
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

16

Making Raft Measurable: An Instrumented

Implementation and Fault-Injectable Dashboard for

Failover, Latency, and Tenure

Shrestha Saxena
Dept. of Computer Science,

RGIPT

ABSTRACT

Raft is widely taught as a leader-based consensus algorithm, yet

most educational implementations stop at functional tests and

provide little quantitative evidence of fault-tolerance timing. An

instrumented Raft implementation paired with a fault-injectable

dashboard is presented, enabling the protocol’s dynamics to be

both visible and measurable. The Go-based implementation,

compatible with MIT 6.824 Labs 2A–2C, incorporates

lightweight telemetry at ground-truth events such as election

start, leader elected, first heartbeat, and Start/Commit and

exports the recorded data as CSV logs. The dashboard

(React/Node) lets users crash and recover nodes, force timeouts,

and vary message loss, while a small analysis tool produces

paper-ready figures.

General Terms

Algorithms, Distributed Systems and Fault Tolerance.

Keywords
Raft, Consensus Algorithm, Leader Election, Log Replication,

Fault Injection, Distributed Computing, Replication Latency,

Failover.

1. INTRODUCTION
Motivation: Raft's appeal is pedagogical clarity: a single leader

replicates a log to followers, randomized election timeouts

avoid split votes, and a majority quorum commits [1]. Yet

beyond correctness tests, students and practitioners rarely see

quantitative timing evidence. How quickly does the system fail

over to a new leader after a crash? How stable are leaders when

the environment is noisy? Where do the tails in replication

latency come from, and how sensitive are they to loss and

timeouts? Without measurement, these questions remain

intuitive.

Challenge: Measuring consensus is tricky because the salient

phenomena are probabilistic and tail-heavy. Leader elections

depend on randomized timeouts; "timeout collisions" can

prolong failover by forcing additional rounds. The majority

commit masks single slow followers but exposes tails when

multiple replicas lag or packets drop. These effects are visible

on a whiteboard but hard to capture without carefully placed

instrumentation and repeatable scenarios.

Approach: Raft was implemented in Go, following the MIT

6.824 Labs [2] and embed ready to drop instrumentation at

decision points: when an election begins, when a candidate

becomes leader, when the new leader issues its first heartbeat,

when a leader accepts a client command (Start), and when that

command becomes majority committed/applied (Commit). The

system emits CSV logs and pairs with a fault-injectable

dashboard (React/Node) that can crash/recover nodes, force

election timeouts, drop the latest log entry, and vary message

loss. A compact Python script aggregates trials and produces

failover CDFs (Cumulative Distribution Function), leader

tenure box plots, and latency vs. loss curves with percentile

annotations.

Metrics: (i) Failover time: crash → first heartbeat of new leader;

(ii) Leader tenure: time a leader remains in office; (iii)

Replication latency: Start(command) → majority commit +

apply.

Key findings: Extended runs (n = 77) revealed median failover

≈ 2.29 s and p95 ≈ 9.0 s, confirming the presence of long-tail

elections due to timeout collisions. Leadership rotation

remained balanced (≈ 14–17 terms per node), while replication

latency stayed low at the median (≈ 0.28–0.47 s) but increased

in the 95th percentile (≈ 0.95 s) under 15 % packet loss.

Contributions: (1) A minimal, instrumented Raft + dashboard

that makes consensus visible and measurable; (2) A

reproducible metrics pipeline (CSV schema + analysis script);

(3) Empirical characterization of failover and replication tails

with tuning guidance.

Paper roadmap: Section 2 reviews Raft and defines the metrics.

Section 3 details the implementation and instrumentation.

Section 4 describes the experimental setup. Section 5 presents

failover, tenure, and replication results. Section 6 discusses

tuning implications. Section 7 covers threats to validity. Section

8 overviews related work. Section 9 concludes and Section 10

releases artifacts.

2. BACKGROUND
Leader election: Servers begin as followers; if no heartbeat

arrives before a randomized election timeout, a follower

becomes a candidate, increments its term, and requests votes. A

candidate that gains a majority becomes the leader; heartbeats

reset followers' timeouts. Randomization reduces split votes but

does not eliminate them; collisions can extend failover by

requiring additional rounds [1].

Log replication: The leader appends client commands to its log

and replicates them via AppendEntries RPCs (Remote

Procedure Calls). A log entry is committed when a majority

stores the entry for the leader's current term; followers apply

committed entries to their state machines [1].

Safety: Raft enforces a log matching property and term

monotonicity: leaders have up-to-date logs; conflicting entries

are overwritten by the leader's authoritative history.

Operational metrics:

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

17

• Failover time: elapsed time from leader crash to the

first heartbeat emitted by the newly elected leader

(cluster becomes leaderful again).

• Leader tenure: time from a leader's election to its

replacement (by crash or re-election).

• Replication latency: per command, time from

Start(command) on the leader to majority commit and

application. Latency was evaluated under controlled

message-loss rates up to 15 %.

3. SYSTEM DESIGN

3.1 Raft implementation (Go)

The Raft implementation is written in Go and implements the

canonical components required by Labs 2A–2C: leader

election, log replication, and durable persistence. Each server

instance maintains the standard Raft state (current term, role,

commitIndex, lastApplied) and per-peer replication

bookkeeping (nextIndex and matchIndex). Periodic heartbeats

are sent by the leader; followers use randomized election

timeouts to transition to candidate state and trigger leader

elections. The implementation persists the minimum Raft state

required for safety (current term, voted-for, and the log of

entries) to stable storage so that crash–recover cycles maintain

correctness. Concurrency is expressed using goroutines and

guarded by mutexes where state is shared; network RPCs and

timers run asynchronously against the local Raft instance.

3.2 Instrumentation hooks and metrics

format

Instrumentation was added with narrow, non-intrusive hooks

placed at protocol boundaries so as not to alter control flow or

timing semantics. The hooks record a compact set of ground-

truth events with millisecond timestamps and contextual fields

(node id, term, entry id, scenario tags, seed, trial). The captured

events are:

• Election start: timestamp recorded when a follower

transitions to candidate.

• Leader elected: timestamp, new leader id and leader

term when a majority of servers accept the new

leader.

• First heartbeat: timestamp of the first AppendEntries

or heartbeat issued by the newly elected leader (used

as the end-of-failover marker).

• Start(command): timestamp and unique entry id

when the current leader accepts a client command.

• Commit/apply: timestamp when an entry becomes

majority-committed and is applied locally.

Each event appends a CSV row to one of three files with well-

defined column schemas: failover_trials.csv (fields: scenario,

timeout bounds, seed, trial, old_leader, new_leader,

crash_time_ms, election_start_ms, leader_elected_ms,

first_heartbeat_ms, failover_ms), leader_tenure.csv (fields:

scenario, seed, trial, leader_id, term, start_ts_ms, end_ts_ms,

tenure_ms), and replication_latency.csv (fields: scenario,

drop_rate, seed, trial, entry_id, leader_term, start_ts_ms,

commit_ts_ms, latency_ms). Tags (scenario, seed, trial) are

recorded in each row to enable robust grouping and

reproducibility. The metrics capture both the raw dashboard

timing and the ground-truth millisecond timestamps;

subsequent analysis converts and normalizes these values for

presentation.

3.3 Dashboard front-end and control

primitives (React/Node)

The interactive dashboard is implemented as a React client with

a Node server that shares the same instrumentation API as the

Raft core so that the visualization and metrics remain aligned.

The UI visualizes five nodes placed at the vertices of a pentagon

with color-coded roles (follower, candidate, leader). The

interface exposes controlled fault-injection primitives:

crash/recover individual nodes, force election timeouts, drop

the latest appended entries, and set a global packet drop rate.

Animations visualize RPCs (AppendEntries and replies) as

moving tokens to aid human comprehension; these animations

intentionally run at slowed timing to make protocol dynamics

visible. The server component implements the same logging

hooks as the Raft core so that the UI state and the recorded CSV

metrics correspond precisely.

3.4 Visualization timing, ground truth, and

tooling

To make the UI usable for human observers, the dashboard

intentionally runs at slowed wall-clock timers (heartbeat =

2400 ms; election timeout randomized between 6000–10000

ms). To report results that reflect conventional Raft

deployments, the analysis pipeline rescales recorded times by a

constant factor (SCALE = 25.0) so that plotted and reported

numbers correspond to normalized values (heartbeat ≈ 100 ms;

election timeout ≈ 240–400 ms). All scripts, including

raft_experiments/analyze_raft_results.py and the Node

metrics.js helper, support the same seed and trial tagging so

recorded metrics are deterministic given the same seed and

crash schedule. The analyzer produces the canonical outputs

used in this paper (CDFs of failover time, boxplots of leader

tenure, and replication-latency vs. drop-rate curves) and

computes summary statistics (count, median, p90, p95) for

grouped comparisons. The detailed experimental setup and

analysis are presented in Section 4.

4. EXPERIMENTAL SETUP

4.1 Hardware, environment and

reproducibility

All experiments in this submission were executed in a

controlled development environment: Windows 11 for

authoring and verification; Go 1.19+ for the Raft

implementation; Node 20.x for the dashboard server and client;

and Python 3.10.x for analysis. The repository includes a

README and CI workflows that document build and test

commands. To ensure reproducibility, the instrumentation

records the seed and trial fields for every metric row; these,

together with the provided crash schedule scripts and the

analyzer, permit exact regeneration of the figures reported here.

4.2 Cluster topology and scenarios

Experiments were performed on a fixed 5-node cluster

configured in the default quorum layout. The primary scenario

used for the quantitative evaluation is leader_crash_restart, in

which the current leader is crashed and subsequently restarted

on a controlled schedule to induce repeated elections and

failovers. Two additional control scenarios (forced_timeout and

drop_latest) are implemented in the dashboard and were used

for exploratory testing; they are not emphasized in the long-run

quantitative run reported in this paper.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

18

4.3 Network fault model and parameter

sweep

Network unreliability is modeled by a global packet drop

parameter that probabilistically drops RPC messages. The

experiments sweep the drop rate over the set {0.00, 0.03, 0.06,

0.09, 0.12, 0.15} to evaluate replication latency sensitivity.

Message delays in the UI are deterministic and slowed for

visualization; the analysis normalizes the reported times (see

Section 3.4) so that the results reflect realistic timing ratios. The

dashboard also supports targeted operations such as dropping

the latest log entry, which is useful for specific

microbenchmarks of replication behavior.

4.4 Trials, seeding and automated runs

A single automated long-run experiment consists of an ordered

sequence of induced leader crashes (100 scheduled crash events

for the long run) executed under a fixed pseudo-random seed.

Each run is labeled by the seed and trial fields; the long-run

dataset produced here contains 100 induced crash events (77

events remained after cleaning; see Section 4.6) and multiple

leader terms recorded per run. Short-run datasets (40–45

events) are kept as comparison baselines. The metrics.js helper

exposes a programmatic API (initMetrics) to tag each run with

metadata (scenario, seed, trial, timeoutLowMs,

timeoutHighMs) so that the analyzer can group and compare

runs deterministically.

4.5 Metrics collected and derived

quantities

Primary metrics recorded are:

• Failover time defined as the interval from the

crash (or the last known leader transition) to the

first heartbeat from the newly elected leader,

• Leader tenure measured as the duration a node

serves as leader for a given term,

• Replication latency measured per-entry as the

interval between client command acceptance

(Start) and commit/apply.

The analyzer converts raw millisecond timestamps to seconds

and applies the normalization scale factor described in Section

3.4. Grouped summaries report counts, medians, and tail

percentiles (p90 and p95) for each experimental bucket

(scenario × drop_rate).

4.6 Data cleaning, outlier handling and

statistical reporting

Raw CSV output is cleaned by deterministic rules in the

analysis script. Early warm-up artifacts (rows where

crash_time_ms, election_start_ms and leader_elected_ms are

all zero) are excluded. Only rows where failover_ms > 0 are

retained as valid failover events. To reduce the influence of

spurious measurements from mis-triggered experiments or

operator error, the analysis discards unscaled outliers with

failover times less than 0.5 s or greater than 120 s (equivalently,

outside the plausible protocol operation window given the

slowed UI timers); these thresholds are conservative and chosen

to reflect plausibility, not to bias results toward any hypothesis.

After cleaning, timing columns are converted to seconds and

scaled (divide by SCALE) prior to plotting. Summary statistics

shown in the paper (medians; p90/p95) are computed using

standard non-parametric definitions (median = 50th percentile;

p95 = 95th percentile). CDF plots are produced by plotting the

empirical cumulative distribution of observed values for each

scenario.

5. RESULTS

5.1 Failover Stability

Figure 1 shows the cumulative distribution of leader failover

times for the leader_crash_restart scenario, comparing the short

run (n = 40) and the extended run (n = 77). The longer

experiment reveals a noticeably heavier tail, indicating rare

timeout collision paths that only appear when the number of

induced failures is large.

Quantitatively, the median failover time increased from ≈ 1.0 s

in the short run to ≈ 2.29 s in the extended run, while the 95th

percentile rose from ≈ 5.4 s to ≈ 9.0 s. This divergence

highlights that shorter tests can underestimate upper-tail

behavior and thus overstate system responsiveness.

Table 1. Short Run (n=44) vs Long Run (n=77)

Run Type
Events

(n)

Median

(s)

95th Percentile

(s)

Short Run 40 1.02 5.42

Long Run 77 2.29 9.01

Figure 1: Leader Failover Time CDF (timeout 240–400

ms, heartbeat 100 ms).

5.2 Leader Fairness

Leadership fairness evaluates whether Raft’s randomized

election timeouts yield an equitable rotation of the leader role

among all nodes. Over 77 elections in the long-run dataset,

leadership rotated almost uniformly across the five servers,

each serving 14–17 terms. Figure 2 plots the term distribution

per node.

This near-uniform spread demonstrates the effectiveness of

Raft’s randomization in avoiding persistent leadership bias or

starvation. It also confirms that the implementation preserves

fair term distribution even under recurring crash-and-recovery

churn.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

19

Figure 2: Distribution of Leader Terms per Node (n = 77).

5.3 Leader Tenure

Leader tenure measures the duration for which a node remains

leader before the next induced failover or timeout event. Figure

3 presents the boxplot of leader tenure durations (scaled to

normalized seconds). The median tenure observed was

approximately 1.7 s, with an interquartile range of 1.3–2.2 s.

These short yet stable epochs confirm that the system remains

continuously available during repetitive leader crashes and

restarts. The consistent distribution across the experiment

further indicates that Raft’s re-election mechanism quickly

restores steady-state operation after each failure.

Figure 3: Leader Tenure Distribution under Induced

Churn.

5.4 Replication Latency vs Drop Rate

Replication latency quantifies the time from when a leader

appends a client command to when the entry becomes majority-

committed. The experiment varied a global packet-drop rate in

{0.00, 0.03, 0.06, 0.09, 0.12, 0.15}. Figure 4 plots the median

and 95th-percentile latency for each drop level.

The median latency remained low—between 0.28 s and 0.47

s—even at 15 % message loss, showing Raft’s resilience in

normal operation. However, the 95th percentile increased to ≈

0.95 s, illustrating how higher loss primarily affects the tail of

the latency distribution rather than the median.

Figure 4: Replication Latency vs Packet-Drop Rate

(median and p95).

6. DISCUSSION AND TUNING

GUIDANCE
Election timeouts: Best-case failover benefits from short

timeouts, but tails are governed by collision probability. A wider

range (or slight per-node skew) reduces the chance that

candidates start together.

Heartbeats: Faster heartbeats shrink detection time after a leader

fails silently, but increase background traffic. The

measurements indicate that the tail latencies are dominated by

election events rather than heartbeat cadence at these scales.

Replication tails: Loss chiefly inflates p95, not the median—

consistent with majority commit. If service SLOs are

percentile-based, budget headroom for retry rounds.

Visualization vs. ground truth: Slowed UI timers did not change

qualitative dynamics; scaling preserved ratios and thus

quantitative relationships.

7. THREATS TO VALIDITY/

LIMITATIONS
Single machine simulation: Timing uses a Node event loop and

synthetic delays, not real NICs or OS scheduling.

Simplified failures: The system models crash failures and

message drops, not byzantine faults or long partitions.

Clocking: UI timestamps (performance.now) and Go timings

are aligned by design but not synchronized to a wall clock;

analysis uses relative deltas.

Sample size per bucket: Some drop rate buckets in the long run

have <30 entries, causing jitter in p95.

8. RELATED WORK
The present work builds upon the Raft line of research [1] and

[4], alongside Paxos and its engineering accounts [5] and [6].

Formal verification frameworks such as Verdi [7] explore

verified distributed systems. Production-grade Raft

implementations like etcd’s module [8] inform practical design

trade-offs. Visualization resources also exist [3]; the primary

contribution is a compact and reproducible measurement

pipeline integrated with an interactive dashboard designed for

instructional and analytical purposes.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

20

9. CONCLUSION AND FUTURE WORK
An instrumented implementation of the Raft consensus

algorithm was developed and integrated with a fault-injectable

dashboard to make the protocol’s internal behavior both visible

and measurable. Extended experiments on a five-node cluster

(100 ms heartbeat interval; 240–400 ms randomized election

timeouts) demonstrated a median failover latency of

approximately 2.29 s (p95 ≈ 9.0 s) across 77 induced failovers,

revealing the presence of long-tail recovery paths that shorter

runs tend to underestimate. Leadership rotation remained

statistically balanced (≈ 14–17 terms per node), validating

Raft’s randomized election process, while replication latency

stayed low at the median (≈ 0.28–0.47 s) even under 15 %

simulated packet loss. These findings confirm that lightweight

instrumentation, coupled with controlled fault injection, can

effectively quantify Raft’s dynamic performance and enhance

understanding of distributed consensus under real-world fault

conditions.

Future work will focus on expanding the experimental scope

and functional depth of the system. Planned extensions include

the simulation of network partitions, dynamic cluster resizing,

and the addition of snapshot and log-compaction mechanisms

for long-lived replicas. Further, incorporating real RPC loss

models, variable latency distributions, and larger randomized

clusters will allow the derivation of statistically rigorous

confidence intervals. Integrating these features will not only

strengthen the research utility of the platform but also position

it as a reproducible framework for teaching, benchmarking,

and analyzing consensus algorithms in distributed systems

research.

10. ARTIFACTS AND

REPRODUCIBILITY

10.1 Availability of Code and Data
10.1.1 Code, data, and scripts:
GitHub Repository: https://github.com/Shre-coder22/raft-

distributed-systems-lab [9].

Archived DOI Snapshot:

https://doi.org/10.5281/zenodo.17015793 [10].

10.1.2 The repository includes:

raft/ — Go implementation of Raft (compatible with MIT 6.824

[2]).

raft-dashboard/ — React/Node dashboard with fault injection

(crash, recover, timeouts, log drops). artifact/ — day-by-day

notes.

paper/ — LaTeX source and figures for this manuscript.

10.2 Environment

Windows 11

Go 1.19+

Node 20.10.0

Npm 10.2.3

Python 3.10.3

10.3 Setup

py -m venv venv

./venv/Scripts/Activate.ps1 pip install -U

pip pandas numpy matplotlib

10.4 Run the Dashboard

server cd raft-

dashboard/server npm

run dev

client (in another shell) cd

raft-dashboard/client npm

run dev

10.5 Collect Metrics and Regenerate Figures

Ensure: initMetrics({timeoutLowMs: 6000, timeoutHighMs:

10000,}) is set; clear /metrics/ between runs.

Run the analyzer: py raft_experiments\analyze_raft_results.py -

-input ./metrics_100run --out ./metrics_100run/figures --

compare_to metrics_40run --leader_fairness

11. REFERENCES
[1] D. Ongaro and J. Ousterhout, “In Search of an

Understandable Consensus Algorithm,” in USENIX ATC,

2014, pp. 305–319.

[2] MIT PDOS, “Distributed Systems (6.824) Labs.”

Available: https://pdos.csail.mit.edu/6.824/labs/ (accessed

2025-08-31).

[3] Raft Visualization, “Raft Interactive Visualization.”

Available: https://raft.github.io/ (accessed 2025-08-31).

[4] D. Ongaro, Consensus: Bridging Theory and Practice,

Ph.D. thesis, Stanford Univ., 2014.

[5] L. Lamport, “The Part-Time Parliament,” ACM Trans.

Comput. Syst., vol. 16, no. 2, pp. 133–169, 1998.

[6] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos

Made Live—An Engineering Perspective,” in Proc.

PODC, 2007, pp. 398–407.

[7] J. Wilcox et al., “Verdi: A Framework for Implementing

and Formally Verifying Distributed Systems,” in USENIX

OSDI, 2015.

[8] etcd Authors, “etcd Raft Implementation.” Available:

https://github.com/etcd-io/etcd/tree/main/raft (accessed

2025-08-31).

[9] S. Saxena, “Instrumented Raft + Dashboard: Measuring

Failover, Latency, and Tenure.” GitHub:

https://github.com/Shre-coder22/raft-distributed-systems-

lab, 2025.

[10] S. Saxena, “Artifact snapshot for Instrumented Raft +

Dashboard.” DOI: 10.5281/zenodo.17015793, 2025.

IJCATM : www.ijcaonline.org

https://github.com/Shre-coder22/raft-distributed-systems-lab
https://github.com/Shre-coder22/raft-distributed-systems-lab
https://pdos.csail.mit.edu/6.824/labs/

