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ABSTRACT 

Titanium dioxide (TiO₂) is used extensively in products from 

pigments and sunscreens to optical components. The sol–gel 

synthesis of TiO₂ is controlled by an intricate set of interactive 

parameters of which optimization is an important issue. A set 

of 290 experimental conditions was studied in detail to model 

and optimize yield of TiO₂ by means of statistical and machine 

learning methodologies. Out of the methodologies studied, 

polynomial regression and optimized random forest models 

showed best predictive capability achieving coefficient of 

determination (R²) of 0.9522 and 0.9314, respectively, in 

comparison to linear regression. Feature importance analysis 

identified precursor concentration and hydrolysis ratio (water-

to-precursor ratio) to play key role by having predominant 

influence, with secondary influence being aging time and pH. 

The paper highlights the value of data-based methodologies for 

synthesis design guidance, improved reproducibility, and 

expedited advances in materials chemistry. 
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1. INTRODUCTION 
Titanium dioxide (TiO₂) has been of great appeal as a 

multifunctional material of widespread use in future 

technologies. Its promise is made greater by nanometer-level 

engineering at which materials tend to exhibit new 

physicochemical properties due to the extraordinarily large 

ratio of volume-to-surface area and, on occasion, charge carrier 

quantum confinement [1][2]. 

Experiential performance of TiO₂ across its usages is inherently 

linked with its physicochemical characteristics, and these are 

governed by a complex balance of synthesis parameters. 

Detailed insight into how these dependent parameters affect 

yield and material quality is thereby critical for optimization of 

synthesis procedures and enabling production on a large scale 

[3]. As a result of significant developments in synthesis of TiO₂ 

using diverse routes, challenges persist due to the synergistic 

and sometimes non-linear character of these parameters. 

Conventional approaches, which tend to rely on iterative trial-

and-error of the 'experimentation type', not only tend to be 

resource-intensive but also restricted in reliability [4]. 

Recent developments of data-intensive approaches provide a 

promising solution. The computational models, especially 

machine learning (ML) and statistical models, offer useful tools 

to reveal latent connections, discover patterns, and give 

prediction insights on materials synthesis and design [5][6][7]. 

Here, rigorous analysis of experimental dataset of TiO₂ 

synthesis conditions and yields are explored. The aim is 

twofold: (i) visualizing and describing interdependencies of 

important synthesis parameters and (ii) constructing prediction 

frameworks by using statistical and machine learning 

approaches. The framework takes a combination of scatter plot 

analysis, temporal trend visualization, ranking of feature 

importances and comparison of models on performance, and 

gives a system-level insight of the synthesis process.  

2. RELATED WORK 
A study presents the synergy of experimental design and 

machine learning methodologies for the optimization of 

catalyst synthesis. Specifically, the sol–gel conditions of a 

semi-hexagonal nanostructured calcium/titania–zirconia 

catalyst was modelled by multilayer perceptron and support 

vector machine models that exhibited high predictive 

capability. The calcination temperature was found to have the 

most significant influence, and optimization using genetic 

algorithm yielded catalysts with high surface area, well-defined 

nanoscale morphology, and good crystallinity. When optimized 

conditions were used, the catalyst reached 97.6% esterification 

conversion and showed steady performance for many cycles [8] 

In a particular case study, machine learning methodologies 

were applied for predicting zinc oxide (ZnO) nanoparticle 

dimensions from synthesis conditions and band gap 

information using a sample set of 90 samples. Four individual 

ML models—i.e., CatBoost, Gradient Boosting, XGBoost, and 

a Stacking Ensemble—were developed, of which the Stacking 

Ensemble yielded the optimal level of precision (R² = 0.9377, 

MAE = 3.08 nm). A feature analysis indicated band gap as the 

most critical variable, and the model precisely predicted 

dimensions for unseen sets, matching well with experimental 

results achieved by scanning electron microscopy (SEM). A 
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graphical user interface was also generated that is easily 

interpretable, showcasing the potential of ML as a cost-

effective and scalable means of predicting nanoparticle 

dimensions [9]. 

In a recent work, ML models were applied for the processing 

of thermogravimetric analysis (TGA) results acquired at 

different heating rates to predict and classify phase 

composition. A series of regression and classification 

algorithms, namely Gaussian Process Regression (GPR), k-

Nearest Neighbor (KNN), Random Forest (RF), and XGBoost 

(XGB), were considered, and GPR achieved nearly perfect 

prediction accuracy (R² = 0.999) with small error margins. As 

for the classification performance, XGB achieved 99.9% 

accuracy, and RF and Decision Tree also showed excellent 

performance. The results demonstrate the potential of ML to 

optimize phase composition of TiO₂ nanomaterials efficiently 

and accurately and thereby shorten experimental times and 

computational costs [10]. 

3. PROBLEM STATEMENT 
Given a dataset X={x1,…, xN}consisting of N samples, a 

machine learning model f(x) is employed to predict the yield of 

TiO₂ based on the input features. 

4. METHODOLOGY 

4.1 Synthesis of TiO2 
Titanium dioxide (TiO₂) was prepared through a controlled sol–

gel procedure employing titanium alkoxide as the precursor. A 

set of Titanium alkoxide solutions were made in ethanol or 

isopropanol, hydrolyzed with deionized water at a specific 

H₂O-to-precursor mole ratio (usual range 4–20) with strong 

stirring. The reaction medium pH was set with dilute HCl or 

NH₄OH to reach acidic (pH ≈ 2) or basic conditions (pH ≈ 9–

11), respectively, affecting particle size as well as gelation rate. 

The acquired sol was kept at 80 °C with aging time ranging 

from 2–48 h, during this time hydrolysis and condensation took 

place to produce TiO₂ nanostructures. The product-solid matter 

was centrifuged and successively washed with ethanol, as well 

as with de-ionized water, then heated to 100 °C to volatilize 

remaining solvents, with the final calcination carried out at 

400–500 °C. The yield (%) was calculated from the ratio of the 

recovered TiO₂ mass to its initial experimental value. 

4.2 Dataset overview 
The dataset was aggregated from 290 separate sol–gel synthesis 

runs of TiO₂, each of which was described by numerous 

experimental parameters. Variables are explained and situated 

as follows: 

Ti_alkoxide_molL: The molar concentration of the alkoxide 

precursor of the titanium, directly affecting nucleation and 

kinetics of growth. Higher precursor concentrations tend to 

favor greater particle formation but, if too high, will produce 

agglomeration and lower yield and reproducibility [11,12]. 

H₂O_to_precursor_ratio: The molar ratio of water to precursor 

applied to the hydrolysis and condensation reactions of the sol–

gel process. A stoichiometric ratio ensures complete 

condensation and controlled network building, but deviations 

from stoichiometry (low or excess) create incomplete reaction 

or structural defects, negatively impacting yield [12,13,14]. 

Aging_time_hr: The time span of the aging period following 

synthesis, in which increase, and structural rearrangement takes 

place. Long aging times have the capability of boosting 

crystallinity and yield, but unduly lengthy times may lead to gel 

densification or unwanted transformations of phases, lessening 

efficiency [15,16]. 

pH: The acidity or alkalinity of the reaction medium, which 

controls substantially the kinetics of condensation and 

hydrolysis. The acidic pH slows down condensation and gives 

rise to particles of more uniform and of lower size, whereas 

alkaline pH increases gelation, and larger but less controllable 

structures tend to precipitate. The optimum pH conditions 

therefore decisively influence yield of TiO₂ [17,18]. 

Temperature: The reaction temperature, kept constant 

throughout all runs at 80 °C. While not a variable within this 

set of data, temperature control guarantees uniformity 

throughout experiment sets, as fluctuations would have a 

substantial impact on reaction rates and phase development 

[19]. 

Solvent: The ethanol or isopropanol solvent system, which 

affects precursor solubility and kinetics of reaction. The 

ethanol favors quicker hydrolysis on average, but by virtue of 

its less polar character, the isopropanol retards the reaction and 

provides divergent yield trends versus aging time [20,21,22]. 

Yield percent: The percentage of recovered TiO₂ from the 

synthesis expressed because of the experiment. The target 

variable for the machine and statistical models [23, 24]. 

4.3 Simulation Details 
Preprocessing of the dataset was carried for the removal of 

missing and outlier values. The dataset was divided into test 

and training set. 70% of the dataset were used for training and 

30% for test. 

4.4 Exploratory Data Analysis 
Scatter diagrams were generated to uncover the dependence of 

yield on three significant parameters: Ti_alkoxide_molL, 

H₂O_to_precursor_ratio, and pH. Aging trend analysis 

included plotting yield against time, stratified by solvent type, 

i.e., Isopropanol and ethanol. The aim of such plotting was to 

uncover solvent-based yield dependence on time. 

4.5 Model building and Evaluation 
Models were built to predict yield based on input attributes: 

1. Linear Regression: A baseline of statistical models 

assuming linear relationships among features 

2. Polynomial Regression: Nonlinear interactions and 

curvatures in the data are described. 

3. Random Forest Regressor: An ensemble learning model 

that can learn complex, non-linear patterns and provide 

feature importance measures 

Subsequently, hyperparameter optimization of the Random 

Forest model using GridSearch CV was done for optimal tree 

depth determination, optimum numbers of estimators, and 

minimum sample splits. 

Models were evaluated using R2 score, RMSE, and MAE. 

Feature importance was extracted from the tuned Random 

Forest Model. 

5. DISCUSSION 
In the following discussion, we combine observations from 

scatter plots, age trend examination, feature importance 

tanking, and comparison of machine learning models. 
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Fig 1: Flow chart for predicting yield of TiO₂ 

5.1 Multivariate Relationships and Scatter 

Plot Interpretation 
Scatter plots of yield and synthesis parameters-showed non-

linear and non-monotonic relationships. The following plots 

provide preliminary evidence that yield optimization is not 

feasible by means of single-variable tuning. 

 

Fig 2: Yield vs (a) Ti_alkoxide_molL, (b 

H2O_to_precursor_ratio, and (c) pH 

Yield vs  Ti_alkoxide_molL: The yield reached its maximum 

at intermediate precursor concentrations meaning balance of 

having enough reactant availability without having enough to 

oversaturate and thereby lead to uncontrolled nucleation or 

particle agglomeration. This is consistent with principles of sol-

gel chemistry wherein precursor concentration impacts rates of 

hydrolysis and condensation. 

Yield vs H2O_to_precursor_ratio: From this scatter plot, it is 

shown that the water-to-precursor ratio has an intricate effect 

on yield. Relatively moderate ratios preferred larger yields, and 

high and low extremes were not favorable for yield. This may 

be due to incomplete hydrolysis at low ratios and dilution of 

intermediate species at high ratios. 

Yield vs pH: From the scatter plot, it was observed that 

maximum yield was near neutral to weak conditions. Near 

strongly acidic conditions, there would be inhibition of 

hydrolysis and at extremes of base conditions, early 

condensation may get induced, and crystallinity may be low. 

Deduction from Fig 2. reveal the need for multivariate 

optimization and propose that Titanium Alkoxide 

concentration (precursor) and hydrolysis ration are primary 

levers for improving and controlling yield. 

5.2 Aging Trend Analysis 
Preliminary analysis for aging trend, partly stratified by solvent 

type, if yield is influenced by aging time but with its impact 

mediated by the solvent environment. The systems based on 

ethanol showed more consistent yield increase with aging time, 

characteristic of a more controlled process of growth. The 

isopropanol systems showed more irregularity, which can arise 

from substantial differences in solvent polarity, solvent 

viscosity, or solvent-precursor interaction. Despite its chemical 

function in TiO2 synthesis, aging time showed limited 

predictive relevance for the Random Forest model. The 

implication is that whereas aging may influence particle growth 

and crystallinity, its impact on yield is less consistent 

throughout the dataset and overridden by overriding factors. 

 

Fig 3: Yield vs Aging time by solvent 

5.3 Feature Importance from Tuned 

Random Forest Model 
The noteworthy importance of the precursor concentration and 

water to precursor molar ratio helps to validate their critical role 

in yield determination. Such critical parameters significantly 

influence the hydrolysis and condensation reactions that give 

rise to TiO2 particles. Conversely, the relatively low 

importance of pH, aging time, and solvent type suggests that 

the corresponding impacts bear a secondary or conditional 

nature and vary possibly with the concentrations of titanium 

alkoxide and the molar ratio of water to titanium alkoxide, 

which act as overwhelming determinants. The ranking provides 

a data-based approach to experimental variable prioritization in 

future synthesis efforts and challenges current assumptions on 

the effect of aging time on yield optimization. 
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Fig 4: Feature importance from Tuned Random Forest 

Model 

5.4 Residual Analysis and Model 

Diagnostics 
The analysis of residuals of the Tuned Random Forest model 

showed a more symmetrical distribution centered at zero, 

which indicates low bias and a suitable model fit. In addition, 

the absence of skewness or heteroscedasticity adds strength to 

the model's validity for prediction use, showing that it 

generalizes well throughout the dataset. 

 

Fig 5: Residual analysis of (a) Linear regression, (b) 

Polynomial Regression, and (c) Tuned Random Forest 

5.5 Model Comparison and Performance 

Evaluation 
Linear regression served as a base method; nevertheless, it was 

not successful in well depicting the interactive and non-linear 

dynamics of the synthesis process. Polynomial regression 

achieved the largest value of R2, indicating its improved 

capability of depicting curvature and feature interactions. The 

Tuned Random Forest model revealed robust performance, 

showing a relatively lower value of R2 but providing improved 

interpretability and generalizability, which is strongly desirable 

for feature ranking and optimization. 

 

Fig 6: Comparison of Predicted and Actual Yields Across 

Models 

Table 1.Model comparison and performance evaluation 

Model R2 Score RSME MAE 

Linear 

Regression 

0.6932 7.8776 6.5165 

Polynomial 

Regression 

0.9426 3.4064 2.8232 

Tuned Random 

Forest 

0.9309 3.7394 2.9830 

6. CONCLUSION 
This research offers a data-intensive exploration of TiO₂ 

synthesis and shows that yield is managed through complex, 

non-linear interplay between numerous synthesis parameters. 

The most significant factors found to be influential were the 

mole ratio of water to precursor, titanium alkoxide 

concentration, pH, aging time, and solvent type. Of the models 

investigated, polynomial regression had the highest predictive 

power (R² = 0.9426), validating the inadequacy of simple linear 

models to describe the complexity inherent to the system. 

These results spotlight the power of combining experimental 

synthesis with state-of-the-art data analytics to improve 

material synthesis understanding and control. Extending 

beyond giving new insights into TiO₂ synthesis, this research 

lays the groundwork baseline knowledge of how artificial 

intelligence can be strategically brought to bear on the smart 

synthesis of nanomaterials, allowing for the enhancement of 

yield, optimization of reagents, and improvement of properties. 

Extensions of this framework can be made in future studies to 

procure and customize particle size, phase purity, and 

functional performance with the inclusion of additional 

variables such as dopants, surfactants, and thermal conditions. 

Eventually, this strategy is an early but crucial step toward 

intelligent, data-informed materials discovery as well as 

sustainable manufacturing. 
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