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ABSTRACT

Titanium dioxide (TiO:) is used extensively in products from
pigments and sunscreens to optical components. The sol—gel
synthesis of TiO: is controlled by an intricate set of interactive
parameters of which optimization is an important issue. A set
of 290 experimental conditions was studied in detail to model
and optimize yield of TiO: by means of statistical and machine
learning methodologies. Out of the methodologies studied,
polynomial regression and optimized random forest models
showed best predictive capability achieving coefficient of
determination (R?) of 0.9522 and 0.9314, respectively, in
comparison to linear regression. Feature importance analysis
identified precursor concentration and hydrolysis ratio (water-
to-precursor ratio) to play key role by having predominant
influence, with secondary influence being aging time and pH.
The paper highlights the value of data-based methodologies for
synthesis design guidance, improved reproducibility, and
expedited advances in materials chemistry.
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1. INTRODUCTION

Titanium dioxide (TiO:2) has been of great appeal as a
multifunctional material of widespread use in future
technologies. Its promise is made greater by nanometer-level
engineering at which materials tend to exhibit new
physicochemical properties due to the extraordinarily large
ratio of volume-to-surface area and, on occasion, charge carrier
quantum confinement [1][2].

Experiential performance of TiO: across its usages is inherently
linked with its physicochemical characteristics, and these are
governed by a complex balance of synthesis parameters.
Detailed insight into how these dependent parameters affect
yield and material quality is thereby critical for optimization of
synthesis procedures and enabling production on a large scale
[3]. As aresult of significant developments in synthesis of TiO-
using diverse routes, challenges persist due to the synergistic
and sometimes non-linear character of these parameters.

Conventional approaches, which tend to rely on iterative trial-
and-error of the 'experimentation type', not only tend to be
resource-intensive but also restricted in reliability [4].

Recent developments of data-intensive approaches provide a
promising solution. The computational models, especially
machine learning (ML) and statistical models, offer useful tools
to reveal latent connections, discover patterns, and give
prediction insights on materials synthesis and design [5][6][7].

Here, rigorous analysis of experimental dataset of TiO:
synthesis conditions and yields are explored. The aim is
twofold: (i) visualizing and describing interdependencies of
important synthesis parameters and (ii) constructing prediction
frameworks by wusing statistical and machine learning
approaches. The framework takes a combination of scatter plot
analysis, temporal trend visualization, ranking of feature
importances and comparison of models on performance, and
gives a system-level insight of the synthesis process.

2. RELATED WORK

A study presents the synergy of experimental design and
machine learning methodologies for the optimization of
catalyst synthesis. Specifically, the sol-gel conditions of a
semi-hexagonal  nanostructured  calcium/titania—zirconia
catalyst was modelled by multilayer perceptron and support
vector machine models that exhibited high predictive
capability. The calcination temperature was found to have the
most significant influence, and optimization using genetic
algorithm yielded catalysts with high surface area, well-defined
nanoscale morphology, and good crystallinity. When optimized
conditions were used, the catalyst reached 97.6% esterification
conversion and showed steady performance for many cycles [8]

In a particular case study, machine learning methodologies
were applied for predicting zinc oxide (ZnO) nanoparticle
dimensions from synthesis conditions and band gap
information using a sample set of 90 samples. Four individual
ML models—i.e., CatBoost, Gradient Boosting, XGBoost, and
a Stacking Ensemble—were developed, of which the Stacking
Ensemble yielded the optimal level of precision (R? = 0.9377,
MAE = 3.08 nm). A feature analysis indicated band gap as the
most critical variable, and the model precisely predicted
dimensions for unseen sets, matching well with experimental
results achieved by scanning electron microscopy (SEM). A
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graphical user interface was also generated that is easily
interpretable, showcasing the potential of ML as a cost-
effective and scalable means of predicting nanoparticle
dimensions [9].

In a recent work, ML models were applied for the processing
of thermogravimetric analysis (TGA) results acquired at
different heating rates to predict and classify phase
composition. A series of regression and classification
algorithms, namely Gaussian Process Regression (GPR), k-
Nearest Neighbor (KNN), Random Forest (RF), and XGBoost
(XGB), were considered, and GPR achieved nearly perfect
prediction accuracy (R? = 0.999) with small error margins. As
for the classification performance, XGB achieved 99.9%
accuracy, and RF and Decision Tree also showed excellent
performance. The results demonstrate the potential of ML to
optimize phase composition of TiO: nanomaterials efficiently
and accurately and thereby shorten experimental times and
computational costs [10].

3. PROBLEM STATEMENT

Given a dataset X={x1,..., xn}consisting of N samples, a
machine learning model f{x) is employed to predict the yield of
TiO: based on the input features.

4. METHODOLOGY
4.1 Synthesis of TiO2

Titanium dioxide (TiO2) was prepared through a controlled sol—
gel procedure employing titanium alkoxide as the precursor. A
set of Titanium alkoxide solutions were made in ethanol or
isopropanol, hydrolyzed with deionized water at a specific
H20O-to-precursor mole ratio (usual range 4-20) with strong
stirring. The reaction medium pH was set with dilute HCI or
NH4OH to reach acidic (pH = 2) or basic conditions (pH =~ 9—
11), respectively, affecting particle size as well as gelation rate.
The acquired sol was kept at 80 °C with aging time ranging
from 2—48 h, during this time hydrolysis and condensation took
place to produce TiO2 nanostructures. The product-solid matter
was centrifuged and successively washed with ethanol, as well
as with de-ionized water, then heated to 100 °C to volatilize
remaining solvents, with the final calcination carried out at
400-500 °C. The yield (%) was calculated from the ratio of the
recovered TiO2 mass to its initial experimental value.

4.2 Dataset overview

The dataset was aggregated from 290 separate sol—gel synthesis
runs of TiO2, each of which was described by numerous
experimental parameters. Variables are explained and situated
as follows:

Ti_alkoxide molL: The molar concentration of the alkoxide
precursor of the titanium, directly affecting nucleation and
kinetics of growth. Higher precursor concentrations tend to
favor greater particle formation but, if too high, will produce
agglomeration and lower yield and reproducibility [11,12].

H>O_to_precursor_ratio: The molar ratio of water to precursor
applied to the hydrolysis and condensation reactions of the sol—
gel process. A stoichiometric ratio ensures complete
condensation and controlled network building, but deviations
from stoichiometry (low or excess) create incomplete reaction
or structural defects, negatively impacting yield [12,13,14].

Aging_time hr: The time span of the aging period following
synthesis, in which increase, and structural rearrangement takes
place. Long aging times have the capability of boosting
crystallinity and yield, but unduly lengthy times may lead to gel
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densification or unwanted transformations of phases, lessening
efficiency [15,16].

pH: The acidity or alkalinity of the reaction medium, which
controls substantially the kinetics of condensation and
hydrolysis. The acidic pH slows down condensation and gives
rise to particles of more uniform and of lower size, whereas
alkaline pH increases gelation, and larger but less controllable
structures tend to precipitate. The optimum pH conditions
therefore decisively influence yield of TiO: [17,18].

Temperature: The reaction temperature, kept constant
throughout all runs at 80 °C. While not a variable within this
set of data, temperature control guarantees uniformity
throughout experiment sets, as fluctuations would have a
substantial impact on reaction rates and phase development
[19].

Solvent: The ethanol or isopropanol solvent system, which
affects precursor solubility and kinetics of reaction. The
ethanol favors quicker hydrolysis on average, but by virtue of
its less polar character, the isopropanol retards the reaction and
provides divergent yield trends versus aging time [20,21,22].

Yield percent: The percentage of recovered TiO: from the
synthesis expressed because of the experiment. The target
variable for the machine and statistical models [23, 24].

4.3 Simulation Details

Preprocessing of the dataset was carried for the removal of
missing and outlier values. The dataset was divided into test
and training set. 70% of the dataset were used for training and
30% for test.

4.4 Exploratory Data Analysis

Scatter diagrams were generated to uncover the dependence of
yield on three significant parameters: Ti alkoxide molL,
H>O to precursor ratio, and pH. Aging trend analysis
included plotting yield against time, stratified by solvent type,
i.e., Isopropanol and ethanol. The aim of such plotting was to
uncover solvent-based yield dependence on time.

4.5 Model building and Evaluation

Models were built to predict yield based on input attributes:

1. Linear Regression: A baseline of statistical models
assuming linear relationships among features

2. Polynomial Regression: Nonlinear interactions and
curvatures in the data are described.

3. Random Forest Regressor: An ensemble learning model
that can learn complex, non-linear patterns and provide
feature importance measures

Subsequently, hyperparameter optimization of the Random
Forest model using GridSearch CV was done for optimal tree
depth determination, optimum numbers of estimators, and
minimum sample splits.

Models were evaluated using R? score, RMSE, and MAE.
Feature importance was extracted from the tuned Random
Forest Model.

5. DISCUSSION

In the following discussion, we combine observations from
scatter plots, age trend examination, feature importance
tanking, and comparison of machine learning models.
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Fig 1: Flow chart for predicting yield of TiO:

5.1 Multivariate Relationships and Scatter
Plot Interpretation

Scatter plots of yield and synthesis parameters-showed non-
linear and non-monotonic relationships. The following plots
provide preliminary evidence that yield optimization is not
feasible by means of single-variable tuning.

Yield vs Ti_slkoxide_molL Yield vs H20_to_precursor_ratio Yield vs pH

Yield_percent
Yield_percent

Ti_aikoxide_molL H20_to_precursor_ratio pH

Fig 2: Yield vs (a) Ti_alkoxide_molL, (b
H20_to_precursor_ratio, and (c) pH

Yield vs Ti alkoxide molL: The yield reached its maximum
at intermediate precursor concentrations meaning balance of
having enough reactant availability without having enough to
oversaturate and thereby lead to uncontrolled nucleation or
particle agglomeration. This is consistent with principles of sol-
gel chemistry wherein precursor concentration impacts rates of
hydrolysis and condensation.

Yield vs H20 to precursor ratio: From this scatter plot, it is
shown that the water-to-precursor ratio has an intricate effect
on yield. Relatively moderate ratios preferred larger yields, and
high and low extremes were not favorable for yield. This may
be due to incomplete hydrolysis at low ratios and dilution of
intermediate species at high ratios.

Yield vs pH: From the scatter plot, it was observed that
maximum yield was near neutral to weak conditions. Near
strongly acidic conditions, there would be inhibition of
hydrolysis and at extremes of base conditions, early
condensation may get induced, and crystallinity may be low.

Deduction from Fig 2. reveal the need for multivariate
optimization and propose that Titanium Alkoxide
concentration (precursor) and hydrolysis ration are primary
levers for improving and controlling yield.

5.2 Aging Trend Analysis

Preliminary analysis for aging trend, partly stratified by solvent
type, if yield is influenced by aging time but with its impact
mediated by the solvent environment. The systems based on
ethanol showed more consistent yield increase with aging time,
characteristic of a more controlled process of growth. The
isopropanol systems showed more irregularity, which can arise
from substantial differences in solvent polarity, solvent

viscosity, or solvent-precursor interaction. Despite its chemical
function in TiO2 synthesis, aging time showed limited
predictive relevance for the Random Forest model. The
implication is that whereas aging may influence particle growth
and crystallinity, its impact on yield is less consistent
throughout the dataset and overridden by overriding factors.

TiO, Yield vs Aging Time by Solvent

Ethanol
wa Isopropanol

Yield_percent
-1

Aging Time (hr)

Fig 3: Yield vs Aging time by solvent

5.3 Feature Importance from Tuned
Random Forest Model

The noteworthy importance of the precursor concentration and
water to precursor molar ratio helps to validate their critical role
in yield determination. Such critical parameters significantly
influence the hydrolysis and condensation reactions that give
rise to TiO2 particles. Conversely, the relatively low
importance of pH, aging time, and solvent type suggests that
the corresponding impacts bear a secondary or conditional
nature and vary possibly with the concentrations of titanium
alkoxide and the molar ratio of water to titanium alkoxide,
which act as overwhelming determinants. The ranking provides
a data-based approach to experimental variable prioritization in
future synthesis efforts and challenges current assumptions on
the effect of aging time on yield optimization.
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Feature Importance from Tuned Random Forest Model
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Fig 4: Feature importance from Tuned Random Forest
Model

5.4 Residual Analysis and Model

Diagnostics

The analysis of residuals of the Tuned Random Forest model
showed a more symmetrical distribution centered at zero,
which indicates low bias and a suitable model fit. In addition,
the absence of skewness or heteroscedasticity adds strength to
the model's validity for prediction use, showing that it
generalizes well throughout the dataset.

Residuals Distribution

.

‘Residuals Residuals Residuals

Residuals Distribution Residuals Distribution

Count
Count
P AN
Count

Fig 5: Residual analysis of (a) Linear regression, (b)
Polynomial Regression, and (c) Tuned Random Forest

5.5 Model Comparison and Performance
Evaluation

Linear regression served as a base method; nevertheless, it was
not successful in well depicting the interactive and non-linear
dynamics of the synthesis process. Polynomial regression
achieved the largest value of R? indicating its improved
capability of depicting curvature and feature interactions. The
Tuned Random Forest model revealed robust performance,
showing a relatively lower value of R? but providing improved
interpretability and generalizability, which is strongly desirable
for feature ranking and optimization.

Linear Regression Polynomial Regression Tuned Random Forest

o ; S
ok

Predicted Yield

Actual Yield Actual Yield Actual Yield

Fig 6: Comparison of Predicted and Actual Yields Across
Models

Table 1.Model comparison and performance evaluation

Model R?Score RSME MAE
Linear 0.6932 7.8776 6.5165
Regression
Polynomial 0.9426 3.4064 2.8232
Regression
Tuned Random 0.9309 3.7394 2.9830
Forest
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6. CONCLUSION

This research offers a data-intensive exploration of TiO:
synthesis and shows that yield is managed through complex,
non-linear interplay between numerous synthesis parameters.
The most significant factors found to be influential were the
mole ratio of water to precursor, titanium alkoxide
concentration, pH, aging time, and solvent type. Of the models
investigated, polynomial regression had the highest predictive
power (R?=0.9426), validating the inadequacy of simple linear
models to describe the complexity inherent to the system.
These results spotlight the power of combining experimental
synthesis with state-of-the-art data analytics to improve
material synthesis understanding and control. Extending
beyond giving new insights into TiO: synthesis, this research
lays the groundwork baseline knowledge of how artificial
intelligence can be strategically brought to bear on the smart
synthesis of nanomaterials, allowing for the enhancement of
yield, optimization of reagents, and improvement of properties.
Extensions of this framework can be made in future studies to
procure and customize particle size, phase purity, and
functional performance with the inclusion of additional
variables such as dopants, surfactants, and thermal conditions.
Eventually, this strategy is an early but crucial step toward
intelligent, data-informed materials discovery as well as
sustainable manufacturing.
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