
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

40

Performance Benefits of Reactive Frameworks

Ramesh V.
AT&T

3400 W Plano Pkwy, Plano, TX 75075

ABSTRACT

Reactive programming enables the construction of responsive

and robust applications that are capable of efficiently managing

asynchronous data streams and dynamic changes. Among

various frameworks that support this paradigm, Spring is

distinguished by its adaptability and lightweight Java-based

structure, making it particularly suitable for enterprise

environments. Introduced in 2003, the Spring ecosystem offers

two primary web frameworks: Spring Web Model-View-

Controller and Spring WebFlux. In the former, the original

component of the Spring framework is optimized for the servlet

API and container environments, while the latter is a newer

addition that leverages a reactive stack architecture to achieve

enhanced scalability and performance. This study

comprehensively evaluates these frameworks through

performance benchmarking across diverse scenarios. By

integrating a broad spectrum of performance metrics (i.e.,

throughput and response time) and real-world applications, this

study aims to extend the current literature and provide

developers with concrete insights into selecting the appropriate

Spring framework for specific enterprise needs based on

synchronous and reactive programming models. [1][3]

General Terms

Performance, Algorithms, Design, Experimentation and

Measurement

Keywords
Spring WebFlux, Reactive Streams, EventLoop Model, Spring

MVC, Web Application Performance, High Concurrency

Systems and Netty vs Servlet Container

1. INTRODUCTION
Web applications typically integrate many complex

components such as databases and rest API calls that

traditionally operate under a synchronous, blocking model.

This approach is effective at low data scales but becomes

inefficient under increased data load, leading to high latency

and poor resource utilization on multicore systems. Reactive

programming addresses these shortcomings by introducing a

nonblocking, event-driven model, thereby enhancing system

responsiveness and resource management. Within the Spring

framework, this shift is represented by the contrast between

Spring Web Model-View-Controller (MVC), which adheres to

traditional synchronous operations, and Spring WebFlux,

which employs a reactive programming model optimized for

dynamic, real-time interactions among the service, database,

and network layers. [2][4]

This study contributes to the ongoing evaluation of reactive-

and servlet-based web frameworks by providing practical

insights and reproducible Spring framework configurations.

The specific goals of this research are to systematically test the

performance characteristics of Spring Web MVC and Spring

WebFlux under different workloads and analyze the resulting

performance metrics to guide real-world architectural

decisions. The original contributions of this study include (1)

the implementation of realistic benchmarking using two

representative scenarios—compute-bound and network-bound

APIs—to evaluate the performance of Spring Web MVC and

Spring WebFlux; (2) iterative performance-driven code

refinement, presenting source codes and configurations

developed through repeated benchmarking, with refinements

guided by empirical performance outcomes; (3) side-by-side

comparison of servlet and reactive stacks, presenting detailed

implementation, configuration, and tuning strategies for Spring

Web MVC (Tomcat, RestTemplate, and Async Executor) and

Spring WebFlux (Netty, WebClient, and reactive schedulers);

(4) runtime configuration guidelines through a structured

analysis of runtime tuning for thread pools, database

connection pools, WebClient, Netty event loops, and back

pressure control; (5) performance observations and

recommendations concerning when to adopt a reactive or

servlet-based model depending on the nature of the workload;

and (6) inclusion of code snippets, configurations files, and

performance metrics to support reproducibility. [1][5]

In addition, this study builds upon and complements prior

research comparing web frameworks and execution models.

Prior work in this domain has explored the trade-offs between

traditional thread-per-request architectures and modern event-

driven approaches. This study contributes to that body of

knowledge by incorporating realistic scenarios, performance-

tuned configurations, and measurable outcomes. By providing

practical insights and reproducible configurations, it offers a

grounded perspective for developers and architects making

framework-related decisions. The comparison methodology is

based on widely accepted practices in performance engineering

and contributes to ongoing efforts in evaluate framework

suitability in real-world applications.

2. METHOD

2.1 Synchronous vs. Reactive Programming
To comprehensively assess the contrasts and functionalities of

synchronous and reactive programming models, exploring how

each type manages resources and user requests is essential.

The synchronous programming model, widely utilized in

frameworks such as Spring Web MVC, allocates a single thread

to comprehensively manage each web request, as illustrated in

Figure. 1.

Figure 1. Block diagram of a synchronous programming

model.

While the synchronous programming model functions well

under minimal data load, it poses problems under high demand

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

41

owing to thread idling during blocking operations, such as

database queries, inhibiting the ability of threads to perform

other tasks. This inefficiency escalates in high-traffic

environments, wherein managing numerous threads leads to

substantial overhead due to context switching. Additionally,

the inability of this model to simultaneously handle multiple

requests without adding more threads complicates scalability

and reduces responsiveness, particularly in dynamic,

interactive applications. These limitations highlight the need

for more efficient models, such as the nonblocking, event-

driven ones used in reactive programming, which can better

meet the demands of modern web applications. [6][8]

Reactive programming fundamentally changes how

concurrency is approached by structuring applications around

asynchronous data flows and event propagation, thereby

improving resource utilization and concurrency, as illustrated

in Figure. 2. Unlike traditional thread-based models wherein

operations block threads, reactive programming employs

nonblocking operations. Operations such as database reads

return a publisher to which subscribers can asynchronously

react, enabling event processing and generation without tying

up threads, thereby enhancing overall system efficiency and

responsiveness. [9]

Figure 2. Block diagram of a reactive programming

model.

Among several programming models that describe a reactive

approach to concurrency, one such reactive asynchronous

programming model is the event loop model, as illustrated in

Figure. 3. The event loop model is based on the reactor library,

which uses a single-threaded event loop to handle all incoming

requests. Each new request is assigned to the event loop, which

processes the request and returns a response. Notably, the event

loop can handle other requests while one request is being

processed, improving overall performance and scalability. [7]

Figure 3. Schematic of the event loop working model.

2.2 Development of Spring Web MVC and

Spring WebFlux Application Scenarios
Applications were constructed for the following distinct

scenarios to assess how each framework handles specific

operational scenarios based on response time and throughput

metrics.

1. Compute-Bound Scenarios: These scenarios involve

the implementation of a RESTful API that retrieves

product entries from an H2 in-memory database and

enriches them using in-memory lookup maps based

on attributes such as category, region, and type. The

response includes a transformed representation of

each product, incorporating descriptive metadata

through string processing and business rule

evaluation.

2. Network-Bound Scenarios: These scenarios test

network interaction, where the API makes a POST

request to an external microservice with a JSON

payload. The operation is characterized by network

latency and potential thread blocking due to

synchronous input/output (I/O) behavior.

The application logic and configuration parameters were

finalized through multiple rounds of performance evaluation

using representative workloads. Each iteration informed

incremental code and configuration refinements, resulting in

improved throughput, latency, and resource efficiency.

[16][18]

Tables 1–2 list the design considerations for the compute-

bound scenarios in Spring Web MVC.

Table 1. Design considerations for Tomcat thread pool

request handling.

Setting Consideration

max-threads Set based on CPU cores. I have configured

 120 for a 6 cores CPU. (# of cores * 20)

min-spare-threads Keep a small pool for burst traffic to avoid

ramp-up delay

accept-count Size of the request queue - larger means

more tolerance during load spikes

 before rejecting.

connection-timeout Prevents idle connections from hanging

 too long : 5s is typical

Table 2. Design considerations for Hikari CP - database

connection pool.

Setting Consideration

maximum-pool-size Should match expected peak concurrent

DB operations (e.g. 25~30). More isn’t better

unnecessary DB connections consume

memory

minimum-idle Set a low value like 5~10 to avoid pool

 ramp-up delays

idle-timeout Enable GZIP for large payloads.

connection-timeout Prevent slow clients from hanging.

max-lifetime Forces connection recyclying to avoid stale

connections

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

42

Tables 3–4 list the design considerations for the compute-

bound scenarios in Spring Webflux.

Table 3 lists the design considerations for the computer-

bound scenarios in Spring WebFlux.

Aspect Spring WebFlux

DB Access Non-blocking (R2DBC)

Enrichment Logic Offloaded via Schedulers.boundedElastic()

Concurrency Model Event-loop + async thread pool

Table 4. Design considerations for Reactor Netty: reactive

server configuration.

Setting Consideration

Event loop threads Set via loop resources. Use 2 × CPU cores.

Read/write timeout Protect against stalled connections.

10s is reasonable.

Compression Enable GZIP for large payloads.

Connection timeout Prevent slow clients from hanging.

3. RESULTS AND DISCUSSION
This section presents the findings of the performance

evaluation conducted on Spring WebMVC and Spring

WebFlux under compute-bound and network-bound scenarios.

The discussion highlights their behavior across key

performance metrics such as response time, throughput, and

resource utilization.

3.1 Compute-Bound Scenario
The JMeter Test plan included 1000 users, a ramp-up period of

1s, and a loop count of 10,000. The system configuration

comprised a MacBook Pro, 6-core Intel i7, 2.6 GHz system.

Spring version 5.2.32 was employed.

3.1.1. API Performance Index and Performance

Statistics
As shown in Figure. 4, both applications (Spring Web MVC

and Spring WebFlux) successfully responded to all API

requests within a response time range of 500 ms to 1.5 s. In

addition, as illustrated in Figure. 5, Spring Web MVC

consistently outperformed Spring WebFlux, delivering higher

throughput and faster response times under similar load

conditions. [11][12] [19]

Figure 4. Application performance index of the compute-

bound scenario

Figure 5. Performance statistics for the compute-bound

scenario

3.1.2. Throughput, Average Response Times
The detailed performance metrics presented in Figure. 6 reveal

that the throughput of Spring Web MVC was approximately

four times greater than that of Spring WebFlux, underscoring

its efficiency in request handling. Additionally, Figure. 7 shows

that Spring Web MVC achieved a significantly faster average

response time, also nearly four times better. This performance

advantage is further validated by Figure. 8, where Spring Web

MVC maintained superior responsiveness at both the 95th and

99th percentiles, contributing to a more consistent and efficient

overall performance compared to Spring WebFlux.

Figure 6. Throughput values for the compute-bound

scenario

Figure 7. Average response times for the compute-bound

scenario

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

43

Figure 8. Average response times for compute-bound

scenario 2 at the 95th and 99th percentiles.

3.2 Network-Bound Scenario
The JMeter test plan included 25 users, a ramp-up period of 1

second, and a loop count of 10,000. The system configuration

comprised a MacBook Pro with a 6-core Intel i7, 2.6 GHz

processor. Spring version 5.2.32 was employed.

3.2.1. API Performance Index and Performance

Statistics
As shown in Figure. 9, both applications (Spring Web MVC

and Spring WebFlux) responded to all API requests within a

response time range of 500 ms to 1.5 s. Figure. 10 presents the

statistical report, which clearly demonstrates that Spring

WebFlux consistently outperformed Spring Web MVC under

the given test conditions.

Figure 9. Application performance index for network-

bound scenario

Figure 10. Performance statistics for the network-bound

scenario

3.2.2. Throughput, Average Response Times

As shown in Figure. 11, Spring WebFlux achieved throughput

levels nearly four times higher than Spring Web MVC,

reflecting its robust handling capabilities in high-concurrency

environments. Additionally, Figure. 12 indicates that the

response time for Spring WebFlux was more than four times

faster than that of Spring Web MVC. This performance

advantage is further supported by the percentile analysis in

Figure. 13, which highlights Spring WebFlux’s consistent

responsiveness at both the 95th and 99th percentiles.

Figure 11. Throughput report for network-bound scenario

Figure 12. Average response times for the network-bound

scenario

Figure 13. Average response times for network-bound

scenario 2 at the 95th and 99th percentiles.

4. CONCLUSION
This study conducted a detailed, hands-on evaluation of two

architectural models in the Spring ecosystem: Spring Web

MVC and Spring WebFlux. The evaluation was grounded in

practical implementation, wherein source code was iteratively

developed and refined through repeated performance

benchmarking. Spring Web MVC adopts a thread-per-request

model in which each incoming request occupies a dedicated

thread until the entire operation, including downstream

interactions (e.g., database or external API calls), is completed.

This synchronous behavior is suitable for applications that

involve CPU-bound processing with limited external I/O,

where parallelism can be manually introduced using

mechanisms such as @Async and ThreadPoolTaskExecutor.

Alternatively, Spring WebFlux, built on Reactive Streams,

embraces a nonblocking event-driven model. Unlike the servlet

stack, it does not assign a separate thread-per-request. Instead,

Spring WebFlux utilizes a small number of event loop threads

Spring

Reactive

Spring MVC

Spring Reactive

Spring MVC

Spring

Reactive

Spring

MVC

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

44

and reactive operators (Mono and Flux) to efficiently manage

I/O, making it better suited for high-concurrency scenarios that

involve external service integrations or latency-prone

resources.

Two realistic scenarios were implemented to empirically

analyze the performance of servlet and reactive stacks, with

detailed code snippets provided for both scenarios, including

service logic, controller mappings, configuration files, and

thread pool tuning. In Spring WebFlux, the enrichment logic

was carefully offloaded to Schedulers.boundedElastic() to

prevent blocking of the Netty event loop. In Spring Web MVC,

similar CPU-bound processing was handled using @Async and

a custom TaskExecutor. The applications were subjected to

repeated load testing using Apache Jmeter to evaluate

throughput, latency, and system resource utilization under

varying concurrency levels, revealing the following trends:

1. In the compute-bound scenarios, Spring Web MVC with

tuned @Async executors performed better than Spring

WebFlux owing to direct thread allocation and reduced I/O

latency from the H2 in-memory database.

2. In the network-bound scenarios, Spring WebFlux

substantially outperformed Spring Web MVC owing to its

nonblocking design, which allowed the system to handle more

concurrent requests without increasing the thread pool size or

CPU consumption.

3. WebClient configurations, including connection pooling and

timeout settings, exerted a tangible impact on performance

under high I/O load.

Spring Web MVC holds a slight advantage over Spring

WebFlux in environments that do not demand intensive

interactions with external systems owing to its ability to

efficiently and simultaneously handle numerous threads,

offering rapid request processing. However, Spring WebFlux

performs better in more complex scenarios that require frequent

file system access, database operations, or network interactions

by leveraging its event loop model. Spring WebFlux avoids the

typical delays found in the thread pool approach of Spring Web

MVC, which is particularly evident with increasing system

demand. Transitioning to a fully reactive architecture with

Spring WebFlux not only maximizes resource utilization but

also considerably boosts application performance. The findings

of the study indicate that applications can achieve increased

scalability and responsiveness by utilizing reactive drivers for

databases and employing reactive HTTP client for network

requests, making Spring WebFlux the preferable choice for

modern, high-performance commercial applications.

[14][15][20]

5. ACKNOWLEDGMENTS
I sincerely thank the AT&T research paper reviewers for their

insightful feedback, which greatly contributed to improving

this work.

6. REFERENCES
[1] O. Dokuka and I. Lozynskyi, Hands-on Reactive

Programming in Spring 5: Build Cloud-Ready, Reactive

Systems with Spring 5 and Project Reactor, Packt,

Birmingham, UK, 2018.

[2] R. Sharma, Hands-On Reactive Programming with

Reactor: Build Reactive and Scalable Microservices

Using the Reactor Framework, Packt, Birmingham, UK,

2018.

[3] M. Srivastava, Mastering Spring Reactive Programming for

High-Performance Web Apps, Notion Press, New York,

NY, USA, 2024.

[4] Y. Mednikov, Friendly WebFlux: A Practical Guide to

Reactive Programming with Spring WebFlux,

Independent, 2021.

[5] C. Deinum and I. Cosmina, “Building Reactive

Applications with Spring WebFlux,” in Spring in Action,

5th ed., Manning, New York, NY, USA, 2021, ch. 10.

[6] A. Sukhambekova, “Comparison of Spring WebFlux and

Spring MVC,” Modern Scientific Method, no. 9, Mar.

2025.

[7] Royal Institute of Technology (KTH), “Comparing Virtual

Threads and Reactive WebFlux in Spring,” M.S. thesis,

Stockholm, Sweden, 2023.

[8] A. Nordlund and N. Nordström, “Comparing Virtual

Threads and Reactive WebFlux in Spring,” diva-

portal.org, 2023. [Online]. Available: https://www.diva-

portal.org/smash/get/diva2%3A1763111/FULLTEXT01.

pdf

[9] Q. Li and R. Sharma, “Review on Spring Boot and Spring

WebFlux for Reactive Web Development,”

ResearchGate, 2020. [Online]. Available:

https://www.researchgate.net/publication/341151097

[10] A. Filichkin, “Spring Boot Performance Battle: Blocking

vs Non-Blocking vs Reactive,” Medium, May 2018.

[Online]. Available: https://filia-

aleks.medium.com/microservice-performance-battle-

spring-mvc-vs-webflux-80d39fd81bf0

[11] M. Piyumal, “Mastering Reactive Programming with

Spring WebFlux,” Medium, Jan. 2024. [Online].

Available:

https://manjulapiyumal.medium.com/mastering-reactive-

programming-with-spring-webflux-47dbf57857f0

[12] “SpringBoot MVC vs WebFlux: Performance Comparison

for JWT Verify and MySQL Query,” Medium, Jul. 2025.

[Online]. Available: https://medium.com/deno-the-

complete-reference/springboot-mvc-vs-webflux-

performance-comparison-for-jwt-verify-and-mysql-

query-10d5ff08a1ba

[13] P. Minkowski, “Performance Comparison Between Spring

MVC vs Spring WebFlux with Elasticsearch,” Personal

Blog, Oct. 2019. [Online]. Available:

https://piotrminkowski.com/2019/10/30/performance-

comparison-between-spring-mvc-and-spring-webflux-

with-elasticsearch/

[14] G. Munhoz, “API Performance — Spring MVC vs Spring

WebFlux vs Go,” Medium, Aug. 2020. [Online].

Available: https://filipemunhoz.medium.com/api-

performance-spring-mvc-vs-spring-webflux-vs-go-

f97b62d2255a

[15] F. Dorado, “Reactive vs Non-Reactive Spring

Performance,” Personal Blog, Jun. 2019. [Online].

Available:

https://frandorado.github.io/spring/2019/06/26/spring-

reactive-vs-non-reactive-performance.html

[16] T. Emanovikov, “R2DBC vs JDBC vs Vert.x – Not So

Fast Benchmark,” Medium, n.d. [Online]. Available:

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

45

https://medium.com/@temanovikov/r2dbc-vs-jdbc-vs-

vert-x-not-so-fast-benchmark-c0a9fcabb274

[17] G. Gatheca, “Spring WebFlux: Load Testing Using

JMeter,” Medium, Sep. 2021. [Online]. Available:

https://gathecageorge.medium.com/6-spring-webflux-

load-testing-using-jmeter-b0875b09fc25

[18] “Performance Testing Strategies for Spring WebFlux

Applications,” Moldstud.com, Jul. 2025. [Online].

Available: https://moldstud.com/articles/p-performance-

testing-your-spring-webflux-application-tools-strategies-

and-best-practices

[19] “Mastering Spring WebFlux: Reactive APIs at Scale,”

Java Code Geeks, Jul. 2025. [Online]. Available:

https://www.javacodegeeks.com/2025/07/mastering-

spring-webflux-reactive-apis-at-scale.html

[20] “Spring MVC vs. Spring WebFlux: Choosing the Right

Framework for Your Project,” Dev.to, 2024. [Online].

Available: https://dev.to/jottyjohn/spring-mvc-vs-spring-

webflux-choosing-the-right-framework-for-your-project-

4cd2

IJCATM : www.ijcaonline.org

