Implementation of Data

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

Management using Object-

Oriented Programming (OOP) in Python

Ahmad Farhan AlIShammari
Department of Computer and Information Systems
College of Business Studies, PAAET

ABSTRACT

The goal of this research is to implement data management
using object-oriented programming (OOP) in Python. Data
management is the process of handling data efficiently by
performing the basic operations on data. It helps to keep data
organized, accessible, accurate, and secure. It also provides a
solid foundation for data analysis and decision making.

The basic operations of data management are explained:
defining table, creating table, displaying table, displaying
shape, displaying field names, displaying data types, displaying
row, displaying column, adding row, adding column, updating
row, updating column, deleting row, deleting column, getting
values, counting values, computing statistics (count, min, max,
mean, and std), searching by value, sorting by column,
grouping by column, and clearing table.

The developed program was tested on an experimental dataset.
The program has successfully performed the basic operations
of data management using object-oriented programming and
provided the required results.

Keywords

Computer Science, Artificial Intelligence, Machine Learning,
Data Science, Data Management, Object-Oriented
Programming, OOP, Python, Programming.

1. INTRODUCTION

In the recent years, machine learning has played a major role in
the development of computer systems. Machine learning (ML)
is a branch of Artificial Intelligence (AI) that focuses on
developing models and algorithms to improve the performance
and efficiency of computer programs [1-12].

Data management is a fundamental concept in the field of
machine learning. It is also sharing knowledge with other
related fields like: programming, data science, mathematics,
statistics, and numerical methods [13-17].

Machine Mathematics
Learning
Data Statistics
Programming Management
Numerical
Data Science Methods

Fig 1: Area of Data Management

Simply, data management is about managing data. It is done by
performing the basic operations of data management: defining,
creating, displaying, adding, updating, deleting, searching,
sorting, grouping, and clearing. It helps to keep data organized,
accessible, accurate, and secure.

Kuwait

2. LITERATURE REVIEW

The literature was reviewed to understand the fundamental
concepts, methods, and applications of data management [18-
23] using object-oriented programming [24-36].

Data management is the "cornerstone" of the information age.
It is strongly connected to the evolution of computing
technology. The early practices of data management trace back
to the 1950s, where data was stored in punch cards and
processed manually.

In the 1970s, the database management systems (DBMS) were
introduced. The relational model was proposed by Codd [37].
Then, the structured query language (SQL) was developed by
Chamberlin and Boyce at IBM [38]. Actually, they still form
the "backbone" of data management systems today.

Now, with the evolution of internet and web applications, the
volume and complexity of data have increased dramatically.
This led to the emergence of new concepts like: NoSQL, big
data, cloud computing, data mining, and machine learning.

In fact, data management is the "core" concept of computer
systems because data is the "most valuable" asset in the
organization (in both the operational and strategic levels).

The fundamental concepts of data management using object-
oriented programming are explained in the following section.

Data Management:

Data management is the process of storing, organizing, and
manipulating data efficiently. This includes performing the
basic operations on data: defining, creating, displaying, adding,
updating, deleting, searching, sorting, grouping, and clearing.

The goal of data management is to make sure that data is
organized, accessible, accurate, and secure. It also provides
support for data analysis and decision making.

The concept of data management is illustrated in the following
diagram:

Organized
Data

Original
Data

Data

—> Management —>

Basic Operations:
Define, Create, Display,
Add, Update, Delete,
Search, Sort, Group,
Clear.

Fig 2: Concept of Data Management

54

Table:

Table is the most familiar form in data management. It is
widely used in documents, files, spreadsheets, and databases.
Simply, table is a two-dimensional data structure that consists
of rows and columns. It can be represented as shown in the
following diagram:

Columns
Col Col Col Col
Index 0] E -l
0
1
Rows
Cell

b

m-1

Fig 3: Representation of Table

The rows are identified by index numbers, and the columns by
column names. The data values are stored in the cells of the
table, where each cell (i,j) is the intersection of row (i) and
column (j).

Table Operations:

The basic operations of table are shown in the following list:

o Defining table

o Creating table

e Displaying table

e Displaying shape

o Displaying field names
e Displaying data types
¢ Displaying row

e Displaying column
Adding row

Adding column
Updating row
Updating column
Deleting row
Deleting column
Computing statistics
Searching by value
Sorting by column
Grouping by column
o (Clearing table

Object-Oriented Programming:

Object-Oriented Programming (OOP) is an advanced approach
of programming which is based on the concept of "objects".
They are similar to the entities in the real-world. The object
consists of attributes and methods, where the attributes are used
to store data and the methods are used to process data.

Class and Object:

To create an "object", the "class" should be defined first. Then,
the object is created exactly as specified in the class definition.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

For example, the table class (7able) is defined first, then the
table object (zb/) is created based on the class definition.

Class: Table Object: tbl
Attributes: > Attributes:
Methods: tbl = Table() Methods:

Fig 4: Explanation of Class and Object

Implementation in Python:
The table is defined and created using object-oriented
programming in Python as shown in the following code:

define class
class Table:

def init (self, fields, rows):

self.fields = fields
self.rows = rows

data: field names and rows

fields = [fieldo, field:, .., fieldn-1]

rows = [[Vo,0, V0,1, w., Vo,n-1],
[Vi,0, Vi,1y wy Vi,n-1],
[V2,0, V2,1, wy V2,n-1],
e r
[Vm-1,0, Vm-1,1; ey Vm-1,n-1]]

create object
tbl = Table(fields, rows)

Where: (Table) is the table class, (fields) is the column names,
(rows) is the data rows, (¢b/) is the table object.

For example, the table object (¢b/) is created from the table class
(Table) as shown in the following code:

class Table:

def init (self, fields, rows):

self.fields = fields
self.rows = rows

fields = ['A', 'B', 'C', 'D']

rows = [[1, 2, 3, 4],
[5l 6! 7! 8]!
[9,10,11,12],
[13,14,15,16]1]

tbl = Table(fields, rows)

The table object (¢b/) is represented by the following form:

Columns
Index A B C D
0 1 2 3 4
1 5 6 7 8
Rows
2 9 10 11 12
3 13 14 15 16

Fig 5: Representation of Table Object

Data Management System:
The data management system is briefly described in the
following summary:

55

Input: Original data.

Output: Organized data.

Processing: First, the table is defined and created. Then, the
data is stored in the table. Next, the table is displayed. After
that, the basic operations of data management are performed:
displaying row, displaying column, adding row, adding
column, updating row, updating column, deleting row, deleting
column, computing statistics, searching by value, sorting by
column, grouping by column, and clearing table.

Original Data

l

Data Management
System

l

Organized Data

Fig 6: Data Management System

Python:

Python [39] is an open source, object-oriented, and general-
purpose programming language. It is simple, easy to learn, and
powerful. It is the most popular programming language
especially for the development of machine learning
applications.

Python provides many additional libraries for different
purposes. For example: Numpy [40], Pandas [41], Matplotlib
[42], Seaborn [43], NLTK [44], SciPy [45], and SK Learn [46].

3. RESEARCH METHODOLOGY

The basic operations of data management are: (1) defining
table, (2) creating table, (3) displaying table, (4) displaying
shape, (5) displaying column names, (6) displaying data types,
(7) displaying row, (8) displaying column, (9) adding row, (10)
adding column, (11) updating row, (12) updating column, (13)
deleting row, (14) deleting column, (15) getting values, (16)
counting values, (17) computing statistics (count, min, max,
mean, and std), (18) searching by value, (19) sorting by
column, (20) grouping by column, and (21) clearing table.

Defining table
Creating table
Displaying table
Displaying shape
Displaying field names
Displaying data types
Displaying row
Displaying column
Adding row

Adding column
Updating row
Updating column
Deleting row
Deleting column
Getting values
Counting values
Computing statistics
Searching by value
Sorting by column
Grouping by column
Clearing table

Fig 7: Basic Operations of Data Management

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

The basic operations of data management using object-oriented
programming are explained in the following section.

Note: The program is developed using the standard functions
of Python, without any additional library like Numpy or
Pandas.

1. Defining Table:
The table class (Table) is defined by the following code:

class Table:
def init (self, fields, rows):
self.fields = fields
self.rows = rows

2. Creating Table:
The table object (#b/) is created by the following code:

fields = [fieldo, fieldi, .., fieldn-1]
rows = [[Vo,0, V0,1, «.s VO,n-11,

[Vi,0, V1,1, .y Vi,n-1],

[V2,0, V2,1, wy V2,n-1],

ey

[Vm-1,0, Vm-1,15 ey Vm-1,n-1]]

tbl = Table(fields, rows)

3. Displaying Table:
Displaying the table is performed by the following code:

def display(self):
print (end="\t")
for field in self.fields:
print (field, end="\t")

print ()
nf = len(self.fields)
print ("-"*8* (nf+l))

for i, row in enumerate (self.rows):
print (i, end="\t")
for item in row:
print (item, end="\t")
print ()

4. Displaying Shape:
Displaying the shape of table (number of rows and columns) is
performed by the following code:

def shape (self):

nr = len(self.rows)
nc = len(self.rows[0])
print ("Shape:", (nr, nc))

5. Displaying Field Names:
Displaying the field names is performed by the following code:

def display fields(self):
print ("Field Names:")
print ("-"*16)
for i, field in enumerate (self.fields):
print (i, "\t", field)

6. Displaying Data Types:
Displaying the data types of columns (int, float, boolean, or
string) is performed by the following code:

def display types(self):
print ("Data Types:")
print ("-"*24)

56

for i, field in enumerate(self.fields):
item = self.rows[0][i]
print (field, "\t", type(item))

7. Displaying Row:
Displaying a row in the table by row index is performed by the
following code:

def display row(self, index):
print (end="\t")

for field in self.fields:

print (field, end="\t")

print ()
nf = len(self.fields)
print ("-"*8* (nf+l))

print (index, end="\t")
for item in self.rows[index]:
print (item, end="\t")

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

13. Deleting Row:
Deleting a row from the table by row index is performed by the
following code:

def del row(self, index):
del self.rows[index]

14. Deleting Column:
Deleting a column from the table by field name is performed
by the following code:

def del col(self, field):
index col = self.fields.index(field)
for row in self.rows:
del row[index col]
del self.fields[index col]

print ()

8. Displaying Column:
Displaying a column in the table by field name is performed by
the following code:

15. Getting Values:
Getting the unique values of a column by field name is
performed by the following code:

def display col(self, field):

index col = self.fields.index(field)
print ("\t", field)
print ("-"*16)

for i, row in enumerate (self.rows):
print (i, "\t", row[index coll])

9. Adding Row:
Adding a new row to the table is performed by the following
code:

def get values(self, field):

index col = self.fields.index(field)
compute values
values = []
for row in self.rows:
item = row[index col]

values.append (item)
sort values
values = sorted(list (set(values)))
print values
print ("\tValue")

print ("-"*16)
for i, value in enumerate (values) :
print (i, "\t", value)

def add_row(self, row):
self.rows.append (row)

10. Adding Column:
Adding a new column to the table with a specific value is
performed by the following code:

16. Counting Values:
Counting the unique values of a column by field name is
performed by the following code:

def add col(self, field, value):
self.fields.append(field)
for row in self.rows:
row.append (value)

11. Updating Row:
Updating a row in the table by row index and field name with
a specific value is performed by the following code:

def update row(self, index, field, value):

def count values(self, field):
index col = self.fields.index(field)
compute values
values = {}
for row in self.rows:
item = row[index col]
if (item not in wvalues):
values[item] = 0
values[item] += 1
sort values
values = dict (sorted(values.items()))
print values
print ("Value\tCount")

print ("-"*16)
for value, count in values.items():
print (value, "\t", count)

index col = self.fields.index(field)
self.rows[index] [index col] = value
12. Updating Column:

Updating a column in the table by field name with a specific
value is performed by the following code:

17. Computing Statistics:

Computing the descriptive statistics (count, min, max, mean,
and std) for a specific column is performed by the following
code:

def update col(self, field, value):
index col = self.fields.index(field)
for row in self.rows:
row[index col] = value

def compute stats(self, field):
funcs = ['Count', 'Min', 'Max', "Mean', 'Std"']
compute stats
index_col = self.fields.index(field)
items = []
for row in self.rows:
item = row[index col]
items.append (item)

57

stats = [len(items),
min (items),
max (items),
mean (items),
std(items)]

print stats

print (end="\t")

for func in funcs:

print (func, end="\t")

print ()
nf = len (funcs)
print ("-"*8* (nf+1))

print (field, end="\t")
for stat in stats:

print (stat, end="\t")
print ()

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

elif (func agg == "max"):
results[group] = max (items)
elif (func_agg == "sum"):
results[group] = sum(items)
elif (func agg == "mean"):
results[group] = mean (items)
elif (func_agg == "std"):
results[group] = std(items)

print results

print ("Group\tResult")

print ("-"*16)

for group, result in results.items():
print (group, "\t", result)

18. Searching by Value:
Searching a column by value is performed by the following
code:

21. Clearing Table:

Clearing the table from data (field names and rows) is
performed by the following code:

def search(self, field, value)
index col = self.fields.index(field)
print fields
print (end="\t")
for field in self.fields:
print (field, end="\t")

print ()
nf = len(self.fields)
print ("-"*8* (nf+1))

print search result
for i, row in enumerate (self.rows):
if (row[index col] == value):
print (i, end="\t")
for item in row:
print (item, end="\t")
print ()

def clear (self):
self.fields = []
self.rows = []

4. RESULTS AND DISCUSSION

The developed program was tested on an experimental dataset.
The program has successfully performed the basic operations
of data management using object-oriented programming and
provided the required results. The program output is shown and
explained in the following section.

Displaying Table:

The table is displayed as shown in the following view:

19. Sorting by Column:
Sorting data by column (in ascending or descending order) is
performed by the following code:

def sortby(self, field, rev=False):
index col = self.fields.index(field)
self.rows.sort (reverse=rev,
key=lambda x: x[index col])

tbl.display ()

20. Grouping by Column:

Grouping data by column and aggregating by another column
using an aggregation function (count, min, max, sum, mean,
and std) is performed by the following code:

Id Name Major Score
0 101 Adam Computer 79
1 102 Sarah Science 83
2 103 John Math 75
3 104 Mary Computer 91
4 105 Sally English 74
Displaying Shape:

The shape of table is displayed as shown in the following view:

tbl.shape ()

Shape: (5, 4)

def groupby (self, field, field agg, func agg):

index col = self.fields.index (field)
index agg = self.fields.index(field agg)
compute groups
groups = {}
for row in self.rows:

group = row[index col]

item = row[index agg]

if (group not in groups):

groups [group] = []

groups [group] .append (item)

sort groups

groups = dict (sorted(groups.items()))
compute results
results = {}
for group, items in groups.items():
if (func_agg == "count"):
results[group] = len(items)
elif (func _agg == "min"):
results[group] = min(items)

Displaying Field Names:
The field names of table are displayed as shown in the
following view:

tbl.display fields()

Field Names:

0 Id

1 Name
2 Major
3 Score

Displaying Data Types:
The data types of columns are displayed as shown in the
following view:

tbl.display types()

58

Data Types:

Id <class 'int'>
Name <class 'str'>
Major <class 'str'>
Score <class 'int'>
Displaying Row:

The row of index (3) is displayed as shown in the following
view:

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

tbl.display ()

Id Name Job Score Bonus
0 101 Adam Computer 79 0
1 102 Sarah Science 83 0
2 103 John Math 75 0
3 104 Mary Computer 91 0
4 105 Sally English 74 0
5 106 Peter Computer 84 0

tbl.display row(3)

3 104 Mary Computer 91

Updating Column:
The column ('Bonus') is updated with a new value (10). Then,
the table is displayed as shown in the following view:

Displaying Column:
The column ('Name') is displayed as shown in the following
view:

tbl.display col('Name')

tbl.update col('Bonus', 10)
tbl.display ()

Id Name Job Score Bonus
0 101 Adam Computer 79 10
1 102 Sarah Science 83 10
2 103 John Math 75 10
3 104 Mary Computer 91 10
4 105 Sally English 74 10
5 106 Peter Computer 84 10

Adding Row:
The new row [106, 'Peter’, 'Computer’, 82] is added to the table.
Then, the table is displayed as shown in the following view:

Deleting Row:
The row of index (5) is deleted from the table. Then, the table
is displayed as shown in the following view:

tbl.add row([106, 'Peter', 'Computer',6 82])
tbl.display ()

tbl.del row(5)
tbl.display ()

Id Name Job Score Bonus
0 101 Adam Computer 79 10
1 102 sSarah Science 83 10
2 103 John Math 75 10
3 104 Mary Computer 91 10
4 105 Sally English 74 10

Deleting Column:
The column ('Bonus') is deleted from the table. Then, the table
is displayed as shown in the following view:

Id Name Major Score

0 101 Adam Computer 79
1 102 Sarah Science 83
2 103 John Math 75
3 104 Mary Computer 91
4 105 Sally English 74
5 106 Peter Computer 82
Adding Column:

The new column ('Bonus') of value (0) is added to the table.
Then, the table is displayed as shown in the following view:

tbl.add col('Bonus', 0)
tbl.display ()

Id Name Job Score Bonus
0 101 Adam Computer 79 0
1 102 Sarah Science 83 0
2 103 John Math 75 0
3 104 Mary Computer 91 0
4 105 Sally English 74 0
5 106 Peter Computer 82 0

tbl.del col('Bonus')
tbl.display ()

Id Name Major Score
0 101 Adam Computer 79
1 102 sSarah Science 83
2 103 John Math 75
3 104 Mary Computer 91
4 105 Sally English 74
Getting Values:

The unique values of column ('Major') are obtained and
displayed as shown in the following view:

Updating Row:

The row of index (5) and column ('Score') is updated with a
new value (84). Then, the table is displayed as shown in the
following view:

tbl.get values('Major')

0 Computer
1 English
2 Math

3 Science

tbl.update row(5, 'Score', 84)

59

Counting Values:
The unique values of column (‘Major') are counted and
displayed as shown in the following view:

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

tbl.count values('Major')

Value Count
Computer 2
English 1
Math 1
Science 1

Computing Statistics:

The descriptive statistics (count, min, max, mean, and std) for
column ('Score') are computed and displayed as shown in the
following view:

tbl.groupby ('Major', 'Score', 'mean')
Group Result

Computer 85.0

English 74.0

Math 75.0

Science 83.0

Clearing Table:

The table is cleared from data (field names and rows). Then,
the table is displayed empty as shown in the following view.

tbl.clear ()

tbl.compute stats('Score')

Count Min Max Mean std
Score 5 74 91 80.4 6.18
Searching by Value:

Searching column ('Id") by value (103) is performed and
displayed as shown in the following view:

tbl.search('Id', 103)

Id Name Major Score
2 103 John Math 75
Sorting by Column:

Sorting data by column (‘Name') (in ascending order) is
performed and displayed as shown in the following view:

tbl.sortby ('Name')
tbl.display ()

Id Name Major Score
0 101 Adam Computer 79
1 103 John Math 75
2 104 Mary Computer 91
3 105 Sally English 74
4 102 Sarah Science 83

For sorting data in descending order, the parameter (rev) is set
to (True). For example: sorting data by column ('Score') in
reverse order is performed and displayed as shown in the
following view:

tbl.sortby('Score', rev=True)
tbl.display ()

Id Name Major Score
0 104 Mary Computer 91
1 102 Sarah Science 83
2 101 Adam Computer 79
3 103 John Math 75
4 105 Sally English 74
Grouping by Column:

Grouping data by column ('"Major') and aggregating by column
('Score') using the aggregation function ('mean') is performed
and displayed as shown in the following view:

Now, it is obviously clear that the program has successfully
performed the basic operations of data management using
object-oriented programming and provided the required results.

5. CONCLUSION

In this research, the goal was to implement data management
using object-oriented programming (OOP) in Python. The
literature was reviewed to explore the fundamental concepts of
data management using object-oriented programming: data
management, table, table operations, object-oriented
programming, class and object, and implementation in Python.

The author developed a program in Python to perform the basic
operations of data management using object-oriented
programming: defining table, creating table, displaying table,
displaying shape, displaying field names, displaying data types,
displaying row, displaying column, adding row, adding
column, updating row, updating column, deleting row, deleting
column, getting values, counting values, computing statistics
(count, min, max, mean, and std), searching by value, sorting
by column, grouping by column, and clearing table.

The developed program was tested on an experimental dataset.
The program has successfully performed the basic operations
of data management using object-oriented programming and
provided the required results.

In the future, more work is needed to improve the current
methods and add new methods to fully perform the operations
of data management using object-oriented programming. In
addition, they should be more investigated on different fields,
domains, and datasets.

6. REFERENCES
[1] Sammut, C., & Webb, G. I. (2011). "Encyclopedia of
Machine Learning". Springer.

[2] Jung, A. (2022). "Machine Learning: The Basics".
Springer.

[3] Kubat, M. (2021). "An Introduction to Machine
Learning". Springer.

[4] Li, H. (2023). "Machine Learning Methods". Springer.

[S1 Zollanvari, A. (2023). " Machine Learning with Python".
Springer.

60

[6] Chopra, D., & Khurana, R. (2023). "Introduction to
Machine Learning with Python". Bentham Science
Publishers.

[7] Miller, A. C., & Guido, S. (2016). "Introduction to
Machine Learning with Python: A Guide for Data
Scientists". O'Reilly Media.

[8] Raschka, S. (2015). "Python Machine Learning". Packt
Publishing.

[91 Forsyth, D. (2019). "Applied Machine Learning".
Springer.

[10] Sarkar, D., Bali, R.,, & Sharma, T. (2018). "Practical
Machine Learning with Python". Apress.

[11] Bonaccorso, G. (2018). "Machine Learning Algorithms:
Popular Algorithms for Data Science and Machine
Learning". Packt Publishing.

[12] Teoh, T., & Rong, Z. (2022). "Artificial Intelligence with
Python". Springer.

[13] Igual, L., & Segui, S. (2017). "Introduction to Data
Science: A Python Approach to Concepts, Techniques and
Applications". Springer.

[14] VanderPlas, J. (2017). "Python Data Science Handbook:
Essential Tools for Working with Data". O'Reilly Media.

[15] Muddana, A., & Vinayakam, S. (2024). "Python for Data
Science". Springer.

[16] Unpingco, J. (2022). "Python for Probability, Statistics,
and Machine Learning". Springer.

[17] Unpingco, J. (2021). "Python Programming for Data
Analysis". Springer.

[18] Blazewicz, J., Kubiak, W., Morzy, T., & Rusinkiewicz,
M. (2003). "Handbook on Data Management in
Information Systems". Springer.

[19] Purba, S. (2019). "Handbook of Data Management". CRC
Press.

[20] Gray, J. (1996). "Data Management: Past, Present, and
Future". IEEE Computer 29(10), 38-46.

[21] Gordon, K. (2022). "Principles of Data Management:
Facilitating Information Sharing". BCS.

[22] Bressoud, T., & White, D. (2020). "Introduction to Data
Systems: Building from Python". Springer.

[23] Cao, J. (2023). "E-Commerce Big Data Mining and
Analytics". Springer.

[24] Zelle, J. (2017). "Python Programming: An Introduction
to Computer Science". Franklin, Beedle & Associates.

[25] Xanthidis, D., Manolas, C., Xanthidou, O. K., & Wang,

H. I. (2022). "Handbook of Computer Programming with
Python". CRC Press.

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.49, October 2025

[26] Chun, W. (2001). "Core Python Programming". Prentice
Hall Professional.

[27] Padmanabhan, T. (2016). "Programming with Python".
Springer.

[28] Beazley, D., & Jones, B. K. (2013). "Python Cookbook:
Recipes for Mastering Python 3". O'Reilly Media.

[29] Lott, S. (2014). "Mastering Object-Oriented Python".
Packt Publishing.

[30] Phillips, D. (2015). "Python 3 Object-Oriented
Programming: Harness the Power of Python 3
Objects". Packt Publishing.

[31] Lott, S., & Phillips, D. (2021). "Python Object-Oriented
Programming: Build Robust and Maintainable Object-
Oriented Python Applications and Libraries". Packt
Publishing.

[32] Goldwasser, M. H., & Letscher, D. (2008). "Object-
Oriented Programming in Python". Pearson Prentice Hall.

[33] Downey, A. (2012). "Think Python". O'Reilly Media

[34] Lutz, M. (2013). "Learning Python: Powerful Object-
Oriented Programming". O'Reilly Media.

[35] Rangisetti, A. (2024). "Hands-On Object-Oriented
Programming: Mastering OOP Features for Real-World

Software Systems Development". Apress.

[36] Hillar, G. (2015). "Learning Object-Oriented
Programming". Packt Publishing.

[37] Codd, E. (1970). "A Relational Model of Data for Large
Shared Data Banks". Communications of the ACM. 13
(6), 377-87.

[38] Chamberlin, D., Boyce, R. (1974). "SEQUEL: A
Structured English Query Language". Proceedings of the
1974 ACM SIGFIDET Workshop on Data Description,
Access and Control, 249-64.

[39] Python: http://www.python.org

[40] Numpy: http://www.numpy.org

[41] Pandas: http://pandas.pydata.org

[42] Matplotlib: http://www. matplotlib.org

[43] Seaborn: http://seaborn.pydata.org

[44] NLTK: http://www.nltk.org

[45] SciPy: http://scipy.org

[46] SK Learn: http://scikit-learn.org

61

