
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.49, October 2025

54

Implementation of Data Management using Object-
Oriented Programming (OOP) in Python

Ahmad Farhan AlShammari
Department of Computer and Information Systems

College of Business Studies, PAAET
Kuwait

ABSTRACT
The goal of this research is to implement data management

using object-oriented programming (OOP) in Python. Data

management is the process of handling data efficiently by

performing the basic operations on data. It helps to keep data

organized, accessible, accurate, and secure. It also provides a

solid foundation for data analysis and decision making.

The basic operations of data management are explained:

defining table, creating table, displaying table, displaying

shape, displaying field names, displaying data types, displaying

row, displaying column, adding row, adding column, updating

row, updating column, deleting row, deleting column, getting

values, counting values, computing statistics (count, min, max,

mean, and std), searching by value, sorting by column,

grouping by column, and clearing table.

The developed program was tested on an experimental dataset.

The program has successfully performed the basic operations

of data management using object-oriented programming and

provided the required results.

Keywords
Computer Science, Artificial Intelligence, Machine Learning,

Data Science, Data Management, Object-Oriented

Programming, OOP, Python, Programming.

1. INTRODUCTION
In the recent years, machine learning has played a major role in

the development of computer systems. Machine learning (ML)

is a branch of Artificial Intelligence (AI) that focuses on

developing models and algorithms to improve the performance

and efficiency of computer programs [1-12].

Data management is a fundamental concept in the field of

machine learning. It is also sharing knowledge with other

related fields like: programming, data science, mathematics,

statistics, and numerical methods [13-17].

Fig 1: Area of Data Management

Simply, data management is about managing data. It is done by

performing the basic operations of data management: defining,

creating, displaying, adding, updating, deleting, searching,

sorting, grouping, and clearing. It helps to keep data organized,

accessible, accurate, and secure.

2. LITERATURE REVIEW
The literature was reviewed to understand the fundamental

concepts, methods, and applications of data management [18-

23] using object-oriented programming [24-36].

Data management is the "cornerstone" of the information age.

It is strongly connected to the evolution of computing

technology. The early practices of data management trace back

to the 1950s, where data was stored in punch cards and

processed manually.

In the 1970s, the database management systems (DBMS) were

introduced. The relational model was proposed by Codd [37].

Then, the structured query language (SQL) was developed by

Chamberlin and Boyce at IBM [38]. Actually, they still form

the "backbone" of data management systems today.

Now, with the evolution of internet and web applications, the

volume and complexity of data have increased dramatically.

This led to the emergence of new concepts like: NoSQL, big

data, cloud computing, data mining, and machine learning.

In fact, data management is the "core" concept of computer

systems because data is the "most valuable" asset in the

organization (in both the operational and strategic levels).

The fundamental concepts of data management using object-

oriented programming are explained in the following section.

Data Management:
Data management is the process of storing, organizing, and

manipulating data efficiently. This includes performing the

basic operations on data: defining, creating, displaying, adding,

updating, deleting, searching, sorting, grouping, and clearing.

The goal of data management is to make sure that data is

organized, accessible, accurate, and secure. It also provides

support for data analysis and decision making.

The concept of data management is illustrated in the following

diagram:

Fig 2: Concept of Data Management

Data
Management

Mathematics

Numerical

Methods

Statistics

Machine

Learning

Data Science

Programming

Basic Operations:

Define, Create, Display,

Add, Update, Delete,

Search, Sort, Group,

Clear.

Data

Management

Original

Data

Organized

Data

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.49, October 2025

55

Table:
Table is the most familiar form in data management. It is

widely used in documents, files, spreadsheets, and databases.

Simply, table is a two-dimensional data structure that consists

of rows and columns. It can be represented as shown in the

following diagram:

 Columns

 Index
Col

0

Col

1
…

Col

j
…

Col

n-1

Rows

0

1

…

i
Cell

i,,j

…

m-1

Fig 3: Representation of Table

The rows are identified by index numbers, and the columns by

column names. The data values are stored in the cells of the

table, where each cell (i,j) is the intersection of row (i) and

column (j).

Table Operations:
The basic operations of table are shown in the following list:

• Defining table

• Creating table

• Displaying table

• Displaying shape

• Displaying field names

• Displaying data types

• Displaying row

• Displaying column

• Adding row

• Adding column

• Updating row

• Updating column

• Deleting row

• Deleting column

• Computing statistics

• Searching by value

• Sorting by column

• Grouping by column

• Clearing table

Object-Oriented Programming:
Object-Oriented Programming (OOP) is an advanced approach

of programming which is based on the concept of "objects".

They are similar to the entities in the real-world. The object

consists of attributes and methods, where the attributes are used

to store data and the methods are used to process data.

Class and Object:
To create an "object", the "class" should be defined first. Then,

the object is created exactly as specified in the class definition.

For example, the table class (Table) is defined first, then the

table object (tbl) is created based on the class definition.

Fig 4: Explanation of Class and Object

Implementation in Python:
The table is defined and created using object-oriented

programming in Python as shown in the following code:

define class

class Table:

 def __init__(self, fields, rows):

 self.fields = fields

 self.rows = rows

data: field names and rows

fields = [field0, field1, …, fieldn-1]

rows = [[v0,0, v0,1, …, v0,n-1],

 [v1,0, v1,1, …, v1,n-1],

 [v2,0, v2,1, …, v2,n-1],

 …,

 [vm-1,0, vm-1,1, …, vm-1,n-1]]

create object

tbl = Table(fields, rows)

Where: (Table) is the table class, (fields) is the column names,

(rows) is the data rows, (tbl) is the table object.

For example, the table object (tbl) is created from the table class

(Table) as shown in the following code:

class Table:

 def __init__(self, fields, rows):

 self.fields = fields

 self.rows = rows

fields = ['A', 'B', 'C', 'D']

rows = [[1, 2, 3, 4],

 [5, 6, 7, 8],

 [9,10,11,12],

 [13,14,15,16]]

tbl = Table(fields, rows)

The table object (tbl) is represented by the following form:

 Columns

 Index A B C D

Rows

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

Fig 5: Representation of Table Object

Data Management System:
The data management system is briefly described in the

following summary:

Class: Table Object: tbl

tbl = Table()

Attributes:

…

Methods:

…

Attributes:

…

Methods:

…

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.49, October 2025

56

Input: Original data.

Output: Organized data.

Processing: First, the table is defined and created. Then, the

data is stored in the table. Next, the table is displayed. After

that, the basic operations of data management are performed:

displaying row, displaying column, adding row, adding

column, updating row, updating column, deleting row, deleting

column, computing statistics, searching by value, sorting by

column, grouping by column, and clearing table.

Fig 6: Data Management System

Python:
Python [39] is an open source, object-oriented, and general-

purpose programming language. It is simple, easy to learn, and

powerful. It is the most popular programming language

especially for the development of machine learning

applications.

Python provides many additional libraries for different

purposes. For example: Numpy [40], Pandas [41], Matplotlib

[42], Seaborn [43], NLTK [44], SciPy [45], and SK Learn [46].

3. RESEARCH METHODOLOGY
The basic operations of data management are: (1) defining

table, (2) creating table, (3) displaying table, (4) displaying

shape, (5) displaying column names, (6) displaying data types,

(7) displaying row, (8) displaying column, (9) adding row, (10)

adding column, (11) updating row, (12) updating column, (13)

deleting row, (14) deleting column, (15) getting values, (16)

counting values, (17) computing statistics (count, min, max,

mean, and std), (18) searching by value, (19) sorting by

column, (20) grouping by column, and (21) clearing table.

Fig 7: Basic Operations of Data Management

The basic operations of data management using object-oriented

programming are explained in the following section.

Note: The program is developed using the standard functions

of Python, without any additional library like Numpy or

Pandas.

1. Defining Table:
The table class (Table) is defined by the following code:

class Table:

 def __init__(self, fields, rows):

 self.fields = fields

 self.rows = rows

2. Creating Table:
The table object (tbl) is created by the following code:

fields = [field0, field1, …, fieldm-1]

rows = [[v0,0, v0,1, …, v0,n-1],

 [v1,0, v1,1, …, v1,n-1],

 [v2,0, v2,1, …, v2,n-1],

 …,

 [vm-1,0, vm-1,1, …, vm-1,n-1]]

tbl = Table(fields, rows)

3. Displaying Table:
Displaying the table is performed by the following code:

def display(self):

 print(end="\t")

 for field in self.fields:

 print(field, end="\t")

 print()

 nf = len(self.fields)

 print("-"*8*(nf+1))

 for i, row in enumerate(self.rows):

 print(i, end="\t")

 for item in row:

 print(item, end="\t")

 print()

4. Displaying Shape:
Displaying the shape of table (number of rows and columns) is

performed by the following code:

def shape(self):

 nr = len(self.rows)

 nc = len(self.rows[0])

 print("Shape:", (nr, nc))

5. Displaying Field Names:
Displaying the field names is performed by the following code:

def display_fields(self):

 print("Field Names:")

 print("-"*16)

 for i, field in enumerate(self.fields):

 print(i, "\t", field)

6. Displaying Data Types:
Displaying the data types of columns (int, float, boolean, or

string) is performed by the following code:

def display_types(self):

 print("Data Types:")

 print("-"*24)

Data Management

System

Original Data

Organized Data

• Defining table
• Creating table
• Displaying table
• Displaying shape
• Displaying field names
• Displaying data types
• Displaying row
• Displaying column
• Adding row
• Adding column
• Updating row
• Updating column
• Deleting row
• Deleting column
• Getting values
• Counting values
• Computing statistics
• Searching by value
• Sorting by column
• Grouping by column
• Clearing table

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.49, October 2025

57

 for i, field in enumerate(self.fields):

 item = self.rows[0][i]

 print(field, "\t", type(item))

7. Displaying Row:
Displaying a row in the table by row index is performed by the

following code:

def display_row(self, index):

 print(end="\t")

 for field in self.fields:

 print(field, end="\t")

 print()

 nf = len(self.fields)

 print("-"*8*(nf+1))

 print(index, end="\t")

 for item in self.rows[index]:

 print(item, end="\t")

 print()

8. Displaying Column:
Displaying a column in the table by field name is performed by

the following code:

def display_col(self, field):

 index_col = self.fields.index(field)

 print("\t", field)

 print("-"*16)

 for i, row in enumerate(self.rows):

 print(i, "\t", row[index_col])

9. Adding Row:
Adding a new row to the table is performed by the following

code:

def add_row(self, row):

 self.rows.append(row)

10. Adding Column:
Adding a new column to the table with a specific value is

performed by the following code:

def add_col(self, field, value):

 self.fields.append(field)

 for row in self.rows:

 row.append(value)

11. Updating Row:
Updating a row in the table by row index and field name with

a specific value is performed by the following code:

def update_row(self, index, field, value):

 index_col = self.fields.index(field)

 self.rows[index][index_col] = value

12. Updating Column:
Updating a column in the table by field name with a specific

value is performed by the following code:

def update_col(self, field, value):

 index_col = self.fields.index(field)

 for row in self.rows:

 row[index_col] = value

13. Deleting Row:
Deleting a row from the table by row index is performed by the

following code:

def del_row(self, index):

 del self.rows[index]

14. Deleting Column:
Deleting a column from the table by field name is performed

by the following code:

def del_col(self, field):

 index_col = self.fields.index(field)

 for row in self.rows:

 del row[index_col]

 del self.fields[index_col]

15. Getting Values:
Getting the unique values of a column by field name is

performed by the following code:

def get_values(self, field):

 index_col = self.fields.index(field)

 # compute values

 values = []

 for row in self.rows:

 item = row[index_col]

 values.append(item)

 # sort values

 values = sorted(list(set(values)))

 # print values

 print("\tValue")

 print("-"*16)

 for i, value in enumerate(values):

 print(i, "\t", value)

16. Counting Values:
Counting the unique values of a column by field name is

performed by the following code:

def count_values(self, field):

 index_col = self.fields.index(field)

 # compute values

 values = {}

 for row in self.rows:

 item = row[index_col]

 if (item not in values):

 values[item] = 0

 values[item] += 1

 # sort values

 values = dict(sorted(values.items()))

 # print values

 print("Value\tCount")

 print("-"*16)

 for value, count in values.items():

 print(value, "\t", count)

17. Computing Statistics:
Computing the descriptive statistics (count, min, max, mean,

and std) for a specific column is performed by the following

code:

def compute_stats(self, field):

 funcs = ['Count','Min','Max','Mean','Std']

 # compute stats

 index_col = self.fields.index(field)

 items = []

 for row in self.rows:

 item = row[index_col]

 items.append(item)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.49, October 2025

58

 stats = [len(items),

 min(items),

 max(items),

 mean(items),

 std(items)]

 # print stats

 print(end="\t")

 for func in funcs:

 print(func, end="\t")

 print()

 nf = len(funcs)

 print("-"*8*(nf+1))

 print(field, end="\t")

 for stat in stats:

 print(stat, end="\t")

 print()

18. Searching by Value:
Searching a column by value is performed by the following

code:

def search(self, field, value)

 index_col = self.fields.index(field)

 # print fields

 print(end="\t")

 for field in self.fields:

 print(field, end="\t")

 print()

 nf = len(self.fields)

 print("-"*8*(nf+1))

 # print search result

 for i, row in enumerate(self.rows):

 if (row[index_col] == value):

 print(i, end="\t")

 for item in row:

 print(item, end="\t")

 print()

19. Sorting by Column:
Sorting data by column (in ascending or descending order) is

performed by the following code:

def sortby(self, field, rev=False):

 index_col = self.fields.index(field)

 self.rows.sort(reverse=rev,

 key=lambda x: x[index_col])

20. Grouping by Column:
Grouping data by column and aggregating by another column

using an aggregation function (count, min, max, sum, mean,

and std) is performed by the following code:

def groupby(self, field, field_agg, func_agg):

 index_col = self.fields.index(field)

 index_agg = self.fields.index(field_agg)

 # compute groups

 groups = {}

 for row in self.rows:

 group = row[index_col]

 item = row[index_agg]

 if (group not in groups):

 groups[group] = []

 groups[group].append(item)

 # sort groups

 groups = dict(sorted(groups.items()))

 # compute results

 results = {}

 for group, items in groups.items():

 if (func_agg == "count"):

 results[group] = len(items)

 elif (func_agg == "min"):

 results[group] = min(items)

 elif (func_agg == "max"):

 results[group] = max(items)

 elif (func_agg == "sum"):

 results[group] = sum(items)

 elif (func_agg == "mean"):

 results[group] = mean(items)

 elif (func_agg == "std"):

 results[group] = std(items)

 # print results

 print("Group\tResult")

 print("-"*16)

 for group, result in results.items():

 print(group, "\t", result)

21. Clearing Table:
Clearing the table from data (field names and rows) is

performed by the following code:

def clear(self):

 self.fields = []

 self.rows = []

4. RESULTS AND DISCUSSION
The developed program was tested on an experimental dataset.

The program has successfully performed the basic operations

of data management using object-oriented programming and

provided the required results. The program output is shown and

explained in the following section.

Displaying Table:
The table is displayed as shown in the following view:

tbl.display()

 Id Name Major Score

0 101 Adam Computer 79

1 102 Sarah Science 83

2 103 John Math 75

3 104 Mary Computer 91

4 105 Sally English 74

Displaying Shape:
The shape of table is displayed as shown in the following view:

tbl.shape()

Shape: (5, 4)

Displaying Field Names:
The field names of table are displayed as shown in the

following view:

tbl.display_fields()

Field Names:

0 Id

1 Name

2 Major

3 Score

Displaying Data Types:
The data types of columns are displayed as shown in the

following view:

tbl.display_types()

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.49, October 2025

59

Data Types:

Id <class 'int'>

Name <class 'str'>

Major <class 'str'>

Score <class 'int'>

Displaying Row:
The row of index (3) is displayed as shown in the following

view:

tbl.display_row(3)

 Id Name Job Score

3 104 Mary Computer 91

Displaying Column:
The column ('Name') is displayed as shown in the following

view:

tbl.display_col('Name')

 Name

0 Adam

1 Sarah

2 John

3 Mary

4 Sally

Adding Row:
The new row [106, 'Peter', 'Computer', 82] is added to the table.

Then, the table is displayed as shown in the following view:

tbl.add_row([106, 'Peter', 'Computer', 82])

tbl.display()

 Id Name Major Score

0 101 Adam Computer 79

1 102 Sarah Science 83

2 103 John Math 75

3 104 Mary Computer 91

4 105 Sally English 74

5 106 Peter Computer 82

Adding Column:
The new column ('Bonus') of value (0) is added to the table.

Then, the table is displayed as shown in the following view:

tbl.add_col('Bonus', 0)

tbl.display()

 Id Name Job Score Bonus

--

0 101 Adam Computer 79 0

1 102 Sarah Science 83 0

2 103 John Math 75 0

3 104 Mary Computer 91 0

4 105 Sally English 74 0

5 106 Peter Computer 82 0

Updating Row:
The row of index (5) and column ('Score') is updated with a

new value (84). Then, the table is displayed as shown in the

following view:

tbl.update_row(5, 'Score', 84)

tbl.display()

 Id Name Job Score Bonus

--

0 101 Adam Computer 79 0

1 102 Sarah Science 83 0

2 103 John Math 75 0

3 104 Mary Computer 91 0

4 105 Sally English 74 0

5 106 Peter Computer 84 0

Updating Column:
The column ('Bonus') is updated with a new value (10). Then,

the table is displayed as shown in the following view:

tbl.update_col('Bonus', 10)

tbl.display()

 Id Name Job Score Bonus

--

0 101 Adam Computer 79 10

1 102 Sarah Science 83 10

2 103 John Math 75 10

3 104 Mary Computer 91 10

4 105 Sally English 74 10

5 106 Peter Computer 84 10

Deleting Row:
The row of index (5) is deleted from the table. Then, the table

is displayed as shown in the following view:

tbl.del_row(5)

tbl.display()

 Id Name Job Score Bonus

--

0 101 Adam Computer 79 10

1 102 Sarah Science 83 10

2 103 John Math 75 10

3 104 Mary Computer 91 10

4 105 Sally English 74 10

Deleting Column:
The column ('Bonus') is deleted from the table. Then, the table

is displayed as shown in the following view:

tbl.del_col('Bonus')

tbl.display()

 Id Name Major Score

0 101 Adam Computer 79

1 102 Sarah Science 83

2 103 John Math 75

3 104 Mary Computer 91

4 105 Sally English 74

Getting Values:
The unique values of column ('Major') are obtained and

displayed as shown in the following view:

tbl.get_values('Major')

 Value

0 Computer

1 English

2 Math

3 Science

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.49, October 2025

60

Counting Values:
The unique values of column ('Major') are counted and

displayed as shown in the following view:

tbl.count_values('Major')

Value Count

Computer 2

English 1

Math 1

Science 1

Computing Statistics:
The descriptive statistics (count, min, max, mean, and std) for

column ('Score') are computed and displayed as shown in the

following view:

tbl.compute_stats('Score')

 Count Min Max Mean Std

Score 5 74 91 80.4 6.18

Searching by Value:
Searching column ('Id') by value (103) is performed and

displayed as shown in the following view:

tbl.search('Id', 103)

 Id Name Major Score

2 103 John Math 75

Sorting by Column:
Sorting data by column ('Name') (in ascending order) is

performed and displayed as shown in the following view:

tbl.sortby('Name')

tbl.display()

 Id Name Major Score

0 101 Adam Computer 79

1 103 John Math 75

2 104 Mary Computer 91

3 105 Sally English 74

4 102 Sarah Science 83

For sorting data in descending order, the parameter (rev) is set

to (True). For example: sorting data by column ('Score') in

reverse order is performed and displayed as shown in the

following view:

tbl.sortby('Score', rev=True)

tbl.display()

 Id Name Major Score

0 104 Mary Computer 91

1 102 Sarah Science 83

2 101 Adam Computer 79

3 103 John Math 75

4 105 Sally English 74

Grouping by Column:
Grouping data by column ('Major') and aggregating by column

('Score') using the aggregation function ('mean') is performed

and displayed as shown in the following view:

tbl.groupby('Major', 'Score', 'mean')

Group Result

Computer 85.0

English 74.0

Math 75.0

Science 83.0

Clearing Table:
The table is cleared from data (field names and rows). Then,

the table is displayed empty as shown in the following view.

tbl.clear()

Now, it is obviously clear that the program has successfully

performed the basic operations of data management using

object-oriented programming and provided the required results.

5. CONCLUSION
In this research, the goal was to implement data management

using object-oriented programming (OOP) in Python. The

literature was reviewed to explore the fundamental concepts of

data management using object-oriented programming: data

management, table, table operations, object-oriented

programming, class and object, and implementation in Python.

The author developed a program in Python to perform the basic

operations of data management using object-oriented

programming: defining table, creating table, displaying table,

displaying shape, displaying field names, displaying data types,

displaying row, displaying column, adding row, adding

column, updating row, updating column, deleting row, deleting

column, getting values, counting values, computing statistics

(count, min, max, mean, and std), searching by value, sorting

by column, grouping by column, and clearing table.

The developed program was tested on an experimental dataset.

The program has successfully performed the basic operations

of data management using object-oriented programming and

provided the required results.

In the future, more work is needed to improve the current

methods and add new methods to fully perform the operations

of data management using object-oriented programming. In

addition, they should be more investigated on different fields,

domains, and datasets.

6. REFERENCES
[1] Sammut, C., & Webb, G. I. (2011). "Encyclopedia of

Machine Learning". Springer.

[2] Jung, A. (2022). "Machine Learning: The Basics".

Springer.

[3] Kubat, M. (2021). "An Introduction to Machine

Learning". Springer.

[4] Li, H. (2023). "Machine Learning Methods". Springer.

[5] Zollanvari, A. (2023). " Machine Learning with Python".

Springer.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.49, October 2025

61

[6] Chopra, D., & Khurana, R. (2023). "Introduction to

Machine Learning with Python". Bentham Science

Publishers.

[7] Müller, A. C., & Guido, S. (2016). "Introduction to

Machine Learning with Python: A Guide for Data

Scientists". O'Reilly Media.

[8] Raschka, S. (2015). "Python Machine Learning". Packt

Publishing.

[9] Forsyth, D. (2019). "Applied Machine Learning".

Springer.

[10] Sarkar, D., Bali, R., & Sharma, T. (2018). "Practical

Machine Learning with Python". Apress.

[11] Bonaccorso, G. (2018). "Machine Learning Algorithms:

Popular Algorithms for Data Science and Machine

Learning". Packt Publishing.

[12] Teoh, T., & Rong, Z. (2022). "Artificial Intelligence with

Python". Springer.

[13] Igual, L., & Seguí, S. (2017). "Introduction to Data

Science: A Python Approach to Concepts, Techniques and

Applications". Springer.

[14] VanderPlas, J. (2017). "Python Data Science Handbook:

Essential Tools for Working with Data". O'Reilly Media.

[15] Muddana, A., & Vinayakam, S. (2024). "Python for Data

Science". Springer.

[16] Unpingco, J. (2022). "Python for Probability, Statistics,

and Machine Learning". Springer.

[17] Unpingco, J. (2021). "Python Programming for Data

Analysis". Springer.

[18] Blazewicz, J., Kubiak, W., Morzy, T., & Rusinkiewicz,

M. (2003). "Handbook on Data Management in

Information Systems". Springer.

[19] Purba, S. (2019). "Handbook of Data Management". CRC

Press.

[20] Gray, J. (1996). "Data Management: Past, Present, and

Future". IEEE Computer 29(10), 38-46.

[21] Gordon, K. (2022). "Principles of Data Management:

Facilitating Information Sharing". BCS.

[22] Bressoud, T., & White, D. (2020). "Introduction to Data

Systems: Building from Python". Springer.

[23] Cao, J. (2023). "E-Commerce Big Data Mining and

Analytics". Springer.

[24] Zelle, J. (2017). "Python Programming: An Introduction

to Computer Science". Franklin, Beedle & Associates.

[25] Xanthidis, D., Manolas, C., Xanthidou, O. K., & Wang,

H. I. (2022). "Handbook of Computer Programming with

Python". CRC Press.

[26] Chun, W. (2001). "Core Python Programming". Prentice

Hall Professional.

[27] Padmanabhan, T. (2016). "Programming with Python".

Springer.

[28] Beazley, D., & Jones, B. K. (2013). "Python Cookbook:

Recipes for Mastering Python 3". O'Reilly Media.

[29] Lott, S. (2014). "Mastering Object-Oriented Python".

Packt Publishing.

[30] Phillips, D. (2015). "Python 3 Object-Oriented

Programming: Harness the Power of Python 3

Objects". Packt Publishing.

[31] Lott, S., & Phillips, D. (2021). "Python Object-Oriented

Programming: Build Robust and Maintainable Object-

Oriented Python Applications and Libraries". Packt

Publishing.

[32] Goldwasser, M. H., & Letscher, D. (2008). "Object-

Oriented Programming in Python". Pearson Prentice Hall.

[33] Downey, A. (2012). "Think Python". O'Reilly Media

[34] Lutz, M. (2013). "Learning Python: Powerful Object-

Oriented Programming". O'Reilly Media.

[35] Rangisetti, A. (2024). "Hands-On Object-Oriented

Programming: Mastering OOP Features for Real-World

Software Systems Development". Apress.

[36] Hillar, G. (2015). "Learning Object-Oriented

Programming". Packt Publishing.

[37] Codd, E. (1970). "A Relational Model of Data for Large

Shared Data Banks". Communications of the ACM. 13

(6), 377–87.

[38] Chamberlin, D., Boyce, R. (1974). "SEQUEL: A

Structured English Query Language". Proceedings of the

1974 ACM SIGFIDET Workshop on Data Description,

Access and Control, 249–64.

[39] Python: http://www.python.org

[40] Numpy: http://www.numpy.org

[41] Pandas: http://pandas.pydata.org

[42] Matplotlib: http://www. matplotlib.org

[43] Seaborn: http://seaborn.pydata.org

[44] NLTK: http://www.nltk.org

[45] SciPy: http://scipy.org

[46] SK Learn: http://scikit-learn.org

IJCATM : www.ijcaonline.org

