International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

Implementation of Recognition Model for Ancient
Kannada Epigraphs Kannada Epigraphs using
Raspberry Pi

Anusha L.S.
Dept. of ECE, RVCE
Visvesvaraya Technological University
Karnataka, India

ABSTRACT

The decipherment and transcription of ancient manuscripts
present substantial challenges due to their frequently
fragmented, deteriorated, and stylistically heterogeneous
nature. This paper introduces an innovative methodology for
ancient text recognition through the application of
Convolutional Neural Networks (CNNs) implemented on a
Raspberry Pi 3B+ for enhanced sensor integration. The
approach leverages advanced deep learning paradigms to
preprocess and analyze historical documents, thereby
enhancing the precision of text extraction and interpretation.
The CNN architecture proposed is trained on a heterogeneous
corpus encompassing diverse scripts and languages, thus
improving its capacity to generalize across disparate ancient
writing systems. Techniques such as data augmentation,
transfer learning, and customized network architectures are
employed to address challenges such as reduced resolution and
significant variability in textual appearance. Empirical results
demonstrate that CNN-based methodologies significantly
surpass conventional optical character recognition (OCR)
approaches, achieving notable advancements in both accuracy
and efficiency. This research provides a robust framework for
the automated decipherment of ancient texts using the
Raspberry Pi 3B+, potentially advancing further historical and
philological scholarship.

Keywords
Ancient text, Deep Learning Algorithm Convolutional Neural
Network (CNN), Raspberry pi3b+

1. INTRODUCTION

Kannada, the official language for sixty million individuals in
India, is written in an abugida script, where each character
represents a consonant or vowel phoneme. The inscriptions are
typically rendered diagonally from left to right. As one of the
ancient Dravidian languages, Kannada boasts a rich and diverse
linguistic heritage, encapsulated in a vast corpus of historical
manuscripts. The utilization of Convolutional Neural Networks
(CNNs) for the recognition of ancient Kannada texts
encounters considerable challenges. These include the
fragmented and deteriorated condition of the

Abhay A. Deshpande, PhD
Dept. of ECE, RVCE
Visvesvaraya Technological University
Karnataka, India

-

BE
SRR & -
D8 ChE il g
%ﬁ\&i&@&qm

Figl: Evolution of Kannada

The presence of noise and artifacts within the manuscripts
further complicates text extraction, obscuring the clarity of the
original content. Manual decipherment necessitates extensive
expertise and is labor-intensive, often subject to human error.
While the integration of CNNs addresses these issues by
enhancing the precision and efficiency of text recognition,
significant obstacles remain, such as adapting to diverse script
variations and mitigating the impact of degraded text quality.
Despite these challenges, the application of CNNs has yielded
substantial improvements in both the accuracy and overall
efficacy of the decipherment process.

The language has additionally grown numerous times over the
years, as demonstrated in Figure 1. The present Kannada
language is distinct from outdated publications. The primary
aim of utilizing Convolutional Neural Networks (CNNs) for
ancient text recognition is to develop a highly effective system
that can precisely identify and decode historical scripts and
manuscripts. CNNs, known for their ability to capture spatial
hierarchies in images, can be trained to recognize intricate and
varied features of ancient text characters[1]. This allows for:
Enhanced Accuracy-CNNs can effectively handle the
complexities of ancient scripts, which often include diverse
fonts, sizes, and degradation patterns. Automatic Extraction-
Automating the recognition process helps in digitizing and
preserving ancient texts, making them more accessible for
research and analysis. Historical Analysis-The system aids in
the study of historical texts by providing tools for easier
interpretation and comparison of different manuscripts.
Overall, the use of CNNs can significantly advance the field of
text recognition in historical documents, facilitating greater
understanding and preservation of ancient cultural heritage[2].
In addition to these capabilities, the hardware integration is
instrumental in optimizing the performance and applicability of
the CNN-based system. The implementation of this system on

12

a Raspberry Pi 3B+ coupled with a LCD display augments its
functionality and accessibility. The Raspberry Pi 3B+ serves as
a compact and economically feasible computing platform,
ideally suited for field applications and portable usage.
Although its computational resources are relatively modest,
they are adequate for the execution of CNN models tailored to
text recognition tasks. The display offers an intuitive user
interface, facilitating interactive operations such as image
uploads, model training, and text recognition directly from the
device. This hardware configuration not only enhances user-
friendliness but also enables on-site analysis and processing,
making it particularly advantageous in environments where
conventional computing resources might be unfeasible.
Collectively, the synergy between CNNs and the Raspberry Pi
3B+ with a LCD display constitutes a potent and accessible
solution for advancing the domain of historical text recognition
and preservation.

2. HISTORY OF KANNADA TEXT
RECOGNITION

The history of Kannada text recognition traces the evolution of
methods and technologies used to digitize and interpret the
Kannada language, a Dravidian language spoken
predominantly in Karnataka, India. Here is a brief overview of
its development:

Early Manual Methods: Script Analysis: Initially, text
recognition efforts involved manual analysis of Kannada script,
which required extensive knowledge of the script’s unique
characters. Early efforts included using typewriters with
Kannada keys and rudimentary Optical Character Recognition
(OCR) systems designed for printed texts.

Early Computational Approaches: Rule-Based Systems: In
the late 20th century, rule-based OCR systems were developed
that used predefined rules to recognize Kannada characters.
These systems struggled with variations in handwriting and
different fonts.

Machine Learning Integration: Traditional Algorithms: The
introduction of machine learning techniques in the 2000s
brought improvements through algorithms like Support Vector
Machines (SVMs) and Hidden Markov Models (HMMs),
which enhanced recognition accuracy by learning from large
datasets. Feature Extraction: Techniques such as feature
extraction and pattern recognition were used to improve the
identification of Kannada script variations and styles[3].

Advancement with Deep Learning: Convolutional Neural
Networks (CNNs): The 2010s saw the advent of deep learning
approaches, particularly CNNs, which significantly improved
the accuracy of Kannada text recognition. CNNs could learn
complex features of the script from large annotated datasets,
handling variations in fonts, sizes, and handwriting more
effectively.

Recurrent Neural Networks (RNNs) and Transformers: More
recently, the integration of RNNs and Transformer-based
models has further advanced recognition capabilities, enabling
better handling of context and sequential information in
Kannada text [4].

Current and Future Trends: Multilingual Models: Modern
systems often incorporate multilingual models that support
Kannada alongside other languages, enhancing their versatility
and accuracy.

Contextual Understanding: Ongoing research aims to improve
contextual understanding and semantic analysis of Kannada

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

text, moving beyond mere character recognition to grasping the
meaning and overall, the history of Kannada text recognition
reflects a progression from manual methods to advanced
computational approaches [5], driven by technological
advancements and the increasing availability of data.

3. METHODOLOGY

A standard character recognition model consists of six key
phases: data gathering, Preprocessing is a fundamental phase in
the preparation. It involves the application of various
techniques to refine and standardize the data, ensuring its
suitability for subsequent analysis. This stage is crucial for
enhancing data quality, mitigating noise, and normalizing data
formats, which collectively contribute to the effectiveness and
accuracy of the model training process.

This process is particularly crucial for historical texts, which
may be discovered or preserved under suboptimal conditions
and may not be readily suitable for direct input into neural
network models [6], [7]. Depending on the nature of the
epigraphic material, preprocessing involves several stages,
including grayscale conversion, binarization, and edge
detection. Each stage addresses specific aspects of data
enhancement and transformation, facilitating the effective
extraction and analysis of textual information from degraded or
challenging source materials, and cropping, smoothing, and
line and character segmentation.

3.1 Data acquisition and preprocessing.
Preprocessing serves as a pivotal stage in image processing,
profoundly influencing the precision and effectiveness of
subsequent analytical and computational tasks as shown in
figure 2.

Data Pre-

B 3 Segmentation
Acquisition - Processing 2

1 |

Augmentation

Training the Feature
Extraction

Classifier .

1 1

Ewvaluation of
the Model

Fig 2: Process of image processing

In this phase, first involves the acquisition of input image of
stone inscription as shown in figure 3. This phase also involves
the strategic application of techniques designed to refine. The
extraction of salient features while reducing the computational
burden in subsequent stages is achieved by attenuating noise
and artifacts, accentuating essential information, and enhancing
overall image fidelity [8]. Moreover, preprocessing entails the
normalization of image dimensions and orientation, as well as
the correction of illumination variances. Additionally,
preprocessing encompasses the normalization of image
dimensions and orientation, adjustment for illumination
discrepancies, and enhancement of the visual clarity of the
image. This preparatory step is essential for advancing the
accuracy, efficiency, and applicability of image processing [9].

/cﬁ)ﬁ%é}/v:fg:y;r, ,_*é

"@f”"“ 5 «J?&?‘\”“{E
*J Ve ‘.",,.'V

o Al et (R OO

Fig 3: Input image of stone inscription

13

3.1.1. Gray scaling Images

Digital images are represented as matrices of integer values
ranging from 0 to 255, which encode pixel intensity levels and
facilitate the representation of color saturation. In color images,
the red, green, and blue (RGB) components are combined in
varying proportions to produce a full spectrum of colors. This
process entails the digital acquisition of RGB values, which the
computer then integrates to dynamically generate the color
output [10]

In the context of neural networks, particularly those employing
convolutional operations, the image data is processed through
its individual red, green, and blue channels. Each channel is
treated as a separate array, necessitating convolution operations
to be performed on three distinct arrays rather than one [11].
This approach, while accurate, introduces computational
complexity. from figure 4. Consequently, reducing ---image is
three-dimensional (3D) pixel values to a one-dimensional (1D)
grayscale representation simplifies the convolution process by
consolidating the data into a single channel, thus streamlining
the calculations, and reducing computational demands.

cription
Convert a colored image to grayscale is a linear transformation
that considers the different contributions of the red, green, and
blue channels to the perceived brightness of a pixel. The most
used formula for this conversion is:

Gray=0.299xRed+0.587*xGreen+0.114xBlue

This formula is based on the luminance perception of the
human eye, which is more sensitive to green light and less
sensitive to blue light.

3.1.2. Edge detection

Thresholding is a fundamental technique in the realm of image
processing, particularly within document scanning and
analysis. The principal aim of binarization is to preserve the
essential features of the original image while diminishing the
impact of noise [12]. This process of image thresholding
transforms grayscale images into a binary format, effectively
delineating foreground elements from the background and
facilitating clearer, more focused analysis, involves converting
an image into a binary format based on pixel intensity values.
This process simplifies each pixel's data representation, which
accelerates subsequent computational operations [13].
Typically, thresholding requires a grayscale image and a
specified threshold value as inputs. The resulting output is a
binary image wherein pixels are assigned either a white
(foreground) or black (background) value. Specifically, an
output pixel is turned to black if its intensity in the input image
is less than or equal to the threshold, and white if its intensity
in the image is greater than or equal to the threshold. Otsu's
thresholding algorithm generally follows these steps: 1)
processing the given image, ii) computing the histogram of
pixel intensity values, iii) determining the optimal threshold
value TTT, and iv) binarizing the image by assigning white to
pixels exceeding the threshold while retaining the desired
levels of saturation and contrast.

After grayscale conversion and binarization, the image
undergoes cropping to eliminate extraneous elements and

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

enhance its quality. Cropping involves adjusting or removing
the peripheral regions of an image, typically a photograph, to
refine its framing or composition, accentuate the primary
subject, or modify its size and aspect ratio. Following the
cropping process, edge detection is employed to identify
regions within the image where there are pronounced variations
in brightness, commonly referred to as discontinuities.

The Canny edge detection algorithm has been identified as the
most effective method for the model utilized in manuscript and
inscription recognition tasks. The Canny edge detection
algorithm is renowned for its robustness and precision and is
extensively applied across various fields. However, it is crucial
to acknowledge that noise pollution within imaging
environments can present significant challenges. Such noise
can obscure or disrupt the detection of image edges, potentially
leading to inaccuracies and incomplete edge features. To
address these issues, an image edge identification technique
employing the canny algorithm has been proposed to mitigate
the effects of salt-and-pepper noise and enhance the extraction
of edge information from the regions of interest [14].

The Canny edge detection algorithm is widely recognized as
one of the most popular, effective, and sophisticated techniques
for edge detection. It employs a multi-stage process to identify
and delineate various types of edges within an image. The key
steps involved in implementing the canny algorithm are as
follows:

Grayscale Conversion: Initially, the image must be converted
to grayscale to simplify the edge detection process by
eliminating color information.

Noise Reduction: Given that edge identification using
derivatives is sensitive to noise, it is essential to apply a noise
reduction filter, such as a Gaussian blur, to mitigate noise
interference.

Gradient Calculation: The algorithm computes the gradient of
the image to determine the magnitude and direction of the
edges. This step is crucial for assessing the edge's orientation
and strength.

Double Thresholding: The algorithm uses a dual thresholding
mechanism to classify pixels into strong, weak, and non-
relevant categories. This helps in differentiating between
significant edges and noise, as shown in figure 5.

Hysteresis Edge Tracking: Finally, hysteresis edge tracking is
employed to link weak pixels to strong pixels if they are
connected, thereby ensuring that weak edges are retained only
if they are part of a strong edge.

Fig 5: Edge detection Image of stone inscription

3.1.3. Smoothing

Smoothing is performed prior to the segmentation of text
within datasets of epigraphic materials, such as stone
inscriptions. Smoothing is a technique utilized to reduce noise
and pixelation in images [15]. Typically, smoothing algorithms
employ low-pass filters; however, alternative methodologies

14

include averaging or applying a median filter to a kernel, which
represents a moving window of pixels. The primary objective
of image smoothing techniques is to enhance image quality by
attenuating noise while preserving the essential structural
features of the image.

Fig 6: Smoothened Image of stone inscription

The Smoothing addresses various types of noise, such as
additive, impulsive, and multiplicative noise from figure 6. By
effectively mitigating these noise components, smoothing
enhances the precision of text segmentation in inscriptions and
epigraphs.

3.1.4 Character segmentation

Character segmentation is a key step in the segmentation of
fragmented characters is a critical factor in assessing the
[16].partition the characters within the text of an image into
discrete units. and identifiable units. The necessity of this level
of Segmentation is contingent upon specific application of
Optical Character Recognition (OCR) technology. When OCR
is utilized for text in which characters are discrete and
separated, character-level segmentation may not be requisite.

Fig 7: Character Segmentation Image of stone inscription

Frequent inaccuracies in this assumption can significantly
elevate the error rate of the system from figure 7. At this stage
of segmentation, an image of a previously segmented word,
consisting of a sequence of characters, is presented.
Consequently, the accuracy of text line segmentation is
paramount to the overall effectiveness of a document
recognition system. Proper text line segmentation ensures that
the system can correctly identify and process each word,
thereby enhancing the reliability and performance of the
recognition process [17].are isolated, character-level
segmentation may be superfluous. In such cases, where there is
a consistent spacing between letters within words, even if
minimal, segmentation can be effectively achieved at a
previous stage by employing a very low threshold.
[18],[19]Conversely, for OCR systems applied to text where
characters are connected, such as in cursive handwriting,
character-level segmentation becomes indispensable.
Segmentation is governed by geometric and shape-based
criteria to ascertain precise delineation points. Subsequently,
word image thinning is employed. Thinning techniques are
employed to measure the pixel width of strokes and to identify
ligatures in Kannada script. Accurately identify, process,
classify, and archive intricate and densely packed characters.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

4. SEPARABLE NEURAL NETWORK
ALGORITHM

Tout Depth wise Pointwise Outout
DU convotution M convolution MM 3

Fig 8: Separable Neural Network architecture

In separable Neural Network, we can create a diagram that
highlights the key components of the algorithm, particularly
focusing on depth wise and pointwise convolutions as shown
in figure 8. Separable convolutions reduce the computational
complexity by decomposing a standard convolution into two
separate processes.

Depth wise Convolution: Applies a single convolutional filter
per input channel. Captures spatial features for each channel
independently. Does not combine information across channels.

Pointwise Convolution: Applies a 1x11 \times 11x1
convolutional filter across all channels. Combines the
information from different channels after the depth wise
convolution. Often used to change the number of channels. The
initial input to the network, typically an image or feature map.
This step involves applying a single convolutional filter to each
input channel independently, capturing spatial features without
combining channel information. This step applies a 1x11 \times
11x1 convolution across all channels, allowing the network to
combine the information from different channels. The final
output feature map after the separable convolutions. This
algorithm is the core part of the system. It takes the uploaded
image of ancient Kannada inscriptions and processes it to
convert the text in the image into digital text.

5. BLOCK DIAGRAM
RASPBERRY PI
b nc
LCD Display

Upload Image P

Ancient Kannada to
Text Conversion
Algorithm

Power Supply H

Fig 9: System Architecture for Kannada Text Conversion
using Raspberry Pi

USING

Raspberry Pi

The system architecture for a project involving the recognition
of ancient Kannada epigraphs using a Raspberry

Pi as shown in figure 9. Here is a detailed explanation of each
component and its role:

Upload Image: Function: This component represents the
mechanism by which images of ancient Kannada inscriptions
are uploaded to the system". It could be through various
methods like a web interface, a mobile app, or directly through

15

a USB or camera connected to the Raspberry Pi. It sends the
uploaded image to the Raspberry Pi for processing. This
involves steps like image preprocessing, character recognition,
and text extraction. It is implemented on Raspberry Pi, which
performs the necessary computations to convert images to text.

Power Supply: Function: This provides the necessary electrical
power to the Raspberry Pi and other connected components. It
ensures that the Raspberry Pi operates correctly and
continuously. It is connected directly to the Raspberry Pi to
power the entire system.

Raspberry Pi: Function: The central processing unit of the
system. It manages the image upload, runs the conversion
algorithm, and sends output to the display. The Raspberry Pi
acts as brain of the system, coordinating all tasks. Receives
images from the component and runs the conversion algorithm
and receives power from the power supply and sends the
converted text to the I2C LCD Display.

12C LCD Display: Function: This display component is used to
show the converted text output. It is connected via I2C (Inter-
Integrated Circuit) protocol, which is a communication method
allowing multiple devices to connect with the Raspberry Pi. It
receives the converted text from the Raspberry Pi and displays
it to the user. Image Upload: Users upload images of ancient
Kannada inscriptions.

Processing: The Raspberry Pi processes these images using the
ancient Kannada to text conversion algorithm.

Power Supply: Ensures continuous operation of the Raspberry
Pi and connected components.

Output Display: The converted text is sent to the 12C LCD
Display for visual output.

This system provides an automated way to digitize and display
ancient Kannada inscriptions, leveraging the processing power
of the Raspberry Pi and specialized algorithms for text
recognition.

6. CONVOLUTIONAL NEURAL
NETWORK ALGORITHM
Fullx-Ckcfneaed ;..n,.c'f;.':.m.d
Neural Network Neural Network
Convotition Convalition R G N
::,7:;::;7:: (—w,z ::::.:::;?:L M-;,:o;;ins ®
@ . 0
@1
- % s
INPUT n1channels n1 channels n2 channels n2 channels || 3 . 9

(@8x28x1) (24x24 xn1) (12x12xn1) (8x8xn2) (4x4xn2) e
n3 units

Fig 10: Convolutional Neural Network Architecture

Convolutional Neural Network (CNN) architecture as shown in
figure 10, we can break down each layer and operation using
formulas. Here is a detailed explanation with the corresponding
formulas for each layer and operation:

Input Layer:

The input is a 28x28 grayscale image (single channel).

First Convolution Layer (Conv_1):

Filter size: 5x55 \ times 55x5

Stride: 1

Padding: Valid (no padding)

Number of filters: n1

The output dimensions after convolution:

1. Output width = (Input width-Filter width/stride) +1--- (1)

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

2. Output height = (Input height — Filter height/stride) +1 -----
- (2)
3.Output depth =nl ------ 3)
4. Output dimensions
(28-5+1) X (28-5+1) X n1=24x24xnl ----- 4)
5. First Max-Pooling Layer:
Filter size: 2x22 \ times 22x2
Stride: 2 ------- %)
6. The output dimensions after pooling:
1. Output width = (Input width /stride)
2. Output height = (Input height /stride)
3. Output depth = Input depth ------ (6)
7. Output dimensions:
(24/2) x (24/2) x n1= 12x12xn1 ------ 7
8. Second Convolution Layer (Conv_2):
Filter size: 5x55 \ times 55%5
Stride: 1
Padding: Valid (no padding)
Number of filters: n2 ----- ®)
9. The output dimensions after convolution:
1.Output width=(Input width-Filter width /stride)+1
2 Output height= (Input height-Filter height/stride)
3.Output depth =n2
10. Output dimensions:
(15+1) x (15+1) x n2=8x8xn2 --------)

10. Second Max-Pooling Layer:
Filter size: 2x22 \ times 22x2
Stride: 2 -------- (10)
11. The output dimensions after pooling:
Output width = (Inputwidth-Filter ~width/stride) +1
Output height = (Input height-Filter =~ Height/stride) +1 --
—(11)
12. Second Max-Pooling Layer:
Filter size: 2x22 \ times 22x2
Stride: 2 ------ (12)
13. The output dimensions after pooling:
Output width = (Input width/stride)
Output height = (Input height/stride)
Output depth = Input depth
Output dimensions = (8/2) x (8/2) x n2 =4x4xn2
----- (13)
14. Flattening:
The output of the second max-pooling layer is flattened into a
single vector. Flattened dimensions.
=4x4xn2 = 16xn2 ------- (14)
15. First Fully-Connected Layer (fc_3):
Number of units: n3
Activation: ReLU
Output dimensions=n3 ------- (15)

This Convolutional neural network algorithm is the core part of
the system. It takes the uploaded image of ancient Kannada
inscriptions and processes it to convert the text in the image
into digital text.

16

7. SYSTEM ARCHITECTURE FOR
KANNADA TEXT CONVERSION USING
MATLAB AND ARDUINO UNO

Laptop with matlab) .
software Serial port Arduino LCD Display

Ancient Kannada
for text recognition

Fig 11: System Architecture for Kannada Text Conversion
using MATLAB and ARDUINO

Figure 11 illustrates the system architecture for a project
involving the recognition of ancient Kannada epigraphs using
MATLAB software on a laptop, interfaced with an Arduino
Uno to display the converted text on an LCD. Here is a detailed
explanation of each component and its role:

Components: Laptop with MATLAB Software:

Function: The laptop is used to run the MATLAB software,
which includes the algorithm for converting ancient Kannada
inscriptions to text It communicates with the Arduino Uno via
a serial port to send the converted text This algorithm,
implemented in MATLAB, processes the images of ancient
Kannada inscriptions and converts the text in the images into
digital text. This involves steps like image preprocessing,
character recognition, and text extraction. It runs on the laptop
and sends the processed text to the Arduino uno via the
MATLAB software. The Arduino uno acts as an intermediary
between the laptop and the LCD display. It receives the
converted text from the laptop via the serial port and sends it to
the LCD display for visualization. Receives data from the
laptop via the serial port and sends data to the LCD display.

The LCD display is used to show the converted text. It is
controlled by the Connection: It receives the converted text
from the Arduino uno and displays it to the user.

Image Processing: The user processes the images of ancient
Kannada inscriptions using the MATLAB software on the
laptop. The software runs the ancient Kannada to text
conversion algorithm to convert the inscriptions into digital
text.

Data Transmission: The converted text is sent from the laptop
to the Arduino uno via a serial port connection.

Display Output: The Arduino Uno receives the text data and
sends it to the LCD display, which then shows the converted
text.

This system leverages MATLAB for powerful image
processing and text recognition capabilities, using Arduino uno
as a bridge to display the processed text on an LCD. This setup
allows for effective digitization and display of ancient Kannada
inscriptions.

8. RESULTS & DISCUSSION

The Figure 12 illustrates a fragment of an archaic stone
inscription, meticulously etched with glyphs that exhibit the
intricate curves and forms emblematic of ancient Kannada
script. The inscriptions, rendered in these timeworn characters,
suggest the use of a classical variant of the Kannada language,

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

discernible through the distinctive and elaborate morphology
characteristic of this scriptural tradition.

Original Image

s * R Y -'.‘.‘. . ‘ ‘ b
: BNTRR O JGF
& OB TR

Fig 12: Original image

Grayscale images as shown in the figure 13 are frequently
employed in image processing due to their ability to streamline
computational algorithms by diminishing the data complexity
inherent in full-color images.

Operations are more efficaciously implemented on grayscale
images, as these procedures benefit from the reduction in
dimensionality and the focus on luminance variation rather than
chromatic information.

S i . ’
~ :‘f
it G i O
Fig 13: Gray image
Edge detection algorithm is widely recognized as one of the
most popular, effective, and sophisticated techniques for edge
detection. It employs a multi-stage process to identify and
delineate various types of edges within an image as shown in
figure 14.

Fig 14: Edge detection image

Character segmentation, therefore, constitutes a critical and
foundational element within the expansive domain of text
recognition, establishing the indispensable groundwork for the
precision and reliability of Optical Character Recognition
systems. This process is integral to ensuring that subsequent
stages of text analysis and interpretation are conducted with a
high degree of accuracy, thereby enhancing the overall efficacy
of Optical Character Recognition technologies as shown in the
figure 15.

Fig 15: Character segmentation image

17

Finally, the GUI exemplifies an intuitive interface designed to
facilitate seamless interaction with a Kannada text recognition
system as shown in figure 16. It effectively supports the
processes of model training, data ingestion, and textual
recognition, rendering it an indispensable tool for scholars and
practitioners engaged in computational linguistics, machine
learning, or the digital preservation of Kannada script. The
system's capability to streamline these complex tasks
underscores its utility in advancing research and application in
the domain of Kannada language processing

¥ cul

Fig 16: GUI Output

The Raspberry Pi, when coupled with LCD display, facilitates
autonomous operation of the system, rendering it particularly
suitable for field applications or scenarios where portability and
user convenience are paramount. This integration enables users
to execute tasks such as image upload, model training, and text
recognition directly via LCD interface, thereby streamlining
the workflow and enhancing operational efficiency as shown in
figure 17.

Fig 17: Hardware Output

9. CONCLUSION

In this study, we have demonstrated the efficacy of
Convolutional Neural Networks in the recognition and
decipherment of ancient Kannada texts. The results indicate
that CNNs, with their inherent ability to capture spatial
hierarchies in images, are remarkably adept at identifying and
interpreting complex script patterns characteristic of ancient
manuscripts. By leveraging deep learning techniques, we have
achieved significant improvements in accuracy and processing
efficiency compared to traditional methods.

This advancement not only enhances the digitization and
preservation efforts of invaluable historical texts but also paves
the way for future research into more nuanced and contextually
aware recognition systems. The integration of CNNs into
ancient text recognition frameworks holds immense potential
for the broader field of computational linguistics, offering a
robust tool for unraveling the linguistic heritage of
civilizations. Future work will focus on refining these models
further, addressing challenges such as noise reduction, script
variability, and extending the methodology to other ancient
scripts.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

10. REFERENCES

[1] Anusha Leela Somashekharaiah and Abhay Deshpande.
2024. Preprocessing techniques for recognition of ancient
Kannada epigraphs. International Journal of Electrical
and Computer Engineering (IJECE), Vol 14, No 1,
February 2024.

[2]Al. Topguand and UgurTéreyin, Neural Machine
Translation Approaches for Post OCR Text Processing,
30" Signal Processing and Communications Applications
Conference (SIU),Safranbolu, Turkey, 2022.

[3]A1TopguandU and UgurToreyin, Neural Machine
Translation Approaches for Post OCR Text Processing,
30th Signal Processing and Communications Applications
Conference (SIU), Safranbolu, Turkey, 2022

[4].A. Kashyap and A. Kumara B, OCR of Kannada
Characters using Deep Learning. Trends in Electrical
,Electronics, =~ Computer Engineering Conference
(TEECCON), Bengaluru, India, 2022, pp. 35-
38,d0i:10.1109/TEECCONS54414.2022.9854842.

[5].A. Spruck, M. Hawesch, A. Maier, C. Riess, J. Seiler and
A, 3D Rendering Frame work for Data Augmentation in
Optical Character Recognition, 2021 International
Symposiumon Signals, Circuits and Systems (ISSCS), lasi,
Romania, 2021, pp- 1-
4,doi:10.1109/ISSCS52333.2021.9497438.

[6]. A. Spruck, M. Hawesch, A. Maier, C. Riess, J. Seiler and
A. Kau, 3D Rendering Frame work for Data
Augmentation in Optical Character Recognition, 2021
International Symposiumon Signals, Circuits and Systems
(ISSCS), lasi, Romania, 2021, pp- 1-
4,doi:10.1109/ISSCS52333.2021.9497438.

[7].Chandrakala,H and Thippeswamy,G, Deep Convolutional
Neural Networks for Recognition of Historical
Handwritten Kannada Characters. 10.1007/978-981-13-
9920-6_7, 2020.

[8].Bannigidad, Parashuram, Gudada and Chandrashekar,
Historical Kannada Handwritten Character Recognition
using K-Nearest Neighbour Technique, 2019.

[9] Panchal, Amoli, Chintan, Shah and Bhargav, Image
Binarization Techniques for Degraded Document Images:
A Review Binarization techniques, 2017.

[10]. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, and
C. Fu, et al. 2017. SSD: Single Shot Multi Box
Detector. Proceedings of Computer Vision and Pattern
Recognition.

[11] A. Soumya and G. H. Kumar, Recognition of Ancient
Kannada Epigraphs using Fuzzy-based Approach.
International Conference on Contemporary Computing
and Informatics. Mysore, India, 2014, pp. 657-662, doi:
10.1109/1C31.2014.7019645.

[12] K. R. Shah and D. Dattatray Badgujar, Devnagari
Handwritten Character Recognition (DHCR) for Ancient
Documents. [EEE Conference on Information &
Communication Technologies. Thuckalay, India, 2013,
pp. 656-660, doi: 10.1109/CICT.2013.6558176.

[13] C. Naveena and V. N. Manjunath Aradhya, Handwritten
Character Segmentation for Kannada Scripts. World
Congression Information and ~ Communication
Technologies. Trivandrum, India, 2012, pp.144149,
doi:10.1109/WICT.2012.6409065.

18

[14] T. Sari, A. Kefali and H. Bahi, An MLP for Binarizing
Images of Old Manuscripts. International Conference on
Frontiers in Handwriting Recognition. Bari, Italy, 2012,
pp- 247-251, doi: 10.1109/ICFHR.2012.176.

[15] Indira, K. & Selvi, S. Sethu, Kannada Character
Recognition System,2010 - A Review.

[16] M. I. Shah and C. Y. Suen, Word Spotting in Gray Scale
Handwritten Pashto Documents. 2% International
Conference on Frontiersin Handwriting Recognition.
Kolkata, India,2010, pp-136-141,
doi:10.1109/ICFHR.2010.28.

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

[17] Fischer A, Wthrich M Liwicki M, Frinken V, Bunke H,
Viehhauser G and Stolz M, Automatic Transcription of
Handwritten Medieval Documents. Proceedings of
Virtual Systems and Multimedia, 137{142 (2009).

[18] Sauvola J. J. and Pietikainen M. 2000. Adaptive Document
Image Binarization. Pattern Recognition 33(2),225{236
(2000).

[19] T. Wakahara and Y. Kimura, Affine-Invariant Gray-Scale
Character Recognition using GAT Correlation.
Proceedings 15th International Conference on Pattern
Recognition. ICPR-2000, Barcelona, Spain, pp. 417-421
vol.4, doi: 10.1109/ICPR.2000.902947.

19

