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ABSTRACT

Accurate sprint deliverability estimation is pivotal for effective
agile software development, yet traditional heuristic methods
often yield subjective and inconsistent results, undermining
project velocity. This study presents a machine learning (ML)-
based framework to predict sprint deliverability, leveraging
natural language processing (NLP) and historical data from the
PROMISE (5,328 instances) and COQUINA (1,201
requirements) datasets. The framework employs TF-IDF-
weighted Word2Vec embeddings for feature extraction,
enhanced by SMOTE to address class imbalance, and utilizes
XGBoost, Random Forest, and Support Vector Machines
within an ensemble classifier framework for pseudo-labeling to
classify requirements and forecast deliverability. A novel
deliverability score, calculated as 0.3, combines requirement
length, XGBoost confidence, type weights, and cosine
similarity to PROMISE centroids, validated with 91%
stakeholder agreement at COQUINA Software Company.
Empirical results demonstrate XGBoost outperforming
baselines with an AUC of 0.9995, reducing planning errors by
12% and improving efficiency by 15% across five sprints,
while PCA and ROC curves enhance interpretability. This
framework, integrated with Agile tools like Jira, offers a
scalable, data-driven solution, addressing gaps in real-time
adaptability and generalizability, and advancing intelligent
agile planning for high-impact software development.
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Keywords
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1. INTRODUCTION

Agile methodologies, including Scrum and Kanban, facilitate
iterative software development through their emphasis on
flexible planning and continuous stakeholder collaboration
(Awan et al., 2023). A persistent challenge within Agile sprint
planning, however, lies in accurately forecasting the successful
completion of individual requirements within defined sprint
boundaries—a critical metric referred to as sprint
deliverability. Conventional estimation practices, heavily
reliant on subjective judgment or simplistic heuristics,
frequently lead to imprecise deliverability predictions. This
often results in issues such as overcommitment, missed
deadlines, or underutilization of team capacity, thereby
undermining project velocity and eroding stakeholder trust
(Venkatesha, 2024; Vaidyanathan et al., 2024).

Machine learning (ML) presents a compelling alternative for
enhancing deliverability prediction by systematically
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leveraging historical sprint data and textual requirement
analysis to generate more objective deliverability forecasts.
While previous research has explored ML applications in
requirement classification and risk assessment (Sherif et al.,
2022; Muhammad et al., 2022), a notable gap persists in the
development of a quantifiable, comprehensive deliverability
score. Such a score would integrate textual feature analysis,
model confidence, and historical performance metrics to
provide actionable guidance for Agile prioritization. This
limitation hinders Agile teams' ability to make truly data-driven
decisions during sprint planning.

This study addresses this gap by developing a machine learning
framework designed to predict sprint deliverability for software
requirements, thereby supporting more effective prioritization
in Agile development. The specific objectives guiding this
research are to:

(1) Collect and preprocess the PROMISE dataset, publicly
available from the PROMISE Repository, to capture general
requirement characteristics, and the COQUINA dataset, a
proprietary project dataset with deliverability metrics derived
from historical data and enhanced through preprocessing, to
support sprint planning analysis.

(i1) Engineer a comprehensive feature set to comprehensively
quantify requirement attributes pertinent to deliverability,
supporting subsequent predictive modeling.

(iii) Train and evaluate XGBoost, Random Forest, and Support
Vector Machines as supervised learning algorithms to develop
a predictive model for deliverability, and explore an ensemble
approach to establish ground truth for unlabelled COQUINA
data, enhancing prediction stability.

(iv) Develop a clear, interpretable deliverability scoring system
complemented by insightful visualizations to empower
stakeholders in their decision-making processes.

By synthetically combining requirement textual characteristics,
predictive model confidence, and historical sprint outcomes
into a novel deliverability framework, this research aims to
overcome the inherent limitations of subjective manual
estimations. This approach will enable more precise backlog
prioritization, reduce project risks, and significantly enhance
Agile teams’ responsiveness to dynamic project demands.

2. LITERATURE REVIEW

The application of machine learning (ML) to Agile requirement
management has gained traction for addressing challenges in
classifying, prioritizing, and predicting the deliverability of
software requirements in dynamic sprint environments. This
review synthesizes technical advancements in ML-driven
requirement classification, feature extraction, and sprint
deliverability estimation, aligning with the aim to develop an
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ML framework that classifies requirements and predicts sprint
deliverability using PROMISE and COQUINA datasets, TF-
IDF weighted Word2Vec, and ensemble classifiers (XGBoost,
Random Forest, SVM).

Requirement Classification and Feature Extraction: ML
techniques have been widely explored for classifying software
requirements into functional and non-functional types, a critical
step for Agile prioritization. Kurtanovi¢ and Maalej [6]
employed supervised learning with Word2Vec and SVM
classifiers to categorize requirements, achieving high accuracy
on the PROMISE dataset (969 instances), though their
approach struggled with semantic variability across domains.
Similarly, Yang et al. [18] utilized XGBoost and logistic
regression on preprocessed requirement texts, reporting a
correlation (tho = 0.5927, p = 5.753e-06) for classification
tasks. Their use of TF-IDF and chi-squared feature selection
improved model performance but highlighted challenges in
handling sparse datasets. In contrast, Navarro-Almanza et al.
[8] applied deep learning for non-functional requirement
(NFR) classification, leveraging neural networks to capture
semantic nuances, though computational complexity limited
scalability. Obike et al. [9] advanced this domain by proposing
a feature engineering approach for Agile requirement
management, utilizing semantic analysis with TF-IDF-
weighted Word2Vec embeddings to enhance requirement
classification accuracy. Their study demonstrated that
integrating semantic similarity metrics improved the robustness
of feature sets derived from Agile datasets, addressing
variability issues noted in prior work, though it emphasized
classification over deliverability prediction. These studies align
with Objective 1 (collecting and preprocessing PROMISE and
COQUINA datasets) and Objective 2 (extracting TF-IDF
weighted Word2Vec embeddings), but they lack focus on
sprint-specific deliverability, a gap this study addresses.

ML-Driven Prioritization and Deliverability Prediction:
Prioritization in Agile contexts require quantifying requirement
impact on sprint outcomes. Selvaraj and Choi [12] explored
swarm intelligence algorithms for prioritizing user stories
based on stakeholder feedback and complexity, but their
approach did not incorporate deliverability scoring. Cando and
Mendes [2] used SVM and Word2Vec to prioritize
requirements, integrating historical project data to estimate
effort, yet their models lacked real-time adaptability for sprint
planning. Yahya et al. [17] proposed a hybrid deep learning
model combining convolutional and recurrent neural networks,
achieving robust prioritization by analyzing requirement text
and historical sprint performance. However, their reliance on
static datasets limited generalizability, a challenge addressed in
this study through Objective 3 (training XGBoost, Random
Forest, and SVM with ensemble pseudo-labeling on PROMISE
and COQUINA data).

Sprint Deliverability and Scoring Systems: Estimating sprint
deliverability remains underexplored. Venkatesha [16]
highlighted the potential of ML to predict requirement impact
on sprint goals, but their work focused on risk assessment rather
than deliverability scoring. Orekha et al. [10] employed natural
language understanding (NLU) to classify requirements and
estimate effort, using features like requirement length and
semantic similarity. Their models, however, did not integrate
heuristic features (e.g., type weights) or provide a quantifiable
deliverability score. The current study builds on these efforts
by developing a weighted scoring function combining
requirement length, model confidence, and semantic similarity
to historical stories, validated at COQUINA Software
Company with 91% expert agreement. This scoring system,
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supported by visualizations (e.g., feature importance, score
distributions), enhances stakeholder decision-making in Agile
environments.

Integration with Agile Tools: Practical adoption of ML
frameworks requires seamless integration with tools like Jira or
Azure DevOps. Dugharney and Kehinde [4] noted challenges
in integrating ML models due to biased training data and poor
interpretability. Franch [5] proposed data-driven requirement
engineering (DDRE) using NLP for real-time feedback
analysis, but their approach lacked sprint-specific scoring.

Research Gap and Limitations: While prior studies [13],[14]
advanced  requirement classification and  dynamic
documentation, they did not develop a unified framework for
sprint deliverability prediction. Limitations in existing work
include reliance on static datasets, limited generalizability
across Agile contexts, and lack of interpretable scoring systems
[3],[11]. This study mitigates these by using diverse datasets
(PROMISE and COQUINA), ensemble pseudo-labeling for
robustness, and a deliverability scoring module validated in
real-world settings.

In summary, this review underscores the potential of ML to
transform Agile requirement management. By addressing the
gap in sprint deliverability prediction, this study’s framework,
leveraging TF-IDF weighted Word2Vec, ensemble classifiers,
and a novel scoring system, offers a practical and scalable
solution for Agile teams, as outlined in the objectives. The
semantic analysis approach by Obike et al. [9] further supports
this effort, providing a foundation for enhancing feature
engineering that this study extends to deliverability prediction.

3. RESEARCH METHODOLOGY

This study develops a predictive framework for assessing the
deliverability of requirements in an agile software development
environment, utilizing data from the PROMISE Expanded
Dataset and COQUINA Software Company Limited, Uyo. The
methodology encompasses data collection, preprocessing,
feature engineering, model development, deliverability
scoring, and evaluation, designed to align with the objective of
accurately  predicting  sprint  deliverability.  Ethical
considerations, including data anonymization and stakeholder
consent, ensure compliance with data protection principles and
research integrity.

3.1 Data Collection and Requirement

Extraction

Data collection establishes a comprehensive dataset from two
sources, Promise repository and the Coquina Dataset, to
support predictive modelling over eight years.

Textual requirements and metadata were extracted from the
PROMISE Expanded Dataset (969 instances, 12 requirement
types) and the COQUINA dataset (1,201 unstructured
requirements from 10 tender documents). The PROMISE
dataset, sourced from the PROMISE repository, includes
labeled requirements across functional and non-functional
categories (Table 1). The COQUINA dataset, provided by
COQUINA’s Technical Director, was converted from XML to
CSV, containing unlabelled ProjectID and RequirementText
attributes, enabling diverse project scope analysis.

Table 1: PROMISE Expanded Dataset Composition
Requirement Type Count

Functional (F) 444
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Auvailability (A) 31
Legal (L) 15
Look-and-feel (LF) 49
Maintainability (MN) 24
Operability (O) 77
Performance (PE) 67
Scalability (SC) 22
Security (SE) 125
Usability (US) 85
Fault Tolerance (FT) 18
Portability (PO) 12
Total 969
3.2 Data Preprocessing

To ensure quality input for machine learning, preprocessing
included text cleaning, tokenization, and stop word removal.
Text cleaning operations—punctuation removal,
lemmatization, and stop word filtering—had minimal effect on
sentiment scores (AS = 0), as verified by VADER and TextBlob
(Equation  3.3). Tokenization segmented requirement
statements into individual terms, while stop word removal
improved topic diversity according to LDA analysis.

33 Feature Engineering

In the feature engineering phase, textual features were extracted
from the COQUINA dataset using tokenization, TF-IDF
weighting, and Word2Vec embeddings, with the SkipGram
model outperforming CBOW in capturing semantic similarity.
SMOTE was applied to mitigate class imbalance, generating
5328 samples with balanced representation across three
requirement types. The resulting 5328x300 matrix of TF-IDF-
weighted Word2Vec vectors for the PROMISE dataset served
as input features for supervised learning models—SVM,
Random Forest, and XGBoost—trained on labeled PROMISE
data. These models leveraged the inherent cosine similarity
embedded within Word2Vec vectors to predict requirement
types for unlabelled COQUINA instances, relying on learned
decision boundaries. The similarity score between a given
requirement vector and the centroid of the labeled PROMISE
requirements is defined in Equation 1.

Sim(r) = =

—L Equation 1
Rl q

where 7; € R3% denotes the embedding for requirement
r,and ¢ is the mean vector of all labeled PROMISE
embeddings. This initial classification was used to generate
type predictions (e.g., Functional, Security), laying the
foundation for subsequent sprint deliverability assessment by
providing type-specific context. To optimize predictive
performance and enhance visualization, Confidence scores
were calculated using XGBoost softmax probabilities.
XGBoost feature importance analysis identified the top 20
influential vector components, with the top five (Features 229,
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242, 200, 150, and 184) revealing semantic themes such as
temporal coordination (e.g., "within," "meeting," "support"),
enhancing model interpretability.

non

34 Feature Extraction

The preprocessing pipeline for textual requirements combined
several NLP techniques to enhance semantic representation and
prepare data for downstream analysis. Initial steps included
tokenization using NLTK's word tokenizer, followed by
standard cleaning operations—such as converting text to
lowercase, removing punctuation, and eliminating stopwords
via an expanded NLTK list tailored to the domain. These
procedures led to a modest reduction in the average token count
per requirement, from 11.91 to 11.10, contributing to clearer
and more concise textual inputs. Term importance was
modeled through TF-IDF weighting with Scikit-learn’s
TfidfVectorizer, capturing both local and global significance
across the corpus. For semantic embedding, Word2Vec models
were trained on combined PROMISE and Coquina datasets,
producing 300-dimensional word vectors. These were further
refined via a custom technique that weights Word2Vec outputs
with TF-IDF scores, allowing more prominent terms to shape
the document representation. Dimensionality reduction using
PCA was applied during analysis to support visualization,
alongside t-SNE, both of which revealed improved class
separability after embedding and weighting. A histogram
comparing token counts is presented in Figure 1.
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Figure 1: Token Distribution Before vs. After
Preprocessing

A t-SNE plot showing raw Word2Vec clusters is shown in
Figure 2.
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Figure 2: Word2Vec Embeddings Distribution

A t-SNE plot showing weighted clusters is shown in Figure 3
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Dimension 2
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Figure 3: Word2Vec Embeddings Distribution with TF-
IDF

A scatter plot showing 2D PCA projection is shown in Figure
4.
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Figure 4: PCA Visualization of Weighted Word2Vec
Embeddings

35 Historical Sprint Qutcomes for
Deliverability Assessment

COQUINA's historical sprint data were used to assess
deliverability, providing crucial operational context through
simulated sprint-level performance metrics, including
requirements implemented, success rates, and delivery
confidence. These metrics, derived from the 1,201
requirements retrospectively tagged with 54 simulated
Sprint_IDs (approximately 22-23 requirements per sprint, as
detailed in Table 2), do not serve as direct supervised learning
labels for a 'deliverability' prediction model but are
instrumental in informing and calibrating the components of
the calculated Deliverability Score (detailed in Section 3.7),
reflecting real-world sprint performance patterns. Table 3.2
was generated programmatically from the
COQUINA_with_Deliverability.csv ~ dataset, with  the
following metrics derived for each sprint:

(i) Total Requirements: representing the count of all
deliverability scores within the sprint (approximately 22-23);
(ii) Avg_Deliverability: calculated as the mean deliverability
score for the sprint but excluded from Table 3.2;

(iii)) Requirements_Implemented: counting requirements
whose deliverability scores exceeded a threshold of 0.659,
derived from the median Deliverability_Score to target a 50%
success rate and validated through stakeholder feedback (see
Section 3.6);
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(iv) Success_Rate (%): computed as the ratio of implemented
requirements to total requirements per sprint, rounded to one
decimal place.

Additionally, Delivery Confidence was estimated by
normalizing the average deliverability scores relative to the
dataset’s global minimum (0.4896) and maximum (0.7490),
then scaling them to a bounded range of 0.6 to 0.95 to reflect
realistic delivery assurance.

This data-driven approach, detailed further in Section 3.6,
enhanced sprint planning by prioritizing high-deliverability
requirements, as evidenced by initial success rates (e.g., 54.5%,
63.6%, 36.4%) and confidence levels (e.g., 0.7862 to 0.8105),
reducing variability compared to prior manual methods. A
summarized S-sprint comparison, aggregating key insights
from the 54 sprints, is presented in Table 2 to evaluate
predictive  (XGBoost)  versus traditional  estimation
performance.

Table 2: Historical Sprint Outcome Metrics (13 of 54)

Sprint | Requirements_ Im | Success | Delivery_Co
_ID plemented _Rate nfidence
(%)

1 12 54.5 0.8055

2 14 63.6 0.8105

3 8 364 0.7862

4 13 59.1 0.8171

5 7 31.8 0.7856

6 9 40.9 0.7963

7 10 45.5 0.7975

8 11 50 0.8001

9 10 45.5 0.8054
10 15 68.2 0.8356
11 11 50 0.8005
12 14 63.6 0.8264
13 14 63.6 0.8383

3.6 Model Development and Algorithm

Selection

The model development in this study centers on selecting and
optimizing the XGBoost, Random Forest, and Support Vector
Machines algorithms to predict sprint deliverability, leveraging
historical data from the PROMISE (5,328 instances) and
COQUINA (1,201 requirements) datasets. Random Forest,
SVM, and XGBoost were selected for their complementary
strengths. Random Forest leverages ensemble learning to
reduce overfitting, SVM excels in high-dimensional spaces,
and XGBoost offers scalability via gradient boosting.

3.6.1 Hyperparameter Tuning

GridSearchCV with 5-fold stratified cross-validation optimized
hyperparameters. XGBoost parameters included
n_estimators=100, max_depth=3, learning_rate=0.1,
subsample=0.8, colsample bytree=0.8. Random Forest used
n_estimators=100, criterion='gini', max_depth=None. SVM
employed a linear kernel with C in [0.1, 1, 10]. Table 3 presents
the hyper parameters for the XGBoost model.

Table 3. XGBoost Hyperparameters

Hyperparameter | Value Description

n_estimators 100 Number of boosting rounds
or trees. Controls the
model’s complexity.

max_depth 6 Maximum depth of each

tree. Limits overfitting by

restricting tree growth.
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learning_rate 0.1 Step size shrinkage to
prevent overfitting. Affects
convergence speed.

subsample 0.8 Fraction of samples used per

tree. Reduces overfitting by
introducing randomness.
Fraction of features used per
tree. Enhances model
robustness.

Minimum loss reduction
required for a split. Controls
tree complexity.

Minimum sum of instance
weight needed in a child.
Prevents overfitting.

L2 regularization term on
weights. Reduces model
complexity.

L1 regularization term on
weights. Encourages
sparsity.

Evaluation metric for model
performance (Area Under
the ROC Curve).

Seed for reproducibility of
results.

colsample bytree | 0.8

gamma 0

min_child weight | 1

reg lambda 1

reg_alpha 0

eval metric auc

random_state 42

3.6.2  Tuning Ensemble Techniques

Unlike the Promise dataset, COQUINA lacks ground-truth
labels, making it difficult to assess how well PROMISE exp
models generalize. To address this, a majority voting ensemble
of Random Forest, SVM, and XGBoost was used to generate
pseudolabels, improving stability and reducing bias. A sample
of these predictions is shown in Table 4.

Table 4: Example of Majority Voting-Based Pseudo-Label

Generation

1D SVM | RF XGB Pseudo-Label

Pred | Pred Pred
421 F F F F
422 SC SC SC SC
423 MN usS (0] Default to XGBoost
424 L (6] SE Default to XGBoost
425 LF F F F

Figure 5 outlines the workflow for developing the predictive
model using PROMISE and COQUINA datasets for Agile
prioritization.
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Figure 5: Model Development Workflow for Sprint
Deliverability

3.7 Deliverability Scoring and

Prioritization

A deliverability scoring mechanism quantifies the feasibility of
requirements for sprint planning. A distinct cosine similarity
metric was employed to quantify semantic alignment between
unlabelled COQUINA requirements and the historically
labeled PROMISE dataset. This metric, also defined in
Equation 1 is the embedding of a COQUINA requirement and
c is the centroid of PROMISE embeddings, captured
directional similarity in the 300-dimensional space. The
resulting weighted scoring function, Similarity Score,
developed in consultation with COQUINA’s Lead Software
Engineer was integrated into the deliverability score function
as shown in Equation 2, alongside normalized length, XGBoost
confidence, and type weights. This approach, validated by 91%
stakeholder agreement, enhanced the precision of sprint
prioritization by aligning new requirements with historical
patterns.

DR)=a-Li+pB-Ci+y -T;+6-S; Equation 2

Where Length score, L; € [0,1] is the normalized requirement
length given by Equation 3.

L; = 1— Len(R;)/Max(Len(R,)) Equation 3
C; € [0,1] js classifier confidence given by Equation 4.

C; =ma (XGBoost. predictproba(R)) Equation 4

44



T; € [0,1] is type weight of the given requirement and S; €
[0,1] is cosine similarity between the Requirement vector and
the centroid of the training (Promise) model.

Weights ((a¢ = 0.3),(8 =0.3),(y =0.2), (6§ =0.2)) were
carefully calibrated by the joint effort of the researcher and
Coquina to reflect the relative importance assigned to each
factor in truly determining a requirement's sprint deliverability.
Table 5 outlines the type weights calibrated for the scoring
function.

Table S5: Type Weights Heuristic Scoring System for
Coquina Dataset

Class Weight  Justification

F (Functional) 1.0 Core features. These are
typically specific,
testable, and most easily
implemented in sprints.
Closely tied to UI/UX
tasks, usually  well-
defined and deliverable
in short iterations.
Often includes specific
tasks like browser/device
compatibility—concrete
and testable.

US (Usability) 0.95

PO (Portability)  0.95

SE (Security) 0.85 Can be implemented
with clarity (e.g., access
control), though

sometimes needs broader
system awareness.
Usually measurable (e.g.,
latency targets), though
may require environment
setup and profiling.

Tied to styling; often

PE (Performance) 0.85

LF (Look and Feel) 0.80

subjective but
deliverable in UI/UX
sprints.

MN 0.75 Implementation-related

(Maintainability) but often spans
refactoring or  code
clarity; less immediate
but important.

A (Availability) 0.70 Often infrastructural
(e.g., uptime guarantees),
not fully testable in one
sprint.

FT (Fault 0.65 Needs edge case

Tolerance) handling and

simulation—complexity
can delay sprint closure.
Typically architectural,
beyond a sprint’s scope
unless the sprint is
focused on infra.
L (Legal) 0.50 May require external
validation or compliance
checks—not directly

SC (Scalability) 0.60

implementable.

O (Other) 0.40 Ambiguous or
uncategorized
requirements; low
deliverability due to lack
of clarity.
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To operationalize the Deliverability Score for practical sprint
planning, specific thresholds were established to categorize
requirements into discrete deliverability levels. These
thresholds were determined through iterative feedback from
COQUINA's stakeholders, ensuring practical relevance and
alignment with their existing planning practices. The defined
deliverability levels and their implications are presented as
follows:

(1) Low Deliverability Score: This implies a high risk
associated with implementing the task, bug, or
requirement within the current sprint. Such items are
anticipated to require a significantly longer time than
normal, potentially jeopardizing sprint
commitments.

(i1)) Medium Deliverability Score: Indicates that the
task or requirement can likely be implemented, but
may require additional time beyond the typical
estimate, without introducing critical risk to the
overall sprint goal.

(ii1) High Deliverability Score: Signifies that the task or
requirement is highly feasible and can be achieved
within the allocated sprint time. These items are
considered suitable candidates for immediate
inclusion in the sprint backlog.

The specific numerical ranges for these deliverability levels are
formalized in Equation 5.

low D(R;) <05
D(R;) = {medium 0.5 <D(R;) <0.75 Equation 5
highly 0.75 < D(R) <1

3.8 Stakeholder Feedback and Expert
Validation

Requirement labels and deliverability assessments were
validated through iterative stakeholder feedback from
COQUINA and expert reviews (Figure 15), ensuring practical
feasibility and mitigating biases. The framework was
evaluated for generalizability and practical utility, with
methods supporting results in Section 4.

3.9 Model Evaluation

Performance was assessed using accuracy, precision, recall,
Fl-score, and AUC-ROC on a 30% PROMISE test set.
Confusion matrices (see Figure 6) and ROC curves (see Figure
7) were used to analyze class-specific performance.
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Figure 7: ROC Curve Analysis for XGBoost on Coquina

3.9.1 Cross-Validation

A StratifiedKFold technique was used to partition the dataset
into five folds while preserving class distribution, with n_splits
=5, shuffle=True and a random state of 42 for reproducibility.
The settings are Total Dataset Size: 5,328 instances and Fold
Size: With n_splits=5, each fold contains 1,065.6, rounded to
1,066 instances per fold (since 5,328 + 5 = 1,065 with a
remainder of 3, typically distributed as 1,066, 1,066, 1,066,
1,066, 1,064).

Each model is trained on the resampled data using the fit
method, and predictions on the test fold are evaluated with four
metrics defined in Equation 6 — Equation 9.

TP + TN .
Accuracy = TP IINTFP TN Equation 6
Precision = i Equation 7
~ TP+FP q
TP .
Recall = Equation 8
e TP+FN quatio
Precision-Recall .
F1=2 Precision+Recall Equatlon 9
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These metrics are computed with weighted averaging to
account for class imbalance, using zero_division=0 to handle
edge cases, and averaged across folds to yield mean
performance scores. The best model is selected based on the
highest mean F1 score.

4. RESULT AND DISCUSSIONS

This section presents the outcomes of the predictive framework
for requirement deliverability, evaluated on the PROMISE
Expanded and COQUINA datasets. Results include model
performance metrics, confusion matrices, ROC curve analyses,
deliverability scores, and statistical tests, providing insights
into the framework’s effectiveness for agile sprint planning.

The study transformed raw requirements from the PROMISE
(969 instances, 12 classes) and COQUINA (1,201
requirements) datasets into actionable insights for machine
learning-driven requirement management. SMOTE balanced
the PROMISE dataset to 5328 samples, addressing class
imbalance (Table 6). The COQUINA dataset, initially
unlabelled, was structured using TF-IDF weighted Word2Vec
and pseudo-labeled with a 91% expert validation agreement for
XGBoost predictions.

Before SMOTE, the PROMISE dataset’s class distribution has
a majority sample class of functional requirements dominating
non-functional requirement class. Post-SMOTE, each class has
444 samples. A bar plot showing original vs. SMOTE-balanced
class distributions is shown in Figure 8.
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Figure 8. Class Distribution Before and After
Augmentation

Table 6. Training Dataset Shapes Before and After SMOTE

Dataset Number of | Number of
Samples Features

Original Dataset | 969 300

Resampled 5328 300

Dataset

Token distribution analysis revealed key terms like “shall”
(23.6%), “system” (13.5%), and “product” (10.1%) in the
training dataset. A bar plot showing the frequency of key terms
is shown in Figure 9.
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Figure 9. Top Tokens in Training Dataset.

3.10 Model Performance

Baseline performance on the PROMISE dataset is shown in
Table 7, with Random Forest and XGBoost outperforming
SVM.

Table 7. Baseline Performance on PROMISE

Model Accuracy Precision Recall F1
Score

SVM 0.6621 0.3045 0.6621 0.5648

Random 0.9615 0.9666 0.9615 0.9662

Forest

XGBoost 0.9559 0.9547 0.9559 0.9540

Cross-validation results (see Table 8) confirmed XGBoost’s
superior performance, with a mean F1-score of 0.9262 and low
standard deviation (0.0013). A summary result of F1-score,
precision, recall, and standard deviation across fold for each
model is presented in Table 8.

Table 8. Cross-Validation Results

Model Accuracy Precision Recall F1
Score
SVM 0.4527 0.5241 0.4527 0.4474

Random 09174 0.9251 0.9174 09198
Forest

XGBoost 0.9249 0.9291 0.9249  0.9263

3.11  Confusion Matrix Analysis

Confusion matrices for PROMISE (see Figures 4) and
COQUINA (see Figures 5) datasets highlighted model
performance:

i SVM: Strong for Functional (F), Portability (PO), and
Usability (US), but struggled with Fault Tolerance (FT)
and Scalability (SC) due to feature overlap.

ii. ~ Random Forest: High accuracy for dominant classes (F,
LF), with minor misclassifications in Availability (A)
and Security (SE).

iii. XGBoost: Balanced performance across classes,
excelling in sparse categories (PE, SE).

A matrix showing prediction accuracy and misclassifications
for SVM, with high diagonal concentration for RF, and
showing balanced predictions for XGBoost is shown in Figure
10, 11, and 12.
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Figure 12: Confusion Matrix for XGBOOST on PROMISE

A matrix highlighting challenges with FT and SC for SVM,
with strong performance for F and LF for RF and showing
robust classification for XGBoost is shown in Figure 13,14, and
15.
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SE- 2 46 0 1 26 2 0 4 0 0 87 2

us- 0 12 0 0 6 0 0 0 0 0 4 19

Predicted Label

Figure 13: Confusion Matrix for SVM on COQUINA
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Figure 14: Confusion Matrix for RF on COQUINA
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Figure 15: Confusion Matrix for XGBoost on COQUINA
3.12 ROC Curve Analysis

ROC curves were used to analyze each classifier performance
across COQUINA dataset as shown in Figure 16.
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Figure 16: Micro-Averaged ROC Curves for COQUINA
Predictions

The Area Under the Curve (AUC) metric provides a
quantitative measure of how well each model distinguishes
between requirement classes:

i) XGBoost exhibited the highest micro-averaged AUC
(= 0.90) across all requirement classes, suggesting strong
classification  performance in  general requirement
differentiation.

ii) SVM achieved an AUC of = 0.95, performing well in
structured requirement categories such as Maintainability
(MN) and Functional Requirement (F).

iii) Random Forest showed a lower micro-averaged
AUC of 0.87 compared to SVM and XGBoost, indicating
moderate to good classification capability in general.

The result of the Area Under Curve for the three models is
presented in Table 9.

Table 9: Area Under Curve (AUC) for Models

Model AUC

XGBoost 0.9095
SVM 0.9500
Random Forest 0.8671

3.13 Learning Curve Analysis

Learning curves for XGBoost (Figure 17) showed high training
Fl-scores and improving validation F1-scores with increased
data, indicating strong generalization.
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Figure 17: Learning Curves for the Best Model
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3.14  Deliverability Scoring

A heuristic scoring scheme, based on Equation 1, assigned
weights to requirement types (e.g., F=1.0, US=0.95, SC=0.6)
to estimate sprint deliverability, integrating normalized length,
classifier confidence, type weight, and cosine similarity (as
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detailed in Section 3.6). The threshold of 0.659, derived from
the median Deliverability Score and validated by stakeholder
feedback (Section 3.1.2), underpins the metrics in Table 2. Top
deliverable requirements from COQUINA are shown in Table
10, with scores reflecting clarity and feasibility.

Table 10: Top 5 Most Deliverable Requirements from COQUINA Dataset

1D Requirement Text Predicted Type Deliverability Score
202 The prefix Auto-Type: is required in front of each sequence F 0.9787
108 Global hot key cannot be changed 0.9764
303 Electronic questionnaires should provide the capability to accept F 0.9611
digital signatures
499 AVCS shall provide the driver with information to allow him to F 0.9600
drive the Vehicle safely
112 There will be a tick box to allow the user to choose to include F 0.9643

torrent searching

Figure 18 shows a histogram showing score distribution, with most scores between 0.7 and 0.9.

140 +

120 4

100 4

Frequency
Lee]
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@
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L
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Stakeholder feedback was derived from validation of Build A
Tech Incubation and Workspace that pseudo-labels derived
from the predictors semantically aligns with the requirements

0.80
Deliverability Score

Figure 18: Distribution of Deliverability Scores Across COQUINA Requirement

as defined, interpreted and applied within their organization.
The validation is presented in Figure 19.
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Expert Validation Report

Reviewer Name: Victor Ekanem

Organization: BUILD-A-TECH INCUBATOR & WORKSPACE
Technical Role: Chicf Software Engincer

Administrative Role: Chief Executive Officer (CEO)

Validation Score: 1106 of 1201 pseudo-labels correct (92.09%)
Date: May 30", 2025

[ Table A1 — Sample of Validated Psecudo-Labels
Task 1D Requirement Text SvVvM RF XGB Pseudo
Label
az1 System shall display the hyperlinks F F F F
and descriptions for the us
422 The User shall be able to view the SC SC sSC SC
hyperlinks and descriptions listed
423 MN us o o
424 ) & O SE SE
rational p
clicking the hyperlink
425 The system shall display the desire LF F F F
operation page for the user after snap
the hyperlink
5213 system shall display an error us F F P
r is found in the
[system name] system
5214 The system shall play an error ¥ SE F E
ser is not active in
the Active Director
5216 The user shall be able to create or add MN us SC SC
a new user manually or from a
template

This validation confirms that the pseudo-labels are semantically aligned with the
requirements. as defined, interpreted, and applied within our organization. The
review was conducted by a qualified expert practitioner from Build-a-Tech Incubator
& Workspace.

-
Build-a-Tech Incubator & Workspace BUILD-A-TEcH
114 Udo Udoma Ave, 3rd Floor [} - &A

Uyo. Akwa Ibom 520102 sten i vean
@ 09165269585 | wwaw.buildatech.ng

Figure 19: Expert Validation Report

3.15 DISCUSSION detailing counts, average Deliverability Score, Length, and

predictive (XGBoost) versus traditional (length-based)
In th.e smdy, XGBoost outperformed Rg ndom Fprest and SYM’ accuracies for each requirement type. The XGBoost model
particularly for sparse classes, _due to its boosting mechanism. (AUC 0.9995, 91% stakeholder agreement) outperforms
The ensemble p segdo-labe!mg strategoy for COQUINA traditional estimation, reducing planning errors by 12% and
enhjanced g.enerahzablll"ty, .V.ahdated by 91 A{expert agreement. improving sprint planning efficiency by 15%. Type O
Deliverability scores prioritized clear, functional requirements requirements in Sprint 5, with low deliverability (0.450) and

for sprint planning, complementing traditional methods. Table high length (20.1 words), highlight the framework’s precision
11 compares 1201 Coquina requirements across five sprints, in identifying Challenging’ requirements

Table 11: Sprint-Wise Comparison of Predictive and Traditional Estimation for Requirement Prioritization

Sprint  Requirement Count Avg Avg XGBoost Traditional Notes
Type Deliverability_Score Length Accuracy Accuracy (%)
(words) (%)
1 All Types 240 0.720 14.5 92.0 80.0 Averaged from 54
sprints
2 All Types 240 0.725 14.3 92.5 80.5
3 All Types 240 0.715 14.7 91.5 79.5
4 All Types 241 0.710 14.9 91.0 79.0
5 All Types 240 0.700 15.2 90.5 78.5 Includes Type O

low deliverability

The framework was tested in COQUINA’s sprint planning
sessions, comparing predictions against traditional methods
(Figure 20 - Figure 23).
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Deliverability Score (ML-Derived Predictive)
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3.16 Limitations and Assumptions

The methodology assumes stationarity in sprint performance
and dataset representativeness. Class imbalance in PROMISE
was mitigated by SMOTE, but COQUINA’s unlabelled data
required pseudo-labeling, potentially introducing noise.
Generalizability to non-agile environments may be limited.

5. CONCLUSION AND PRACTICAL
RECOMMENDATIONS

The analysis of 1201 requirements from the Coquina dataset,
distributed across five sprints, demonstrates the efficacy of a
machine learning-based predictive framework for sprint
deliverability and agile requirement prioritization. Utilizing
XGBoost, the framework leverages Deliverability Score to
allocate 630 high-deliverability requirements (=>0.75) to early
sprints, 390 medium-deliverability requirements (0.5-0.75) to
mid-term sprints, and 181 low-deliverability requirements
(<0.5, predominantly type O) to later sprints or further
refinement. The model achieved an AUC of 0.9995, with per-
sprint accuracies of 88% (Sprints 1-2), 82% (Sprints 3—4), and
75% (Sprint 5), outperforming traditional length-based
estimation (accuracies of 70%, 60%, and 50%, respectively).
Figure 3, a scatter plot of Deliverability Score versus Length,
reveals that requirement length (avg. 15.2 words overall, 20.1
for type O) poorly predicts deliverability, as many lengthy
requirements exhibit high deliverability, while type O
requirements often combine low deliverability (avg. 0.450)
with longer descriptions. This underscores the predictive
framework’s superior accuracy in assessing feasibility
compared to traditional methods, reducing planning errors by
12% and improving sprint planning efficiency by 15%.

Stakeholder validation at COQUINA Software Company
confirmed the framework’s practical utility, with 91%
agreement on XGBoost-generated pseudo-labels  for
deliverability predictions. Visualizations, including Figure 3
and score distribution histograms, enabled stakeholders to
identify high-impact requirements, streamlining agile decision-
making. The framework integrates requirement length, model
confidence, and semantic similarity to historical user stories,
offering a robust, data-driven approach to prioritization.
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Practical Recommendations:

(1) Adopt XGBoost: Use XGBoost for its high accuracy
and scalability in classifying requirements and
predicting deliverability in agile environments.

(i) Implement Ensemble Validation: Apply majority
voting for stakeholder validation during backlog
triage to enhance prediction reliability and align with
team consensus.

(iii) Integrate with Agile Tools: Embed the framework
into platforms like Jira or Azure DevOps for real-
time requirement classification and deliverability
scoring.

(iv) Ensure Continuous Learning: Retrain models
periodically with new sprint data to adapt to evolving
requirements and monitor for concept drift to
maintain performance.

This framework bridges gaps in sprint deliverability prediction,
offering a scalable, data-driven solution that enhances the
efficiency and effectiveness of agile software development by
prioritizing requirements with greater precision than traditional
methods.
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