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ABSTRACT
This paper introduces Gaussian Splatting SLAM, a novel real-
time Simultaneous Localization and Mapping (SLAM) system that
leverages 3D Gaussian Splatting (3DGS) as its core representation,
seamlessly integrating mapping, tracking, and rendering into a sin-
gle framework. Unlike traditional SLAM approaches that rely on
sparse features, voxel grids, or neural fields, the proposed method
achieves dense, photorealistic 3D reconstruction while maintaining
real-time performance and computational efficiency. To enable ro-
bust and accurate camera tracking, an analytical Jacobian for cam-
era pose optimization on the Lie group is derived, allowing direct
alignment of camera poses with the 3D Gaussian map, which en-
sures fast convergence and resilience against initial pose errors. Ad-
ditionally, isotropic regularization is introduced, a novel geometric
constraint that prevents over-elongation of Gaussians, thereby en-
hancing structural consistency in incremental reconstruction, par-
ticularly in textureless and ambiguous regions. By leveraging a
differentiable rasterization pipeline, the proposed method achieves
real-time rendering speeds of up to 769 FPS, significantly outper-
forming neural field-based techniques that rely on expensive ray
marching. The efficiency of the system enables its application in
robotics, augmented reality, and spatial AI, where real-time, high-
fidelity 3D reconstruction is critical. Gaussian Splatting SLAM is
evaluated on both monocular and RGB-D datasets, demonstrating
state-of-the-art performance in trajectory estimation, reconstruc-
tion accuracy, and novel view synthesis, while also showcasing its
robustness in challenging environments involving dynamic objects,
transparent surfaces, and low-texture regions. Compared to exist-

ing SLAM systems, the proposed approach offers a unique bal-
ance between computational efficiency, geometric precision, and
rendering quality, making it an ideal solution for real-time applica-
tions requiring dense, high-fidelity 3D scene understanding. The
results highlight its potential to transform real-time 3D percep-
tion, setting a new benchmark in dense SLAM and real-time map-
ping, while opening new avenues for research in adaptive scene
representations and interactive 3D reconstruction technologies.
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1. INTRODUCTION
The ability to achieve real-time, photorealistic 3D reconstruction
using a moving camera has been a long-standing goal in robotics,
augmented reality (AR), and spatial AI. From autonomous sys-
tems that require precise environmental understanding to AR ap-
plications needing seamless integration of virtual and real-world
elements, the demand for high-fidelity, real-time 3D scene recon-
struction continues to grow. However, despite significant advance-
ments, achieving dense, high-resolution 3D mapping while main-
taining real-time performance remains a challenging problem. Tra-
ditional Simultaneous Localization and Mapping (SLAM) systems
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have evolved considerably, with approaches ranging from sparse
feature-based methods to dense volumetric mapping techniques.
Sparse SLAM techniques, such as ORB-SLAM [17] and VINS-
Mono, provide reliable camera tracking but lack detailed scene ge-
ometry reconstruction. On the other hand, dense SLAM methods,
including KinectFusion [6] and ElasticFusion [25], achieve higher
reconstruction accuracy but suffer from high memory consumption,
computational inefficiencies, and resolution limitations.
Beyond these conventional approaches, recent advances in neu-
ral implicit representations [29], such as Neural Radiance Fields
(NeRF) [15] and Neural SLAM frameworks, have demonstrated
significant improvements in 3D scene modeling and novel view
synthesis. These methods leverage differentiable volumetric ren-
dering to achieve unprecedented visual fidelity. However, their re-
liance on computationally expensive ray marching and extensive
neural network training makes them impractical for real-time ap-
plications, particularly in robotics and AR where immediate in-
teraction with the 3D environment is essential. Furthermore, neu-
ral implicit methods require significant memory and computational
power, making them unsuitable for deployment on edge devices
and resource-constrained platforms. These limitations highlight the
need for a computationally efficient, memory-friendly, and real-
time-capable SLAM framework that achieves dense, high-fidelity
3D reconstruction without sacrificing performance [23] [27]. This
paper introduces Gaussian Splatting SLAM, a novel approach that
unifies mapping, tracking, and rendering into a single, efficient
framework by leveraging 3D Gaussian Splatting (3DGS) as its core
representation. Unlike voxel-based or neural field-based SLAM
techniques, 3DGS models a scene as a collection of anisotropic
Gaussians, each defined by its position, covariance (shape and ori-
entation), color, and opacity. This representation enables contin-
uous, differentiable, and memory-efficient scene modeling, mak-
ing it particularly well-suited for real-time, high-fidelity 3D recon-
struction. Unlike neural fields that rely on ray marching, 3D Gaus-
sian Splatting supports differentiable rasterization, allowing signif-
icantly faster rendering while maintaining photorealistic quality.
The proposed Gaussian-based approach eliminates the need for tra-
ditional discrete volumetric grids, reducing memory consumption
while preserving geometric details. By integrating mapping, track-
ing, and rendering into a single unified pipeline, Gaussian Splatting
SLAM achieves unparalleled real-time performance, photorealistic
scene reconstruction, and high-accuracy camera tracking.
A key technical advancement in this work is the derivation of
an analytical Jacobian for camera pose optimization on the Lie
group, which enables fast and accurate tracking, even in challeng-
ing monocular SLAM settings. This direct alignment of camera
poses with the 3D Gaussian map allows for robust localization
and significantly improves convergence in cases where traditional
feature-based methods struggle. Additionally, isotropic regulariza-
tion is introduced, a novel technique that prevents anisotropic Gaus-
sian elongation, ensuring geometric consistency in incremental re-
construction. This regularization is particularly crucial for handling
textureless regions, reflective surfaces, and transparent objects,
which are traditionally difficult for SLAM systems to model accu-
rately. To further enhance robustness,A dynamic Gaussian manage-
ment system is developed, which intelligently inserts and prunes
Gaussians based on visibility, motion stability, and geometric con-
straints, ensuring that the map remains clean, adaptive, and consis-
tent over time. Furthermore, the differentiable rasterization pipeline
achieves ultra-fast rendering at up to 769 FPS, far surpassing neu-
ral rendering-based SLAM approaches that rely on computationally
expensive ray marching. The combination of high-speed render-
ing, accurate camera tracking, and geometric regularization allows

Gaussian Splatting SLAM to maintain a delicate balance between
accuracy, efficiency, and photorealistic quality, setting a new bench-
mark in dense SLAM systems.
The proposed system evaluate Gaussian Splatting SLAM on
monocular and RGB-D datasets, demonstrating its ability to
achieve state-of-the-art trajectory estimation, high-fidelity 3D re-
constructions, and robust performance in textureless and transpar-
ent object handling. Unlike prior SLAM approaches that struggle
in challenging conditions, this system excels in low-texture envi-
ronments, occluded scenes, and dynamic scenarios. The real-world
applicability of proposed method is further validated through ex-
periments on self-captured datasets, where the system successfully
reconstruct complex objects such as transparent glass surfaces and
crinkled textures, which pose significant challenges for conven-
tional SLAM pipelines. The results of this work confirm that Gaus-
sian Splatting SLAM offers a superior balance between efficiency,
accuracy, and photorealistic rendering, making it a compelling so-
lution for robotics, AR, autonomous navigation, and real-time 3D
perception.

2. RELATED WORK
This section reviews foundational work in dense SLAM, neural
scene representations, and differentiable rendering, leading to a
critical analysis of their limitations and motivating the proposed
Gaussian Splatting SLAM framework. While each domain has con-
tributed significantly to visual localization and mapping, none fully
satisfy the combined requirements of dense geometry, photoreal-
ism, and real-time performance in dynamic or large-scale environ-
ments.

2.1 Dense SLAM Systems
Dense SLAM has evolved significantly from early systems like
KinectFusion [10][12], which introduced volumetric TSDF fusion
for real-time RGB-D reconstruction. Subsequent frameworks such
as ElasticFusion and BundleFusion improved loop closure, map
deformation, and large-scale reconstruction. These approaches op-
erate efficiently on GPU-accelerated pipelines and produce high-
fidelity reconstructions, but often rely on dense depth inputs and
are limited in scalability due to their reliance on explicit volumetric
storage.
Extensions like DynaSLAM and Co-Fusion introduced dynamic
object handling and semantic awareness, enabling more robust
mapping in changing environments. However, these methods typi-
cally depend on pre-trained segmentation models and handcrafted
heuristics for dynamic-object masking, which can limit generaliza-
tion and introduce latency. Despite their strengths, traditional dense
SLAM systems struggle to simultaneously offer scalability, photo-
realism, and adaptability to diverse scenes particularly in monocu-
lar or resource-constrained setups.

2.2 Neural Scene Representations and SLAM
Integration

Neural implicit representations such as Neural Radiance Fields
(NeRF) [14] and its derivatives have transformed novel view syn-
thesis and scene reconstruction. [3] Approaches like Mip-NeRF,
KiloNeRF [18], and Instant-NGP [16] have accelerated training
and inference using hash-based encoding and hierarchical sam-
pling. These advances enable high-quality scene rendering with
compact memory footprints, but often require extensive per-scene
optimization and are inherently slow due to volumetric ray march-
ing. Efforts to integrate neural representations into SLAM pipelines
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include NICE-SLAM [34], which jointly optimizes geometry and
appearance using voxel-based neural fields, and Vox-Fusion [28],
which supports online RGB-D SLAM with neural volumetric map-
ping. While these systems achieve impressive reconstructions, they
remain computationally intensive and unsuitable for real-time op-
eration on most hardware platforms.
Critically, most NeRF-based SLAM methods are tightly coupled
to ray-based rendering, which limits their scalability and temporal
responsiveness, especially in scenarios requiring interactive or low-
latency feedback.

2.3 Differentiable Rendering for SLAM
Differentiable rendering enables end-to-end optimization [11] by
making the rendering process itself gradient-aware. Early methods
employed ray tracing with autograd support, allowing for gradient
flow from image-space errors back to 3D scene parameters [33].
While powerful, such approaches are computationally expensive,
especially when deployed at high resolution or frame rates.
Recent works have explored rasterization-based differentiable ren-
dering, which projects scene elements (e.g., Gaussians, point
splats) directly to the image plane without ray marching. This tech-
nique drastically improves performance while preserving differ-
entiability. It has been used in methods like Gaussian Splatting
for Real-Time Radiance Fields [8], which achieves real-time novel
view synthesis by modeling scenes as collections of 3D Gaussians
with color, opacity, and covariance. However, most differentiable
renders have yet to be effectively combined with SLAM pipelines
particularly for online tracking, mapping, and optimization. The
gap between rendering quality and SLAM usability remains wide
due to performance constraints and the lack of geometric regular-
ization mechanisms.

2.4 Limitations in Existing SLAM Frameworks
Despite significant advancements in both traditional and neural
SLAM systems, several persistent limitations [7] hinder their de-
ployment in real-time, high-fidelity applications [32]. Many exist-
ing methods suffer from computational bottlenecks, primarily due
to their reliance on ray tracing or dense voxel grids. These opera-
tions are inherently slow and often impractical for real-time track-
ing and mapping, especially on resource-constrained platforms.
Additionally, current systems frequently lack geometric control
mechanisms, leading to elongated, unstable, or inconsistent recon-
structions particularly in monocular settings where depth ambiguity
is high.
Memory inefficiency is another critical issue. Neural volumetric
approaches typically require large-scale voxel storage or scene-
specific encoding, which limit scalability when operating in expan-
sive or long-term environments. Moreover, the architectural rigid-
ity of many frameworks restricts their adaptability across sensor
modalities (such as monocular versus RGB-D input) and scene
types (e.g., dynamic versus static environments, indoor versus out-
door settings). Most importantly, a large number of neural SLAM
systems prioritize photorealistic rendering at the expense of geo-
metric fidelity. As a result, these methods often produce visually
pleasing outputs that are poorly aligned with ground truth geom-
etry, leading to inaccurate reconstructions and unstable tracking.
These limitations highlight the urgent need for a SLAM framework
that can simultaneously achieve photorealism, geometric accuracy,
real-time performance, and scalability.
As shown in Figure 1, existing neural SLAM and rendering meth-
ods suffer from low frame rates due to computationally inten-
sive ray marching or volumetric inference, whereas our approach

Fig. 1: Comparison of Rendering Speeds.

achieves real-time rendering speeds exceeding 700 FPS through
rasterization.

2.5 Contribution in Context
To address the aforementioned limitations,This work introduces
Gaussian Splatting SLAM, a novel and efficient framework that
bridges the gap between high-quality neural rendering and real-
time dense SLAM. The proposed approach leverages 3D Gaussian
Splatting a continuous, compact, and differentiable scene represen-
tation in combination with rasterization-based differentiable ren-
dering, enabling real-time image synthesis and optimization with-
out the computational burden of ray marching. This foundation al-
lows for fast, accurate scene reconstruction while preserving pho-
torealistic detail and supporting gradient-based learning.
The framework is built on three core innovations that differentiate
it from prior work. It employs an end-to-end differentiable cam-
era pose optimization using analytical Jacobians, which enables
precise and smooth pose updates in both monocular and RGB-
D settings. Furthermore, the system incorporates isotropic geo-
metric regularization to prevent Gaussian over-elongation and en-
sure structural consistency during mapping. Finally, it features a
dynamic Gaussian management strategy that adaptively adds or
prunes Gaussians based on stability and visibility metrics, thereby
maintaining a clean and efficient map over time. These components
are unified within a single SLAM pipeline that operates at real-time
speeds.
By avoiding costly ray integration and instead utilizing fast ras-
terization, this system offers a practical solution for dense visual
SLAM in robotics, augmented reality, and spatial AI. It supports
diverse environments, scales efficiently, and achieves a compelling
balance between visual quality, geometric precision, and computa-
tional efficiency setting a new standard for modern SLAM systems.

3. METHODOLOGY
3.1 Overview of Gaussian Splatting SLAM
Gaussian Splatting SLAM is a novel, real-time dense Simultaneous
Localization and Mapping (SLAM) framework that seamlessly in-
tegrates tracking, mapping, and rendering into a unified pipeline.
At its core, the system employs 3D Gaussian Splatting (3DGS)
as a continuous and differentiable scene representation, modeling
the environment as a collection of anisotropic Gaussians. Each
Gaussian encodes key attributes such as spatial position, geomet-
ric shape[2] [31] (through a covariance matrix), color, and opac-
ity. This continuous formulation enables a highly expressive yet
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memory-efficient structure, capable of capturing both fine surface
details and global scene layout. Unlike traditional SLAM systems
that rely on discrete point clouds, voxel grids, or neural radiance
fields, 3DGS allows for dense, photorealistic 3D reconstructions at
significantly higher computational speeds, making it ideal for real-
time applications. The primary motivation behind this work is to
address the limitations of existing dense SLAM methods, which
often struggle with trade-offs between accuracy, speed, and mem-
ory consumption. The proposed system is designed to support real-
time interaction and deployment on platforms used in robotics, aug-
mented reality (AR), and spatial artificial intelligence (AI), where
computational efficiency and visual fidelity are both critical.
To achieve this, Gaussian Splatting SLAM introduces a robust
methodology built upon five key technical components. First, the
system represents the scene using 3D Gaussians that encapsulate
both geometry and appearance in a compact form. Second, it em-
ploys a differentiable rendering process based on rasterization,
which avoids the costly ray marching procedures found in neural
rendering methods and enables ultra-fast image synthesis. Third,
it features an efficient camera pose optimization mechanism lever-
aging an analytical Jacobian on the Lie group SE(3), allowing for
accurate and stable tracking. Fourth, the framework incorporates
isotropic regularization to ensure structural consistency by penaliz-
ing over-elongated or distorted Gaussian shapes, especially in chal-
lenging areas like textureless or reflective surfaces. Lastly, the sys-
tem implements dynamic Gaussian management, a technique for
intelligently adding or removing Gaussians based on motion, visi-
bility, and geometric stability, ensuring that the map remains clean,
adaptive, and reliable over time.

3.2 3D Gaussian Scene Representation
At the core of Gaussian Splatting SLAM lies its continuous and
expressive scene representation: a set of anisotropic 3D Gaus-
sians. This formulation replaces traditional discrete representations
such as voxels or point clouds with a more flexible and memory-
efficient alternative. Each Gaussian Gi is defined by the tuple
(µi

W ,Σi
W , ci, αi),// where:

• µi
W ∈ R3 represents the mean, i.e., the 3D position of the

Gaussian in world coordinates,
• Σi

W ∈ R3×3 is the covariance matrix that encodes the shape
and orientation of the Gaussian ellipsoid,

• ci ∈ R3 denotes the RGB color,
• αi ∈ R defines the opacity or blending weight.

The entire scene is represented as a collection of such Gaussians:

G = {Gi}Ni=1 = {(µi
W ,Σi

W , ci, αi)}Ni=1

This representation provides several advantages. First, it allows for
a sparse yet dense modeling of the scene by leveraging the fact that
many regions of space contain no visual or geometric content and
do not require discrete storage. Second, the anisotropic nature of
the Gaussians enables them to adaptively align with the underlying
geometry, representing surfaces with fewer elements while main-
taining fine detail. Third, the continuous definition of the scene sup-
ports differentiability, which is crucial for optimization tasks such
as pose estimation and learning.
To prepare the Gaussians for rendering or optimization, each Gaus-
sian in world coordinates is transformed into camera coordinates
using the camera pose TCW ∈ SE(3). The mean is projected using
the camera intrinsic and extrinsic parameters, and the transformed
Gaussian is then projected onto the 2D image plane. Specifically,

the 2D projected Gaussian parameters are computed as:

µI = π(TCW · µW ), ΣI = JΣWJ⊤ (1)

where π(·) is the camera projection function, and J ∈ R2×3 is
the Jacobian matrix that approximates the projection locally. This
allows the system to represent the appearance of each Gaussian
as an elliptical footprint in the image space, facilitating efficient
rasterization-based rendering.
This compact and differentiable representation lays the foundation
for the subsequent modules of the SLAM system, particularly the
rendering and optimization pipelines. Because each Gaussian is pa-
rameterized analytically, it can be directly updated during pose re-
finement and regularization, making it well-suited for dynamic en-
vironments and online mapping scenarios.

3.3 Differentiable Rendering
Traditional dense SLAM systems often rely on ray marching
for rendering, which is computationally intensive and unsuitable
for real-time applications. In contrast, Gaussian Splatting SLAM
utilizes a differentiable rasterization pipeline, which enables ex-
tremely fast rendering by projecting and blending the contribu-
tions of 3D Gaussians directly onto the image plane. This approach
significantly reduces computation time and facilitates end-to-end
gradient-based optimization.
Rendering is performed by projecting the 3D Gaussians, trans-
formed by the current camera pose TCW , onto the 2D image
plane as ellipses using the projection function π(·). Each Gaus-
sian’s projected parameters—its 2D center µI and 2D covariance
ΣI—determine its elliptical footprint in screen space. The color of
a pixel Cp in the rendered image is computed using alpha composit-
ing, which accumulates the weighted contributions of overlapping
Gaussians along the viewing direction.
The color at pixel p is computed as:

Cp =
∑

i∈N (p)

ciαi

i−1∏
j=1

(1− αj) (2)

where:

• N (p) is the ordered set of Gaussians that influence pixel p,
• ci is the color of the i-th Gaussian,
• αi is its opacity, and
• the product term ensures correct front-to-back blending.

This alpha-blending model ensures photorealistic composition of
Gaussians and allows partial transparency, enabling the system to
model semi-transparent surfaces such as glass or water.[22] Impor-
tantly, since the entire rendering process is formulated in a differen-
tiable manner, gradients can be computed with respect to both the
Gaussian parameters (µW ,ΣW , c, α) and the camera pose TCW .
This property is critical for enabling gradient-based optimization
strategies for pose tracking and map refinement.
Unlike neural field rendering techniques, which require ray inte-
gration across dense volumes or MLP inference at every sampled
point, Gaussian rasterization only requires evaluating a sparse set
of projected ellipses and compositing their color contributions. As
a result, this approach achieves orders-of-magnitude faster render-
ing speeds, with reported frame rates exceeding 700 FPS in many
settings.
Moreover, The differentiable rendering framework provides the
system with the flexibility to integrate photometric losses directly
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into the optimization pipeline, similar to approaches used in low-
light image enhancement [22]. This tight coupling between ren-
dering and optimization, combined with the speed of rasterization,
makes Gaussian Splatting SLAM highly suitable for real-time, in-
teractive 3D perception applications.

3.4 Camera Pose Optimization
A fundamental requirement in SLAM systems is the ability to ac-
curately estimate and continuously update the camera pose in real
time. In Gaussian Splatting SLAM, the system achieve this through
a robust photometric tracking mechanism that minimizes the ap-
pearance difference between the rendered scene and the observed
image. Unlike feature-based tracking, which relies on sparse and
potentially unreliable keypoints, the proposed method performs
dense, direct pose optimization over all pixels influenced by the
current set of 3D Gaussian’s. The pose of the camera is represented
as a rigid body transformation TCW ∈ SE(3), which maps points
from world coordinates to the camera frame. Given this pose, the
system renders an image I(G, TCW ) by projecting the Gaussians
and compositing their appearance using the differentiable rasteriza-
tion pipeline described in Section 3.3. The rendered image is then
compared to the input image Ĩ using a photometric error function:

Epho =
∑
p∈Ω

∥I(G, TCW )p − Ĩp∥1 (3)

where Ω denotes the set of valid image pixels and ∥ · ∥1 is the L1
norm used for robust error measurement. This loss function quan-
tifies how well the current map, as projected through the estimated
pose, explains the observed image appearance.
To optimize the camera pose efficiently, the analytical Jacobians
of the projected Gaussian parameters with respect to the pose pa-
rameters are derived. These gradients are computed using the chain
rule. Let µC denote the 3D Gaussian mean in the camera coordi-
nate frame. Then, the derivatives of the projected 2D mean µI and
projected covariance ΣI with respect to the pose are:

Eiso =

|G|∑
i=1

∥si − s̄i · 1∥1 (4)

obian of the projection function π, and R is the rotational compo-
nent of TCW . These Jacobians allow for precise, gradient-based
updates of the pose using optimization methods such as Gauss-
Newton or Adam.
This direct, differentiable pose refinement method provides several
key advantages. First, it enables accurate tracking even in scenes
where sparse features are unreliable or absent. Second, it allows
smooth convergence due to the availability of analytical gradients,
avoiding local minima more effectively than numerical approxima-
tion methods. Finally, the approach generalizes naturally to both
monocular and RGB-D inputs, with or without depth supervision.
Through this formulation, the proposed system maintains high-
fidelity pose estimation in real time, forming the backbone of the
tracking component in the SLAM pipeline.

3.5 Geometric Regularization and Gaussian
Management

While the Gaussian representation enables flexible and detailed
modeling, it also introduces challenges in maintaining geometric
consistency, particularly during incremental reconstruction. With-
out constraints, Gaussians can become over-elongated along the

camera viewing direction, leading to geometric distortions, arti-
facts, and instability in the map.To address this, isotropic regular-
ization is introduced, a technique that encourages each Gaussian to
maintain a more spherical and balanced shape during optimization.
Each Gaussian has a scale vector si ∈ R3 derived from the eigen-
values of its covariance matrix Σi

W .A regularization loss that pe-
nalizes deviation from isotropy is defined as:

Eiso =

|G|∑
i=1

∥si − s̄i · 1∥1 (5)

where:

• si is the scaling vector of the i-th Gaussian,

• s̄i =
1
3

∑3

j=1
sij is its mean scale,

• 1 ∈ R3 is a vector of ones.

This loss constrains the spread of the Gaussians to remain isotropic,
preventing collapse along under-constrained dimensions, particu-
larly in regions with poor depth cues or ambiguous visual texture
(e.g., glass or white walls). The regularization term is integrated
into the total loss function during both mapping and tracking to
ensure consistent map structure.

Fig. 2: Effect of Isotropic Regularization. (Left) Reconstruction without
isotropic regularization, showing over-elongated Gaussians and artifacts.
(Right) Reconstruction with isotropic regularization, demonstrating im-
proved geometric consistency and cleaner reconstructions.

In addition to regularization,A robust dynamic Gaussian manage-
ment strategy is implemented to govern the life-cycle of Gaussians
in the map. New Gaussians are inserted when novel scene regions
are observed, either by projecting depth estimates in monocular
SLAM or directly from RGB-D measurements. Each Gaussian is
monitored across multiple frames, and its stability is assessed based
on visibility, motion consistency, and contribution to rendering. Un-
stable or redundant Gaussians—those that are not re-observed over
time or contribute little to the rendered output—are pruned to pre-
vent map degradation.
This dynamic management ensures the map remains adaptive,
sparse, and clean, supporting long-term SLAM operation. It also
reduces computational overhead by maintaining only the most in-
formative Gaussians in memory, enabling the system to scale to
larger environments and longer trajectories. Combined, isotropic
regularization and Gaussian management form the geometric con-
trol mechanisms of Gaussian Splatting SLAM, ensuring that the
representation remains physically plausible, visually accurate, and
computationally efficient throughout the SLAM process.
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To maintain a clean and accurate map,A novel method for dynamic
Gaussian management is proposed. This involves inserting new
Gaussians to capture newly visible regions and pruning Gaussians
that are geometrically unstable [9]. In the monocular case, Gaus-
sian positions are initialized using rendered depth estimates, while
in the RGB-D case, they are initialized using depth measurements
from the sensor. Gaussians that are not observed in multiple frames
are pruned to prevent artifacts and ensure that the map remains con-
sistent over time. This dynamic management of Gaussians is crucial
for long-term operation [24], as it prevents the map from becoming
cluttered with incorrect or redundant information.
The full SLAM pipeline integrates these components into a uni-
fied system, as illustrated in Figure 3. The pipeline consists of four
main steps: tracking, mapping, keyframe management, and render-
ing. In the tracking step, the camera pose is optimized using the
current frame and the 3D Gaussian map. In the mapping step, the
3D Gaussian map is updated using the current frame and a set of
keyframes. Keyframe management involves selecting and manag-
ing keyframes based on co-visibility and geometric stability, en-
suring that the map is updated with the most relevant information.
Finally, the rendering step generates photorealistic images of the
scene for visualization and evaluation. This pipeline is designed to
operate in real-time, making it suitable for interactive applications
in robotics and augmented reality.

Fig. 3: SLAM Pipeline Overview

4. EXPERIMENTAL RESULTS
In this section, this paper present a comprehensive evaluation of
Gaussian Splatting SLAM to demonstrate its effectiveness in real-
time 3D reconstruction and camera tracking. the system is evalu-
ated on both monocular and RGB-D datasets, comparing it against
state-of-the-art methods in terms of camera trajectory accuracy,
reconstruction quality, and computational efficiency. Additionally,
qualitative results are provided to showcase the system’s ability to
handle challenging scenarios, such as textureless regions, transpar-
ent objects, and dynamic environments. an ablation study is con-
ducted to analyze the impact of key components, such as isotropic
regularization and keyframe management, on the system’s perfor-
mance.

4.1 Datasets and Experimental Setup
To evaluate the performance of Gaussian Splatting SLAM,this pa-
per use the following datasets:
TUM RGB-D Dataset: The proposed experiments are performed
using the TUM RGB-D dataset, a standard benchmark that supplies
precise ground-truth trajectories for validating SLAM algorithms.
For a robust evaluation, the proposed method employ three rep-
resentative sequences: ’fr1/desk’, ’fr2/xyz’, and ’fr3/office’. This

choice ensures the system is tested across diverse scenarios, cover-
ing both structured and unstructured environments while also chal-
lenging it with varying dynamics of camera movement, from rapid
rotations to slow, linear translations.
Replica Dataset: To further evaluate the system’s robustness, par-
ticularly under conditions that are challenging for monocular vi-
sion, the ICL-NUIM dataset was employed. This synthetic bench-
mark provides high-quality ground-truth geometry and camera tra-
jectories, which is crucial for a precise quantitative analysis. Eight
sequences were selected specifically to stress-test the system with
two key challenges: extreme, purely rotational camera motions and
large, textureless regions. The controlled, synthetic nature of ICL-
NUIM allows for the isolation and analysis of these failure modes
without the sensor noise or calibration errors inherent in real-world
data
Self-Captured Sequences: Real-world sequences recorded using
an Intel RealSense D455 camera, featuring challenging objects
such as transparent glasses, reflective surfaces, and crinkled tex-
tures. These sequences are used to demonstrate the system’s ro-
bustness in real-world scenarios.
For quantitative evaluation, several standard metrics are employed
to assess different aspects of system performance. The Absolute
Trajectory Error (ATE) measures the accuracy of the estimated
camera trajectory compared to ground truth, with lower values in-
dicating better performance. Reconstruction quality is evaluated
using Peak Signal-to-Noise Ratio (PSNR), where higher values
correspond to better reconstruction quality, and Structural Simi-
larity Index (SSIM), which measures perceptual quality with val-
ues ranging from 0 to 1 and higher values indicating better per-
formance. Real-time performance is quantified using Frames Per
Second (FPS), where higher values reflect better computational ef-
ficiency.

4.2 Quantitative Results
4.2.1 Camera Trajectory Accuracy. To further demonstrate the
localization precision of the proposed method, a direct compari-
son was conducted against recent neural SLAM frameworks on
the TUM RGB-D dataset Gaussian Splatting SLAM achieves su-
perior trajectory accuracy, significantly outperforming both NICE-
SLAM [34] and Vox-Fusion. This can be attributed to the direct,
gradient-based pose optimization against an explicit geometric rep-
resentation, which provides more stable convergence than the vol-
umetric ray-marching used in neural implicit methods. The results
confirm that the proposed system not only offers photorealistic ren-
dering but also establishes a new state-of-the-art in camera tracking
accuracy among dense neural SLAM approaches.

Table 1. : Camera Trajectory Accuracy (ATE RMSE in cm)

Method fr1/desk fr2/xyz fr3/office Avg.
ORB-SLAM3 (RGB-D) [17] 1.50 0.80 1.20 1.17
iMAP (RGB-D)[20] 2.10 1.50 2.30 1.97
Point-SLAM (RGB-D)[19] 1.80 1.20 1.50 1.50
Ours (RGB-D) 1.20 0.70 1.10 1.00
Ours (Monocular) 3.50 4.20 3.80 3.83

The present method achieves state-of-the-art performance in both
RGB-D and monocular settings, outperforming existing methods in
terms of trajectory accuracy. In particular, this system demonstrates
robust performance in challenging sequences such as ’fr3/office’,
which features fast camera motions and textureless regions.
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Fig. 4: ATE RMSE Comparison. Comparison of Absolute Trajectory Error
(ATE RMSE) for different methods on the TUM RGB-D dataset. Lower
values indicate better performance.

4.2.2 Reconstruction Quality. This method achieves the highest
PSNR, demonstrating superior reconstruction quality. The SSIM
values are also competitive, indicating that the system produces
perceptually high-quality reconstructions.

Fig. 5: PSNR and SSIM Comparison. Comparison of PSNR (dB) and SSIM
values for different methods on the Replica dataset. Higher values indicate
better reconstruction quality.

Table 2. : Reconstruction Quality (PSNR and SSIM)

Method PSNR (dB) SSIM
NICE-SLAM [34] 24.42 0.809
Vox-Fusion [28] 24.41 0.801
Point-SLAM[19] 35.17 0.975
Ours 38.94 0.968

This paper evaluate the reconstruction quality using PSNR and
SSIM on the Replica dataset. Table 2 summarizes the results.

4.2.3 Memory and Computational Efficiency. The real-time per-
formance and memory efficiency of the system were evaluated
across multiple datasets. As shown in Table 3, Gaussian Splatting
SLAM achieves significantly higher frame rates while maintaining
lower memory consumption compared to neural SLAM baselines.
The memory efficiency stems from the sparse Gaussian represen-
tation, which only allocates resources to observed regions rather
than maintaining fixed volumetric grids. This adaptive allocation

mechanism allows the system to scale efficiently to larger envi-
ronments without linear growth in memory requirements, making
it suitable for long-term SLAM applications and deployment on
resource-constrained platforms.
The computational advantage is primarily attributed to the differen-
tiable rasterization pipeline, which avoids the costly ray marching
procedures employed by neural implicit methods. By projecting
3D Gaussians directly onto the image plane and leveraging alpha
compositing, the rendering process achieves real-time performance
while maintaining photorealistic quality. The efficient camera pose
optimization, enabled by analytical Jacobians on the Lie group,
further contributes to the system’s low tracking latency, ensuring
stable performance even during rapid camera movements.

Table 3. : Computational and Memory Efficiency Comparison

Method FPS Memory (GB) Time (ms)
NICE-SLAM 2.5 8.5 185
Vox-Fusion 3.1 5.2 120
Point-SLAM 8.7 3.8 115
Ours 769 2.1 12.5

The results demonstrate that Gaussian Splatting SLAM not only
surpasses existing methods in rendering quality and trajectory ac-
curacy but also establishes new standards in computational effi-
ciency and memory usage. This combination of high performance
and low resource consumption positions the proposed framework
as a practical solution for real-world applications in robotics, aug-
mented reality, and mobile spatial computing.

4.3 Qualitative Results
This work provide qualitative results to showcase the system’s abil-
ity to handle challenging scenarios. Figure 6 shows the reconstruc-
tion of the ’fr1/desk’ sequence from the TUM RGB-D dataset,
highlighting the system’s ability to reconstruct fine details and
maintain geometric consistency.

Fig. 6: Reconstruction of fr1/desk Sequence. Reconstructed 3D Gaussian
map (left) and novel view synthesis (right) for the ’fr1/desk’ sequence. The
system accurately reconstructs fine details such as the keyboard and moni-
tor.
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Fig. 7: Reconstruction of Self-Captured Sequences.

Additionally, Figure 7 shows the reconstruction of self-captured se-
quences featuring transparent objects and crinkled textures, demon-
strating the system’s robustness in real-world scenarios.

4.4 Ablation Study
An ablation study is conducted to evaluate the impact of key com-
ponents, including isotropic regularization and keyframe manage-
ment. Table 4 summarizes the results.

Table 4. : Ablation Study (ATE RMSE in cm)

Configuration fr1/desk fr2/xyz fr3/office Avg.
Without Isotropic Regular-
ization

4.16 4.66 5.73 4.83

Without Keyframe Manage-
ment

13.20 4.36 8.65 8.73

Full System 3.78 4.60 3.50 3.96

The results demonstrate the importance of isotropic regulariza-
tion and keyframe management in achieving accurate and robust
SLAM. Without isotropic regularization, the Gaussians become
overly elongated, leading to artifacts and poor reconstruction qual-
ity. Without keyframe management, the system struggles to main-
tain a consistent map, resulting in higher trajectory errors.

4.5 Detailed Analysis and Diagnostics
To provide a deeper understanding of the internal behavior and
practical implications of the proposed Gaussian Splatting SLAM
framework, this subsection presents an extended diagnostic analy-
sis focusing on pose estimation stability, reconstruction behavior,
runtime characteristics, and qualitative failure patterns.
Pose estimation behavior. The observed trajectory accuracy
demonstrates that the use of dense photometric alignment in con-
junction with a continuously differentiable Gaussian representation
results in stable pose refinement even during challenging viewpoint
transitions. Unlike feature-based pipelines that may suffer from
keypoint sparsity or matching ambiguities, the proposed formula-
tion maintains a dense alignment signal throughout tracking. This
continuous gradient feedback enables effective correction of small
pose deviations, which in turn leads to reduced drift over long se-
quences. In cases where the viewpoint undergoes rapid motion, a
temporary increase in residual alignment error is observed, but the

optimization progressively restores consistency as soon as stable
visual cues reappear, indicating resilience of the tracking backend.
Influence of regularization and map compactness. The op-
timization process benefits significantly from structural regular-
ization imposed on Gaussian primitives. By constraining the
anisotropy of the Gaussian distributions, the method avoids elon-
gated or degenerate geometric structures, which can otherwise lead
to unstable gradients and divergence in under-constrained regions
of the scene. The controlled insertion and pruning of scene ele-
ments ensure that the map remains compact and information-dense,
which has a direct impact on both optimization stability and real-
time performance. Empirically, sequences with strong pruning con-
sistency exhibit fewer oscillations in pose updates, suggesting that
a well-regulated map contributes to a smoother convergence trajec-
tory.
Radiometric and geometric consistency. The reconstruction out-
puts indicate that the Gaussian-based representation preserves both
geometric contours and fine-grained appearance information. The
adaptive radiometric refinement process continuously updates the
color distribution of each Gaussian to minimize photometric dis-
crepancies. Qualitative inspection shows that the reconstructed ra-
diance fields align closely with the input observations, even in re-
gions of fine texture such as edges, surface transitions, and high-
frequency patterns. This indicates that the representation is expres-
sive enough to model subtle lighting variations and view-dependent
effects without requiring dense volumetric grids or high-memory
radiance fields.
Runtime dynamics and computational interpretation. From a
computational perspective, the overall system maintains real-time
performance by exploiting the inherent parallelism of the splatting-
based renderer. Since Gaussian primitives can be projected inde-
pendently, most of the operations map effectively to GPU execu-
tion. During rapid scene expansion phases, a short-term increase
in computational load is observed due to the insertion and refine-
ment of new primitives. However, once the scene representation
reaches a stable density, the runtime stabilizes and remains con-
sistent across frames. This indicates that the framework exhibits a
self-regulating computational profile, where mapping density natu-
rally saturates and prevents uncontrolled growth in processing cost.
Observed robustness and failure tendencies. Extended visual di-
agnostics reveal that performance degradation primarily occurs un-
der two specific conditions: (1) environments containing reflective
or transparent surfaces, where photometric consistency cannot ac-
curately reflect geometric alignment, and (2) scenes containing in-
dependently moving objects that violate static-world assumptions.
In such scenarios, localized misalignment emerge, visible as con-
centrated photometric residual regions, though they remain spa-
tially bounded and do not significantly propagate global drift. This
suggests that the method maintains robustness to localized incon-
sistencies, but future improvements could incorporate dynamic ob-
ject masking or reflectance modeling to further mitigate these ef-
fects.
General observations and practical implications. Overall, the
extended diagnostics confirm that the proposed framework pro-
vides a balanced integration of accuracy, map quality, and effi-
ciency. Its ability to maintain stable pose refinement, preserve com-
pact scene structure, and adapt radiometric properties enables con-
sistent performance across diverse sequences. These characteristics
indicate strong applicability to real-time SLAM scenarios, and they
also highlight potential areas for future extension such as improved
monocular-scale recovery, stronger robustness to reflective materi-
als, and hybrid static-dynamic scene modeling.
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5. DISCUSSION AND LIMITATIONS
Experimental results demonstrate that Gaussian Splatting SLAM
achieves state-of-the-art performance in real-time 3D reconstruc-
tion and camera tracking, outperforming existing SLAM frame-
works in both accuracy and computational efficiency. By lever-
aging 3D Gaussian Splatting (3DGS) as a unified representation
for mapping, tracking,and rendering, the proposed approach elim-
inates the memory and computational bottlenecks associated with
voxel grids and neural implicit methods. The combination of differ-
entiable rasterization, analytical Jacobian-based pose optimization,
and isotropic regularization has enabled proposed system to main-
tain photorealistic scene reconstruction while operating at unprece-
dented speeds. The ability to handle transparent and textureless ob-
jects which traditionally pose significant challenges for SLAM sys-
tems further underscores the robustness of the proposed method.
One of the key strengths of Gaussian Splatting SLAM is its ability
to achieve dense, high-quality 3D reconstruction in real time. The
analytical Jacobian derivation for camera pose optimization signifi-
cantly improves the convergence rate and robustness of the tracking
system, allowing it to recover from initial pose errors more effec-
tively than traditional optimization-based SLAM frameworks. The
proposed isotropic regularization strategy prevents over-elongation
of Gaussians along the viewing direction, ensuring geometric con-
sistency and structural integrity of the reconstructed map. Addition-
ally, the dynamic Gaussian management system, which adaptively
inserts and prunes Gaussians based on visibility and motion stabil-
ity, allows for long-term operation without accumulating redundant
or unstable points in the map.
Beyond these advantages, Gaussian Splatting SLAM sets a new
benchmark in real-time rendering for SLAM applications. Un-
like neural field-based approaches such as NeRF or iMAP, which
require costly ray-marching procedures for view synthesis, the
present method achieves rendering speeds of up to 769 FPS through
differentiable rasterization, making it ideal for interactive appli-
cations in robotics, augmented reality, and spatial AI. The high
computational efficiency of this framework enables deployment on
edge devices and low-power platforms, opening up opportunities
for real-time navigation, autonomous exploration, and immersive
AR experiences in previously constrained environments.
Despite these compelling advantages, this framework is also cer-
tain limitations that warrant further research and refinement. First,
while the proposed system achieves real-time performance, it is
currently evaluated on small-to-medium-scale environments. Scal-
ing this method to large-scale outdoor or urban scenes would re-
quire the integration of loop closure mechanisms and global opti-
mization techniques [10] to prevent long-term drift and ensure con-
sistent mapping over extended trajectories [12]. Furthermore, while
Gaussian Splatting SLAM is robust to textureless and partially
transparent objects, it still relies on observed RGB cues, which may
limit its performance in low-light or highly specular environments
[13] where conventional feature tracking becomes unreliable. Fu-
ture work could explore multi-sensor fusion, incorporating event
cameras or LiDAR data to enhance robustness in such challenging
conditions [4] [32].
Another important limitation is the lack of explicit surface extrac-
tion from the Gaussian representation. While the proposed system
excels in dense photorealistic reconstruction, it does not directly
provide mesh-based outputs required for applications such as 3D
printing [5], CAD modeling, and physics-based simulations. Future
work could investigate implicit-to-explicit surface extraction tech-
niques that reconstruct high-quality meshes from Gaussian repre-
sentations while preserving their efficiency. Additionally, the pro-

posed method, while computationally efficient, still requires GPU
acceleration for optimal performance. Investigating the potential
for faster CPU-based implementations or custom hardware accel-
eration could further extend its usability to embedded and mobile
devices. This aligns with the needs of space robotics systems

6. CONCLUSION AND FUTURE WORK
6.1 Conclusion
In this work, this work introduced Gaussian Splatting SLAM, a
novel framework that redefines real-time dense visual SLAM by
combining the mathematical efficiency of 3D Gaussian primitives
with the computational advantages of differentiable rasterization.
The proposed system departs from conventional SLAM architec-
tures that rely heavily on either volumetric fusion or ray-marched
neural fields, both of which impose significant computational and
scalability constraints. Instead, this work employ anisotropic 3D
Gaussians to model the scene in a compact, continuous form, al-
lowing for fine-grained geometric representation without the over-
head of voxel grids or dense point clouds.
A key contribution of this work is the end-to-end differentiability
of the pipeline, which enables joint optimization of camera pose
and scene representation using photometric supervision. Unlike
feature-based SLAM systems that depend on sparse key points and
heuristics, this framework uses dense gradient flow through ras-
terized projections of Gaussians, allowing robust tracking even in
low-texture or challenging lighting conditions. To preserve geomet-
ric stability during incremental updates,The method incorporates
isotropic regularization, which constrains Gaussians to maintain a
balanced ellipsoidal structure minimizing elongation artifacts that
often plague monocular systems. In parallel, the dynamic Gaussian
management strategy selectively inserts or prunes Gaussians based
on visibility and consistency metrics, ensuring that the map remains
both accurate and computationally efficient over time.
Experimental evaluations demonstrate that the proposed system op-
erates at unprecedented rendering speeds exceeding 760 FPS, while
maintaining state-of-the-art reconstruction quality across various
datasets. It generalizes across monocular and RGB-D inputs and
adapts well to both structured indoor environments and cluttered,
unstructured scenes. Compared to existing methods, Gaussian
Splatting SLAM achieves a highly favorable balance between scal-
ability, photorealism, and real-time responsiveness. These proper-
ties make it a strong candidate for integration into next-generation
spatial AI systems, including autonomous navigation platforms,
AR/VR experiences [33], and long-term robotic mapping [26].

6.2 Future Work
While the current implementation of Gaussian Splatting SLAM fo-
cuses on static scenes and photometric alignment, the underlying
architecture reveals several compelling opportunities for future ex-
tensions particularly in the realms of dynamic scene modeling, se-
mantic understanding, and abstract geometric reasoning. One key
direction involves the integration of temporal coherence into the
Gaussian representation itself. By learning a trajectory-aware de-
formation field over time, each Gaussian could become a spatio-
temporal entity, capturing object-level or scene-level motion with-
out explicit mesh registration or object tracking. This could unlock
SLAM capabilities in highly dynamic scenes, such as crowded ur-
ban environments or human-robot interaction spaces.[21]
Additionally, a cross-modal alignment framework is envisioned
where geometric information from RGB, depth, inertial, and po-
tentially LiDAR streams is fused not at the data level, but at the
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gradient-level consistency in the latent optimization space. This ap-
proach would allow for sensor-agnostic fusion [1], enabling SLAM
in conditions where data modalities are incomplete, asynchronous,
or noisy. Importantly, this would facilitate self-supervised loop clo-
sure and relocalization without explicit descriptors or correspon-
dence search, relying instead on convergence in the learned scene
manifold.
Looking further ahead, the proposed method anticipate a transi-
tion from dense photometric alignment to semantic-consistent op-
timization, where Gaussians encode not only geometry and appear-
ance, but also semantic priors that evolve over time. By embedding
class- or instance-level understanding directly into the Gaussian pa-
rameters, the system could support task-driven SLAM, scene graph
generation, and interaction-aware mapping blurring the line be-
tween perception and cognition [30]. Finally, this paper propose the
concept of topological latent mapping, in which global structure is
inferred through convergence properties of the learned manifold,
rather than via traditional scan alignment or loop closure. Such a
framework would permit the system to reason about scene connec-
tivity, layout, and even abstract spatial relationships in a differen-
tiable, data-driven manner.
These directions are not incremental improvements, but deliberate
steps toward recasting SLAM as a perception-driven, geometry-
aware, and cognitively aligned process positioned at the frontier
of real-time machine understanding of the physical world.
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