International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.48, October 2025

Performance Benefits of Reactive Frameworks

Ramesh V.

AT&T

3400 W Plano Pkwy, Plano, TX 75075

ABSTRACT

Reactive programming enables the construction of responsive
and robust applications that are capable of efficiently managing
asynchronous data streams and dynamic changes. Among
various frameworks that support this paradigm, Spring is
distinguished by its adaptability and lightweight Java-based
structure, making it particularly suitable for enterprise
environments. Introduced in 2003, the Spring ecosystem offers
two primary web frameworks: Spring Web Model-View-
Controller and Spring WebFlux. In the former, the original
component of the Spring framework is optimized for the servlet
API and container environments, while the latter is a newer
addition that leverages a reactive stack architecture to achieve
enhanced scalability and performance. This study
comprehensively evaluates these frameworks through
performance benchmarking across diverse scenarios. By
integrating a broad spectrum of performance metrics (i.e.,
throughput and response time) and real-world applications, this
study aims to extend the current literature and provide
developers with concrete insights into selecting the appropriate
Spring framework for specific enterprise needs based on
synchronous and reactive programming models. [1][3]

General Terms
Performance, Algorithms,
Measurement

Design, Experimentation and

Keywords

Spring WebFlux, Reactive Streams, EventLoop Model, Spring
MVC, Web Application Performance, High Concurrency
Systems and Netty vs Servlet Container

1. INTRODUCTION

Web applications typically integrate many complex
components such as databases and rest API calls that
traditionally operate under a synchronous, blocking model.
This approach is effective at low data scales but becomes
inefficient under increased data load, leading to high latency
and poor resource utilization on multicore systems. Reactive
programming addresses these shortcomings by introducing a
nonblocking, event-driven model, thereby enhancing system
responsiveness and resource management. Within the Spring
framework, this shift is represented by the contrast between
Spring Web Model-View-Controller (MVC), which adheres to
traditional synchronous operations, and Spring WebFlux,
which employs a reactive programming model optimized for
dynamic, real-time interactions among the service, database,
and network layers. [2][4]

This study contributes to the ongoing evaluation of reactive-
and servlet-based web frameworks by providing practical
insights and reproducible Spring framework configurations.
The specific goals of this research are to systematically test the
performance characteristics of Spring Web MVC and Spring
WebFlux under different workloads and analyze the resulting
performance metrics to guide real-world architectural
decisions. The original contributions of this study include (1)
the implementation of realistic benchmarking using two

representative scenarios—compute-bound and network-bound
APIs—to evaluate the performance of Spring Web MVC and
Spring WebFlux; (2) iterative performance-driven code
refinement, presenting source codes and configurations
developed through repeated benchmarking, with refinements
guided by empirical performance outcomes; (3) side-by-side
comparison of servlet and reactive stacks, presenting detailed
implementation, configuration, and tuning strategies for Spring
Web MVC (Tomcat, RestTemplate, and Async Executor) and
Spring WebFlux (Netty, WebClient, and reactive schedulers);
(4) runtime configuration guidelines through a structured
analysis of runtime tuning for thread pools, database
connection pools, WebClient, Netty event loops, and back
pressure control; (5) performance observations and
recommendations concerning when to adopt a reactive or
servlet-based model depending on the nature of the workload;
and (6) inclusion of code snippets, configurations files, and
performance metrics to support reproducibility. [1][5]

In addition, this study builds upon and complements prior
research comparing web frameworks and execution models.
Prior work in this domain has explored the trade-offs between
traditional thread-per-request architectures and modern event-
driven approaches. This study contributes to that body of
knowledge by incorporating realistic scenarios, performance-
tuned configurations, and measurable outcomes. By providing
practical insights and reproducible configurations, it offers a
grounded perspective for developers and architects making
framework-related decisions. The comparison methodology is
based on widely accepted practices in performance engineering
and contributes to ongoing efforts in evaluate framework
suitability in real-world applications.

2. METHOD

2.1 Synchronous vs. Reactive Programming

To comprehensively assess the contrasts and functionalities of
synchronous and reactive programming models, exploring how
each type manages resources and user requests is essential.

The synchronous programming model, widely utilized in
frameworks such as Spring Web MVC, allocates a single thread
to comprehensively manage each web request, as illustrated in
Figure. 1.

Requests
Thread Blocked

and Waiting for
Response

Available Thread
Dedicated to
Requests

Figure 1. Block diagram of a synchronous programming
model.

While the synchronous programming model functions well
under minimal data load, it poses problems under high demand

40

owing to thread idling during blocking operations, such as
database queries, inhibiting the ability of threads to perform
other tasks. This inefficiency escalates in high-traffic
environments, wherein managing numerous threads leads to
substantial overhead due to context switching. Additionally,
the inability of this model to simultaneously handle multiple
requests without adding more threads complicates scalability
and reduces responsiveness, particularly in dynamic,
interactive applications. These limitations highlight the need
for more efficient models, such as the nonblocking, event-
driven ones used in reactive programming, which can better
meet the demands of modern web applications. [6][8]

Reactive programming fundamentally changes how
concurrency is approached by structuring applications around
asynchronous data flows and event propagation, thereby
improving resource utilization and concurrency, as illustrated
in Figure. 2. Unlike traditional thread-based models wherein
operations block threads, reactive programming employs
nonblocking operations. Operations such as database reads
return a publisher to which subscribers can asynchronously
react, enabling event processing and generation without tying
up threads, thereby enhancing overall system efficiency and
responsiveness. [9]

Requests

Thread Registers
Callback & Does
Not Block

Single or a Few
Threads Process
All Requests

Figure 2. Block diagram of a reactive programming
model.

Among several programming models that describe a reactive
approach to concurrency, one such reactive asynchronous
programming model is the event loop model, as illustrated in
Figure. 3. The event loop model is based on the reactor library,
which uses a single-threaded event loop to handle all incoming
requests. Each new request is assigned to the event loop, which
processes the request and returns a response. Notably, the event
loop can handle other requests while one request is being
processed, improving overall performance and scalability. [7]

[Outbound Channel Handler|

Socket
@l

Sockets|

Spring WebFlux
onteolie.

Inbound Channel Handler

Request

\ % _/

Reactor Netty HTTP Server

Figure 3. Schematic of the event loop working model.

2.2 Development of Spring Web MVC and
Spring WebFlux Application Scenarios

Applications were constructed for the following distinct
scenarios to assess how each framework handles specific
operational scenarios based on response time and throughput
metrics.

1. Compute-Bound Scenarios: These scenarios involve
the implementation of a RESTful API that retrieves

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.48, October 2025

product entries from an H2 in-memory database and
enriches them using in-memory lookup maps based
on attributes such as category, region, and type. The
response includes a transformed representation of
each product, incorporating descriptive metadata
through string processing and business rule
evaluation.

2. Network-Bound Scenarios: These scenarios test
network interaction, where the APl makes a POST
request to an external microservice with a JSON
payload. The operation is characterized by network
latency and potential thread blocking due to
synchronous input/output (I/O) behavior.

The application logic and configuration parameters were
finalized through multiple rounds of performance evaluation
using representative workloads. Each iteration informed
incremental code and configuration refinements, resulting in
improved throughput, latency, and resource -efficiency.
[16][18]

Tables 1-2 list the design considerations for the compute-
bound scenarios in Spring Web MVC.

Table 1. Design considerations for Tomcat thread pool

request handling.

Setting Consideration

max-threads
120 for a 6 cores CPU. (# of cores * 20)

min-spare-threads
ramp-up delay

Size of the request queue - larger means
more tolerance during load spikes
before rejecting.

accept-count

connection-timeout Prevents idle connections from hanging
too long : 5s is typical

Table 2. Design considerations for Hikari CP - database
connection pool.

Setting Consideration

maximum-pool-size Should match expected peak concurrent

DB operations (e.g. 25~30). More isn’t better

unnecessary DB connections consume
memory

minimum-idle Set a low value like 5~10 to avoid pool

ramp-up delays
idle-timeout Enable GZIP for large payloads.

connection-timeout Prevent slow clients from hanging.

max-lifetime
connections

41

Set based on CPU cores. I have configured

Keep a small pool for burst traffic to avoid

Forces connection recyclying to avoid stale

Tables 3—4 list the design considerations for the compute-
bound scenarios in Spring Webflux.

Table 3 lists the design considerations for the computer-
bound scenarios in Spring WebFlux.

Aspect Spring WebFlux

DB Access Non-blocking (R2DBC)

Enrichment Logic Offloaded via Schedulers.boundedElastic()

Concurrency Model Event-loop + async thread pool

Table 4. Design considerations for Reactor Netty: reactive
server configuration.

Setting Consideration
Event loop threads Set via loop resources. Use 2 x CPU cores.

Read/write timeout Protect against stalled connections.
10s is reasonable.

Compression Enable GZIP for large payloads.

Connection timeout Prevent slow clients from hanging.

3. RESULTS AND DISCUSSION

This section presents the findings of the performance
evaluation conducted on Spring WebMVC and Spring
WebFlux under compute-bound and network-bound scenarios.
The discussion highlights their behavior across key
performance metrics such as response time, throughput, and
resource utilization.

3.1 Compute-Bound Scenario

The JMeter Test plan included 1000 users, a ramp-up period of
Is, and a loop count of 10,000. The system configuration
comprised a MacBook Pro, 6-core Intel i7, 2.6 GHz system.
Spring version 5.2.32 was employed.

3.1.1. API Performance Index and Performance
Statistics

As shown in Figure. 4, both applications (Spring Web MVC
and Spring WebFlux) successfully responded to all API
requests within a response time range of 500 ms to 1.5 s. In
addition, as illustrated in Figure. 5, Spring Web MVC
consistently outperformed Spring WebFlux, delivering higher
throughput and faster response times under similar load
conditions. [11][12] [19]

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.48, October 2025

APDEX (Application Performance Index)
Apdax ~ T (Tolaration threwhald) ® F (Frustration threshold) & Label .

1.000 500 ms 1 800 500 ma Total

1,000 500 my 1 soc 500 my Spring MVC

APDEX (Application Performance Index)

F (Frusteation
Andox g o ’ et
0.000 BOO mn 1 nee BOO ms Totnl
0,000 600 me 1 800 500 me Spring Reactive

Figure 4. Application performance index of the compute-
bound scenario

Statistics

Spring e = e
Reactive Average ® Min ® Max ® Median © 90thpct & 9Sthpct ¢ 99thpct © Transactionsls
148.68 1 10144 200 3.00 27795 495.00 3323.00
14868 1 10144 200 300 27795 49500 332300
Statistics
Spring Rosponse Times (ms) Throughpat
MvC Aversge ® Min ¢ Max ® Median © 90thpct ® 95thpct ¢ 99thpct ® Transactions’s ©
41.70 o 6586 16.00 22.00 25.00 45.00 11860.79
41.70 0 6586 16.00 2200 2500 4500 1186079

Figure 5. Performance statistics for the compute-bound
scenario

3.1.2. Throughput, Average Response Times

The detailed performance metrics presented in Figure. 6 reveal
that the throughput of Spring Web MVC was approximately
four times greater than that of Spring WebFlux, underscoring
its efficiency in request handling. Additionally, Figure. 7 shows
that Spring Web MVC achieved a significantly faster average
response time, also nearly four times better. This performance
advantage is further validated by Figure. 8, where Spring Web
MVC maintained superior responsiveness at both the 95th and
99th percentiles, contributing to a more consistent and efficient
overall performance compared to Spring WebFlux.

Spring BEOS_ 65
Reactive 3sOs. 65

Spring MVC 1S112.91

1S11=2.9

Figure 6. Throughput values for the compute-bound
scenario

Spring Reactive

Spring MVC

Figure 7. Average response times for the compute-bound
scenario

42

Min ¢ Max ¢ Median ® OOthpct ¢ 95thpct ¢ 99thpet ¢
0 4464 191.00 256.00 273.00 314.00

0 4464 191.00 256.00 273.00 314.00

Mo & Max ¢ Nedan ® SOtpt & Sthpet & hpet ¢
0 M 160 B0 200 6400

0 374 16.00 2600 21.00 64.00

Figure 8. Average response times for compute-bound
scenario 2 at the 95th and 99th percentiles.

3.2 Network-Bound Scenario

The JMeter test plan included 25 users, a ramp-up period of 1
second, and a loop count of 10,000. The system configuration
comprised a MacBook Pro with a 6-core Intel i7, 2.6 GHz
processor. Spring version 5.2.32 was employed.

3.2.1. API Performance Index and Performance
Statistics

As shown in Figure. 9, both applications (Spring Web MVC
and Spring WebFlux) responded to all API requests within a
response time range of 500 ms to 1.5 s. Figure. 10 presents the
statistical report, which clearly demonstrates that Spring
WebFlux consistently outperformed Spring Web MVC under
the given test conditions.

APDEX (Application Performance Index)

< T (Toleration . F (Frustration . .

Apdox threshold) threshold) Label
0.990 600 ms 1 woc 600 ms Total
0.900 500 ms 1 wec 500 ms Spring MVC
APDEX (Application Performance Index)
— T (Toleration . ¥ (Frustration . .
Apdex threshold) threshold) Label
1.000 500 ms 1 sec 500 ms Total
1.000 500 ms 180G 500 ms Spring Reactive

Figure 9. Application performance index for network-
bound scenario

Statistics
Spring Response Times (ms) Throughput
Reactive Average ¢ Min ® Max ® Median ¢ 90thpct® 9Sthpct® 9thpct® Transactionsis ©
2.90 0 1035 100 300 400 1600 8107.64
290 0 1085 100 300 400 1600 8107.64
Statistics
Spring T
MVC ’ oy

Average ¢ Min ¢ Max ¢ Median ¥ 0thpct® 95thpct® 99thpct® Transactionsls ¢
11.08 0 26417 2.00 2.00 3.00 3.00 1754.81

11.08 0 26417 200 200 3.00 3.00 1754.81

Figure 10. Performance statistics for the network-bound
scenario

3.2.2. Throughput, Average Response Times

As shown in Figure. 11, Spring WebFlux achieved throughput
levels nearly four times higher than Spring Web MVC,
reflecting its robust handling capabilities in high-concurrency

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.48, October 2025

environments. Additionally, Figure. 12 indicates that the
response time for Spring WebFlux was more than four times
faster than that of Spring Web MVC. This performance
advantage is further supported by the percentile analysis in
Figure. 13, which highlights Spring WebFlux’s consistent
responsiveness at both the 95th and 99th percentiles.

Throughput

Transactions/s -

Spring
Reactive

8107.64

8107.64

Throughput
Transactions/s =

Spring MVC 175481

1754.81

Figure 11. Throughput report for network-bound scenario

e e -
Spring Reactive [Sisieted

=2_90

Average -
Spring MVC 11.08

11.08

Figure 12. Average response times for the network-bound
scenario

Min ¢ Max ¢ Median ¢ 90thpct ¢ 95thpct® 99thpct ¢

spring [1035 1.0 300 400 1600

Reactive
0 1035 1.00 3.00 4.00 16.00

Min # Max ¥ Median ¥ 90thpcts 95thpct® 9thpet®

Spring %417 200 200 300 300
MVC

0 26417 200 2.00 3.00 3.00

Figure 13. Average response times for network-bound
scenario 2 at the 95th and 99th percentiles.

4. CONCLUSION

This study conducted a detailed, hands-on evaluation of two
architectural models in the Spring ecosystem: Spring Web
MVC and Spring WebFlux. The evaluation was grounded in
practical implementation, wherein source code was iteratively
developed and refined through repeated performance
benchmarking. Spring Web MVC adopts a thread-per-request
model in which each incoming request occupies a dedicated
thread until the entire operation, including downstream
interactions (e.g., database or external API calls), is completed.
This synchronous behavior is suitable for applications that
involve CPU-bound processing with limited external 1/O,
where parallelism can be manually introduced using
mechanisms such as @Async and ThreadPoolTaskExecutor.
Alternatively, Spring WebFlux, built on Reactive Streams,
embraces a nonblocking event-driven model. Unlike the servlet
stack, it does not assign a separate thread-per-request. Instead,
Spring WebFlux utilizes a small number of event loop threads

43

and reactive operators (Mono and Flux) to efficiently manage
/O, making it better suited for high-concurrency scenarios that
involve external service integrations or latency-prone
resources.

Two realistic scenarios were implemented to empirically
analyze the performance of servlet and reactive stacks, with
detailed code snippets provided for both scenarios, including
service logic, controller mappings, configuration files, and
thread pool tuning. In Spring WebFlux, the enrichment logic
was carefully offloaded to Schedulers.boundedElastic() to
prevent blocking of the Netty event loop. In Spring Web MVC,
similar CPU-bound processing was handled using @Async and
a custom TaskExecutor. The applications were subjected to
repeated load testing using Apache Jmeter to evaluate
throughput, latency, and system resource utilization under
varying concurrency levels, revealing the following trends:

1. In the compute-bound scenarios, Spring Web MVC with
tuned @Async executors performed better than Spring
WebFlux owing to direct thread allocation and reduced 1/0O
latency from the H2 in-memory database.

2. In the network-bound scenarios, Spring WebFlux
substantially outperformed Spring Web MVC owing to its
nonblocking design, which allowed the system to handle more
concurrent requests without increasing the thread pool size or
CPU consumption.

3. WebClient configurations, including connection pooling and
timeout settings, exerted a tangible impact on performance
under high I/O load.

Spring Web MVC holds a slight advantage over Spring
WebFlux in environments that do not demand intensive
interactions with external systems owing to its ability to
efficiently and simultaneously handle numerous threads,
offering rapid request processing. However, Spring WebFlux
performs better in more complex scenarios that require frequent
file system access, database operations, or network interactions
by leveraging its event loop model. Spring WebFlux avoids the
typical delays found in the thread pool approach of Spring Web
MVC, which is particularly evident with increasing system
demand. Transitioning to a fully reactive architecture with
Spring WebFlux not only maximizes resource utilization but
also considerably boosts application performance. The findings
of the study indicate that applications can achieve increased
scalability and responsiveness by utilizing reactive drivers for
databases and employing reactive HTTP client for network
requests, making Spring WebFlux the preferable choice for
modern, high-performance = commercial applications.
[14][15][20]

5. ACKNOWLEDGMENTS

I sincerely thank the AT&T research paper reviewers for their
insightful feedback, which greatly contributed to improving
this work.

6. REFERENCES

[1] O. Dokuka and 1. Lozynskyi, Hands-on Reactive
Programming in Spring 5: Build Cloud-Ready, Reactive
Systems with Spring 5 and Project Reactor, Packt,
Birmingham, UK, 2018.

[2] R. Sharma, Hands-On Reactive Programming with
Reactor: Build Reactive and Scalable Microservices
Using the Reactor Framework, Packt, Birmingham, UK,
2018.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.48, October 2025

[3] M. Srivastava, Mastering Spring Reactive Programming for
High-Performance Web Apps, Notion Press, New York,
NY, USA, 2024.

[4] Y. Mednikov, Friendly WebFlux: A Practical Guide to
Reactive Programming with Spring WebFlux,
Independent, 2021.

[5] C. Deinum and I. Cosmina, “Building Reactive
Applications with Spring WebFlux,” in Spring in Action,
5th ed., Manning, New York, NY, USA, 2021, ch. 10.

[6] A. Sukhambekova, “Comparison of Spring WebFlux and
Spring MVC,” Modern Scientific Method, no. 9, Mar.
2025.

[7] Royal Institute of Technology (KTH), “Comparing Virtual
Threads and Reactive WebFlux in Spring,” M.S. thesis,
Stockholm, Sweden, 2023.

[8] A. Nordlund and N. Nordstrom, “Comparing Virtual
Threads and Reactive WebFlux in Spring,” diva-
portal.org, 2023. [Online]. Available: https://www.diva-
portal.org/smash/get/diva2%3A1763111/FULLTEXTOI.
pdf

[9] Q. Li and R. Sharma, “Review on Spring Boot and Spring
WebFlux for Reactive = Web Development,”
ResearchGate, 2020. [Online]. Available:
https://www.researchgate.net/publication/341151097

[10] A. Filichkin, “Spring Boot Performance Battle: Blocking
vs Non-Blocking vs Reactive,” Medium, May 2018.
[Online]. Available: https://filia-
aleks.medium.com/microservice-performance-battle-
spring-mvc-vs-webflux-80d39fd81bf0

[11] M. Piyumal, “Mastering Reactive Programming with
Spring WebFlux,” Medium, Jan. 2024. [Online].
Available:
https://manjulapiyumal.medium.com/mastering-reactive-
programming-with-spring-webflux-47dbf57857f0

[12] “SpringBoot MVC vs WebFlux: Performance Comparison
for JWT Verify and MySQL Query,” Medium, Jul. 2025.
[Online]. Available: https://medium.com/deno-the-
complete-reference/springboot-mvc-vs-webflux-
performance-comparison-for-jwt-verify-and-mysql-
query-10d5ff08alba

[13] P. Minkowski, “Performance Comparison Between Spring
MVC vs Spring WebFlux with Elasticsearch,” Personal
Blog, Oct. 2019. [Online]. Available:
https://piotrminkowski.com/2019/10/30/performance-
comparison-between-spring-mvc-and-spring-webflux-
with-elasticsearch/

[14] G. Munhoz, “API Performance — Spring MVC vs Spring
WebFlux vs Go,” Medium, Aug. 2020. [Online].
Available: https://filipemunhoz.medium.com/api-
performance-spring-mvc-vs-spring-webflux-vs-go-
f97b62d2255a

[15] F. Dorado, “Reactive vs Non-Reactive Spring
Performance,” Personal Blog, Jun. 2019. [Online].
Available:
https://frandorado.github.io/spring/2019/06/26/spring-
reactive-vs-non-reactive-performance.html

[16] T. Emanovikov, “R2DBC vs JDBC vs Vert.x — Not So
Fast Benchmark,” Medium, n.d. [Online]. Available:

44

https://medium.com/@temanovikov/r2dbc-vs-jdbc-vs-
vert-x-not-so-fast-benchmark-c0a9fcabb274

[17] G. Gatheca, “Spring WebFlux: Load Testing Using
IMeter,” Medium, Sep. 2021. [Online]. Available:
https://gathecageorge.medium.com/6-spring-webflux-
load-testing-using-jmeter-b0875b09fc25

[18] “Performance Testing Strategies for Spring WebFlux
Applications,” Moldstud.com, Jul. 2025. [Online].
Available: https://moldstud.com/articles/p-performance-
testing-your-spring-webflux-application-tools-strategies-
and-best-practices

[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.48, October 2025

[19] “Mastering Spring WebFlux: Reactive APIs at Scale,”
Java Code Geeks, Jul. 2025. [Online]. Available:
https://www.javacodegeeks.com/2025/07/mastering-
spring-webflux-reactive-apis-at-scale.html

[20] “Spring MVC vs. Spring WebFlux: Choosing the Right
Framework for Your Project,” Dev.to, 2024. [Online].
Available: https://dev.to/jottyjohn/spring-mvc-vs-spring-
webflux-choosing-the-right-framework-for-your-project-
4cd2

45

