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ABSTRACT

Raft is widely taught as a leader-based consensus algorithm, yet
most educational implementations stop at functional tests and
provide little quantitative evidence of fault-tolerance timing. An
instrumented Raft implementation paired with a fault-injectable
dashboard is presented, enabling the protocol’s dynamics to be
both visible and measurable. The Go-based implementation,
compatible with MIT 6.824 Labs 2A-2C, incorporates
lightweight telemetry at ground-truth events such as election
start, leader elected, first heartbeat, and Start/Commit and
exports the recorded data as CSV logs. The dashboard
(React/Node) lets users crash and recover nodes, force timeouts,
and vary message loss, while a small analysis tool produces
paper-ready figures.

General Terms
Algorithms, Distributed Systems and Fault Tolerance.

Keywords

Raft, Consensus Algorithm, Leader Election, Log Replication,
Fault Injection, Distributed Computing, Replication Latency,
Failover.

1. INTRODUCTION

Motivation: Raft's appeal is pedagogical clarity: a single leader
replicates a log to followers, randomized election timeouts
avoid split votes, and a majority quorum commits [1]. Yet
beyond correctness tests, students and practitioners rarely see
quantitative timing evidence. How quickly does the system fail
over to a new leader after a crash? How stable are leaders when
the environment is noisy? Where do the tails in replication
latency come from, and how sensitive are they to loss and
timeouts? Without measurement, these questions remain
intuitive.

Challenge: Measuring consensus is tricky because the salient
phenomena are probabilistic and tail-heavy. Leader elections
depend on randomized timeouts; "timeout collisions" can
prolong failover by forcing additional rounds. The majority
commit masks single slow followers but exposes tails when
multiple replicas lag or packets drop. These effects are visible
on a whiteboard but hard to capture without carefully placed
instrumentation and repeatable scenarios.

Approach: Raft was implemented in Go, following the MIT
6.824 Labs [2] and embed ready to drop instrumentation at
decision points: when an election begins, when a candidate
becomes leader, when the new leader issues its first heartbeat,
when a leader accepts a client command (Start), and when that
command becomes majority committed/applied (Commit). The
system emits CSV logs and pairs with a fault-injectable
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dashboard (React/Node) that can crash/recover nodes, force
election timeouts, drop the latest log entry, and vary message
loss. A compact Python script aggregates trials and produces
failover CDFs (Cumulative Distribution Function), leader
tenure box plots, and latency vs. loss curves with percentile
annotations.

Metrics: (i) Failover time: crash — first heartbeat of new leader;
(i1)) Leader tenure: time a leader remains in office; (iii)
Replication latency: Start(command) — majority commit +

apply.

Key findings: Extended runs (n = 77) revealed median failover
~2.29 s and p95 = 9.0 s, confirming the presence of long-tail
elections due to timeout collisions. Leadership rotation
remained balanced (= 14—17 terms per node), while replication
latency stayed low at the median (= 0.28-0.47 s) but increased
in the 95th percentile (= 0.95 s) under 15 % packet loss.

Contributions: (1) A minimal, instrumented Raft + dashboard
that makes consensus visible and measurable; (2) A
reproducible metrics pipeline (CSV schema + analysis script);
(3) Empirical characterization of failover and replication tails
with tuning guidance.

Paper roadmap: Section 2 reviews Raft and defines the metrics.
Section 3 details the implementation and instrumentation.
Section 4 describes the experimental setup. Section 5 presents
failover, tenure, and replication results. Section 6 discusses
tuning implications. Section 7 covers threats to validity. Section
8 overviews related work. Section 9 concludes and Section 10
releases artifacts.

2. BACKGROUND

Leader election: Servers begin as followers; if no heartbeat
arrives before a randomized election timeout, a follower
becomes a candidate, increments its term, and requests votes. A
candidate that gains a majority becomes the leader; heartbeats
reset followers' timeouts. Randomization reduces split votes but
does not eliminate them; collisions can extend failover by
requiring additional rounds [1].

Log replication: The leader appends client commands to its log
and replicates them via AppendEntries RPCs (Remote
Procedure Calls). A log entry is committed when a majority
stores the entry for the leader's current term; followers apply
committed entries to their state machines [1].

Safety: Raft enforces a log matching property and term
monotonicity: leaders have up-to-date logs; conflicting entries
are overwritten by the leader's authoritative history.

Operational metrics:
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e  Failover time: elapsed time from leader crash to the
first heartbeat emitted by the newly elected leader
(cluster becomes leaderful again).

e Leader tenure: time from a leader's election to its
replacement (by crash or re-election).

e  Replication latency: per command, time from
Start(command) on the leader to majority commit and
application. Latency was evaluated under controlled
message-loss rates up to 15 %.

3. SYSTEM DESIGN
3.1 Raft implementation (Go)

The Raft implementation is written in Go and implements the
canonical components required by Labs 2A-2C: leader
election, log replication, and durable persistence. Each server
instance maintains the standard Raft state (current term, role,
commitlndex, lastApplied) and per-peer replication
bookkeeping (nextIndex and matchIndex). Periodic heartbeats
are sent by the leader; followers use randomized election
timeouts to transition to candidate state and trigger leader
elections. The implementation persists the minimum Raft state
required for safety (current term, voted-for, and the log of
entries) to stable storage so that crash—recover cycles maintain
correctness. Concurrency is expressed using goroutines and
guarded by mutexes where state is shared; network RPCs and
timers run asynchronously against the local Raft instance.

3.2 Instrumentation hooks and metrics
format

Instrumentation was added with narrow, non-intrusive hooks
placed at protocol boundaries so as not to alter control flow or
timing semantics. The hooks record a compact set of ground-
truth events with millisecond timestamps and contextual fields
(node id, term, entry id, scenario tags, seed, trial). The captured
events are:

e  Election start: timestamp recorded when a follower
transitions to candidate.

e  Leader elected: timestamp, new leader id and leader
term when a majority of servers accept the new
leader.

e  First heartbeat: timestamp of the first AppendEntries
or heartbeat issued by the newly elected leader (used
as the end-of-failover marker).

e  Start(command): timestamp and unique entry id
when the current leader accepts a client command.

e  Commit/apply: timestamp when an entry becomes
majority-committed and is applied locally.

Each event appends a CSV row to one of three files with well-
defined column schemas: failover trials.csv (fields: scenario,
timeout bounds, seed, trial, old leader, new leader,
crash _time ms, election_start _ms, leader_elected ms,
first_heartbeat ms, failover ms), leader tenure.csv (fields:
scenario, seed, trial, leader id, term, start ts_ms, end ts ms,
tenure ms), and replication latency.csv (fields: scenario,
drop rate, seed, trial, entry id, leader term, start ts ms,
commit_ts_ms, latency ms). Tags (scenario, seed, trial) are
recorded in each row to enable robust grouping and
reproducibility. The metrics capture both the raw dashboard
timing and the ground-truth millisecond timestamps;
subsequent analysis converts and normalizes these values for
presentation.
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3.3 Dashboard front-end and control
primitives (React/Node)

The interactive dashboard is implemented as a React client with
a Node server that shares the same instrumentation API as the
Raft core so that the visualization and metrics remain aligned.
The Ul visualizes five nodes placed at the vertices of a pentagon
with color-coded roles (follower, candidate, leader). The
interface exposes controlled fault-injection primitives:
crash/recover individual nodes, force election timeouts, drop
the latest appended entries, and set a global packet drop rate.
Animations visualize RPCs (AppendEntries and replies) as
moving tokens to aid human comprehension; these animations
intentionally run at slowed timing to make protocol dynamics
visible. The server component implements the same logging
hooks as the Raft core so that the Ul state and the recorded CSV
metrics correspond precisely.

3.4 Visualization timing, ground truth, and
tooling

To make the UI usable for human observers, the dashboard
intentionally runs at slowed wall-clock timers (heartbeat =
2400 ms; election timeout randomized between 6000—10000
ms). To report results that reflect conventional Raft
deployments, the analysis pipeline rescales recorded times by a
constant factor (SCALE = 25.0) so that plotted and reported
numbers correspond to normalized values (heartbeat ~ 100 ms;
election timeout =~ 240-400 ms). All scripts, including
raft experiments/analyze raft results.py and the Node
metrics.js helper, support the same seed and trial tagging so
recorded metrics are deterministic given the same seed and
crash schedule. The analyzer produces the canonical outputs
used in this paper (CDFs of failover time, boxplots of leader
tenure, and replication-latency vs. drop-rate curves) and
computes summary statistics (count, median, p90, p95) for
grouped comparisons. The detailed experimental setup and
analysis are presented in Section 4.

4. EXPERIMENTAL SETUP
4.1 Hardware, environment and
reproducibility

All experiments in this submission were executed in a
controlled development environment: Windows 11 for
authoring and verification; Go 1.19+ for the Raft
implementation; Node 20.x for the dashboard server and client;
and Python 3.10.x for analysis. The repository includes a
README and CI workflows that document build and test
commands. To ensure reproducibility, the instrumentation
records the seed and trial fields for every metric row; these,
together with the provided crash schedule scripts and the
analyzer, permit exact regeneration of the figures reported here.

4.2 Cluster topology and scenarios

Experiments were performed on a fixed 5-node cluster
configured in the default quorum layout. The primary scenario
used for the quantitative evaluation is leader_crash_restart, in
which the current leader is crashed and subsequently restarted
on a controlled schedule to induce repeated elections and
failovers. Two additional control scenarios (forced timeout and
drop_latest) are implemented in the dashboard and were used
for exploratory testing; they are not emphasized in the long-run
quantitative run reported in this paper.
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4.3 Network fault model and parameter
sweep

Network unreliability is modeled by a global packet drop
parameter that probabilistically drops RPC messages. The
experiments sweep the drop rate over the set {0.00, 0.03, 0.06,
0.09, 0.12, 0.15} to evaluate replication latency sensitivity.
Message delays in the Ul are deterministic and slowed for
visualization; the analysis normalizes the reported times (see
Section 3.4) so that the results reflect realistic timing ratios. The
dashboard also supports targeted operations such as dropping
the latest log entry, which is useful for specific
microbenchmarks of replication behavior.

4.4 Trials, seeding and automated runs

A single automated long-run experiment consists of an ordered
sequence of induced leader crashes (100 scheduled crash events
for the long run) executed under a fixed pseudo-random seed.
Each run is labeled by the seed and trial fields; the long-run
dataset produced here contains 100 induced crash events (77
events remained after cleaning; see Section 4.6) and multiple
leader terms recorded per run. Short-run datasets (4045
events) are kept as comparison baselines. The metrics.js helper
exposes a programmatic API (initMetrics) to tag each run with
metadata (scenario, seed, trial, timeoutLowMs,
timeoutHighMs) so that the analyzer can group and compare
runs deterministically.

4.5 Metrics collected and derived
quantities
Primary metrics recorded are:

. Failover time defined as the interval from the
crash (or the last known leader transition) to the
first heartbeat from the newly elected leader,

. Leader tenure measured as the duration a node
serves as leader for a given term,
. Replication latency measured per-entry as the

interval between client command acceptance
(Start) and commit/apply.

The analyzer converts raw millisecond timestamps to seconds
and applies the normalization scale factor described in Section
3.4. Grouped summaries report counts, medians, and tail
percentiles (p90 and p95) for each experimental bucket
(scenario x drop_rate).

4.6 Data cleaning, outlier handling and
statistical reporting

Raw CSV output is cleaned by deterministic rules in the
analysis script. Early warm-up artifacts (rows where
crash_time ms, election start ms and leader elected ms are
all zero) are excluded. Only rows where failover ms > 0 are
retained as valid failover events. To reduce the influence of
spurious measurements from mis-triggered experiments or
operator error, the analysis discards unscaled outliers with
failover times less than 0.5 s or greater than 120 s (equivalently,
outside the plausible protocol operation window given the
slowed Ul timers); these thresholds are conservative and chosen
to reflect plausibility, not to bias results toward any hypothesis.
After cleaning, timing columns are converted to seconds and
scaled (divide by SCALE) prior to plotting. Summary statistics
shown in the paper (medians; p90/p95) are computed using
standard non-parametric definitions (median = 50th percentile;
p95 = 95th percentile). CDF plots are produced by plotting the
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empirical cumulative distribution of observed values for each
scenario.

5. RESULTS
5.1 Failover Stability

Figure 1 shows the cumulative distribution of leader failover
times for the leader_crash_restart scenario, comparing the short
run (n = 40) and the extended run (n = 77). The longer
experiment reveals a noticeably heavier tail, indicating rare
timeout collision paths that only appear when the number of
induced failures is large.

Quantitatively, the median failover time increased from = 1.0 s
in the short run to = 2.29 s in the extended run, while the 95th
percentile rose from ~ 5.4 s to =~ 9.0 s. This divergence
highlights that shorter tests can underestimate upper-tail
behavior and thus overstate system responsiveness.

Table 1. Short Run (n=44) vs Long Run (n=77)

Run Tvpe Events Median 95th Percentile
P (n) ®) ®)

Short Run 40 1.02 5.42

Long Run 77 2.29 9.01
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Figure 1: Leader Failover Time CDF (timeout 240—400
ms, heartbeat 100 ms).

5.2 Leader Fairness

Leadership fairness evaluates whether Raft’s randomized
election timeouts yield an equitable rotation of the leader role
among all nodes. Over 77 elections in the long-run dataset,
leadership rotated almost uniformly across the five servers,
each serving 14-17 terms. Figure 2 plots the term distribution
per node.

This near-uniform spread demonstrates the effectiveness of
Raft’s randomization in avoiding persistent leadership bias or
starvation. It also confirms that the implementation preserves
fair term distribution even under recurring crash-and-recovery
churn.
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Figure 2: Distribution of Leader Terms per Node (n = 77).

5.3 Leader Tenure

Leader tenure measures the duration for which a node remains
leader before the next induced failover or timeout event. Figure
3 presents the boxplot of leader tenure durations (scaled to
normalized seconds). The median tenure observed was
approximately 1.7 s, with an interquartile range of 1.3-2.2 s.

These short yet stable epochs confirm that the system remains
continuously available during repetitive leader crashes and
restarts. The consistent distribution across the experiment
further indicates that Raft’s re-election mechanism quickly
restores steady-state operation after each failure.

Leader Tenure by Scenario (timeouts 240-400 ms, heartbeat 100 ms)
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Figure 3: Leader Tenure Distribution under Induced
Churn.

5.4 Replication Latency vs Drop Rate

Replication latency quantifies the time from when a leader
appends a client command to when the entry becomes majority-
committed. The experiment varied a global packet-drop rate in
{0.00, 0.03, 0.06, 0.09, 0.12, 0.15}. Figure 4 plots the median
and 95th-percentile latency for each drop level.

The median latency remained low—between 0.28 s and 0.47
s—even at 15 % message loss, showing Raft’s resilience in
normal operation. However, the 95th percentile increased to =
0.95 s, illustrating how higher loss primarily affects the tail of
the latency distribution rather than the median.
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Replication Latency vs Drop Rate (timeouts 240-400 ms, heartbeat 100 ms)
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Figure 4: Replication Latency vs Packet-Drop Rate
(median and p95).

6. DISCUSSION AND TUNING
GUIDANCE

Election timeouts: Best-case failover benefits from short
timeouts, but tails are governed by collision probability. A wider
range (or slight per-node skew) reduces the chance that
candidates start together.

Heartbeats: Faster heartbeats shrink detection time after a leader
fails silently, but increase background traffic. The
measurements indicate that the tail latencies are dominated by
election events rather than heartbeat cadence at these scales.

Replication tails: Loss chiefly inflates p95, not the median—
consistent with majority commit. If service SLOs are
percentile-based, budget headroom for retry rounds.

Visualization vs. ground truth: Slowed Ul timers did not change
qualitative dynamics; scaling preserved ratios and thus
quantitative relationships.

7. THREATS TO VALIDITY/
LIMITATIONS

Single machine simulation: Timing uses a Node event loop and
synthetic delays, not real NICs or OS scheduling.

Simplified failures: The system models crash failures and
message drops, not byzantine faults or long partitions.

Clocking: UI timestamps (performance.now) and Go timings
are aligned by design but not synchronized to a wall clock;
analysis uses relative deltas.

Sample size per bucket: Some drop rate buckets in the long run
have <30 entries, causing jitter in p95.

8. RELATED WORK

The present work builds upon the Raft line of research [1] and
[4], alongside Paxos and its engineering accounts [5] and [6].
Formal verification frameworks such as Verdi [7] explore
verified  distributed  systems. Production-grade  Raft
implementations like etcd’s module [8] inform practical design
trade-offs. Visualization resources also exist [3]; the primary
contribution is a compact and reproducible measurement
pipeline integrated with an interactive dashboard designed for
instructional and analytical purposes.
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9. CONCLUSION AND FUTURE WORK

An instrumented implementation of the Raft consensus
algorithm was developed and integrated with a fault-injectable
dashboard to make the protocol’s internal behavior both visible
and measurable. Extended experiments on a five-node cluster
(100 ms heartbeat interval; 240-400 ms randomized election
timeouts) demonstrated a median failover latency of
approximately 2.29 s (p95 = 9.0 s) across 77 induced failovers,
revealing the presence of long-tail recovery paths that shorter
runs tend to underestimate. Leadership rotation remained
statistically balanced (= 14-17 terms per node), validating
Raft’s randomized election process, while replication latency
stayed low at the median (= 0.28-0.47 s) even under 15 %
simulated packet loss. These findings confirm that lightweight
instrumentation, coupled with controlled fault injection, can
effectively quantify Raft’s dynamic performance and enhance
understanding of distributed consensus under real-world fault
conditions.

Future work will focus on expanding the experimental scope
and functional depth of the system. Planned extensions include
the simulation of network partitions, dynamic cluster resizing,
and the addition of snapshot and log-compaction mechanisms
for long-lived replicas. Further, incorporating real RPC loss
models, variable latency distributions, and larger randomized
clusters will allow the derivation of statistically rigorous
confidence intervals. Integrating these features will not only
strengthen the research utility of the platform but also position
it as a reproducible framework for teaching, benchmarking,
and analyzing consensus algorithms in distributed systems
research.

10. ARTIFACTS AND
REPRODUCIBILITY

10.1 Availability of Code and Data

10.1.1 Code, data, and scripts:
GitHub Repository: https://github.com/Shre-coder22/raft-
distributed-systems-lab [9].

Archived DOI Snapshot:
https://doi.org/10.5281/zenodo.17015793 [10].

10.1.2 The repository includes:

raft/ — Go implementation of Raft (compatible with MIT 6.824
(2.

raft-dashboard/ — React/Node dashboard with fault injection

(crash, recover, timeouts, log drops). artifact/ — day-by-day
notes.

paper/ — LaTeX source and figures for this manuscript.
10.2 Environment

Windows 11
Go 1.19+
Node 20.10.0

Npm 10.2.3

[JCA™ : www.ijcaonline.org
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Python 3.10.3

10.3 Setup

py -m venv venv
/venv/Scripts/Activate.psl pip install -U
pip pandas numpy matplotlib

10.4 Run the Dashboard

# server cd raft-
dashboard/server npm
run dev

# client (in another shell) cd
raft-dashboard/client npm
run dev

10.5 Collect Metrics and Regenerate Figures

Ensure: initMetrics({timeoutLowMs: 6000, timeoutHighMs:
10000,}) is set; clear /metrics/ between runs.

Run the analyzer: py raft_experiments\analyze raft results.py -
-input ./metrics_100run --out ./metrics 100run/figures --
compare_to metrics 40run --leader fairness

11. REFERENCES

[1] D. Ongaro and J. Ousterhout, “In Search of an
Understandable Consensus Algorithm,” in USENIX ATC,
2014, pp. 305-319.

[2] MIT PDOS, “Distributed Systems (6.824) Labs.”
Available: https://pdos.csail.mit.edu/6.824/labs/ (accessed
2025-08-31).

[3] Raft Visualization, “Raft Interactive Visualization.”
Available: https://raft.github.io/ (accessed 2025-08-31).

[4] D. Ongaro, Consensus: Bridging Theory and Practice,
Ph.D. thesis, Stanford Univ., 2014.

[5] L. Lamport, “The Part-Time Parliament,” ACM Trans.
Comput. Syst., vol. 16, no. 2, pp. 133—-169, 1998.

[6] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos
Made Live—An Engineering Perspective,” in Proc.
PODC, 2007, pp. 398—407.

[7]1 J. Wilcox et al., “Verdi: A Framework for Implementing
and Formally Verifying Distributed Systems,” in USENIX
OSDI, 2015.

[8] etcd Authors, “etcd Raft Implementation.” Available:
https://github.com/etcd-io/etcd/tree/main/raft  (accessed
2025-08-31).

[9] S. Saxena, “Instrumented Raft + Dashboard: Measuring
Failover, Latency, and Tenure.” GitHub:
https://github.com/Shre-coder22/raft-distributed-systems-
lab, 2025.

[10] S. Saxena, “Artifact snapshot for Instrumented Raft +
Dashboard.” DOI: 10.5281/zenodo.17015793, 2025.

20


https://github.com/Shre-coder22/raft-distributed-systems-lab
https://github.com/Shre-coder22/raft-distributed-systems-lab
https://pdos.csail.mit.edu/6.824/labs/

