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ABSTRACT 

Density-based clustering remains a significant area of research 

in data science, particularly given the increasing prevalence of 

high-dimensional datasets with varying densities. Many 

existing clustering approaches struggle to effectively handle 

datasets that contain regions of high density surrounded by 

sparse areas. This study introduces a novel clustering algorithm 

based on the concept of mutual K-nearest neighbor 

relationships, designed to overcome these limitations. The 

proposed method requires only a single input parameter, 

demonstrates strong performance on high-dimensional, 

density-based datasets, and is computationally efficient. 

Furthermore, the algorithm’s practical applications are 

illustrated through its potential to enhance search and retrieval 

processes within vector databases. 
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1. INTRODUCTION 
Cluster analysis is one of the most important areas of data mining 

and is being used in a plethora of applications across the world 

[1, 2]. The motivation behind cluster analysis is to divide the 

data into groups called clusters that are not only useful but also 

meaningful. Every member of a group is similar to one another 

and dissimilar to members belonging to other groups. The entire 

collection of the groups of similar points is referred to as 

clustering [3]. In the modern era, clustering emerges as a powerful 

technique for identifying outliers within vector embedding 

datasets, owing to its foundational design principles. Its 

advantages are particularly notable in this context, including the 

ability to detect clusters of arbitrary shapes, its flexibility in 

operating without predefined cluster counts, and, most crucially, 

its inherent capability to isolate noise points—effectively 

pinpointing outliers. 

In this paper, the primary focus is on clustering based on 

varying density. A clustering algorithm was developed that 

finds clusters in the region of high densities and low densities 

in datasets. The clustering algorithm uses a mutual k-nearest 

neighbor message- passing mechanism to find mutual 

relationships between points and form clusters [4, 5]. 

Experimental results demonstrate that the proposed clustering 

algorithm outperforms state-of-the-art methods across datasets 

with varying densities and high-dimensional features. [6, 7]. 

Motivation 

1.1 Drawbacks of existing density based 

clustering 
Figure 1 shows a density-based dataset that has high-density 

point and low-density points. The traditional clustering 

algorithms like DBSCAN will be able to identify regions of 

high-density such as regions A and C but will neglect the 

regions of low-density points in region B as outliers. In these 

types of datasets, traditional algorithms will not be able to 

achieve complete clustering. In certain situations, the data points 

in region B might be really useful and might have meaningful 

relationships between them. Accordingly, a mechanism is 

required to effectively cluster datasets by identifying and 

associating both low- and high-density points with their 

respective groupings. 

 
Figure 1: Sample dataset with two dense regions and a 

sparse region. 

1.2 Limitation of parameter tuning 
Existing density-based clustering algorithms like K-Means and 

DBSCAN are heavily dependent on input parameters. For ex- 

ample, DBSCAN requires two initial input parameters, namely 

Epsilon radius and minimum points which both have a 

significant influence on the clustering results. To get good 

clustering results from DBSCAN, there is a need to have well-

trained set of Epsilon and MinPts values. To illustrate our 

point, DBSCAN was run on a synthetic dataset with a dense 

region surrounded by a sparse region. The input parameters 

were varied and ran DBSCAN for multiple iterations. It was 

observed with different input values the clustering results not 

only varied but also disregarded several points as outliers that 

were located in low-density regions Figure 2. 

Similarly, K-means algorithm is highly dependent on the initial 

selection of centroids and the number of clusters k. The value 

of k is hard to guess, and there is no way to find out how many 

clusters will be appropriate. When the data is two-dimensional, 

it is fairly easy to identify the value of k through visual 

inspection but for higher dimensions it becomes nearly 

impossible. Thus to determine the input parameters a priori, 

multiple iterations with different input values are run to generate 

the optimal set of clusters. This process can be extremely time-

consuming with larger data size. Therefore, there is critical 

need for a mechanism that is not dependent completely on input 

parameters. 
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Figure 2: DBSCAN on synthetic dataset considers several points as outliers (blue points). 

1.3 Drawbacks of neighbor relationship 

approach to clustering 
Most of the existing algorithms for density based clustering such 

as Shared nearest neighbor or k-nearest neighbor considers 

closeness  of a relationship from given point to all its neighbors 

and does not consider the other points perception of closeness 

with the given point. In k-nearest neighbor, every point tries to 

find its k-nearest neighbors and forms a cluster. However, this 

notion does not work well for datasets with varying density. A 

point in a region can see 10 points as its 10- nearest neighbor, 

but some of those points might be closer to other regions and 

might be ideally suited to be a part of that region. So there is a 

need to develop a method to overcome this problem by 

considering reciprocal relationships instead of one way nearest 

neighboring relationship of points. 

1.4 Benefits of the proposed approach 
In this paper, it is demonstrated that proposed approach works 

well with density based datasets and can clearly identify dense 

clusters and sparse clusters [8, 9]. The performance of our 

algorithm is compared with the standard clustering algorithms 

and show that our algorithm performance is significantly better 

for high-dimensional density- based datasets [1, 10]. Moreover, 

it requires only a single input parameter that is the k value that 

represents the maximum number of mutual neighbors a point 

can have [4]. Unlike most clustering algorithms, the user does 

not give the number of clusters as an input parameter, so it not 

only helps in generating natural clusters but also does not 

depend on a user to guess the ideal number of clusters 

beforehand [3, 11]. 

Furthermore, it is demonstrated with multiple runs of our 

algorithm on experimental data that varying k values slightly 

does not have a significant impact on clustering [4]. The 

clustering is based on a novel concept of mutual k-nearest 

neighbors and identifies clusters with high density and removes 

them from further consideration and then finds clusters in the 

regions where the density is sparse [4, 5]. 

Furthermore, the process of finding mutual neighbors is enhanced 

by message passing between data points. The approach does not 

require scanning the entire table of pairwise distances. Every 

point tries to find its mutual neighbor by communicating with 

its k-nearest points [11]. Once a point receives its mutual k-

nearest neighbors, it excludes itself from further consideration 

thereby reducing the size of data during the run-time [4]. The 

merging process is implemented that uses a similar approach 

where the goal is to find best mutual neighbors of each cluster 

and merge them one at a time till the required number of clusters 

is obtained [4, 5]. This approach does not require comparing 

every cluster with another cluster to merge, and hence is a more 

efficient approach than related works 

Point 0 has two shared neighbors with point 1 which is 2 and 3. 

So points 0 and 1 has an edge weight of 2 that represents 2-shared 

neighbors between them. Also, high strength points are decided 

by total sum of edges coming out of a point. For example, Point 

0 has 3 edges with weights 2 each so the total strength is 6. The 

algorithm of SNN is described in Figure 3. However SNN is 

based on K-nearest neighbor relationship that is a one-way 

relationship. In Figure 6 0 and 1 are having high similarity 

based on shared neared neighbor concept but it does not 

consider if both 0 and 1 select each other as their neighbor or 

not. 
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Figure 3: A Graph Representation for a Dataset. [6, 7]. 

2. RELATED WORK 

2.1 DBSCAN 
DBSCAN [1] overcomes problems of k-means on non-globular 

clusters as it can detect clusters of any arbitrary shape and is 

resistant to noise [4], [12]. DBSCAN uses two parameters for 

clustering: 

• 𝜀-Neighborhood: represents points within a radius of 𝜀   
frrom point p. 

• MinPts: Minimum points in the 𝜀-Neighborhood of p. 

The algorithm is described in Figure 3. The basic idea of the 

algorithm is to form clusters that have at least MinPts within the 

𝜀-Neighborhood. The points that do not fall in the 𝜀-Neighborhood 

are disregarded as noise points. For uniform datasets, DBSCAN 

can detect dense regions and generates clusters of various shapes 

and sizes based on density. However, if the density is varying 

DBSCAN has trouble detecting density and it can mark several 

points as noise. It is shown experimentally that DBSCAN is 

unable to detect the correct set of clusters for a synthetic dataset 

with dense and sparse regions. Also, it is experimentally 

demonstrated that DBSCAN is heavily dependent on the 

selection of input parameters. Varying input parameters even 

slightly causes a prominent change in clustering. Furthermore, 

for higher dimensional dataset it becomes even more 

complicated to find out the correct set of MinPts and epsilon 

radius, as it is hard to visualize unlike two-dimensional 

datasets. Another drawback is DBSCAN only considers a 

point’s closeness with other points in its radius but does not 

consider other point’s closeness with that point. 

2.2 Shared Nearest Neighbor (SNN) 
Shared Nearest Neighbor [6] overcomes the problem of 

clustering higher dimensional data by using the concept of shared 

neighbors. Shared neighbor is a pairwise relationship of points 

which is the number of neighbors two points have in common. 

For example if a point A has neighbors C and D and B has 

neighbors C and D, shared nearest neighbor considers A and B 

to be similar based on the common shared neighbors C and D. 

To explain the concept even further Shared Nearest Neighbors 

can be represented by a graph where vertex represents the 

points and edge represents the neighbor of a point. 

2.3 Mutual K-nearest neighbor 
Hu and Bhatnagar (2011) proposed a clustering algorithm for 

finding the mutual relationship between points using mutual 

rela- tionships. The algorithm requires pairwise distance 

relationship calculation for every data point and comparing 

every point with another point to find mutual neighbors [4, 12]. 

The clustering requires sorting of pairwise distances in 

ascending order and reading the table of sorted pairwise 

distances one at a time to find mutual neighbors. For example, 

if the size of the dataset has 10,000 points, the algorithm will 

require sorting of 100 million points and reading a table of 100 

million rows to calculate mutual neighboring relationships. If  

the data size is kept increasing, it will not be feasible to store and 

process the pairwise distances in memory and will also require 

quadratic time to run the algorithm completely [10, 13]. 

In addition, the clustering step proposed by Hu and Bhatnagar 

(2011) [12] requires comparison of every cluster with each 

other and is CPU time intensive if initial number of clusters 

generated is very large. Thus, an efficient mechanism is 

required not only for identifying mutual nearest neighbors but 

also for performing cluster merging operations without the 

need to scan every cluster in the set [5, 6]. In this paper, the 

notion of mutual k- nearest neighbor relationship proposed by 

Zhen and Bhatnagar (2011) [4] is extended and an efficient 

mechanism of finding mutual neighbors by message passing and 

forming clusters is demonstrated. Furthermore, it is 

experimentally shown that the proposed algorithm is better in 

terms of time and space complexity and works as accurately as 

the algorithm proposed by previous work [1, 11]. 

3. OUR APPROACH 

3.1 Mutual k-Nearest Algorithm with 

Message Passing 
This Section deals in detail the design and implementation of 

Mutual k-Nearest Algorithm. The algorithm is based on the 

notion of mutual k-nearest neighbor relationships between data 

points and uses an efficient message passing system to figure out 

two-way nearest neighboring relationships. Most of the 

existing density based approaches like K-nearest neighbor and 

Shared nearest neighbor uses one way nearest neighboring 

relationship. For example, if a point 𝑝1 selects 𝑝2 as its nearest 

neighbor, it does not  consider the relationship of 𝑝2 with 𝑝1. 

Mutual k-Nearest Neighbor relationship, on the other hand, 

considers reciprocal relationship as well i.e. 𝑝1 and 𝑝2 can only 

become a Mutual k-Nearest Neighbor pair if both 𝑝1 has 𝑝2 and 

𝑝2 has 𝑝1themselves as their nearest neighbor. To formalize the 

definition of Mutual k-Nearest Neighbor relationship: 

Definition I: A point 

𝑝1 and 𝑝2 with distance 𝑑𝑝12 are Mutual k-Nearest Neighbors 

if 

1. There are points fewer than k in distance space 𝑑𝑝12 

2. There are points more than k in distance space 𝑑𝑝12 , but 

most of them have already found their Mutual k-Nearest 
Neighbors Figure 4 illustrates the concept further. 

Figure 4. Sample points to explain mutual 𝑘-Nearest relationship. 

Figure 4c, Figure 4b Sample points to describe Definition 

I for 𝑘 = 2. In Figure 4a, the single arrows represent nearest 

neighbor relationship and bi-directional arrows represent 

mutual relationships between the points. It can be seen that 𝑃1 

has 𝑃2 as its neighbor in its Euclidean space but the same is 

not true with 𝑃2. Similarly, 𝑃5 has 𝑃3 as its neighbor but 𝑃3 

has already selected 𝑃2 as its mutual nearest neighbor. Figure 

4b illustrates the first part of Definition I where 𝑃1 has less 

than 2 points between 𝑃2.  So 𝑃1 considers 𝑃2 as its mutual 

neighbor.Figure 4c illustrates the second part of Definition 

I where 𝑃1 and 𝑃2 have more than 2 points between them so 

it considers 𝑃2 as its mutual neighbor. 
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(a) 

Sample points to explain mutual k-Nearest relationship. 

 

(b) 

Sample points to describe definition I for k=2. 

 
(c) 

Sample points to describe definition I for k=2. 

Figure 4: 𝑘-Nearest relationship 

3.2 Finding Mutual Neighbors by Message 

Passing Approach 
It is illustrated with a simple example how message passing works 

to find mutual relationships for every point. Suppose there are 

two-dimensional data points as shown in the Figure 5. To 

explain the working of message passing algorithm considering 

value of K as 2. 

 

 

Figure 5: A 2D Data Example to Explain M-kNN 

Algorithm with k=2 as Input. 

Message passing is an iterative process where every point sends 

request messages to nearest 𝑘 points. The closeness of a point Ii 

determined by a pre-selected distance measure. The messages 

that are received by a particular point is a response message. 

Based on the messages sent and received, the mutual 𝑘-Nearest 

points are determined for every point. If a point 𝑝 receives 

messages from the same set of points {𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑛 } 
that it sent  requesmessages to, for multiple iterations, then 

𝑝 adds all the points into its mutual relationship. Since the 

relationship is mutual, every point in the set {𝑝1, 𝑝2, 𝑝3, . . . 

, 𝑝𝑛 } also adds 𝑝 as mutual 

𝑘-nearest neighbor. In the message passing procedure, every point 

has its individual 𝑘 value. Initially, all the points have same 

𝑘-value as supplied as an input. Table I shows message passing of 

points in Table 1 in the first iteration. Initially, the 𝑘 value is set 

to 2 for all points. 

Table 1: Message Passing First Iteration. 

Points Request 

Sent 

Response 

Received 

k Candidate 

Mutual 

k-NN 

A B, C – 2 – 

B C, D A, C, D 2 C, D 

C B, E A, B, E 2 B, E 

D B, E B, E 2 B, E 

E C, D C, D 2 C, D 

F C, E – 2 – 

 

Every point sends messages to 𝑘 points that are close to a particular 

point in terms of distance measure. For this example, let us 

consider the distance measure to be Euclidean. Based on points 

received, there are three conditions: 

Table 1 shows working of message passing in first iteration. Point 

B receives messages from points A, C and D but selects points 

C and D as mutual k-nearest neighbor candidate as they are closer 

to point B than point A. Similarly, point F is unable to find it 

mutual k-nearest neighbor pair as other points have already 

found their neighbor pair. So F sends request to points B, C, D 

and E but none of these points reciprocate and sends messages 

to F. If a point gets the same mutual k-nearest neighbor 

candidate in last three iterations, they are selected as the final 

neighbors and form our mutual K-nearest neighbor table. Table 

2 shows the results after the 3rd iteration. In our example, 

points B, C, D, and E have already found their mutual K-nearest 

neighbor as they have selected same candidate mutual k-

Nearest candidate points in 3 iterations. It is noticed that A and 

F have received less than ’2’ messages and hence it keeps 

increasing its k-value in every iteration. The messages passing 

procedure continues till one of the conditions are met: 

Table 2: M-kNN Table in 3rd iteration. 

 
Points Request 

Sent 
Response 
Received 

k-value Candidate 
Mutual 
KNN 

A B, C, D, E – 4 – 
B C, D A, C, D, F 2 C, D 
C B, E A, B, E, F 2 B, E 
D B, E A, B, E, F 2 B, E 
E C, D A, D, E, F 2 C, D 

F B, C, D, E – 4 – 

1. All points find their k mutual neighbors 

2. No more points are available in dataset that is searching 

for neighbors 
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3. User specified number of iterations is reached 

(Threshold) 
Table 3: Message Passing Final Iteration. 

Points Request 

Sent 

Response 

Received 

k Candidate 

Mutual 

k-NN 

A B, C, D, E, F F 5 F 

F A, B, C, D, E A 5 A 

In the final iteration, it is observed that A and F become mutual 

k-Nearest neighbor of each other and hence our final set of M-

kNN is shown in Table 4. 

Table 4: Final Table After User Specified Iteration. 

Points M-kNN 

A F 

B C, D 

C B, E 

D B, E 

E C, D 

F A 

 

 
Algorithm 1. Generating M-kNN table 

3.3 Clustering from Mutual k-Nearest 

Message passing table 
The M-kNN relationship table generated by Algorithm 1 will 

be used for clustering points in a dataset using two Algorithms. 

Algorithm 2 determines the initial set of clusters by reading the 

M-kNN table sequentially; Algorithm 3 performs cluster 

merging operation on initial set of clusters in Mutual k-nearest 

neighbor way where it selects the best cluster to merge based 

on Mutual k-Nearest neighbor relationship of the cluster. For 

Algorithm 1 the following parameters are defined: 

Definition 2: Radius of a point 𝑃 is defined as the average 

distance of all its mutual 𝑘-nearest neighbors from 𝑃. For a 

point 𝑃 which has distances with its M-kNN neighbors as 

𝑑1, 𝑑2, . . . , 𝑑𝑘 : 
 

RP=
∑ 𝑑𝑖𝐾
𝑖=1

𝐾
 

• Definition 3: Cluster Initiator A point that starts 

building clusters by first including all its M-kNN. 

As seen from Table 3, in the final iteration A and F increase 

their 𝑘 value and send messages to each other and become mutual 

neighbors. The other points have already found their final 

neighbors and hence are excluded from further consideration. 

The algorithm is listed in Algorithm 1. As described in 

Algorithm 1, 𝑘𝑔 is the global 𝑘 value that is provided by user. 

Initially every point has initial 𝑘𝑝 which is equal to global 𝑘 
value 𝑘𝑔. Every point sends request messages to nearest k points 

using SendRequest function that finds best 𝑘 points and sends 

messages to them. Responses to every point are received from 

GetResponse function. SelectBestK function selects the best 𝑘 
mutual neighbor i.e. the neighbors who were requested by a 

point and have also responded to a point and are closest in terms 

of a distance measure. Finally, if a point receives same mutual 

neighbors in last three iterations, it adds the mutual neighbors 

in final M-kNN table Table 4. Then clustering is performed on 

this table that is described in next section. 

 
Figure 6: An Example to Explain Cluster Initiator 

Assignment 

Radius of a point will help us determine the density of the clusters. 

Figure 6 is used to illustrate the concept of cluster initiator 

assignment with 4 points. Bi-directional arrows represent 

mutual relationship between points. Let us assume the points 

𝑃1, 𝑃2, 𝑃3, 
𝑃4 are sorted in decreasing value of radius respectively. 

Lets start with 𝑃1 and assign 𝑃1 as its own initiator 1. Point 

𝑃1’s  M-kNN points are 𝑃2 and 𝑃3, so they are also assigned 

as 𝑃1’s initiator and hence labeled as 1. Point 𝑃4 is not 

assigned, so it is assigned to 2, but 𝑃4 has 𝑃3 as its M-

kNN neighbor that was already assigned to 𝑃1. However, the 

distance between 𝑃3 and 𝑃4 is less than the distance between 

𝑃3 and 𝑃1. Hence, 𝑃3 is newly assigned to 𝑃4’s initiator, 

which is 2. 

To illustrate the process further, with the same example described 

in Subsection B is continued. The radius values of each point 

are  calculated and sort them in descending order of radius values 

as shown in Table 5. Start with point A. Since A has not been 

assigned to an initiator, assign A as a cluster initiator. 

Table 5: Generating Preliminary Clusters. 

Points M-kNN Radius Cluster No. 

A F 4 A=1, F=1 

F A 4 1 

B C, D 2.25 B=2, C=2, D=2 

C B, E 2.25 C=2 

D B, E 2.25 D=2 

E C, D 2.25 E=3, C=2, D=3 

Then it is checked if the mutual neighbor of A has been assigned 

to a cluster or not. In this case two scenarios can happen: 

1. If mutual neighbor of point F has not been assigned a cluster, 

point F will be assigned to A’s cluster 

2. If mutual k-nearest neighbor point F is already assigned to 
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a cluster, then there are two cases: 

• If distance of point F with its previous initiator 

> distance of F with current initiator: update F’s 

initiator with the new initiator. 

• If the distance of F with its previous initiator < 

distance of F with current initiator: Make no 

changes. 

In our example, F is not assigned and hence it will be assigned 

to A’s cluster. Similarly, cluster initiators are continuously 

assigned, and mutual k-nearest neighbors are added to the 

cluster of the nearest cluster initiator. Point D was initially 

assigned to B but in further iteration the algorithm finds that 

distance of point E with D is less than distance of B and D. So 

D’s was assigned to E’s cluster. From the Table 5, it is 

observed that there are three cluster initiators: A, B and E that 

form initial set of clusters. All the other points belong to either 

of these clusters. The algorithm for this procedure is mentioned 

in Algorithm 2. The algorithm takes as an input radius sorted 

points and outputs a preliminary table of points with cluster 

labels. The next procedure of the algorithm is to merge clusters 

obtained. 

3.4 Clustering Merging 
Unlike previous approaches to cluster merging, a new cluster 

merging process via message passing is defined. The process 

similar to Subsection 3.2 is repeated, but now clusters use 

message passing to find their mutual neighbors and merge with 

its best mutual 𝑘-nearest neighbor cluster. However, lets define new 

metrics to measure inter-cluster distance as follows: 

 
Algorithm2. Generating initial set of clusters 

• Definition 4: Linkage: A point has a linkage to a cluster 

𝑁 if there is at least one point in 𝑁 that is a 
mutual neighbor (M-kNN) of point 𝑝. 

• Definition 5: Closeness : Closeness of cluster 
Clusteri to Clusterj is no. of points in Clusteri that 
has a Linkage to Cluster j 

• Definition 6: Sharing: Sharing S of cluster Clusteri into 

Clusterj is number of Mutual k-Nearest Neighbor pairs that 

have one in Clusteri and other in Clusterj 

• Definition 7: Connectivity If 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 has 𝑘 i points 

and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 has 𝑘 𝑗 points, the connectivity of 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 to 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 is defined as:  

Connectivity i 𝑗 = (Sharing / (𝑘 i X 𝑘 𝑗 )) X  (Closeness/ 𝑘 

i) 

The merging process starts with every cluster sending 𝑘 messages 

to other clusters and identifying the best cluster that reciprocates 

as its mutual 𝑘-nearest neighbor. In order to merge, both clusters 

should have a high connectivity value with each other and should 

reciprocate the mutual neighbor relationship. Once two clusters 

become mutual 𝑘-nearest neighbors of each other, they merge 

to form a single cluster. The new cluster becomes the union 

of the M-kNN neighbors of the two merged clusters. This new 

cluster must then recalculate connectivity values when sending 𝑘 
messages to other clusters. 

Table 6: Cluster Merging First Iteration 

Cluster Request Sent Response Re- 

ceived 

Points 

C1 C2, C3 – A, F 

C2 C3, C1 C1, C3 B, C 

C3 C1, C2 C1, C2 D, E 

 

To illustrate the message passing cluster merging, the example 

of the previous section with our preliminary clusters is contined. 

From Table 6, it can be see that 𝐶2 sends messages to 𝐶3.  

Here𝐶2 and 𝐶3 become mutual K-nearest neighbors of each 

other.  

So after the end of the iteration, 𝐶2 and 𝐶3 merge to form a 

single cluster. The process is repeated until the desired number 

of clusters is obtained. 

In this specific example, the algorithm converges after merging 

𝐶2 and 𝐶3 and generates 2 clusters as shown in Table 7. 

Table 7: Clusters and Their Points 

Cluster Points 

C1 A, F 

C2 B, C, D, E 

 

 
Algorithm3. Merging Procedure to generate final clusters 

From Algorithm 3, it can be seen that the merging operation is 

done via message passing like Algorithm 1, except this time 

connectivity values between clusters is used rather than any 

distance function. SendRequest method is similar 

toAlgorithm 1 that sends request to k-neighboring cluster and 

Receive method finds the clusters that send response to a 

cluster. Then select only the closest mutual neighboring 

cluster to merge which have high connectivity value with the 

cluster and then update the merged cluster in original cluster. 

After merging operation, new connectivity values are 

calculated and then another iteration of message passing starts. 

The process not only prevents comparison of every cluster to 

other, it also reduces the total number of clusters in each iteration. 

Based on clustering requirement a convergence criteria can be 
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defined like stopping when the total number of clusters reach a 

specific value or the clusters have almost 0 connectivity values 

between each other. 

4. EXPERIMENTAL SETUP AND 

RESULTS 

4.1 Datasets 
This Section deals with discussion of results that were obtained 

on M-kNN Message Passing algorithm (M-kNN) as described 

in previous chapter. In order to validate the algorithm, a 

synthetic supervised dataset and two datasets from UC Irvine’s 

Machine Learning repository is used. The details of the datasets 

are given on Table 8. To demonstrate the functionality of our 

algorithm we design our own synthetic dataset with varying 

density. The real world datasets have been read directly from tab 

separated flat files. 

Table 8: Datasets used for experiments 

Sno Dataset Inst. Attr. Attribute Types Class 

 

1 

 

Synthetic 

 

95 

 

2 

 

Real-valued, continuous 

 

N/A 

 

2 

 

Pen Digits 

 

10,992 

 

16 

 

Integers in the range 0–100 

 

0–9 

 

3 

 

Plants 

 

34,781 

 

65 

 

States of US & Canada 

 

N/A 

 

4.2 Experiments 
All the algorithms described in the paper have been 

implemented on MATLAB running on a modern x86 64 bit 

chip. The results of the algorithm are written in a flat file that 

was used for further analysis. 

4.3 Synthetic Datasets 
We chose a two-dimensional synthetic dataset to test our 

algorithm with varying densities having dense and sparse points. 

As we can see in Figure 7, there are four regions of high densities 

and regions of low-density points surround 2 of them. We can 

also see that the low-density points and high-density points are 

clearly separated from each other so as to form distinct clusters. 

Ideally, a clustering algorithm should be able to determine four 

dense clusters and two sparse clusters having a total of 6 

clusters. 

 
Figure 7: Synthetic dataset with varying data density. 

Then multiple iterations of DBSCAN algorithm is run with various 

values of min points and epsilon to obtain clusters as shown in 

Figure 8. The colored dots represent points belonging to same 

cluster. Black dot signifies an outlier detected by DBSCAN. It 

can be clearly seen that DBSCAN is easily able to detect dense 

clusters, but it is unable to detect the sparse clusters accurately. 

Furthermore, DBSCAN marks a lot of points as outliers as indi- 

cated by points colored black. The main problem of DBSCAN 

algorithm is it tries to cluster points with specific radius values 

and can only detect specific cluster shapes based on the input 

parameters. On the other hand, when multiple iterations of the 

k-means algorithm is run with different initial centroids and 

constant k value (𝑘 = 6) until the best clustering result is 

obtained. Figure 9. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 8: a, b, c, d: Results of DBSCAN with different 
parameter values. 

 

Figure 9: Best result of K-means at K=6 

It is observed that K-Means fails to effectively detect both 

dense and sparse clusters, resulting in suboptimal clustering 

outcomes. The authors subsequently applied M-kNN to the 

same synthetic dataset using various k values, repeatedly 

executing the M-kNN merge operation until six clusters were 

formed. M-kNN successfully identified dense clusters, 

excluded them from further processing, and enabled 

surrounding sparse points to interact and form mutual k-nearest 

neighbor relationships. As illustrated in Figure 10, M-kNN 

identifies five clusters—four dense and two sparse—within the 

dataset. Furthermore, minor variations in k do not significantly 

affect clustering results, indicating the algorithm’s robustness 

to input parameter changes. These findings suggest that M-

kNN performs well in scenarios where dense clusters are 

embedded within sparse regions. This will be further validated 

using a real-world dataset in the following section. 

4.4 Pen Digits Dataset 
To evaluate the proposed algorithm, the Pen-Based 

Recognition of Handwritten Digits dataset from the UCI 

Machine Learning repository was utilized. Both training and 

test points were included for clustering, resulting in a total of 

10,000 data points with 16 attributes. As the ideal number of 

clusters was unknown, the M-kNN algorithm was executed 

until a threshold of 50 clusters was reached. Clustering results 

were monitored progressively, starting from 500 clusters down 

to 50. 

For K-means, multiple iterations were conducted with k values 

ranging from 50 to 500. Each iteration involved running K-

means ten times with different initial centroids, and the 

clustering outcomes were averaged. For the DBSCAN 

algorithm, the minimum points and epsilon values were varied 

to generate clusters within the same range. Similarly, for the 

Shared Nearest Neighbor algorithm, the k value was adjusted 

to generate a graph, and clusters were merged until the desired 

range was achieved. 

For each cluster, the class membership of its points was 

determined, and the majority class was assigned to the cluster. 

A class was considered the majority if more than 50% of the 

points within the cluster belonged to it. For instance, if M-kNN 

identified a cluster A with five points—three from class 1 and 

two from class 2—then class 1 was designated as the majority 

class for cluster A, and all points in that cluster were labeled 

accordingly. Once majority classes for all points is obtained 

which is our clustering result we compare them with original 

classes in our dataset and generate confusion matrix. The 

confusion matrix is used to calculate precision and recall 

values. 

 
(a) M-kNN results at k=3 

 

 
(b) M-kNN results at k=4 
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(c) M-kNN results at k=5 

Figure 10: a, b, c. 

When we plotted precision and recall values in a graph Figure 

12, we could clearly see M-kNN performing better than 

existing algorithms. M-kNN gives a consistently high value of 

precision in every step than DBSCAN, SNN or K-Means. We 

can intuitively say that if we increase the number of clusters, 

the clustering algorithms will generate better clusters. M-kNN 

for large clusters gives very good results with precision value as 

high as 93%, which implies 93% of the points have been 

correctly classified by the algorithm, compared to SNN and K-

means that give precision values at around 85%. DBSCAN 

generated fewer clusters than our algorithm for various values 

of epsilon radius and minimum points, and treated several 

points as noise. 

 
Figure 11: Comparison of F1-score for Various Clustering 

Algorithms for Pen-digits Dataset. 

The results obtained in Figure 12 are summarized in Figure 11 

by averaging precision and recall values and then calculated the 

F1-score for each algorithm. From Figure 11, we can clearly 

see M-kNN having a higher F1 score, thereby showing the 

consistency of our algorithm. 

4.5 Performance Analysis 
A large high-dimensional dataset, Plants, from the UCI 

repository was used to analyze CPU time. The Plants dataset 

contains plant names as instances and state abbreviations as 

attributes. Each plant name includes a list of comma-separated 

state abbreviations indicating the states in which it is found. 

The dataset was transformed into binary vectors, where a value 

of 1 denotes the presence of a particular plant in a state. This 

dataset was utilized for both clustering and CPU time analysis 

to evaluate algorithmic performance over time. The Jaccard 

distance was employed as the distance metric. 

In SNN, a graph is first generated, which is then used to identify 

SNN relationships and form clusters. Similarly, KNN identifies 

k-nearest neighbor relationships between points to form 

clusters. M-kNN also follows a two-step process: first 

identifying M-kNN relationships, then merging clusters based 

on those relationships. M-kNN, KNN, and SNN were executed 

on datasets ranging from 2,000 to 10,000 points, and their 

performance was compared as shown in Figure 13. The total 

time recorded for each algorithm corresponds to the time taken 

to identify 200 clusters. It was observed that M-kNN exhibits 

superior performance, demonstrating near-linear scalability 

with increasing dataset size. 

Theoretically, performance can be further enhanced by 

implementing M-kNN in a parallel computing environment. In 

such a setup, multiple processors execute the M-kNN message-

passing algorithm concurrently. Each processor handles a 

subset of points that form clusters using the M-kNN approach, 

resulting in k processors generating k distinct clusters. 
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Figure 12: Comparison of precision and recall for M-kNN vs. other algorithms. 

 
Figure 13: Performance Analysis of M-kNN and SNN on Plants Dataset. X-axis: Size of Dataset. Y-axis: Time in Seconds. 

Each cluster will also contain information about its mutual 

𝑘-nearest neighbors. When two clusters 𝐶1 & 𝐶2  

merged, the processor 𝑃𝑅2 is put into an idle state and 

𝐶2 is copied into 𝐶1. M-kNN information of 𝐶1 is then 

updated to its new neighbors. Merge and continue dropping 

processors until the desired number of clusters is obtained. 

Thus, M-kNN execution can be further improved if 

implemented in a parallel processing environment. Those can 

be applied to detect clusters in massive vector databases to 

refine LLM searches. The actual implementation is beyond the 

scope of this paper. 

4.6 Seeds Dataset 
To further validate the functionality of the proposed algorithm, 

the algorithm was applied to the Seeds dataset from UC Irvine. 

UCI Seeds is a widely used density-based dataset for evaluating 

clustering algorithms, with various methods demonstrating 

strong clustering performance. In this dataset, kernels belong to 
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three distinct groups of wheat: Kama, Rosa, and Canadian, each 

comprising 70 elements. Ideally, a clustering algorithm should 

produce three high-quality clusters with 70 points each. A 

similar approach to the previous section was used, monitoring 

clustering performance until three clusters were obtained. The 

results show that the proposed algorithm yields high precision 

and recall values for this dataset as well. As illustrated in the 

confusion matrix in Figure 14, M-kNN successfully clusters 

one of the kernel groups with 100% precision. Consistent with 

earlier findings, the M-kNN clustering process remains stable 

throughout each merging step. Upon merging and achieving 

three clusters using the merging algorithm, the highest 

precision value of 89% was recorded. As with the previous 

dataset, the results were summarized by calculating the F1 

score based on precision and recall values, as depicted in the 

bar graph in Figure 15. 

 
Figure 14: Confusion matrix for M-kNN for seeds dataset 

at k=3. 

5. CONCLUSION AND FUTURE 

DIRECTIONS IN AI USE- CASES 

5.1 Conclusion 
M-kNN further improves clustering through mutual K-nearest, 

neighbor relationship by optimizing the process of message 

passing and merging of clusters. Previous work on M-kNN 

involved an extra sorting operation to discover the M-kNN 

relationship and also required checking every possible pairwise 

distance value to find the mutual neighbor. However, M-KNN 

message passing allows a point only to send K messages to 

neighboring points, thereby pruning the number of points and 

drastically reducing the time to calculate mutual k neighbor 

relationship. Also, the algorithm requires only one parameter, 

which is K value and the results are not highly dependent on 

value of K. This novel M-kNN algorithm can be applied to 

many real-world situations 

 
Figure 15: Comparison of precision and recall for 

clustering algorithms for seeds dataset. 

specifically in situations where the data density is varying such 

as vector databases. In the contemporary AI-driven landscape, 

the expanding adoption and versatility of vector embedding 

technology within large language models (LLMs) underscore the 

critical need for robust clustering mechanisms and outlier 

detection. These techniques are essential to preserve search 

quality and ensure stability. This is particularly relevant in the 

industrial data, where customer data spans diverse segments and 

unique profiles, enabling more tailored and strategic 

applications. 
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