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ABSTRACT  

Raft is widely taught as a leader-based consensus algorithm, yet 

most educational implementations stop at functional tests and 

provide little quantitative evidence of fault-tolerance timing. An 

instrumented Raft implementation paired with a fault-injectable 

dashboard is presented, enabling the protocol’s dynamics to be 

both visible and measurable. The Go-based implementation, 

compatible with MIT 6.824 Labs 2A–2C, incorporates 

lightweight telemetry at ground-truth events such as election 

start, leader elected, first heartbeat, and Start/Commit and 

exports the recorded data as CSV logs. The dashboard 

(React/Node) lets users crash and recover nodes, force timeouts, 

and vary message loss, while a small analysis tool produces 

paper-ready figures.  
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1. INTRODUCTION  
Motivation: Raft's appeal is pedagogical clarity: a single leader 

replicates a log to followers, randomized election timeouts 

avoid split votes, and a majority quorum commits [1]. Yet 

beyond correctness tests, students and practitioners rarely see 

quantitative timing evidence. How quickly does the system fail 

over to a new leader after a crash? How stable are leaders when 

the environment is noisy? Where do the tails in replication 

latency come from, and how sensitive are they to loss and 

timeouts? Without measurement, these questions remain 

intuitive.   

Challenge: Measuring consensus is tricky because the salient 

phenomena are probabilistic and tail-heavy. Leader elections 

depend on randomized timeouts; "timeout collisions" can 

prolong failover by forcing additional rounds. The majority 

commit masks single slow followers but exposes tails when 

multiple replicas lag or packets drop. These effects are visible 

on a whiteboard but hard to capture without carefully placed 

instrumentation and repeatable scenarios.   

Approach: Raft was implemented in Go, following the MIT 

6.824 Labs [2] and embed ready to drop instrumentation at 

decision points: when an election begins, when a candidate 

becomes leader, when the new leader issues its first heartbeat, 

when a leader accepts a client command (Start), and when that 

command becomes majority committed/applied (Commit). The 

system emits CSV logs and pairs with a fault-injectable 

dashboard (React/Node) that can crash/recover nodes, force 

election timeouts, drop the latest log entry, and vary message 

loss. A compact Python script aggregates trials and produces 

failover CDFs (Cumulative Distribution Function), leader 

tenure box plots, and latency vs. loss curves with percentile 

annotations.   

Metrics: (i) Failover time: crash → first heartbeat of new leader; 

(ii) Leader tenure: time a leader remains in office; (iii) 

Replication latency: Start(command) → majority commit + 

apply.   

Key findings: Extended runs (n = 77) revealed median failover 

≈ 2.29 s and p95 ≈ 9.0 s, confirming the presence of long-tail 

elections due to timeout collisions. Leadership rotation 

remained balanced (≈ 14–17 terms per node), while replication 

latency stayed low at the median (≈ 0.28–0.47 s) but increased 

in the 95th percentile (≈ 0.95 s) under 15 % packet loss. 

Contributions: (1) A minimal, instrumented Raft + dashboard 

that makes consensus visible and measurable; (2) A 

reproducible metrics pipeline (CSV schema + analysis script); 

(3) Empirical characterization of failover and replication tails 

with tuning guidance.   

Paper roadmap: Section 2 reviews Raft and defines the metrics. 

Section 3 details the implementation and instrumentation. 

Section 4 describes the experimental setup. Section 5 presents 

failover, tenure, and replication results. Section 6 discusses 

tuning implications. Section 7 covers threats to validity. Section 

8 overviews related work. Section 9 concludes and Section 10 

releases artifacts.   

2. BACKGROUND  
Leader election: Servers begin as followers; if no heartbeat 

arrives before a randomized election timeout, a follower 

becomes a candidate, increments its term, and requests votes. A 

candidate that gains a majority becomes the leader; heartbeats 

reset followers' timeouts. Randomization reduces split votes but 

does not eliminate them; collisions can extend failover by 

requiring additional rounds [1].   

Log replication: The leader appends client commands to its log 

and replicates them via AppendEntries RPCs (Remote 

Procedure Calls). A log entry is committed when a majority 

stores the entry for the leader's current term; followers apply 

committed entries to their state machines [1].   

Safety: Raft enforces a log matching property and term 

monotonicity: leaders have up-to-date logs; conflicting entries 

are overwritten by the leader's authoritative history.  

Operational metrics:  
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• Failover time: elapsed time from leader crash to the 

first heartbeat emitted by the newly elected leader 

(cluster becomes leaderful again).  

• Leader tenure: time from a leader's election to its 

replacement (by crash or re-election).  

• Replication latency: per command, time from 

Start(command) on the leader to majority commit and 

application. Latency was evaluated under controlled 

message-loss rates up to 15 %. 

3. SYSTEM DESIGN 

3.1 Raft implementation (Go) 

The Raft implementation is written in Go and implements the 

canonical components required by Labs 2A–2C: leader 

election, log replication, and durable persistence. Each server 

instance maintains the standard Raft state (current term, role, 

commitIndex, lastApplied) and per-peer replication 

bookkeeping (nextIndex and matchIndex). Periodic heartbeats 

are sent by the leader; followers use randomized election 

timeouts to transition to candidate state and trigger leader 

elections. The implementation persists the minimum Raft state 

required for safety (current term, voted-for, and the log of 

entries) to stable storage so that crash–recover cycles maintain 

correctness. Concurrency is expressed using goroutines and 

guarded by mutexes where state is shared; network RPCs and 

timers run asynchronously against the local Raft instance. 

3.2 Instrumentation hooks and metrics 

format 

Instrumentation was added with narrow, non-intrusive hooks 

placed at protocol boundaries so as not to alter control flow or 

timing semantics. The hooks record a compact set of ground-

truth events with millisecond timestamps and contextual fields 

(node id, term, entry id, scenario tags, seed, trial). The captured 

events are: 

• Election start:  timestamp recorded when a follower 

transitions to candidate. 

• Leader elected: timestamp, new leader id and leader 

term when a majority of servers accept the new 

leader. 

• First heartbeat:  timestamp of the first AppendEntries 

or heartbeat issued by the newly elected leader (used 

as the end-of-failover marker). 

• Start(command): timestamp and unique entry id 

when the current leader accepts a client command. 

• Commit/apply: timestamp when an entry becomes 

majority-committed and is applied locally. 

Each event appends a CSV row to one of three files with well-

defined column schemas: failover_trials.csv (fields: scenario, 

timeout bounds, seed, trial, old_leader, new_leader, 

crash_time_ms, election_start_ms, leader_elected_ms, 

first_heartbeat_ms, failover_ms), leader_tenure.csv (fields: 

scenario, seed, trial, leader_id, term, start_ts_ms, end_ts_ms, 

tenure_ms), and replication_latency.csv (fields: scenario, 

drop_rate, seed, trial, entry_id, leader_term, start_ts_ms, 

commit_ts_ms, latency_ms). Tags (scenario, seed, trial) are 

recorded in each row to enable robust grouping and 

reproducibility. The metrics capture both the raw dashboard 

timing and the ground-truth millisecond timestamps; 

subsequent analysis converts and normalizes these values for 

presentation. 

3.3 Dashboard front-end and control 

primitives (React/Node) 

The interactive dashboard is implemented as a React client with 

a Node server that shares the same instrumentation API as the 

Raft core so that the visualization and metrics remain aligned. 

The UI visualizes five nodes placed at the vertices of a pentagon 

with color-coded roles (follower, candidate, leader). The 

interface exposes controlled fault-injection primitives: 

crash/recover individual nodes, force election timeouts, drop 

the latest appended entries, and set a global packet drop rate. 

Animations visualize RPCs (AppendEntries and replies) as 

moving tokens to aid human comprehension; these animations 

intentionally run at slowed timing to make protocol dynamics 

visible. The server component implements the same logging 

hooks as the Raft core so that the UI state and the recorded CSV 

metrics correspond precisely. 

3.4 Visualization timing, ground truth, and 

tooling 

To make the UI usable for human observers, the dashboard 

intentionally runs at slowed wall-clock timers (heartbeat = 

2400 ms; election timeout randomized between 6000–10000 

ms). To report results that reflect conventional Raft 

deployments, the analysis pipeline rescales recorded times by a 

constant factor (SCALE = 25.0) so that plotted and reported 

numbers correspond to normalized values (heartbeat ≈ 100 ms; 

election timeout ≈ 240–400 ms). All scripts, including 

raft_experiments/analyze_raft_results.py and the Node 

metrics.js helper, support the same seed and trial tagging so 

recorded metrics are deterministic given the same seed and 

crash schedule. The analyzer produces the canonical outputs 

used in this paper (CDFs of failover time, boxplots of leader 

tenure, and replication-latency vs. drop-rate curves) and 

computes summary statistics (count, median, p90, p95) for 

grouped comparisons. The detailed experimental setup and 

analysis are presented in Section 4. 

4. EXPERIMENTAL SETUP 

4.1 Hardware, environment and 

reproducibility 

All experiments in this submission were executed in a 

controlled development environment: Windows 11 for 

authoring and verification; Go 1.19+ for the Raft 

implementation; Node 20.x for the dashboard server and client; 

and Python 3.10.x for analysis. The repository includes a 

README and CI workflows that document build and test 

commands. To ensure reproducibility, the instrumentation 

records the seed and trial fields for every metric row; these, 

together with the provided crash schedule scripts and the 

analyzer, permit exact regeneration of the figures reported here. 

4.2 Cluster topology and scenarios 

Experiments were performed on a fixed 5-node cluster 

configured in the default quorum layout. The primary scenario 

used for the quantitative evaluation is leader_crash_restart, in 

which the current leader is crashed and subsequently restarted 

on a controlled schedule to induce repeated elections and 

failovers. Two additional control scenarios (forced_timeout and 

drop_latest) are implemented in the dashboard and were used 

for exploratory testing; they are not emphasized in the long-run 

quantitative run reported in this paper. 
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4.3 Network fault model and parameter 

sweep 

Network unreliability is modeled by a global packet drop 

parameter that probabilistically drops RPC messages. The 

experiments sweep the drop rate over the set {0.00, 0.03, 0.06, 

0.09, 0.12, 0.15} to evaluate replication latency sensitivity. 

Message delays in the UI are deterministic and slowed for 

visualization; the analysis normalizes the reported times (see 

Section 3.4) so that the results reflect realistic timing ratios. The 

dashboard also supports targeted operations such as dropping 

the latest log entry, which is useful for specific 

microbenchmarks of replication behavior. 

4.4 Trials, seeding and automated runs 

A single automated long-run experiment consists of an ordered 

sequence of induced leader crashes (100 scheduled crash events 

for the long run) executed under a fixed pseudo-random seed. 

Each run is labeled by the seed and trial fields; the long-run 

dataset produced here contains 100 induced crash events (77 

events remained after cleaning; see Section 4.6) and multiple 

leader terms recorded per run. Short-run datasets (40–45 

events) are kept as comparison baselines. The metrics.js helper 

exposes a programmatic API (initMetrics) to tag each run with 

metadata (scenario, seed, trial, timeoutLowMs, 

timeoutHighMs) so that the analyzer can group and compare 

runs deterministically. 

4.5 Metrics collected and derived 

quantities 

Primary metrics recorded are:  

• Failover time defined as the interval from the 

crash (or the last known leader transition) to the 

first heartbeat from the newly elected leader,  

• Leader tenure measured as the duration a node 

serves as leader for a given term, 

•  Replication latency measured per-entry as the 

interval between client command acceptance 

(Start) and commit/apply.  

The analyzer converts raw millisecond timestamps to seconds 

and applies the normalization scale factor described in Section 

3.4. Grouped summaries report counts, medians, and tail 

percentiles (p90 and p95) for each experimental bucket 

(scenario × drop_rate). 

4.6 Data cleaning, outlier handling and 

statistical reporting 

Raw CSV output is cleaned by deterministic rules in the 

analysis script. Early warm-up artifacts (rows where 

crash_time_ms, election_start_ms and leader_elected_ms are 

all zero) are excluded. Only rows where failover_ms > 0 are 

retained as valid failover events. To reduce the influence of 

spurious measurements from mis-triggered experiments or 

operator error, the analysis discards unscaled outliers with 

failover times less than 0.5 s or greater than 120 s (equivalently, 

outside the plausible protocol operation window given the 

slowed UI timers); these thresholds are conservative and chosen 

to reflect plausibility, not to bias results toward any hypothesis. 

After cleaning, timing columns are converted to seconds and 

scaled (divide by SCALE) prior to plotting. Summary statistics 

shown in the paper (medians; p90/p95) are computed using 

standard non-parametric definitions (median = 50th percentile; 

p95 = 95th percentile). CDF plots are produced by plotting the 

empirical cumulative distribution of observed values for each 

scenario. 

5. RESULTS  

5.1 Failover Stability 

Figure 1 shows the cumulative distribution of leader failover 

times for the leader_crash_restart scenario, comparing the short 

run (n = 40) and the extended run (n = 77). The longer 

experiment reveals a noticeably heavier tail, indicating rare 

timeout collision paths that only appear when the number of 

induced failures is large. 

Quantitatively, the median failover time increased from ≈ 1.0 s 

in the short run to ≈ 2.29 s in the extended run, while the 95th 

percentile rose from ≈ 5.4 s to ≈ 9.0 s. This divergence 

highlights that shorter tests can underestimate upper-tail 

behavior and thus overstate system responsiveness. 

Table 1. Short Run (n=44) vs Long Run (n=77) 

Run Type 
Events 

(n) 

Median 

(s) 

95th Percentile 

(s) 

Short Run 40 1.02 5.42 

Long Run 77 2.29 9.01 

 

 

Figure 1: Leader Failover Time CDF (timeout 240–400 

ms, heartbeat 100 ms). 

5.2 Leader Fairness 

Leadership fairness evaluates whether Raft’s randomized 

election timeouts yield an equitable rotation of the leader role 

among all nodes. Over 77 elections in the long-run dataset, 

leadership rotated almost uniformly across the five servers, 

each serving 14–17 terms. Figure 2 plots the term distribution 

per node. 

This near-uniform spread demonstrates the effectiveness of 

Raft’s randomization in avoiding persistent leadership bias or 

starvation. It also confirms that the implementation preserves 

fair term distribution even under recurring crash-and-recovery 

churn. 
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Figure 2: Distribution of Leader Terms per Node (n = 77). 

5.3 Leader Tenure 

Leader tenure measures the duration for which a node remains 

leader before the next induced failover or timeout event. Figure 

3 presents the boxplot of leader tenure durations (scaled to 

normalized seconds). The median tenure observed was 

approximately 1.7 s, with an interquartile range of 1.3–2.2 s. 

These short yet stable epochs confirm that the system remains 

continuously available during repetitive leader crashes and 

restarts. The consistent distribution across the experiment 

further indicates that Raft’s re-election mechanism quickly 

restores steady-state operation after each failure. 

 

Figure 3: Leader Tenure Distribution under Induced 

Churn. 

5.4 Replication Latency vs Drop Rate 

Replication latency quantifies the time from when a leader 

appends a client command to when the entry becomes majority-

committed. The experiment varied a global packet-drop rate in 

{0.00, 0.03, 0.06, 0.09, 0.12, 0.15}. Figure 4 plots the median 

and 95th-percentile latency for each drop level. 

The median latency remained low—between 0.28 s and 0.47 

s—even at 15 % message loss, showing Raft’s resilience in 

normal operation. However, the 95th percentile increased to ≈ 

0.95 s, illustrating how higher loss primarily affects the tail of 

the latency distribution rather than the median. 

 

Figure 4: Replication Latency vs Packet-Drop Rate 

(median and p95). 

6. DISCUSSION AND TUNING 

GUIDANCE  
Election timeouts: Best-case failover benefits from short 

timeouts, but tails are governed by collision probability. A wider 

range (or slight per-node skew) reduces the chance that 

candidates start together.  

Heartbeats: Faster heartbeats shrink detection time after a leader 

fails silently, but increase background traffic. The 

measurements indicate that the tail latencies are dominated by 

election events rather than heartbeat cadence at these scales. 

Replication tails: Loss chiefly inflates p95, not the median— 

consistent with majority commit. If service SLOs are 

percentile-based, budget headroom for retry rounds.  

Visualization vs. ground truth: Slowed UI timers did not change 

qualitative dynamics; scaling preserved ratios and thus 

quantitative relationships.  

7. THREATS TO VALIDITY/ 

LIMITATIONS  
Single machine simulation: Timing uses a Node event loop and 

synthetic delays, not real NICs or OS scheduling.  

Simplified failures: The system models crash failures and 

message drops, not byzantine faults or long partitions.  

Clocking: UI timestamps (performance.now) and Go timings 

are aligned by design but not synchronized to a wall clock; 

analysis uses relative deltas.  

Sample size per bucket: Some drop rate buckets in the long run 

have <30 entries, causing jitter in p95.     

8. RELATED WORK  
The present work builds upon the Raft line of research [1] and 

[4], alongside Paxos and its engineering accounts [5] and [6]. 

Formal verification frameworks such as Verdi [7] explore 

verified distributed systems. Production-grade Raft 

implementations like etcd’s module [8] inform practical design 

trade-offs. Visualization resources also exist [3]; the primary 

contribution is a compact and reproducible measurement 

pipeline integrated with an interactive dashboard designed for 

instructional and analytical purposes. 
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9. CONCLUSION AND FUTURE WORK  
An instrumented implementation of the Raft consensus 

algorithm was developed and integrated with a fault-injectable 

dashboard to make the protocol’s internal behavior both visible 

and measurable. Extended experiments on a five-node cluster 

(100 ms heartbeat interval; 240–400 ms randomized election 

timeouts) demonstrated a median failover latency of 

approximately 2.29 s (p95 ≈ 9.0 s) across 77 induced failovers, 

revealing the presence of long-tail recovery paths that shorter 

runs tend to underestimate. Leadership rotation remained 

statistically balanced (≈ 14–17 terms per node), validating 

Raft’s randomized election process, while replication latency 

stayed low at the median (≈ 0.28–0.47 s) even under 15 % 

simulated packet loss. These findings confirm that lightweight 

instrumentation, coupled with controlled fault injection, can 

effectively quantify Raft’s dynamic performance and enhance 

understanding of distributed consensus under real-world fault 

conditions. 

Future work will focus on expanding the experimental scope 

and functional depth of the system. Planned extensions include 

the simulation of network partitions, dynamic cluster resizing, 

and the addition of snapshot and log-compaction mechanisms 

for long-lived replicas. Further, incorporating real RPC loss 

models, variable latency distributions, and larger randomized 

clusters will allow the derivation of statistically rigorous 

confidence intervals. Integrating these features will not only 

strengthen the research utility of the platform but also position 

it as a reproducible framework for teaching, benchmarking, 

and analyzing consensus algorithms in distributed systems 

research. 

10. ARTIFACTS AND 

REPRODUCIBILITY  

10.1 Availability of Code and Data  
10.1.1 Code, data, and scripts:  
GitHub Repository: https://github.com/Shre-coder22/raft-

distributed-systems-lab  [9].  

Archived DOI Snapshot:  

https://doi.org/10.5281/zenodo.17015793 [10].  

10.1.2 The repository includes:  

raft/ — Go implementation of Raft (compatible with MIT 6.824 

[2]).  

raft-dashboard/ — React/Node dashboard with fault injection 

(crash, recover, timeouts, log drops). artifact/ — day-by-day 

notes. 

paper/ — LaTeX source and figures for this manuscript.  

10.2 Environment  

Windows 11 

Go 1.19+ 

Node 20.10.0 

Npm 10.2.3 

Python 3.10.3  

10.3 Setup  

py -m venv venv 

./venv/Scripts/Activate.ps1 pip install -U 

pip pandas numpy matplotlib  

10.4 Run the Dashboard  

# server cd raft-

dashboard/server npm 

run dev  

  

# client (in another shell) cd 

raft-dashboard/client npm 

run dev  

10.5 Collect Metrics and Regenerate Figures  

Ensure: initMetrics({timeoutLowMs: 6000, timeoutHighMs: 

10000,}) is set; clear /metrics/ between runs.  

Run the analyzer: py raft_experiments\analyze_raft_results.py -

-input ./metrics_100run --out ./metrics_100run/figures --

compare_to metrics_40run --leader_fairness 
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