
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

28

Effective Clustering for Large Datasets using Density-

Based Clustering via Message Passing

Siddharth Dixit
Independent Researcher

ABSTRACT

Density-based clustering remains a significant area of research

in data science, particularly given the increasing prevalence of

high-dimensional datasets with varying densities. Many

existing clustering approaches struggle to effectively handle

datasets that contain regions of high density surrounded by

sparse areas. This study introduces a novel clustering algorithm

based on the concept of mutual K-nearest neighbor

relationships, designed to overcome these limitations. The

proposed method requires only a single input parameter,

demonstrates strong performance on high-dimensional,

density-based datasets, and is computationally efficient.

Furthermore, the algorithm’s practical applications are

illustrated through its potential to enhance search and retrieval

processes within vector databases.

Keywords

Clustering; Mutual 𝑘-Nearest Neighbor; Density- Based

Methods; Outlier Detection; Vector Databases; Data Mining.

1. INTRODUCTION
Cluster analysis is one of the most important areas of data mining

and is being used in a plethora of applications across the world

[1, 2]. The motivation behind cluster analysis is to divide the

data into groups called clusters that are not only useful but also

meaningful. Every member of a group is similar to one another

and dissimilar to members belonging to other groups. The entire

collection of the groups of similar points is referred to as

clustering [3]. In the modern era, clustering emerges as a powerful

technique for identifying outliers within vector embedding

datasets, owing to its foundational design principles. Its

advantages are particularly notable in this context, including the

ability to detect clusters of arbitrary shapes, its flexibility in

operating without predefined cluster counts, and, most crucially,

its inherent capability to isolate noise points—effectively

pinpointing outliers.

In this paper, the primary focus is on clustering based on

varying density. A clustering algorithm was developed that

finds clusters in the region of high densities and low densities

in datasets. The clustering algorithm uses a mutual k-nearest

neighbor message- passing mechanism to find mutual

relationships between points and form clusters [4, 5].

Experimental results demonstrate that the proposed clustering

algorithm outperforms state-of-the-art methods across datasets

with varying densities and high-dimensional features. [6, 7].

Motivation

1.1 Drawbacks of existing density based

clustering
Figure 1 shows a density-based dataset that has high-density

point and low-density points. The traditional clustering

algorithms like DBSCAN will be able to identify regions of

high-density such as regions A and C but will neglect the

regions of low-density points in region B as outliers. In these

types of datasets, traditional algorithms will not be able to

achieve complete clustering. In certain situations, the data points

in region B might be really useful and might have meaningful

relationships between them. Accordingly, a mechanism is

required to effectively cluster datasets by identifying and

associating both low- and high-density points with their

respective groupings.

Figure 1: Sample dataset with two dense regions and a

sparse region.

1.2 Limitation of parameter tuning
Existing density-based clustering algorithms like K-Means and

DBSCAN are heavily dependent on input parameters. For ex-

ample, DBSCAN requires two initial input parameters, namely

Epsilon radius and minimum points which both have a

significant influence on the clustering results. To get good

clustering results from DBSCAN, there is a need to have well-

trained set of Epsilon and MinPts values. To illustrate our

point, DBSCAN was run on a synthetic dataset with a dense

region surrounded by a sparse region. The input parameters

were varied and ran DBSCAN for multiple iterations. It was

observed with different input values the clustering results not

only varied but also disregarded several points as outliers that

were located in low-density regions Figure 2.

Similarly, K-means algorithm is highly dependent on the initial

selection of centroids and the number of clusters k. The value

of k is hard to guess, and there is no way to find out how many

clusters will be appropriate. When the data is two-dimensional,

it is fairly easy to identify the value of k through visual

inspection but for higher dimensions it becomes nearly

impossible. Thus to determine the input parameters a priori,

multiple iterations with different input values are run to generate

the optimal set of clusters. This process can be extremely time-

consuming with larger data size. Therefore, there is critical

need for a mechanism that is not dependent completely on input

parameters.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

29

Figure 2: DBSCAN on synthetic dataset considers several points as outliers (blue points).

1.3 Drawbacks of neighbor relationship

approach to clustering
Most of the existing algorithms for density based clustering such

as Shared nearest neighbor or k-nearest neighbor considers

closeness of a relationship from given point to all its neighbors

and does not consider the other points perception of closeness

with the given point. In k-nearest neighbor, every point tries to

find its k-nearest neighbors and forms a cluster. However, this

notion does not work well for datasets with varying density. A

point in a region can see 10 points as its 10- nearest neighbor,

but some of those points might be closer to other regions and

might be ideally suited to be a part of that region. So there is a

need to develop a method to overcome this problem by

considering reciprocal relationships instead of one way nearest

neighboring relationship of points.

1.4 Benefits of the proposed approach
In this paper, it is demonstrated that proposed approach works

well with density based datasets and can clearly identify dense

clusters and sparse clusters [8, 9]. The performance of our

algorithm is compared with the standard clustering algorithms

and show that our algorithm performance is significantly better

for high-dimensional density- based datasets [1, 10]. Moreover,

it requires only a single input parameter that is the k value that

represents the maximum number of mutual neighbors a point

can have [4]. Unlike most clustering algorithms, the user does

not give the number of clusters as an input parameter, so it not

only helps in generating natural clusters but also does not

depend on a user to guess the ideal number of clusters

beforehand [3, 11].

Furthermore, it is demonstrated with multiple runs of our

algorithm on experimental data that varying k values slightly

does not have a significant impact on clustering [4]. The

clustering is based on a novel concept of mutual k-nearest

neighbors and identifies clusters with high density and removes

them from further consideration and then finds clusters in the

regions where the density is sparse [4, 5].

Furthermore, the process of finding mutual neighbors is enhanced

by message passing between data points. The approach does not

require scanning the entire table of pairwise distances. Every

point tries to find its mutual neighbor by communicating with

its k-nearest points [11]. Once a point receives its mutual k-

nearest neighbors, it excludes itself from further consideration

thereby reducing the size of data during the run-time [4]. The

merging process is implemented that uses a similar approach

where the goal is to find best mutual neighbors of each cluster

and merge them one at a time till the required number of clusters

is obtained [4, 5]. This approach does not require comparing

every cluster with another cluster to merge, and hence is a more

efficient approach than related works

Point 0 has two shared neighbors with point 1 which is 2 and 3.

So points 0 and 1 has an edge weight of 2 that represents 2-shared

neighbors between them. Also, high strength points are decided

by total sum of edges coming out of a point. For example, Point

0 has 3 edges with weights 2 each so the total strength is 6. The

algorithm of SNN is described in Figure 3. However SNN is

based on K-nearest neighbor relationship that is a one-way

relationship. In Figure 6 0 and 1 are having high similarity

based on shared neared neighbor concept but it does not

consider if both 0 and 1 select each other as their neighbor or

not.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

30

Figure 3: A Graph Representation for a Dataset. [6, 7].

2. RELATED WORK

2.1 DBSCAN
DBSCAN [1] overcomes problems of k-means on non-globular

clusters as it can detect clusters of any arbitrary shape and is

resistant to noise [4], [12]. DBSCAN uses two parameters for

clustering:

• 𝜀-Neighborhood: represents points within a radius of 𝜀
frrom point p.

• MinPts: Minimum points in the 𝜀-Neighborhood of p.

The algorithm is described in Figure 3. The basic idea of the

algorithm is to form clusters that have at least MinPts within the

𝜀-Neighborhood. The points that do not fall in the 𝜀-Neighborhood

are disregarded as noise points. For uniform datasets, DBSCAN

can detect dense regions and generates clusters of various shapes

and sizes based on density. However, if the density is varying

DBSCAN has trouble detecting density and it can mark several

points as noise. It is shown experimentally that DBSCAN is

unable to detect the correct set of clusters for a synthetic dataset

with dense and sparse regions. Also, it is experimentally

demonstrated that DBSCAN is heavily dependent on the

selection of input parameters. Varying input parameters even

slightly causes a prominent change in clustering. Furthermore,

for higher dimensional dataset it becomes even more

complicated to find out the correct set of MinPts and epsilon

radius, as it is hard to visualize unlike two-dimensional

datasets. Another drawback is DBSCAN only considers a

point’s closeness with other points in its radius but does not

consider other point’s closeness with that point.

2.2 Shared Nearest Neighbor (SNN)
Shared Nearest Neighbor [6] overcomes the problem of

clustering higher dimensional data by using the concept of shared

neighbors. Shared neighbor is a pairwise relationship of points

which is the number of neighbors two points have in common.

For example if a point A has neighbors C and D and B has

neighbors C and D, shared nearest neighbor considers A and B

to be similar based on the common shared neighbors C and D.

To explain the concept even further Shared Nearest Neighbors

can be represented by a graph where vertex represents the

points and edge represents the neighbor of a point.

2.3 Mutual K-nearest neighbor
Hu and Bhatnagar (2011) proposed a clustering algorithm for

finding the mutual relationship between points using mutual

rela- tionships. The algorithm requires pairwise distance

relationship calculation for every data point and comparing

every point with another point to find mutual neighbors [4, 12].

The clustering requires sorting of pairwise distances in

ascending order and reading the table of sorted pairwise

distances one at a time to find mutual neighbors. For example,

if the size of the dataset has 10,000 points, the algorithm will

require sorting of 100 million points and reading a table of 100

million rows to calculate mutual neighboring relationships. If

the data size is kept increasing, it will not be feasible to store and

process the pairwise distances in memory and will also require

quadratic time to run the algorithm completely [10, 13].

In addition, the clustering step proposed by Hu and Bhatnagar

(2011) [12] requires comparison of every cluster with each

other and is CPU time intensive if initial number of clusters

generated is very large. Thus, an efficient mechanism is

required not only for identifying mutual nearest neighbors but

also for performing cluster merging operations without the

need to scan every cluster in the set [5, 6]. In this paper, the

notion of mutual k- nearest neighbor relationship proposed by

Zhen and Bhatnagar (2011) [4] is extended and an efficient

mechanism of finding mutual neighbors by message passing and

forming clusters is demonstrated. Furthermore, it is

experimentally shown that the proposed algorithm is better in

terms of time and space complexity and works as accurately as

the algorithm proposed by previous work [1, 11].

3. OUR APPROACH

3.1 Mutual k-Nearest Algorithm with

Message Passing
This Section deals in detail the design and implementation of

Mutual k-Nearest Algorithm. The algorithm is based on the

notion of mutual k-nearest neighbor relationships between data

points and uses an efficient message passing system to figure out

two-way nearest neighboring relationships. Most of the

existing density based approaches like K-nearest neighbor and

Shared nearest neighbor uses one way nearest neighboring

relationship. For example, if a point 𝑝1 selects 𝑝2 as its nearest

neighbor, it does not consider the relationship of 𝑝2 with 𝑝1.

Mutual k-Nearest Neighbor relationship, on the other hand,

considers reciprocal relationship as well i.e. 𝑝1 and 𝑝2 can only

become a Mutual k-Nearest Neighbor pair if both 𝑝1 has 𝑝2 and

𝑝2 has 𝑝1themselves as their nearest neighbor. To formalize the

definition of Mutual k-Nearest Neighbor relationship:

Definition I: A point

𝑝1 and 𝑝2 with distance 𝑑𝑝12 are Mutual k-Nearest Neighbors

if

1. There are points fewer than k in distance space 𝑑𝑝12

2. There are points more than k in distance space 𝑑𝑝12 , but

most of them have already found their Mutual k-Nearest
Neighbors Figure 4 illustrates the concept further.

Figure 4. Sample points to explain mutual 𝑘-Nearest relationship.

Figure 4c, Figure 4b Sample points to describe Definition

I for 𝑘 = 2. In Figure 4a, the single arrows represent nearest

neighbor relationship and bi-directional arrows represent

mutual relationships between the points. It can be seen that 𝑃1

has 𝑃2 as its neighbor in its Euclidean space but the same is

not true with 𝑃2. Similarly, 𝑃5 has 𝑃3 as its neighbor but 𝑃3

has already selected 𝑃2 as its mutual nearest neighbor. Figure

4b illustrates the first part of Definition I where 𝑃1 has less

than 2 points between 𝑃2. So 𝑃1 considers 𝑃2 as its mutual

neighbor.Figure 4c illustrates the second part of Definition

I where 𝑃1 and 𝑃2 have more than 2 points between them so

it considers 𝑃2 as its mutual neighbor.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

31

(a)

Sample points to explain mutual k-Nearest relationship.

(b)

Sample points to describe definition I for k=2.

(c)

Sample points to describe definition I for k=2.

Figure 4: 𝑘-Nearest relationship

3.2 Finding Mutual Neighbors by Message

Passing Approach
It is illustrated with a simple example how message passing works

to find mutual relationships for every point. Suppose there are

two-dimensional data points as shown in the Figure 5. To

explain the working of message passing algorithm considering

value of K as 2.

Figure 5: A 2D Data Example to Explain M-kNN

Algorithm with k=2 as Input.

Message passing is an iterative process where every point sends

request messages to nearest 𝑘 points. The closeness of a point Ii

determined by a pre-selected distance measure. The messages

that are received by a particular point is a response message.

Based on the messages sent and received, the mutual 𝑘-Nearest

points are determined for every point. If a point 𝑝 receives

messages from the same set of points {𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑛 }
that it sent requesmessages to, for multiple iterations, then

𝑝 adds all the points into its mutual relationship. Since the

relationship is mutual, every point in the set {𝑝1, 𝑝2, 𝑝3, . . .

, 𝑝𝑛 } also adds 𝑝 as mutual

𝑘-nearest neighbor. In the message passing procedure, every point

has its individual 𝑘 value. Initially, all the points have same

𝑘-value as supplied as an input. Table I shows message passing of

points in Table 1 in the first iteration. Initially, the 𝑘 value is set

to 2 for all points.

Table 1: Message Passing First Iteration.

Points Request

Sent

Response

Received

k Candidate

Mutual

k-NN

A B, C – 2 –

B C, D A, C, D 2 C, D

C B, E A, B, E 2 B, E

D B, E B, E 2 B, E

E C, D C, D 2 C, D

F C, E – 2 –

Every point sends messages to 𝑘 points that are close to a particular

point in terms of distance measure. For this example, let us

consider the distance measure to be Euclidean. Based on points

received, there are three conditions:

Table 1 shows working of message passing in first iteration. Point

B receives messages from points A, C and D but selects points

C and D as mutual k-nearest neighbor candidate as they are closer

to point B than point A. Similarly, point F is unable to find it

mutual k-nearest neighbor pair as other points have already

found their neighbor pair. So F sends request to points B, C, D

and E but none of these points reciprocate and sends messages

to F. If a point gets the same mutual k-nearest neighbor

candidate in last three iterations, they are selected as the final

neighbors and form our mutual K-nearest neighbor table. Table

2 shows the results after the 3rd iteration. In our example,

points B, C, D, and E have already found their mutual K-nearest

neighbor as they have selected same candidate mutual k-

Nearest candidate points in 3 iterations. It is noticed that A and

F have received less than ’2’ messages and hence it keeps

increasing its k-value in every iteration. The messages passing

procedure continues till one of the conditions are met:

Table 2: M-kNN Table in 3rd iteration.

Points Request

Sent
Response
Received

k-value Candidate
Mutual
KNN

A B, C, D, E – 4 –
B C, D A, C, D, F 2 C, D
C B, E A, B, E, F 2 B, E
D B, E A, B, E, F 2 B, E
E C, D A, D, E, F 2 C, D

F B, C, D, E – 4 –

1. All points find their k mutual neighbors

2. No more points are available in dataset that is searching

for neighbors

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

32

3. User specified number of iterations is reached

(Threshold)
Table 3: Message Passing Final Iteration.

Points Request

Sent

Response

Received

k Candidate

Mutual

k-NN

A B, C, D, E, F F 5 F

F A, B, C, D, E A 5 A

In the final iteration, it is observed that A and F become mutual

k-Nearest neighbor of each other and hence our final set of M-

kNN is shown in Table 4.

Table 4: Final Table After User Specified Iteration.

Points M-kNN

A F

B C, D

C B, E

D B, E

E C, D

F A

Algorithm 1. Generating M-kNN table

3.3 Clustering from Mutual k-Nearest

Message passing table
The M-kNN relationship table generated by Algorithm 1 will

be used for clustering points in a dataset using two Algorithms.

Algorithm 2 determines the initial set of clusters by reading the

M-kNN table sequentially; Algorithm 3 performs cluster

merging operation on initial set of clusters in Mutual k-nearest

neighbor way where it selects the best cluster to merge based

on Mutual k-Nearest neighbor relationship of the cluster. For

Algorithm 1 the following parameters are defined:

Definition 2: Radius of a point 𝑃 is defined as the average

distance of all its mutual 𝑘-nearest neighbors from 𝑃. For a

point 𝑃 which has distances with its M-kNN neighbors as

𝑑1, 𝑑2, . . . , 𝑑𝑘 :

RP=
∑ 𝑑𝑖𝐾
𝑖=1

𝐾

• Definition 3: Cluster Initiator A point that starts

building clusters by first including all its M-kNN.

As seen from Table 3, in the final iteration A and F increase

their 𝑘 value and send messages to each other and become mutual

neighbors. The other points have already found their final

neighbors and hence are excluded from further consideration.

The algorithm is listed in Algorithm 1. As described in

Algorithm 1, 𝑘𝑔 is the global 𝑘 value that is provided by user.

Initially every point has initial 𝑘𝑝 which is equal to global 𝑘
value 𝑘𝑔. Every point sends request messages to nearest k points

using SendRequest function that finds best 𝑘 points and sends

messages to them. Responses to every point are received from

GetResponse function. SelectBestK function selects the best 𝑘
mutual neighbor i.e. the neighbors who were requested by a

point and have also responded to a point and are closest in terms

of a distance measure. Finally, if a point receives same mutual

neighbors in last three iterations, it adds the mutual neighbors

in final M-kNN table Table 4. Then clustering is performed on

this table that is described in next section.

Figure 6: An Example to Explain Cluster Initiator

Assignment

Radius of a point will help us determine the density of the clusters.

Figure 6 is used to illustrate the concept of cluster initiator

assignment with 4 points. Bi-directional arrows represent

mutual relationship between points. Let us assume the points

𝑃1, 𝑃2, 𝑃3,
𝑃4 are sorted in decreasing value of radius respectively.

Lets start with 𝑃1 and assign 𝑃1 as its own initiator 1. Point

𝑃1’s M-kNN points are 𝑃2 and 𝑃3, so they are also assigned

as 𝑃1’s initiator and hence labeled as 1. Point 𝑃4 is not

assigned, so it is assigned to 2, but 𝑃4 has 𝑃3 as its M-

kNN neighbor that was already assigned to 𝑃1. However, the

distance between 𝑃3 and 𝑃4 is less than the distance between

𝑃3 and 𝑃1. Hence, 𝑃3 is newly assigned to 𝑃4’s initiator,

which is 2.

To illustrate the process further, with the same example described

in Subsection B is continued. The radius values of each point

are calculated and sort them in descending order of radius values

as shown in Table 5. Start with point A. Since A has not been

assigned to an initiator, assign A as a cluster initiator.

Table 5: Generating Preliminary Clusters.

Points M-kNN Radius Cluster No.

A F 4 A=1, F=1

F A 4 1

B C, D 2.25 B=2, C=2, D=2

C B, E 2.25 C=2

D B, E 2.25 D=2

E C, D 2.25 E=3, C=2, D=3

Then it is checked if the mutual neighbor of A has been assigned

to a cluster or not. In this case two scenarios can happen:

1. If mutual neighbor of point F has not been assigned a cluster,

point F will be assigned to A’s cluster

2. If mutual k-nearest neighbor point F is already assigned to

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

33

a cluster, then there are two cases:

• If distance of point F with its previous initiator

> distance of F with current initiator: update F’s

initiator with the new initiator.

• If the distance of F with its previous initiator <

distance of F with current initiator: Make no

changes.

In our example, F is not assigned and hence it will be assigned

to A’s cluster. Similarly, cluster initiators are continuously

assigned, and mutual k-nearest neighbors are added to the

cluster of the nearest cluster initiator. Point D was initially

assigned to B but in further iteration the algorithm finds that

distance of point E with D is less than distance of B and D. So

D’s was assigned to E’s cluster. From the Table 5, it is

observed that there are three cluster initiators: A, B and E that

form initial set of clusters. All the other points belong to either

of these clusters. The algorithm for this procedure is mentioned

in Algorithm 2. The algorithm takes as an input radius sorted

points and outputs a preliminary table of points with cluster

labels. The next procedure of the algorithm is to merge clusters

obtained.

3.4 Clustering Merging
Unlike previous approaches to cluster merging, a new cluster

merging process via message passing is defined. The process

similar to Subsection 3.2 is repeated, but now clusters use

message passing to find their mutual neighbors and merge with

its best mutual 𝑘-nearest neighbor cluster. However, lets define new

metrics to measure inter-cluster distance as follows:

Algorithm2. Generating initial set of clusters

• Definition 4: Linkage: A point has a linkage to a cluster

𝑁 if there is at least one point in 𝑁 that is a
mutual neighbor (M-kNN) of point 𝑝.

• Definition 5: Closeness : Closeness of cluster
Clusteri to Clusterj is no. of points in Clusteri that
has a Linkage to Cluster j

• Definition 6: Sharing: Sharing S of cluster Clusteri into

Clusterj is number of Mutual k-Nearest Neighbor pairs that

have one in Clusteri and other in Clusterj

• Definition 7: Connectivity If 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 has 𝑘 i points

and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 has 𝑘 𝑗 points, the connectivity of

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 to

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 is defined as:

Connectivity i 𝑗 = (Sharing / (𝑘 i X 𝑘 𝑗)) X (Closeness/ 𝑘

i)

The merging process starts with every cluster sending 𝑘 messages

to other clusters and identifying the best cluster that reciprocates

as its mutual 𝑘-nearest neighbor. In order to merge, both clusters

should have a high connectivity value with each other and should

reciprocate the mutual neighbor relationship. Once two clusters

become mutual 𝑘-nearest neighbors of each other, they merge

to form a single cluster. The new cluster becomes the union

of the M-kNN neighbors of the two merged clusters. This new

cluster must then recalculate connectivity values when sending 𝑘
messages to other clusters.

Table 6: Cluster Merging First Iteration

Cluster Request Sent Response Re-

ceived

Points

C1 C2, C3 – A, F

C2 C3, C1 C1, C3 B, C

C3 C1, C2 C1, C2 D, E

To illustrate the message passing cluster merging, the example

of the previous section with our preliminary clusters is contined.

From Table 6, it can be see that 𝐶2 sends messages to 𝐶3.

Here𝐶2 and 𝐶3 become mutual K-nearest neighbors of each

other.

So after the end of the iteration, 𝐶2 and 𝐶3 merge to form a

single cluster. The process is repeated until the desired number

of clusters is obtained.

In this specific example, the algorithm converges after merging

𝐶2 and 𝐶3 and generates 2 clusters as shown in Table 7.

Table 7: Clusters and Their Points

Cluster Points

C1 A, F

C2 B, C, D, E

Algorithm3. Merging Procedure to generate final clusters

From Algorithm 3, it can be seen that the merging operation is

done via message passing like Algorithm 1, except this time

connectivity values between clusters is used rather than any

distance function. SendRequest method is similar

toAlgorithm 1 that sends request to k-neighboring cluster and

Receive method finds the clusters that send response to a

cluster. Then select only the closest mutual neighboring

cluster to merge which have high connectivity value with the

cluster and then update the merged cluster in original cluster.

After merging operation, new connectivity values are

calculated and then another iteration of message passing starts.

The process not only prevents comparison of every cluster to

other, it also reduces the total number of clusters in each iteration.

Based on clustering requirement a convergence criteria can be

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

34

defined like stopping when the total number of clusters reach a

specific value or the clusters have almost 0 connectivity values

between each other.

4. EXPERIMENTAL SETUP AND

RESULTS

4.1 Datasets
This Section deals with discussion of results that were obtained

on M-kNN Message Passing algorithm (M-kNN) as described

in previous chapter. In order to validate the algorithm, a

synthetic supervised dataset and two datasets from UC Irvine’s

Machine Learning repository is used. The details of the datasets

are given on Table 8. To demonstrate the functionality of our

algorithm we design our own synthetic dataset with varying

density. The real world datasets have been read directly from tab

separated flat files.

Table 8: Datasets used for experiments

Sno Dataset Inst. Attr. Attribute Types Class

1

Synthetic

95

2

Real-valued, continuous

N/A

2

Pen Digits

10,992

16

Integers in the range 0–100

0–9

3

Plants

34,781

65

States of US & Canada

N/A

4.2 Experiments
All the algorithms described in the paper have been

implemented on MATLAB running on a modern x86 64 bit

chip. The results of the algorithm are written in a flat file that

was used for further analysis.

4.3 Synthetic Datasets
We chose a two-dimensional synthetic dataset to test our

algorithm with varying densities having dense and sparse points.

As we can see in Figure 7, there are four regions of high densities

and regions of low-density points surround 2 of them. We can

also see that the low-density points and high-density points are

clearly separated from each other so as to form distinct clusters.

Ideally, a clustering algorithm should be able to determine four

dense clusters and two sparse clusters having a total of 6

clusters.

Figure 7: Synthetic dataset with varying data density.

Then multiple iterations of DBSCAN algorithm is run with various

values of min points and epsilon to obtain clusters as shown in

Figure 8. The colored dots represent points belonging to same

cluster. Black dot signifies an outlier detected by DBSCAN. It

can be clearly seen that DBSCAN is easily able to detect dense

clusters, but it is unable to detect the sparse clusters accurately.

Furthermore, DBSCAN marks a lot of points as outliers as indi-

cated by points colored black. The main problem of DBSCAN

algorithm is it tries to cluster points with specific radius values

and can only detect specific cluster shapes based on the input

parameters. On the other hand, when multiple iterations of the

k-means algorithm is run with different initial centroids and

constant k value (𝑘 = 6) until the best clustering result is

obtained. Figure 9.

(a)

(b)

(c)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

35

(d)

Figure 8: a, b, c, d: Results of DBSCAN with different
parameter values.

Figure 9: Best result of K-means at K=6

It is observed that K-Means fails to effectively detect both

dense and sparse clusters, resulting in suboptimal clustering

outcomes. The authors subsequently applied M-kNN to the

same synthetic dataset using various k values, repeatedly

executing the M-kNN merge operation until six clusters were

formed. M-kNN successfully identified dense clusters,

excluded them from further processing, and enabled

surrounding sparse points to interact and form mutual k-nearest

neighbor relationships. As illustrated in Figure 10, M-kNN

identifies five clusters—four dense and two sparse—within the

dataset. Furthermore, minor variations in k do not significantly

affect clustering results, indicating the algorithm’s robustness

to input parameter changes. These findings suggest that M-

kNN performs well in scenarios where dense clusters are

embedded within sparse regions. This will be further validated

using a real-world dataset in the following section.

4.4 Pen Digits Dataset
To evaluate the proposed algorithm, the Pen-Based

Recognition of Handwritten Digits dataset from the UCI

Machine Learning repository was utilized. Both training and

test points were included for clustering, resulting in a total of

10,000 data points with 16 attributes. As the ideal number of

clusters was unknown, the M-kNN algorithm was executed

until a threshold of 50 clusters was reached. Clustering results

were monitored progressively, starting from 500 clusters down

to 50.

For K-means, multiple iterations were conducted with k values

ranging from 50 to 500. Each iteration involved running K-

means ten times with different initial centroids, and the

clustering outcomes were averaged. For the DBSCAN

algorithm, the minimum points and epsilon values were varied

to generate clusters within the same range. Similarly, for the

Shared Nearest Neighbor algorithm, the k value was adjusted

to generate a graph, and clusters were merged until the desired

range was achieved.

For each cluster, the class membership of its points was

determined, and the majority class was assigned to the cluster.

A class was considered the majority if more than 50% of the

points within the cluster belonged to it. For instance, if M-kNN

identified a cluster A with five points—three from class 1 and

two from class 2—then class 1 was designated as the majority

class for cluster A, and all points in that cluster were labeled

accordingly. Once majority classes for all points is obtained

which is our clustering result we compare them with original

classes in our dataset and generate confusion matrix. The

confusion matrix is used to calculate precision and recall

values.

(a) M-kNN results at k=3

(b) M-kNN results at k=4

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

36

(c) M-kNN results at k=5

Figure 10: a, b, c.

When we plotted precision and recall values in a graph Figure

12, we could clearly see M-kNN performing better than

existing algorithms. M-kNN gives a consistently high value of

precision in every step than DBSCAN, SNN or K-Means. We

can intuitively say that if we increase the number of clusters,

the clustering algorithms will generate better clusters. M-kNN

for large clusters gives very good results with precision value as

high as 93%, which implies 93% of the points have been

correctly classified by the algorithm, compared to SNN and K-

means that give precision values at around 85%. DBSCAN

generated fewer clusters than our algorithm for various values

of epsilon radius and minimum points, and treated several

points as noise.

Figure 11: Comparison of F1-score for Various Clustering

Algorithms for Pen-digits Dataset.

The results obtained in Figure 12 are summarized in Figure 11

by averaging precision and recall values and then calculated the

F1-score for each algorithm. From Figure 11, we can clearly

see M-kNN having a higher F1 score, thereby showing the

consistency of our algorithm.

4.5 Performance Analysis
A large high-dimensional dataset, Plants, from the UCI

repository was used to analyze CPU time. The Plants dataset

contains plant names as instances and state abbreviations as

attributes. Each plant name includes a list of comma-separated

state abbreviations indicating the states in which it is found.

The dataset was transformed into binary vectors, where a value

of 1 denotes the presence of a particular plant in a state. This

dataset was utilized for both clustering and CPU time analysis

to evaluate algorithmic performance over time. The Jaccard

distance was employed as the distance metric.

In SNN, a graph is first generated, which is then used to identify

SNN relationships and form clusters. Similarly, KNN identifies

k-nearest neighbor relationships between points to form

clusters. M-kNN also follows a two-step process: first

identifying M-kNN relationships, then merging clusters based

on those relationships. M-kNN, KNN, and SNN were executed

on datasets ranging from 2,000 to 10,000 points, and their

performance was compared as shown in Figure 13. The total

time recorded for each algorithm corresponds to the time taken

to identify 200 clusters. It was observed that M-kNN exhibits

superior performance, demonstrating near-linear scalability

with increasing dataset size.

Theoretically, performance can be further enhanced by

implementing M-kNN in a parallel computing environment. In

such a setup, multiple processors execute the M-kNN message-

passing algorithm concurrently. Each processor handles a

subset of points that form clusters using the M-kNN approach,

resulting in k processors generating k distinct clusters.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

37

Figure 12: Comparison of precision and recall for M-kNN vs. other algorithms.

Figure 13: Performance Analysis of M-kNN and SNN on Plants Dataset. X-axis: Size of Dataset. Y-axis: Time in Seconds.

Each cluster will also contain information about its mutual

𝑘-nearest neighbors. When two clusters 𝐶1 & 𝐶2

merged, the processor 𝑃𝑅2 is put into an idle state and

𝐶2 is copied into 𝐶1. M-kNN information of 𝐶1 is then

updated to its new neighbors. Merge and continue dropping

processors until the desired number of clusters is obtained.

Thus, M-kNN execution can be further improved if

implemented in a parallel processing environment. Those can

be applied to detect clusters in massive vector databases to

refine LLM searches. The actual implementation is beyond the

scope of this paper.

4.6 Seeds Dataset
To further validate the functionality of the proposed algorithm,

the algorithm was applied to the Seeds dataset from UC Irvine.

UCI Seeds is a widely used density-based dataset for evaluating

clustering algorithms, with various methods demonstrating

strong clustering performance. In this dataset, kernels belong to

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

38

three distinct groups of wheat: Kama, Rosa, and Canadian, each

comprising 70 elements. Ideally, a clustering algorithm should

produce three high-quality clusters with 70 points each. A

similar approach to the previous section was used, monitoring

clustering performance until three clusters were obtained. The

results show that the proposed algorithm yields high precision

and recall values for this dataset as well. As illustrated in the

confusion matrix in Figure 14, M-kNN successfully clusters

one of the kernel groups with 100% precision. Consistent with

earlier findings, the M-kNN clustering process remains stable

throughout each merging step. Upon merging and achieving

three clusters using the merging algorithm, the highest

precision value of 89% was recorded. As with the previous

dataset, the results were summarized by calculating the F1

score based on precision and recall values, as depicted in the

bar graph in Figure 15.

Figure 14: Confusion matrix for M-kNN for seeds dataset

at k=3.

5. CONCLUSION AND FUTURE

DIRECTIONS IN AI USE- CASES

5.1 Conclusion
M-kNN further improves clustering through mutual K-nearest,

neighbor relationship by optimizing the process of message

passing and merging of clusters. Previous work on M-kNN

involved an extra sorting operation to discover the M-kNN

relationship and also required checking every possible pairwise

distance value to find the mutual neighbor. However, M-KNN

message passing allows a point only to send K messages to

neighboring points, thereby pruning the number of points and

drastically reducing the time to calculate mutual k neighbor

relationship. Also, the algorithm requires only one parameter,

which is K value and the results are not highly dependent on

value of K. This novel M-kNN algorithm can be applied to

many real-world situations

Figure 15: Comparison of precision and recall for

clustering algorithms for seeds dataset.

specifically in situations where the data density is varying such

as vector databases. In the contemporary AI-driven landscape,

the expanding adoption and versatility of vector embedding

technology within large language models (LLMs) underscore the

critical need for robust clustering mechanisms and outlier

detection. These techniques are essential to preserve search

quality and ensure stability. This is particularly relevant in the

industrial data, where customer data spans diverse segments and

unique profiles, enabling more tailored and strategic

applications.

6. REFERENCES
[1] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Mo-

toda, G. J. McLachlan, et al., “Top 10 algorithms in data

mining,” Knowledge and Information Systems, vol. 14, no.

1, pp. 1–37, 2008.

[2] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data

Mining. Library of Congress, 2006.

[3] P. Tan, M. Steinbach, and V. Kumar, “Data mining cluster

analysis: Basic concepts and algorithms,” 2013.

[4] Z. Hu and R. Bhatnagar, “Clustering algorithm based on

mutual k-nearest neighbor relationships,” Statistical

Analysis and Data Mining: The ASA Data Science

Journal, vol. 5, no. 2, pp. 100–145, 2012.

[5] D. Sardana and R. Bhatnagar, “Graph clustering using mutual

k-nearest neighbors,” in Active Media Technology, pp. 35–48,

Springer International Publishing, 2014.

[6] L. Ertoz, M. Steinbach, and V. Kumar, “A new shared

nearest neighbor clustering algorithm and its

applications,” in Workshop on Clustering High

Dimensional Data and its Applications at 2nd SIAM

International Conference on Data Mining, pp. 105–115,

Apr. 2002.

[7] M. A. Wong and T. Lane, “A kth nearest neighbour clustering

procedure,” in Computer Science and Statistics:

Proceedings of the 13th Symposium on the Interface, pp.

308–311, Springer US, Jan. 1981.

[8] H. Kriegel et al., “Density-based clustering,” Wiley

Interdis- ciplinary Reviews: Data Mining and Knowledge

Discovery, vol. 1, no. 3, pp. 231–240, 2011.

[9] L. Ertöz, M. Steinbach, and V. Kumar, “Finding clusters

of different sizes, shapes, and densities in noisy, high

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.48, October 2025

39

dimen- sional data,” in SDM, 2003.

[10] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, On the

surprising behavior of distance metrics in high

dimensional space. Springer Berlin Heidelberg, 2001.

[11] B. J. Frey and D. Dueck, “Clustering by passing messages

between data points,” Science, vol. 315, no. 5814, pp. 972–

976, 2007.

[12] Z. Hu, Multi-Domain Clustering on Real-Valued

Datasets. PhD thesis, University of Cincinnati, 2011.

https://etd. ohiolink.edu/.

[13] M. Steinbach, G. Karypis, and V. Kumar, “A comparison

of document clustering techniques,” in KDD Workshop on

Text Mining, vol. 400, 2000.

IJCATM : www.ijcaonline.org

https://etd.ohiolink.edu/
https://etd.ohiolink.edu/

