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ABSTRACT

Density-based clustering remains a significant area of research
in data science, particularly given the increasing prevalence of
high-dimensional datasets with varying densities. Many
existing clustering approaches struggle to effectively handle
datasets that contain regions of high density surrounded by
sparse areas. This study introduces a novel clustering algorithm
based on the concept of mutual K-nearest neighbor
relationships, designed to overcome these limitations. The
proposed method requires only a single input parameter,
demonstrates strong performance on high-dimensional,
density-based datasets, and is computationally -efficient.
Furthermore, the algorithm’s practical applications are
illustrated through its potential to enhance search and retrieval
processes within vector databases.
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1. INTRODUCTION

Cluster analysis is one of the most important areas of data mining
and is being used in a plethora of applications across the world
[1, 2]. The motivation behind cluster analysis is to divide the
data into groups called clusters that are not only useful but also
meaningful. Every member of a group is similar to one another
and dissimilar to members belonging to other groups. The entire
collection of the groups of similar points is referred to as
clustering [3]. Inthe modern era, clustering emerges as a powerful
technique for identifying outliers within vector embedding
datasets, owing to its foundational design principles. Its
advantages are particularly notable in this context, including the
ability to detect clusters of arbitrary shapes, its flexibility in
operating without predefined cluster counts, and, most crucially,
its inherent capability to isolate noise points—effectively
pinpointing outliers.

In this paper, the primary focus is on clustering based on
varying density. A clustering algorithm was developed that
finds clusters in the region of high densities and low densities
in datasets. The clustering algorithm uses a mutual k-nearest
neighbor message- passing mechanism to find mutual
relationships between points and form clusters [4, 5].
Experimental results demonstrate that the proposed clustering
algorithm outperforms state-of-the-art methods across datasets
with varying densities and high-dimensional features. [6, 7].

Motivation

1.1 Drawbacks of existing density based
clustering

Figure 1 shows a density-based dataset that has high-density

point and low-density points. The traditional clustering

algorithms like DBSCAN will be able to identify regions of
high-density such as regions A and C but will neglect the

regions of low-density points in region B as outliers. In these
types of datasets, traditional algorithms will not be able to
achieve complete clustering. In certain situations, the data points
in region B might be really useful and might have meaningful
relationships between them. Accordingly, a mechanism is
required to effectively cluster datasets by identifying and
associating both low- and high-density points with their
respective groupings.
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Figure 1: Sample dataset with two dense regions and a
sparse region.

1.2 Limitation of parameter tuning

Existing density-based clustering algorithms like K-Means and
DBSCAN are heavily dependent on input parameters. For ex-
ample, DBSCAN requires two initial input parameters, namely
Epsilon radius and minimum points which both have a
significant influence on the clustering results. To get good
clustering results from DBSCAN, there is a need to have well-
trained set of Epsilon and MinPts values. To illustrate our
point, DBSCAN was run on a synthetic dataset with a dense
region surrounded by a sparse region. The input parameters
were varied and ran DBSCAN for multiple iterations. It was
observed with different input values the clustering results not
only varied but also disregarded several points as outliers that
were located in low-density regions Figure 2.

Similarly, K-means algorithm is highly dependent on the initial
selection of centroids and the number of clusters k. The value
of'k is hard to guess, and there is no way to find out how many
clusters will be appropriate. When the data is two-dimensional,
it is fairly easy to identify the value of k through visual
inspection but for higher dimensions it becomes nearly
impossible. Thus to determine the input parameters a priori,
multiple iterations with different input values are run to generate
the optimal set of clusters. This process can be extremely time-
consuming with larger data size. Therefore, there is critical
need for a mechanism that is not dependent completely on input
parameters.

28



0.8

06

04

0.2

0

0.2

o outliers

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.48, October 2025

04
06}
®
08}
® ® ®
--1 08 06 04 -02 0 02 04 06 0.8 1

Figure 2: DBSCAN on synthetic dataset considers several points as outliers (blue points).

1.3 Drawbacks of neighbor relationship

approach to clustering

Most of the existing algorithms for density based clustering such
as Shared nearest neighbor or k-nearest neighbor considers
closeness | of a relationship from given point to all its neighbors
and does not consider the other points perception of closeness
with the given point. In k-nearest neighbor, every point tries to
find its k-nearest neighbors and forms a cluster. However, this
notion does not work well for datasets with varying density. A
point in a region can see 10 points as its 10- nearest neighbor,
but some of those points might be closer to other regions and
might be ideally suited to be a part of that region. So there is a
need to develop a method to overcome this problem by
considering reciprocal relationships instead of one way nearest
neighboring relationship of points.

1.4 Benefits of the proposed approach

In this paper, it is demonstrated that proposed approach works
well with density based datasets and can clearly identify dense
clusters and sparse clusters [8, 9]. The performance of our
algorithm is compared with the standard clustering algorithms
and show that our algorithm performance is significantly better
for high-dimensional density- based datasets [1, 10]. Moreover,
it requires only a single input parameter that is the k value that
represents the maximum number of mutual neighbors a point
can have [4]. Unlike most clustering algorithms, the user does
not give the number of clusters as an input parameter, so it not
only helps in generating natural clusters but also does not
depend on a user to guess the ideal number of clusters
beforehand [3, 11].

Furthermore, it is demonstrated with multiple runs of our
algorithm on experimental data that varying k values slightly
does not have a significant impact on clustering [4]. The

clustering is based on a novel concept of mutual k-nearest
neighbors and identifies clusters with high density and removes
them from further consideration and then finds clusters in the
regions where the density is sparse [4, 5].

Furthermore, the process of finding mutual neighbors is enhanced
by message passing between data points. The approach does not
require scanning the entire table of pairwise distances. Every
point tries to find its mutual neighbor by communicating with
its k-nearest points [11]. Once a point receives its mutual k-
nearest neighbors, it excludes itself from further consideration
thereby reducing the size of data during the run-time [4]. The
merging process is implemented that uses a similar approach
where the goal is to find best mutual neighbors of each cluster
and merge them one at a time till the required number of clusters
is obtained [4, 5]. This approach does not require comparing
every cluster with another cluster to merge, and hence is a more
efficient approach than related works

Point 0 has two shared neighbors with point 1 which is 2 and 3.
So points 0 and 1 has an edge weight of 2 that represents 2-shared
neighbors between them. Also, high strength points are decided
by total sum of edges coming out of a point. For example, Point
0 has 3 edges with weights 2 each so the total strength is 6. The
algorithm of SNN is described in Figure 3. However SNN is
based on K-nearest neighbor relationship that is a one-way
relationship. In Figure 6 0 and 1 are having high similarity
based on shared neared neighbor concept but it does not
consider if both 0 and 1 select each other as their neighbor or
not.
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Figure 3: A Graph Representation for a Dataset. [6, 7].

2. RELATED WORK
2.1 DBSCAN

DBSCAN [1] overcomes problems of k-means on non-globular
clusters as it can detect clusters of any arbitrary shape and is
resistant to noise [4], [12]. DBSCAN uses two parameters for
clustering:

» &Neighborhood: represents points within a radius of &
from point p.

* MinPts: Minimum points in the &Neighborhood of p.
The algorithm is described in Figure 3. The basic idea of the
algorithm is to form clusters that have at least MinPts within the

&Neighborhood. The points that do not fall in the &Neighborhood

are disregarded as noise points. For uniform datasets, DBSCAN
can detect dense regions and generates clusters of various shapes
and sizes based on density. However, if the density is varying
DBSCAN has trouble detecting density and it can mark several
points as noise. It is shown experimentally that DBSCAN is
unable to detect the correct set of clusters for a synthetic dataset
with dense and sparse regions. Also, it is experimentally
demonstrated that DBSCAN is heavily dependent on the
selection of input parameters. Varying input parameters even
slightly causes a prominent change in clustering. Furthermore,
for higher dimensional dataset it becomes even more
complicated to find out the correct set of MinPts and epsilon
radius, as it is hard to visualize unlike two-dimensional
datasets. Another drawback is DBSCAN only considers a
point’s closeness with other points in its radius but does not
consider other point’s closeness with that point.

2.2 Shared Nearest Neighbor (SNN)

Shared Nearest Neighbor [6] overcomes the problem of
clustering higher dimensional data by using the concept of shared
neighbors. Shared neighbor is a pairwise relationship of points
which is the number of neighbors two points have in common.
For example if a point A has neighbors C and D and B has
neighbors C and D, shared nearest neighbor considers A and B
to be similar based on the common shared neighbors C and D.
To explain the concept even further Shared Nearest Neighbors
can be represented by a graph where vertex represents the
points and edge represents the neighbor of a point.

2.3 Mutual K-nearest neighbor

Hu and Bhatnagar (2011) proposed a clustering algorithm for
finding the mutual relationship between points using mutual
rela- tionships. The algorithm requires pairwise distance
relationship calculation for every data point and comparing
every point with another point to find mutual neighbors [4, 12].
The clustering requires sorting of pairwise distances in
ascending order and reading the table of sorted pairwise
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distances one at a time to find mutual neighbors. For example,
if the size of the dataset has 10,000 points, the algorithm will
require sorting of 100 million points and reading a table of 100
million rows to calculate mutual neighboring relationships. If
the data size is kept increasing, it will not be feasible to store and
process the pairwise distances in memory and will also require
quadratic time to run the algorithm completely [10, 13].

In addition, the clustering step proposed by Hu and Bhatnagar
(2011) [12] requires comparison of every cluster with each
other and is CPU time intensive if initial number of clusters
generated is very large. Thus, an efficient mechanism is
required not only for identifying mutual nearest neighbors but
also for performing cluster merging operations without the
need to scan every cluster in the set [5, 6]. In this paper, the
notion of mutual k- nearest neighbor relationship proposed by
Zhen and Bhatnagar (2011) [4] is extended and an efficient
mechanism of finding mutual neighbors by message passing and
forming clusters is demonstrated. Furthermore, it is
experimentally shown that the proposed algorithm is better in
terms of time and space complexity and works as accurately as
the algorithm proposed by previous work [1, 11].

3. OUR APPROACH
3.1 Mutual k-Nearest Algorithm with

Message Passing

This Section deals in detail the design and implementation of
Mutual k-Nearest Algorithm. The algorithm is based on the
notion of mutual k-nearest neighbor relationships between data
points and uses an efficient message passing system to figure out
two-way nearest neighboring relationships. Most of the
existing density based approaches like K-nearest neighbor and
Shared nearest neighbor uses one way nearest neighboring
relationship. For example, if a point 2 selects 2 as its nearest
neighbor, it does not consider the relationship of z» with z.
Mutual k-Nearest Neighbor relationship, on the other hand,
considers reciprocal relationship as well i.e. 21 and 2 can only
become a Mutual k-Nearest Neighbor pair if both 21 has 22 and
22 has pithemselves as their nearest neighbor. To formalize the
definition of Mutual k-Nearest Neighbor relationship:
Definition I: A point

21 and 22 with distance &, are Mutual k-Nearest Neighbors
if

1. There are points fewer than k in distance space @,

2. There are points more than k in distance space @y, , but
most of them have already found their Mutual k-Nearest
Neighbors Figure 4 illustrates the concept further.

Figure 4. Sample points to explain mutual 4~Nearest relationship.
Figure 4c, Figure 4b Sample points to describe Definition
I for #=2. In Figure 4a, the single arrows represent nearest
neighbor relationship and bi-directional arrows represent
mutual relationships between the points. It can be seen that 2
has A as its neighbor in its Euclidean space but the same is
not true with 2. Similarly, 75 has /A as its neighbor but 75
has already selected / as its mutual nearest neighbor. Figure
4b illustrates the first part of Definition I where 2 has less
than 2 points between 2 So 2 considers /2 as its mutual
neighbor.Figure 4c illustrates the second part of Definition
I where 21 and /2 have more than 2 points between them so
it considers /2 as its mutual neighbor.
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Figure 4: /~Nearest relationship

3.2 Finding Mutual Neighbors by Message
Passing Approach

It is illustrated with a simple example how message passing works
to find mutual relationships for every point. Suppose there are
two-dimensional data points as shown in the Figure 5. To
explain the working of message passing algorithm considering
value of K as 2.

2D Points

B, s D

o

Figure 5: A 2D Data Example to Explain M-kNN
Algorithm with k=2 as Input.

Message passing is an iterative process where every point sends
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request messages to nearest £ points. The closeness of a point I
determined by a pre-selected distance measure. The messages
that are received by a particular point is a response message.
Based on the messages sent and received, the mutual #~Nearest
points are determined for every point. If a point p receives
messages from the same set of points {z1, 22, 25,..., pYr}
that it sent requesmessages to, for multiple iterations, then
2 adds all the points into its mutual relationship. Since the
relationship is mutual, every point in the set {z1, 22, 2, ...
, Pn} also adds p as mutual

Anearest neighbor. In the message passing procedure, every point
has its individual £ value. Initially, all the points have same

#-value as supplied as an input. Table I shows message passing ¢
points in Table 1 in the first iteration. Initially, the #value is set
to 2 for all points.

Table 1: Message Passing First Iteration.

Points | Request Response k | Candidate
Sent Received Mutual
k-NN

A B,C - 2| -

B C,D A,C,D 2| CD
C B,E A,B,E 2 | B,E
D B,E B,E 2 | B,E
E C,D C,D 2| CD
F C,E - 2| -

Every point sends messages to 4 points that are close to a particular
point in terms of distance measure. For this example, let us
consider the distance measure to be Euclidean. Based on points
received, there are three conditions:

Table 1 shows working of message passing in first iteration. Point
B receives messages from points A, C and D but selects points
C and D as mutual k-nearest neighbor candidate as they are closer
to point B than point A. Similarly, point F is unable to find it
mutual k-nearest neighbor pair as other points have already
found their neighbor pair. So F sends request to points B, C, D
and E but none of these points reciprocate and sends messages
to F. If a point gets the same mutual k-nearest neighbor
candidate in last three iterations, they are selected as the final
neighbors and form our mutual K-nearest neighbor table. Table
2 shows the results after the 3rd iteration. In our example,
points B, C, D, and E have already found their mutual K-nearest
neighbor as they have selected same candidate mutual k-
Nearest candidate points in 3 iterations. It is noticed that A and
F have received less than 2’ messages and hence it keeps
increasing its k-value in every iteration. The messages passing
procedure continues till one of the conditions are met:

Table 2: M-KNN Table in 3rd iteration.

Points | Request Response k-value | Candidate
Sent Received Mutual

KNN

A B,C,D,E - 4 =

B C,D A,C,D,F 2 C,D

C B,E A,B,E, F 2 B,E

D B,E A,B,E, F 2 B,E

E C,D A,D,E F 2 C,D

F B,C,D,E - 4 -

1. All points find their k mutual neighbors

2. No more points are available in dataset that is searching
for neighbors
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3. User specified number of iterations is reached

(Threshold)
Table 3: Message Passing Final Iteration.
Points | Request Response k | Candidate
Sent Received Mutual
k-NN
A B,C,D,E,F | F 5|F
F A,B,C,D,E | A 51A

In the final iteration, it is observed that A and F become mutual
k-Nearest neighbor of each other and hence our final set of M-
kNN is shown in Table 4.

Table 4: Final Table After User Specified Iteration.

Points | M-KNN
A F
B | cCD
C B,E
D | B,E
E | CD
F A
Algorithm: MKNN Message passing for generating MKNN table
Input : No. Of Iterations N, LocalK :k, . GlobalK: k., Points :P
Output: MKNN Relation Table MKNN
begin
| repeat
for PP do
SendRequest( P, kp): /* send message to k points */
end
for PieP do
NeighboringPoints P, = GetResponse(P;);
if length(P,) >k, then
| Array MKNNCandidate;= SelectBestK(P,,) ;
else if length(P,) =k, then
| Array MKNNCandidate;=P,, ;
else
| Kpi=kpi +1; /* update k value */
end
if MKNNCandidate; same in last 3 iteration then
| MKNN ;= MKNNCandidate;;
end

until N iterations:
return MKNN
end

Algorithm 1. Generating M-kNN table
3.3 Clustering from Mutual k-Nearest

Message passing table

The M-kNN relationship table generated by Algorithm 1 will
be used for clustering points in a dataset using two Algorithms.
Algorithm 2 determines the initial set of clusters by reading the
M-KNN table sequentially; Algorithm 3 performs cluster
merging operation on initial set of clusters in Mutual k-nearest
neighbor way where it selects the best cluster to merge based
on Mutual k-Nearest neighbor relationship of the cluster. For
Algorithm 1 the following parameters are defined:

Definition 2: Radius of a point /2 is defined as the average
distance of all its mutual A-nearest neighbors from 2. For a
point 2 which has distances with its M-kNN neighbors a

ad, @, ..., a:

>K ai
Rp===2—
s K

e  Definition 3: Cluster Initiator A point that starts
building clusters by first including all its M-kNN.

As seen from Table 3, in the final iteration A and F increase

their 4 value and send messages to each other and become mutual

neighbors. The other points have already found their final

neighbors and hence are excluded from further consideration.
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The algorithm is listed in Algorithm 1. As described in
Algorithm 1, £, is the global £ value that is provided by user.
Initially every point has initial £, which is equal to global &
value #4,. Every pasends request messages to nearest k points
using SendRequest function that finds best £ points and sends
messages to them. Responses to every point are received from
GetResponse function. SelectBestK function selects the best £
mutual neighbor i.e. the neighbors who were requested by a
point and have also responded to a point and are closest in terms
of a distance measure. Finally, if a point receives same mutual
neighbors in last three iterations, it adds the mutual neighbors
in final M-kNN table Table 4. Then clustering is performed on
this table that is described in next section.

P2=1

P1=1 i

P1 *////)'

P3=2  P4=2

P3 &» P4

Figure 6: An Example to Explain Cluster Initiator
Assignment

Radius of a point will help us determine the density of the clusters.
Figure 6 is used to illustrate the concept of cluster initiator
assignment with 4 points. Bi-directional arrows represent
mutual relationship between points. Let us assume the points
P, P, P

/7y are sorted in decreasing value of radius respectively.

Lets start with 2 and assign 2 as its own initiator 1. Point
¥ M-KNN points are /2 and A3, so they are also assigned
as A’s initiator and hence labeled as 1. Point 24 is not
assigned, so it is assigned to 2, but 2 has A as its M-
kNN neighbor that was already assigned to 2. However, the
distance between /Z; and /% is less than the distance between
A3 and A1 Hence, /5 is newly assigned to A4’s initiator,
which is 2.

To illustrate the process further, with the same example described
in Subsection B is continued. The radius values of each point
are calculated and sort them in descending order of radius values
as shown in Table 5. Start with point A. Since A has not been
assigned to an initiator, assign A as a cluster initiator.

Table 5: Generating Preliminary Clusters.

Points | M-KkNN Radius | Cluster No.
A F 4 A=1, F=1
F A 4 1
B C,D 225 B=2,C=2, D=2
C B,E 2.25 Cc=2
D B,E 225 | D=2
E C,D 2.25 E=3,C=2,D=3

Then it is checked if the mutual neighbor of A has been assigned
to a cluster or not. In this case two scenarios can happen:

1. Ifmutual neighbor of point F has not been assigned a cluster,
point F will be assigned to A’s cluster

2. If mutual k-nearest neighbor point F is already assigned to
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a cluster, then there are two cases:

e If distance of point F with its previous initiator
> distance of F with current initiator: update F’s
initiator with the new initiator.

e  Ifthe distance of F with its previous initiator <
distance of F with current initiator: Make no
changes.

In our example, F is not assigned and hence it will be assigned
to A’s cluster. Similarly, cluster initiators are continuously
assigned, and mutual k-nearest neighbors are added to the
cluster of the nearest cluster initiator. Point D was initially
assigned to B but in further iteration the algorithm finds that
distance of point E with D is less than distance of B and D. So
D’s was assigned to E’s cluster. From the Table 5, it is
observed that there are three cluster initiators: A, B and E that
form initial set of clusters. All the other points belong to either
of these clusters. The algorithm for this procedure is mentioned
in Algorithm 2. The algorithm takes as an input radius sorted
points and outputs a preliminary table of points with cluster
labels. The next procedure of the algorithm is to merge clusters
obtained.

3.4 Clustering Merging

Unlike previous approaches to cluster merging, a new cluster
merging process via message passing is defined. The process
similar to Subsection 3.2 is repeated, but now clusters use
message passing to find their mutual neighbors and merge with
its best mutual 4=nearest neighbor cluster. However, lets define new
metrics to measure inter-cluster distance as follows:

Algorithm: Finding initial set of clusters

Input : MKNN Table: M KNN, RadiusSortedPoints :P,
Output: Preliminary Cluster labels: C
begin
cluster=1 ;
for PP, do
| if cluster label C; is not set then
| Ci=cluster;
for PjeP; do
if cluster label C; is not set then
| Cj=cluster;
else
get Py cluster exemplar of Pj;
if distance(P;, Pj) <distance(P;,P)) then

| Cj=cluster;
end
cluster=cluster+1;
| end
end
return C
end

Algorithm2. Generating initial set of clusters

 Definition 4: Linkage: A point has a linkage to a cluster
/V if there is at least one point in A thatis a
mutual neighbor (M-kNN) of point p.

* Definition S: Closeness : Closeness of cluster
Clusteri to Cluster;j is no. of points in Clusteri that
has a Linkage to Cluster j

* Definition 6: Sharing: Sharing S of cluster Clusteri into
Clusterj is number of Mutual k-Nearest Neighbor pairs that
have one in Clusteri and other in Cluster;j

* Definition 7: Connectivity If (/uster; has # ;i points
and C/uster ; has £, points, the connectivity of
Cluster;to
Cluster; is defined as:

Connectivity ; ;= (Sharing / (#:X #,)) X (Closeness/ #
1,
)
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The merging process starts with every cluster sending #messages
to other clusters and identifying the best cluster that reciprocates
as its mutual £-nearest neighbor. In order to merge, both clusters
should have a high connectivity value with each other and should
reciprocate the mutual neighbor relationship. Once two clusters
become mutual 4-nearest neighbors of each other, they merge
to form a single cluster. The new cluster becomes the union
of the M-kNN neighbors of the two merged clusters. This new
cluster must then recalculate connectivity values when sending #
messages to other clusters.

Table 6: Cluster Merging First Iteration

Cluster | Request Sent | Response Re- | Points
ceived
Cl1 C2,C3 - AF
C2 C3,C1 C1,C3 B,C
C3 C1,C2 CL,C2 D,E

To illustrate the message passing cluster merging, the example
of'the previous section with our preliminary clusters is contined.
From Table 6, it can be see that €2 sends messages to £3.

Here(?2 and (3 become mutual K-nearest neighbors of each
other.

So after the end of the iteration, €2 and £3 merge to form a
single cluster. The process is repeated until the desired number
of clusters is obtained.

In this specific example, the algorithm converges after merging
(2 and (3 and generates 2 clusters as shown in Table 7.

Table 7: Clusters and Their Points

Cluster | Points
Cl1 AF
C2 B,C,D,E

Algorithm: Final Clusters
Input : Cluster Label Array: C | K value: k
Output: Final Cluster labels: C

begin
Calculate initial ConnectMatrix CM ;
repeat
for CicC do
| SendRequest(CM,k) ; /* send message to k clusters */
end
for CicC do
NeighboringCluster C,=Receive(CM, C; ) ;
Select Closest Neighbor in C,, from Cj ;
Merge C;,Cj into Chew 3
Update CM and replace C with Cyey 3
end
until no more merging can be done or required clusters have been
achieved;
return C
end

Algorithm3. Merging Procedure to generate final clusters

From Algorithm 3, it can be seen that the merging operation is
done via message passing like Algorithm 1, except this time
connectivity values between clusters is used rather than any
distance function. = SendRequest method is similar
toAlgorithm 1 that sends request to k-neighboring cluster and
Receive method finds the clusters that send response to a
cluster. Then select only the closest mutual neighboring
cluster to merge which have high connectivity value with the
cluster and then update the merged cluster in original cluster.
After merging operation, new connectivity values are
calculated and then another iteration of message passing starts.
The process not only prevents comparison of every cluster to
other, it also reduces the total number of clusters in each iteration.
Based on clustering requirement a convergence criteria can be
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defined like stopping when the total number of clusters reach a
specific value or the clusters have almost 0 connectivity values
between each other.

4. EXPERIMENTAL SETUP AND
RESULTS
4.1 Datasets

This Section deals with discussion of results that were obtained
on M-kNN Message Passing algorithm (M-kNN) as described
in previous chapter. In order to validate the algorithm, a
synthetic supervised dataset and two datasets from UC Irvine’s
Machine Learning repository is used. The details of the datasets
are given on Table 8. To demonstrate the functionality of our
algorithm we design our own synthetic dataset with varying
density. The real world datasets have been read directly from tab
separated flat files.

Table 8: Datasets used for experiments

Sno Dataset Inst. Attr. Attribute Types Class
1 Synthetic 95 2 Real-valued, continuous N/A
2 PenDigits 10,992 16 Integers in the range 0—100 0-9
3 Plants 34,781 65 States of US & Canada N/A

4.2 Experiments

All the algorithms described in the paper have been
implemented on MATLAB running on a modern x86 64 bit
chip. The results of the algorithm are written in a flat file that
was used for further analysis.

4.3 Synthetic Datasets

We chose a two-dimensional synthetic dataset to test our
algorithm with varying densities having dense and sparse points.
Aswe can see in Figure 7, there are four regions of high densities
and regions of low-density points surround 2 of them. We can
also see that the low-density points and high-density points are
clearly separated from each other so as to form distinct clusters.
Ideally, a clustering algorithm should be able to determine four
dense clusters and two sparse clusters having a total of 6
clusters.

Figure 7: Synthetic dataset with {Iarying data dénsity.

Then multiple iterations of DBSCAN algorithm is run with various
values of min points and epsilon to obtain clusters as shown in
Figure 8. The colored dots represent points belonging to same
cluster. Black dot signifies an outlier detected by DBSCAN. It
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can be clearly seen that DBSCAN is easily able to detect dense
clusters, but it is unable to detect the sparse clusters accurately.

Furthermore, DBSCAN marks a lot of points as outliers as indi-
cated by points colored black. The main problem of DBSCAN
algorithm is it tries to cluster points with specific radius values
and can only detect specific cluster shapes based on the input
parameters. On the other hand, when multiple iterations of the
k-means algorithm is run with different initial centroids and
constant k value (# = 6) until the best clustering result is
obtained. Figure 9.
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Figure 8: a, b, ¢, d: Results of DBSCAN with different
parameter values.
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Figure 9: Best result of K-means at K=6

It is observed that K-Means fails to effectively detect both
dense and sparse clusters, resulting in suboptimal clustering
outcomes. The authors subsequently applied M-kNN to the
same synthetic dataset using various k values, repeatedly
executing the M-kNN merge operation until six clusters were
formed. M-kKNN successfully identified dense clusters,
excluded them from further processing, and enabled
surrounding sparse points to interact and form mutual k-nearest
neighbor relationships. As illustrated in Figure 10, M-kNN
identifies five clusters—four dense and two sparse—within the
dataset. Furthermore, minor variations in £ do not significantly
affect clustering results, indicating the algorithm’s robustness
to input parameter changes. These findings suggest that M-
kNN performs well in scenarios where dense clusters are
embedded within sparse regions. This will be further validated
using a real-world dataset in the following section.

4.4 Pen Digits Dataset

To evaluate the proposed algorithm, the Pen-Based
Recognition of Handwritten Digits dataset from the UCI
Machine Learning repository was utilized. Both training and
test points were included for clustering, resulting in a total of
10,000 data points with 16 attributes. As the ideal number of
clusters was unknown, the M-kNN algorithm was executed
until a threshold of 50 clusters was reached. Clustering results
were monitored progressively, starting from 500 clusters down
to 50.

For K-means, multiple iterations were conducted with k values
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ranging from 50 to 500. Each iteration involved running K-
means ten times with different initial centroids, and the
clustering outcomes were averaged. For the DBSCAN
algorithm, the minimum points and epsilon values were varied
to generate clusters within the same range. Similarly, for the
Shared Nearest Neighbor algorithm, the k value was adjusted
to generate a graph, and clusters were merged until the desired
range was achieved.

For each cluster, the class membership of its points was
determined, and the majority class was assigned to the cluster.
A class was considered the majority if more than 50% of the
points within the cluster belonged to it. For instance, if M-kNN
identified a cluster A with five points—three from class 1 and
two from class 2—then class 1 was designated as the majority
class for cluster A, and all points in that cluster were labeled
accordingly. Once majority classes for all points is obtained
which is our clustering result we compare them with original
classes in our dataset and generate confusion matrix. The
confusion matrix is used to calculate precision and recall
values.
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(b) M-KNN results at k=4
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(¢) M-KNN results at k=5
Figure 10: a, b, c.

When we plotted precision and recall values in a graph Figure
12, we could clearly see M-KNN performing better than
existing algorithms. M-kNN gives a consistently high value of
precision in every step than DBSCAN, SNN or K-Means. We
can intuitively say that if we increase the number of clusters,
the clustering algorithms will generate better clusters. M-kNN
for large clusters gives very good results with precision value as
high as 93%, which implies 93% of the points have been
correctly classified by the algorithm, compared to SNN and K-
means that give precision values at around 85%. DBSCAN
generated fewer clusters than our algorithm for various values
of epsilon radius and minimum points, and treated several
points as noise.
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Figure 11: Comparison of F1-score for Various Clustering
Algorithms for Pen-digits Dataset.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.48, October 2025

The results obtained in Figure 12 are summarized in Figure 11
by averaging precision and recall values and then calculated the
F1-score for each algorithm. From Figure 11, we can clearly
see M-kNN having a higher F1 score, thereby showing the
consistency of our algorithm.

4.5 Performance Analysis

A large high-dimensional dataset, Plants, from the UCI
repository was used to analyze CPU time. The Plants dataset
contains plant names as instances and state abbreviations as
attributes. Each plant name includes a list of comma-separated
state abbreviations indicating the states in which it is found.
The dataset was transformed into binary vectors, where a value
of 1 denotes the presence of a particular plant in a state. This
dataset was utilized for both clustering and CPU time analysis
to evaluate algorithmic performance over time. The Jaccard
distance was employed as the distance metric.

In SNN, a graph is first generated, which is then used to identify
SNN relationships and form clusters. Similarly, KNN identifies
k-nearest neighbor relationships between points to form
clusters. M-KNN also follows a two-step process: first
identifying M-kNN relationships, then merging clusters based
on those relationships. M-kNN, KNN, and SNN were executed
on datasets ranging from 2,000 to 10,000 points, and their
performance was compared as shown in Figure 13. The total
time recorded for each algorithm corresponds to the time taken
to identify 200 clusters. It was observed that M-kNN exhibits
superior performance, demonstrating near-linear scalability
with increasing dataset size.

Theoretically, performance can be further enhanced by
implementing M-kNN in a parallel computing environment. In
such a setup, multiple processors execute the M-kNN message-
passing algorithm concurrently. Each processor handles a
subset of points that form clusters using the M-kNN approach,
resulting in k processors generating k distinct clusters.
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Figure 12: Comparison of precision and recall for M-kNN vs. other algorithms.
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Figure 13: Performance Analysis of M-kNN and SNN on Plants Dataset. X-axis: Size of Dataset. Y-axis: Time in Seconds.

Each cluster will also contain information about its mutual
/-nearest neighbors. When two clusters (1 & &
merged, the processor 24> is put into an idle state and
(3 is copied into £1. M-kNN information of (1 is then
updated to its new neighbors. Merge and continue dropping
processors until the desired number of clusters is obtained.
Thus, M-KNN execution can be further improved if
implemented in a parallel processing environment. Those can
be applied to detect clusters in massive vector databases to

refine LLM searches. The actual implementation is beyond the
scope of this paper.

4.6 Seeds Dataset

To further validate the functionality of the proposed algorithm,
the algorithm was applied to the Seeds dataset from UC Irvine.
UCI Seeds is a widely used density-based dataset for evaluating
clustering algorithms, with various methods demonstrating
strong clustering performance. In this dataset, kernels belong to
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three distinct groups of wheat: Kama, Rosa, and Canadian, each
comprising 70 elements. Ideally, a clustering algorithm should
produce three high-quality clusters with 70 points each. A
similar approach to the previous section was used, monitoring
clustering performance until three clusters were obtained. The
results show that the proposed algorithm yields high precision
and recall values for this dataset as well. As illustrated in the
confusion matrix in Figure 14, M-kNN successfully clusters
one of the kernel groups with 100% precision. Consistent with
carlier findings, the M-kNN clustering process remains stable
throughout each merging step. Upon merging and achieving
three clusters using the merging algorithm, the highest
precision value of 89% was recorded. As with the previous
dataset, the results were summarized by calculating the F1
score based on precision and recall values, as depicted in the
bar graph in Figure 15.

1

Figure 14: Confusion matrix for M-KNN for seeds dataset
at k=3.

5. CONCLUSION AND FUTURE
DIRECTIONS IN Al USE- CASES

5.1 Conclusion

M-kNN further improves clustering through mutual K-nearest,
neighbor relationship by optimizing the process of message
passing and merging of clusters. Previous work on M-kNN
involved an extra sorting operation to discover the M-KNN
relationship and also required checking every possible pairwise
distance value to find the mutual neighbor. However, M-KNN
message passing allows a point only to send K messages to
neighboring points, thereby pruning the number of points and
drastically reducing the time to calculate mutual k neighbor
relationship. Also, the algorithm requires only one parameter,
which is K value and the results are not highly dependent on
value of K. This novel M-kNN algorithm can be applied to
many real-world situations
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Figure 15: Comparison -o‘t.' precision and recall for
clustering algorithms for seeds dataset.

specifically in situations where the data density is varying such
as vector databases. In the contemporary Al-driven landscape,
the expanding adoption and versatility of vector embedding
technology within large language models (LLMs) underscore the
critical need for robust clustering mechanisms and outlier
detection. These techniques are essential to preserve search
quality and ensure stability. This is particularly relevant in the
industrial data, where customer data spans diverse segments and
unique profiles, enabling more tailored and strategic
applications.
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