, free from
curling, discoloration, lesions, or pest activity making it a
reliable visual reference for automated detection systems.
Traditionally, tomato leaf diseases have been identified through
manual inspection by trained experts. While this method may
be effective in small-scale settings, it is time-consuming,
subjective, and unsuitable for large-scale monitoring [13-14].

Furthermore, visual similarities between disease symptoms
often lead to misdiagnosis. In response to these limitations,
researchers have explored automated disease recognition using
computer vision and machine learning techniques. Earlier
approaches relied on handcrafted features like color, texture,
and shape, combined with classifiers such as Support Vector
Machines (SVM), K-Nearest Neighbors (KNN), and Random
Forest [1-2,15].

However, their performance was constrained by manual feature
extraction, sensitivity to background noise, and limited
adaptability to real-world conditions [16]. The emergence of
deep learning, particularly Convolutional Neural Networks
(CNNs), has brought a transformative shift in image-based
classification tasks. CNNs are capable of learning complex
spatial patterns directly from raw image data without requiring
manual intervention [8, 14, 17-18].

In the field of plant disease recognition, deep CNN models such
as MobileNetV2, DenseNetl21, VGG16, ResNet50, and
InceptionV3 have shown promising results, outperforming
classical models in terms of accuracy and robustness [19-23]
These architectures allow deeper feature extraction and better
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generalization, especially when combined with techniques like
transfer learning and data augmentation [12, 24-25].

To address the ongoing challenge of timely and accurate
classification of tomato leaf diseases, this research explores and
compares the performance of several deep learning models,
including MobileNetV2, Lightweight CNN, VGGIS6,
DenseNetl21, and InceptionV3. The study utilizes a curated
image dataset comprising five disease categories and one
healthy leaf category, creating a six-class classification
problem [21, 26].

Data augmentation strategies are employed to introduce
variation and reduce the risk of overfitting, while transfer
learning is used to leverage pretrained weights for better model
convergence and performance [26-27]. The primary goal of this
research is to identify the most accurate and computationally
efficient model for tomato leaf disease classification, with the
potential for deployment in real-time agricultural systems.

Each model is evaluated based on classification accuracy,
confusion matrix, and class-wise performance metrics. The
findings of this work aim to assist farmers, agricultural
technicians, and policymakers by providing intelligent, Al-
powered diagnostic tools for early disease detection, thus
reducing crop losses and improving agricultural productivity
[12,28].

This study presents a deep learning-based approach for
classifying tomato leaf diseases using both custom and pre-
trained CNN architectures. A curated dataset with six classes
was augmented to improve generalization. Models such as
VGG16, MobileNetV2, and InceptionV3 were evaluated, with
VGG16 achieving the highest accuracy. The research aims to
enable scalable, efficient, and real-time disease detection to
support intelligent decision-making in modern agriculture.

The following is the structure of the paper. A brief summary of
the several studies is given in Section 2. The 3. The Proposed
Method is presented in Section 3, while Section 4 presents the
Results and discussion. The Conclusion and Future Work are
included in the last section.

2. LITERATURE REVIEW

The detection and classification of tomato leaf diseases have
seen significant advancements over the past decade, evolving
from traditional machine learning techniques to deep learning
and transformer-based models optimized for real-world
applications.

Early Research and Traditional Machine Learning Approaches
(2011-2015): Initial studies in tomato leaf disease detection
relied on conventional machine learning algorithms such as K-
means clustering, Support Vector Machines (SVM), and
Artificial Neural Networks (ANN). [1-2, 29-31] reported
classification accuracies ranging between 83% and 95%, but
these models depended on manual feature extraction based on
color, texture, or shape. [16, 32-35] also explored ANN-based
classifiers, highlighting their classification potential, although
these models lacked scalability and failed to generalize well
under varying environmental conditions due to their reliance on
preprocessed or filtered datasets.

Rise of CNN-Based Deep Learning Models (2016-2019): The
introduction of Convolutional Neural Networks (CNNs)
transformed plant disease detection by enabling automatic
feature extraction and improving performance significantly.
[36] and [8] leveraged pre-trained models such as AlexNet,
VGG16, and GoogleNet, achieving over 99% accuracy on the
PlantVillage dataset. [14] also demonstrated that deep CNNs
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reduced the complexity of preprocessing. [37-39] reinforced
the generalization capability of CNNs across various plant
disease datasets. However, these studies predominantly relied
on the PlantVillage dataset composed of high-quality, lab-
captured images which limited real-world applicability.

Emergence of Lightweight, Hybrid, and Real-Field CNN
Models (2020-2023): To address the computational burden
posed by large pre-trained networks, researchers began
exploring lightweight and custom CNN architectures. [40-41]
proposed a compact CNN comprising only three convolutional
and pooling layers, achieving 91.2% accuracy, surpassing
traditional architectures like VGG16 and MobileNet in
efficiency and making it suitable for mobile deployment.
However, these lightweight models struggled with robustness
when tested on noisy or real-field datasets due to their
dependence on curated inputs. In parallel, efforts were made to
capture more complex spatial-temporal features through hybrid
architectures. [23, 42-43] implemented object detection
frameworks such as Faster R-CNN and Mask R-CNN, enabling
both classification and precise localization of diseased regions.
[19] utilized InceptionV3 with transfer learning to achieve a
validation accuracy of 88.32%, while) [44] and [14] compared
CNN, R-CNN, and Fuzzy-SVM models, identifying ResNet50-
based R-CNN as the most effective with a 96.73% accuracy.
Recognizing the limitations of laboratory-controlled datasets,
subsequent studies emphasized real-field data integration and
ensemble learning strategies. [26] trained YOLOVS5 on a
combination of public and real-field images, achieving 93%
accuracy and 95% mean Average Precision (mAP),
outperforming Faster R-CNN and EfficientDet. Similarly,
[21,34] developed a custom CNN that delivered 95.53%
accuracy on a large dataset of over 14,000 tomato leaf images.
[22] introduced an ensemble model combining MobileNet and
DenseNet, which significantly enhanced performance,
achieving 98.12% accuracy and outperforming standalone deep
learning models in terms of precision, recall, and F1-score.

State-of-the-Art Deep Learning and Transformer Models
(2024): The latest phase in tomato disease detection has seen
the integration of deep learning with transformer architectures
and IoT-based systems. [12] achieved 99% accuracy using
VGG16, while [24] enhanced model adaptability using data
augmentation and deep feature fusion. [27] merged cloud-
based data acquisition with transfer learning using AlexNet,
ResNet, and VGG16, achieving up to 93.7% accuracy. [28]
improved YOLOv6 by adding CBAM and BiRepGFPN
modules, enhancing the model's performance on small lesion
detection.

Research Gap and Future Scope

Existing models focus on general plant disease classification
and lack specialization for tomato leaf diseases. This work
narrows this gap by targeting tomato-specific diseases with
higher precision and relevance.

Most reviewed models are trained on curated datasets and lack
real-world validation. This work aims to integrate diverse,
field-like tomato leaf images for better practical applicability
and robustness.

Prior studies show high accuracy but fail in real-time
deployment due to heavy architectures. This work focus is on
lightweight models suitable for mobile and edge devices for
instant disease detection.
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3. PROPOSED METHOD (VGG16-
BASED LEAF DISEASE
CLASSIFICATION)

In this research, the VGG16 model was selected as the primary
architecture for tomato leaf disease classification due to its
proven effectiveness in recent image classification studies.
Compared to earlier research methods and classical machine
learning approaches, VGG16 demonstrated superior accuracy
and robustness on custom dataset. It is particularly well-suited
for visual tasks involving fine-grained image differences, such
as disease spot patterns on leaves.

3.1 Dataset Description
For this study, a custom image dataset was developed to
classify six categories of tomato leaf conditions, including five
disease-infected classes—Early Blight, Bacterial Spot, Yellow
Leaf Curl Virus, Two-Spotted Spider Mite, and Leaf Mold—
alongside one Healthy Leaf class.

Sample Tomato Leaf Images from Each Class (Train Set)

Bacterial Spot Early Blight
- —. A

e

Leaf Mold

Two Spotted Spider Mite

Fig 1: Class wise sample image of the dataset.

A total of 1,200 original images were collected, ensuring class-
wise representation of diverse visual symptoms. These images
were further augmented using various techniques such as
rotation, zoom, flipping, and brightness adjustments, resulting
in an expanded dataset of 5,985 images. All images were
resized to 128 x 128 pixels for model compatibility and
computational efficiency. The final dataset was split into 80%
for training, 10% for validation, and 10% for testing, ensuring
balanced distribution across all six classes. Sample images
from each category have been included to visually demonstrate
the range of disease symptoms and healthy leaf characteristics,
providing valuable context for the classification task.

3.2 Model Architecture

The Visual Geometry Group at Oxford developed the deep
convolutional neural network VGG16. It consists of 13
convolutional layers and 3 fully connected layers, organized
into five convolutional blocks. Each block includes two or three
convolutional layers with 3x3 filters followed by a max pooling
layer to reduce spatial dimensions. The ReLU activation
function is applied after every convolution to introduce non-
linearity. After the convolutional blocks, the feature maps are
flattened and passed through three dense (fully connected)
layers. Dropout and regularization techniques are used to
prevent overfitting. Finally, a softmax activation function is
used at the output layer to classify images into one of the six
target classes.

The architecture of the proposed VGGI16-based transfer
learning model Table 1 is summarized below,
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Table 1: Custom VGG16 Model.

Layer (Type) Output Shape farameter
(None, 150,
InputLayer 150, 3) 0
(None, 150,
blockl convl (Conv2D) 150, 64) 1,792
(None, 150,
blockl conv2 (Conv2D) 150, 64) 36,928
blockl pool (None, 75, 0
(MaxPooling2D) 75, 64)
(None, 75,
block2 convl (Conv2D) 75, 128) 73,856
(None, 75,
block2 conv2 (Conv2D) 75, 128) 1,47,584
block2 pool (None, 37, 0
(MaxPooling2D) 37, 128)
(None, 37,
block3 convl (Conv2D) 37,256) 2,95,168
(None, 37,
block3 conv2 (Conv2D) 37,256) 5,90,080
(None, 37,
block3 conv3 (Conv2D) 37,256) 5,90,080
block3 pool (None, 18, 0
(MaxPooling2D) 18, 256)
(None, 18,
block4 convl (Conv2D) 18,512) 11,80,160
(None, 18,
block4 conv2 (Conv2D) 18, 512) 23,59,808
(None, 18,
block4 conv3 (Conv2D) 18, 512) 23,59,808
block4 pool (None, 9, 9, 0
(MaxPooling2D) 512)
(None, 9, 9,
block5 convl (Conv2D) 512) 23,59,808
block5_conv2 (Conv2D) gfg;‘e % 91 23,59.808
block5_conv3 (Conv2D) gfg;‘e % 9 | 2359808
block5 pool (None, 4, 4, 0
(MaxPooling2D) 512)
GlobalAveragePooling2D (None, 512) 0
Dropout 1 (None, 512) 0
Dense 512 (None, 512) 2,62,656
Dropout 2 (None, 512) 0
Dense 256 (None, 256) 1,31,328
Dropout 3 (None, 256) 0
Output Softmax (Dense) (None, 5) 1,285

Total Parameters:

Total params: 15,109,957 (~57.64 MB)
Trainable params: 395,269 (~1.51 MB)
Non-trainable params: 14,714,688 (~56.13 MB)

3.3 Visual Overview of the Proposed
Approach

The following flowchart illustrates the complete research
methodology adopted in this study. It outlines each key stage
involved in the tomato leaf disease classification process,
including data preparation, preprocessing, model design,
training, evaluation, and comparison. This structured visual
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representation provides a clear understanding of the proposed
approach. The detailed workflow is depicted below in Figure 2.

. S-tartr- ) b
]

Data set : 6 Classes * 200, Split 80/10/10 ]

4

PreProcess:Resize, Augment, Normalize ]

2

Model: VGG16 + Dense Layers |

p

Compile : Adam Optimizer, Crossentropy Loss ‘

-

Train: Freeze - Finetune, Callbacks Used |

@

Evaluate: Accuracy, Confusion Matrix ‘

@

Compare: CNN, MobileNetV2, DenseNet, InceptionV3 ‘

@

Result: VGG16 Accuracy — 99.83% |

End

Fig 2: Research flowchart illustrating the stepwise
methodology.

3.4 Training Strategy

The model was trained using transfer learning by freezing the
initial VGG16 layers. The Adam optimizer and categorical
cross-entropy loss were used, with early stopping and dropout
techniques applied to prevent overfitting and improve
generalization.

3.5 Evaluation Metrics

Model performance was evaluated using accuracy, precision,
recall, Fl-score, and confusion matrix to analyze class-wise
predictions. Additionally, performance was monitored using
validation loss trends, training accuracy curves, and
classification reports to assess robustness, misclassification
patterns, and overall generalization across all six tomato leaf
disease categories.

4. RESULT AND DISCUSSIONS

In this research, a transfer learning-based VGG16 model was
employed to classify tomato leaf diseases across six categories,
including five major infections—Early Blight, Bacterial Spot,
Leaf Mold, Spider Mites, and Tomato Yellow Leaf Curl
Virus—along with a Healthy class. The model was customized
by freezing the convolutional base and adding a Global
Average Pooling layer(512 and 256 units respectively),
followed by two fully connected dense layers with with ReLU
activation and dropout rates of 0.5 and 0.3, respectively, to
mitigate overfitting. The final softmax layer outputs class
probabilities for multiclass classification. The model was
compiled using the Adam optimizer with an initial learning rate
of 0.0001 and a categorical cross-entropy loss function with
label smoothing. A total of 15,110,214 parameters were used
during training, all of which were trainable. The final model
size was 57.64 MB, making it lightweight enough for scalable
applications. The model was trained for 50 epochs with a batch
size of 16 and took approximately 3377 seconds to complete
training.
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Performance evaluation revealed outstanding results, with an
overall classification accuracy of 99.83% on the test dataset.
Precision, recall, and Fl-score for each class exceeded 99%,
demonstrating the model’s robustness in identifying even
visually similar diseases. For instance, the Fl-score for the
Spider Mites and Tomato Yellow Leaf Curl Virus classes were
99.50% and 99.49%, respectively. Such high performance
confirms the model's reliability and suitability for practical
deployment. This model was selected after a thorough literature
survey and demonstrates superior accuracy compared to
previously reported architectures.

Table 2 presents the classification report of the VGG16-based
model, summarizing precision, recall, and Fl-score for each
tomato leaf disease class.

Table 2: Classification Report of VGG16-Based Model.

Class Precision Recal | Fl- | Suppor
1 Score t
Early
Blight 1 1 1 100
Healthy
Leaf 1 1 1 100
Leaf Mold 1 1 1 99
Two-
Spotted 0.99 1 0.995 100
Spider Mite
Yellow
Leaf Curl 1 0.99 | 0.995 100
Virus
Bacterial 1 1 1 100
Spot
Accuracy 0.998
Macro Avg 0.998 0.998 | 0.998 599
Weighted 0.998 0.998 | 0.998 | 599
Avg

The training and validation performance of the proposed model
is depicted in Figure 3, where it achieved 100% training
accuracy and 99.83% validation accuracy with minimal loss.

VGG16 Accuracy VGG16 Loss

Fig 3: Training and validation accuracy and loss graph of
the proposed model.

The confusion matrix was produced, as seen in Figure 4, to
assess the proposed model's classification performance across
all tomato leaf disease categories. It makes it abundantly
evident that the model produced few incorrect classifications
and had a high forecast accuracy. The majority of these
misclassifications were between visually comparable illness
classes, where feature extraction was complicated by
overlapping color patterns, texture similarities, and
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illumination differences in the input photos. The model
successfully learnt the distinctive characteristics of each
disease type, demonstrating its robustness and dependability
for tomato leaf disease diagnosis in spite of these small errors,
as evidenced by the overall distribution of properly identified
occurrences.

VGG16 Confusion Matrix

new Early_blight
new Healthy

new Leaf_mold

Actual

new bacterial_spote

new Healthy

5
:

new Leaf_mold

Predicted

Fig 4: Confusion matrix of the proposed model.

The AUC-ROC (Area Under the Receiver Operating
Characteristic Curve) for the proposed model's evaluation is
shown in Figure 5. At different threshold levels, the True
Positive Rate (sensitivity) is shown compared to the False
Positive Rate (1-specificity) using the ROC curve. An AUC-
ROC value of 100 (or 1.0) indicates that the proposed model
achieved perfect classification performance, meaning it can
completely distinguish between the positive and negative
classes without any errors. In practical terms

Overall ROC-AUC Curve (VGG16 Madel)

True Positive Rate
\

- WGG16 Model (AUC = 1.000)

0.0 0.2 04 06 08 10
False Positive Rate

Fig 5: AUC-ROC curve of the proposed model.

To contextualize the performance of proposed VGG16-based
model, conducted a comparative evaluation of five alternative
deep learning architectures. The Basic CNN achieved a
commendable accuracy of 97.16%, demonstrating the potential
of traditional convolutional layers when paired with sufficient
preprocessing. The Lightweight CNN, optimized for
efficiency, delivered a slightly lower accuracy of 94.82%,
making it suitable for scenarios with limited computational
resources. Among pre-trained transfer learning models,
MobileNetV2 balanced speed and performance effectively with
97.16% accuracy, while DenseNetl2]1 outperformed
MobileNetV2, achieving 97.83% accuracy and a 97.84% F1-
score, indicating strong class-wise consistency. Notably,
InceptionV3 yielded superior results among the comparison
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models, with an accuracy of 98.83% and an Fl-score of
98.84%, reaftirming its strength in complex feature extraction.

To contextualize the performance of proposed VGG16-based
model, conducted an extensive experimental evaluation
comparing it with five other deep learning architectures. The
Basic CNN achieved a commendable accuracy of 97.16%,
showcasing the effectiveness of traditional convolutional layers
when combined with appropriate preprocessing techniques.
The Lightweight CNN, designed for resource-constrained
environments, delivered a slightly lower accuracy of 94.82%,
indicating its suitability for real-time applications with limited
computational capacity. Among the transfer learning models,
MobileNetV2 offered a balanced trade-off between
computational efficiency and performance, also achieving an
accuracy of 97.16%. DenseNetl121 surpassed MobileNetV2
with a higher accuracy of 97.83% and an impressive F1-score
of 97.84%, reflecting strong consistency across all disease
classes. The most notable performance came from
InceptionV3, which recorded the highest accuracy among the
comparison models at 98.83%, along with an Fl-score of
98.84%, highlighting its strength in extracting complex
features.

The performance metrics derived from these experimental
results are summarized in below Table 2, offering a clear
comparison with proposed VGG16 model.

Table 3: Comparative Table of Model Performance on
Tomato Leaf Disease Classification.

Models Accuracy | Precision | Recall ¥l-
Score
Basic CNN 0.9716 0.9735 0.9733 0.9715
Lightweight
CNN 0.9482 0.9489 0.9483 0.9482

MobileNetV2 0.9716 0.9725 0.9716 0.9717

DenseNet 0.9783 0.9791 0.9783 0.9783

InceptionV3 0.9883 0.9887 0.9866 0.9867

Proposed

VGG16 0.9983 0.9983 0.9983 0.9983

Above table 3 presents a comparative analysis based on
experimental study, showcasing the performance of various
deep learning models for tomato leaf disease classification. The
results are derived from practical implementation, where each
model was trained and evaluated on the same dataset. The
proposed VGG16 model demonstrated superior accuracy,
precision, recall, and F1-score, outperforming all other models
considered in the study.

To visualize the comparative performance of all models, an
accuracy-based bar graph is presented in Figure 6, highlighting
the superior results of VGG16.
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Model-wise Accuracy Comparison

10 97.16% 97.83%

08

Accuracy (0-1 scale)

06

Fig 6: Accuracy comparison of various deep learning
models

Figure 7 presents a comparative analysis of all models using
precision, recall, and F1-score metrics, offering deeper insights
into the classification consistency and reliability across tomato
leaf disease classes

Model C i Precision, Recall, and F1-Score

£ d3 HEE S S
- 2= =

g d i

&= Precision
= Recal
&= F1Score

Fig 7: Comparison of precision, recall, and F1-score across

©
5
&
©

all models for tomato leaf disease classification.

Table 4: Comparative Table of Tomato Leaf Disease
Detection Approaches.

Best
Author Year Nllj)s(izls iigg::;d Performin
y g Model
Lightweigh
Agarwal tCNN (3 . .
etal. | 2020 | Conv+ | 91.20% L}lfhctl"fr;g
[40] Pool
layers)
Uzma .
InceptionV .
Farheen | 505 | 3 (Transfer | 88.3296 | 'Mecption
et al. Learning) V3
[19] s
Kokate B(?Zslll(;tgrlle Basic
> V)
et al. 2023 14,000 95.53% CNN
[21] .
images)
MobileNe
Nazmun (I]\E/InoslfirlI::tI)\llz " tV2 +
Naharet | 2023 Vo o+ 98.12% DenseNet
al. [22] DenseNet) (Enie):mbl
Chakrab
orty et 2024 VGGl6 99% VGG16
al. [12]
Tiwari Proposed o Proposed
et al. 2025 VGG16 99.83% VGGl6
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100.00%

98.00%
96.00%
94.00%
92.00%
90.00%
88.00% .
86.00%

Lightweight CNN InceptionV3 Basic CNN Ensemble VGG16 Proposed VGG16
(3 Conv + Pool  (Transfer Leaning) (Custom, 14,000  (MobileNetv2 +
layers) images) DenseNet)

Models

Accuracy

Fig 8: Comparative Table of Tomato Leaf Disease
Detection Approaches.

In Table 4, and Figure 8 present a comparison of the proposed
method and recent approaches for tomato leaf disease
detection, highlighting the models and their accuracy
performance metrics across different studies. This table offers
a consolidated view to better understand the strengths and
limitations of each method.

These results align with findings from previous literature where
transfer learning significantly enhanced plant disease
classification accuracy. However, most of those studies relied
on curated datasets and lacked real-field validation. In contrast,
comparative analysis was performed on an augmented, field-
like tomato dataset with six classes, making the evaluation
more robust. Figure 7 represents the comparative study of
tomato leaf disease classification models. The proposed
VGG16 model outperforms all other models, demonstrating
that the improved architecture achieves the highest accuracy
and is the most suitable for tomato leaf disease detection.
Overall, while all tested models performed well, the VGG16-
based architecture remained the most effective in terms of
accuracy, generalization, and deployment suitability.

5. CONCLUSION AND FUTURE WORK

This research delivers a comprehensive evaluation of various
deep learning models for tomato leaf disease classification,
demonstrating the effectiveness of architecture selection and
data preparation. The proposed VGG16-based model, trained
with transfer learning and supported by strong augmentation
techniques, significantly outperformed other models in terms
of precision, recall, and overall accuracy. Its ability to classify
visually similar diseases with 99.83% accuracy showcases its
practical applicability.

Unlike earlier studies that used limited datasets or heavy
models unsuitable for deployment, this work achieves a
balance between accuracy and scalability. It shows that
complex architectures aren’t always essential; effective fine-
tuning and data preparation can yield strong results. Although
this study focused on six tomato leaf diseases, future work can
extend to more diseases, different crops, and IoT-based
environmental data. Deploying the model on mobile or edge
devices can enable real-time detection, helping farmers make
faster, data-driven decisions. In the future, integrating this
approach with smart farming tools and predictive analytics
could lead to a fully intelligent, sustainable agriculture system.
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