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ABSTRACT 

The increasing demand for lightweight and energy-efficient 

deep learning models at the edge has fueled interest in training 

convolutional neural networks (CNNs) directly on ARM-based 

CPU clusters. This study examines the feasibility and 

performance constraints of distributed training for the compact 

SqueezeNet v1.1 architecture, implemented using an MPI-

based parallel framework on a Beowulf cluster composed of 

Raspberry Pi devices. 

Experimental evaluation across up to 24 Raspberry Pi nodes 

(48 MPI processes) reveals a sharp trade-off between training 

acceleration and model generalization. While wall-clock 

training time improves by over (11×) under increased 

parallelism, test accuracy deteriorates significantly, collapsing 

to chance-level performance (≈10%) as data partitions per 

process become excessively small. This behavior highlights a 

statistical scaling limit, beyond which computational gains are 

offset by learning inefficiency. The findings are consistent with 

the statistical bottlenecks identified by Shallue et al. (2019) 

[11], extending their observations from large-scale GPU/CPU 

systems to energy-constrained ARM-based edge clusters. 

These findings underscore the importance of balanced task 

decomposition in CPU-bound environments and contribute 

new insights into the complex interplay between model 

compactness, data sparsity, and parallel training efficiency in 

edge-AI systems. This framework also provides a viable low-

power platform for real-time SNN research on edge devices. 
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1. INTRODUCTION 
The rapid proliferation of artificial intelligence (AI) 

applications at the network edge—ranging from autonomous 

sensing systems to low-power surveillance and smart IoT 

endpoints—has accelerated the demand for resource-efficient 

deep learning (DL) models deployable on embedded hardware 

platforms [1], [2]. While modern convolutional neural 

networks (CNNs) achieve state-of-the-art accuracy across a 

variety of computer vision tasks, their deployment on 

lightweight hardware remains challenging due to memory, 

energy, and compute limitations [3]. 

Recent developments in model compression and architecture 

optimization have led to the emergence of compact CNN 

variants, such as MobileNet and SqueezeNet, which offer a 

favorable trade-off between inference speed and accuracy [4], 

[5]. These models have shown promising results for edge 

inference, yet the majority of existing studies rely on pre-

trained models, limiting the scope of on-device adaptation and 

learning. In contrast, performing model training directly on 

edge hardware—particularly in a distributed fashion—remains 

largely unexplored due to the stringent constraints of low-

power CPUs and lack of GPU acceleration [6], [7]. 

This work addresses the gap by investigating the feasibility of 

parallel CNN training using SqueezeNet v1.1 on ARM-based 

edge clusters. Leveraging a message-passing interface (MPI) 

strategy across multiple Raspberry Pi devices, the analysis 

focuses on evaluating the trade-offs between training 

throughput, communication overhead, and statistical efficiency 

as the number of processes increases. Particular attention is 

given to the interaction between parallelism and model 

generalization, exposing a regime where increased scalability 

leads to diminishing learning returns. 

By extending the frontier of embedded deep learning from 

inference-only systems toward scalable training architectures, 

this study examines SqueezeNet v1.1 as a candidate for energy- 

and memory-efficient CNN deployment in clustered edge 

environments. Implementing MPI-based distributed training on 

ARM-based devices reveals both the strengths and the practical 

limits of this approach, highlighting the trade-offs between 

computational scalability, statistical efficiency, and 

generalization.  

The experimental platform, illustrated in "Figure 1",[8], [9], is 

built on the Raspberry Pi 4 Model B with 8 GB LPDDR4 RAM 

and a 64-bit quad-core ARMv8 Cortex-A72 CPU at 1.5 GHz, 

chosen for its low cost, accessibility, and suitability for high-

performance cluster assembly at the edge. This hardware 

foundation provides a controlled and repeatable basis for 

evaluating parallel processing and distributed deep learning 

workloads, enabling insights that contribute to the design of 

future edge-AI systems less dependent on cloud infrastructure. 

 

Figure 1: Raspberry Pi 4 Model B unit used as the basic 

node in the 24-node ARM-based Beowulf cluster. 
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2. SYSTEM DESCRIPTION 

2.1 Hardware Equipment 
The computational platform for this study is a cost‑effective yet 

capable Beowulf‑style cluster built from 24 Raspberry Pi 4 

Model B units, each equipped with 8 GB LPDDR4 RAM. One 

board is configured as the master node, responsible for resource 

allocation and process orchestration, while the remaining 23 

nodes serve as MPI‑coordinated workers executing parallel 

training tasks. The physical layout "Figure 2" consists of four 

vertical stacks containing six boards each, a format that offers 

both space efficiency and clean, maintainable cabling. 

High-speed inter-node communication is provided by TP-Link 

TL-SG1024D unmanaged Gigabit Ethernet switches, 

delivering 1 Gbps full-duplex bandwidth per link. This 

topology ensures consistent, low-latency data exchange 

between nodes, effectively replicating the communication 

characteristics of a traditional high-performance computing 

(HPC) environment within an ARM-based embedded system. 

Stable and reliable power delivery is maintained through two 

industrial-grade switch-mode power supplies, each rated 

at 60 A / 5 V and precisely tuned to 5.80 V to offset voltage 

drops over extended cabling. This adjustment safeguards node 

stability during sustained, high-load parallel operations. 

For storage, the master node hosts a 1 TB Samsung 980 

PCIe 3.0 NVMe SSD to provide high-throughput access for 

dataset management and orchestration tasks. Each worker node 

is fitted with a 256 GB Patriot P300 NVMe M.2 SSD, ensuring 

fast local I/O to support seamless data streaming during 

training. This configuration supplies adequate storage 

bandwidth for large-scale datasets and for maintaining 

intermediate model checkpoints throughout distributed 

learning. 

 

Figure 2: 24-node Raspberry Pi 4B (8 GB) Beowulf cluster 

architecture for distributed SqueezeNet training. 

2.2 Software Environment and Toolchain 
The software environment utilized in this study was carefully 

designed to support distributed training of lightweight 

convolutional neural networks on ARM-based systems. All 

nodes operated under Raspberry Pi OS 64-bit Lite (Debian-

based), with Python 3.11.5 running within a shared virtual 

environment mounted via NFS, ensuring a uniform software 

stack and consistent execution across the entire cluster. 

Inter-process communication was managed using MPICH 

v4.2.0, while the distributed training logic was implemented 

with the mpi4py library (v3.1.6), providing a Pythonic interface 

to the underlying MPI runtime. 

In addition to core scientific libraries - including NumPy 

(v1.26.4), SciPy (v1.13.0), scikit-learn (v1.4.2), and psutil 

(v7.0.0) - the software stack incorporated deep learning-

specific frameworks required for CNN construction, training, 

and evaluation. Specifically, TensorFlow v2.15.0, with 

integrated Keras APIs, was employed to support the modular 

architecture of SqueezeNet and to facilitate GPU-independent 

model training and evaluation. 

All dependencies were compiled for compatibility with the 

ARMv8-A architecture, and deployed uniformly to ensure 

deterministic behavior and eliminate version drift. To support 

efficient parallelism, environmental variables such as 

LD_LIBRARY_PATH and UCX_TLS were explicitly 

synchronized across all nodes, and passwordless SSH was 

configured to allow seamless coordination during training 

execution. 

The entire training process was orchestrated using mpiexec, 

with explicit machine file definitions and CPU core binding to 

optimize resource allocation and minimize scheduling 

variability. All operations were executed from within the 

shared virtual environment, ensuring that experimental 

reproducibility and consistency were maintained throughout 

the distributed training workflow. 

This configuration was tailored to the constraints and 

capabilities of SqueezeNet, allowing for scalable training 

without GPU support, and demonstrating the viability of 

lightweight CNNs in fully distributed ARM-based edge 

environments. This environment replicates many practices 

from large-scale HPC clusters, adapted to resource-constrained 

ARM nodes. 

2.3 Design 

The architectural and experimental framework for distributed 

training is shown in "Figure 2" and "Figure 3", illustrating both 

the physical deployment and the logical data-parallel workflow 

of the Raspberry Pi 4B Beowulf cluster. The system consists of 

24 ARM-based nodes, each with 8 GB of RAM and 

interconnected via Gigabit Ethernet, forming a cost-effective 

yet representative platform for investigating distributed deep 

learning under resource constraints. 

This work focuses on the distributed training of SqueezeNet 

v1.1, a compact convolutional neural network that achieves 

AlexNet-level accuracy while maintaining a model size below 

(0.5 MB). In contrast to MobileNet, which leverages depthwise 

separable convolutions to reduce computation, SqueezeNet v1.1 

employs a distinctive modular design centered on "fire 

modules"—comprising squeeze ( 1 × 1  convolution) and 

expand (1 × 1  and 3 × 3  convolution) layers. This 

architecture delivers aggressive parameter reduction without 

significant loss in accuracy, making it highly suitable for CPU-

only embedded devices such as the Raspberry Pi. 

The ultra-small footprint and low computational demand of 

SqueezeNet v1.1 make it an ideal candidate for exploring fully 

distributed training in scenarios characterized by limited 

memory, absence of GPU acceleration, and moderate 

communication latency. These constraints closely mirror those 

encountered in practical edge computing deployments, 

including decentralized applications in robotics, environmental 

sensing, and IoT-driven event detection. 

Given the platform’s lack of dedicated accelerators—such as 

GPUs, Advanced Vector Extensions (AVX) (Single 

Instruction, Multiple Data) SIMD extensions, or high-

throughput Direct Memory Access (DMA)—the entire neural 

network workload is executed solely on quad-core ARM 

Cortex-A72 CPUs. To accommodate these limitations, the 
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experimental protocol adopts: 

- Smaller per-node batch sizes to conserve memory and 

reduce compute overhead, 

 

- A fixed, moderate number of training epochs (e.g., 10) to 

maintain tractable runtimes, 

 

- Synchronous data-parallel training using MPI, wherein 

each process operates on a partitioned data shard and 

participates in collective gradient aggregation. 

While the objective is not to attain state-of-the-art accuracy or 

speed, this design enables: 

- Comprehensive benchmarking of strong scaling 

performance as the number of processes increases (from 2 

to 48),  

 

- Accurate measurement of parallel efficiency for a 

compact CNN under distributed execution, 

 

- Practical demonstration of the feasibility of on-device 

learning on embedded, multi-node ARM clusters. 

This methodology establishes a reproducible framework for 

assessing distributed CNN training under realistic edge 

constraints, offering quantifiable evidence of the trade-offs 

between communication overhead and statistical learning 

performance. 

 

Figure 3: MPI communication architecture of the 24-node 

Raspberry Pi 4B cluster. 

2.4 Theoretical Background: SqueezeNet 

CNNs and Dataset Selection  

Convolutional Neural Networks (CNNs) constitute a 

foundational class of deep learning models widely used in 

image recognition tasks, owing to their ability to extract 

multiscale hierarchical features from visual data [7]. Among 

the numerous lightweight CNN architectures, SqueezeNet has 

emerged as a notable design, achieving AlexNet-level 

classification accuracy with 50 × fewer parameters and a 

model size of less than (0.5MB) when quantized [8]. This 

efficiency is achieved through a unique architectural 

innovation: the “fire module”, which replaces standard 

convolutional layers with a two-stage module composed of 

squeeze (1 × 1  convolution) and expand (1 × 1  and 3 × 3  

convolution) layers 

The SqueezeNet architecture eliminates the need for 

computationally intensive fully connected layers and instead 

utilizes global average pooling in its final stages, further 

reducing parameter count while maintaining strong 

representational power. Its highly compact form and modular 

structure make it particularly suitable for deployment in 

memory- and energy-constrained environments -, such as 

ARM-based embedded platforms. 

For this investigation, SqueezeNet was selected for training on 

the CIFAR-10 dataset, a commonly used image classification 

benchmark consisting of 60,000 color images at (32 × 32 ) 

resolution, evenly distributed across 10 classes [9]. The dataset 

includes 50,000 training images and 10,000 test images, 

providing a balanced and computationally tractable workload 

for evaluating the distributed training behavior of compact 

CNNs under hardware constraints. 

Preliminary testing indicated that CIFAR-10 aligns well with 

the architectural strengths of SqueezeNet, enabling successful 

training without exceeding the memory limits or thermal 

thresholds of the Raspberry Pi 4B cluster. In contrast, larger or 

more complex datasets such as CIFAR-100 - which increases 

the output class count and dense layer complexity tenfold - 

introduced significant memory pressure and degraded 

synchronization efficiency, underscoring the importance of 

dataset-model alignment when evaluating distributed training 

on constrained hardware. 

Given these constraints and objectives, CIFAR-10 was selected 

as the benchmark dataset for this study to ensure stability 

during execution, while still offering sufficient complexity for 

analyzing model convergence and scaling performance. The 

dataset’s modest size complements the efficient design of 

SqueezeNet, making it an ideal choice for parallel execution 

and evaluation on low-power embedded clusters. 

3. METHODOLOGY 

3.1 System Configuration and 

Experimental Context 

The experimental evaluation was conducted on a custom-built 

Beowulf-style cluster composed of 24 Raspberry Pi 4 Model B 

nodes, each featuring a quad-core ARM Cortex-A72 CPU and 

8GB of LPDDR4 RAM. The nodes are interconnected using 

unmanaged Gigabit Ethernet switches, providing a full-duplex 

communication channel with 1 Gbps per link, thereby enabling 

low-latency inter-node messaging suitable for MPI-based 

coordination. 

This embedded, low-power cluster architecture presents a 

distinct set of computational constraints, including limited 

memory, absence of GPU or AVX acceleration, and CPU-

bound processing. These limitations directly influence the 

design and tuning of the training pipeline, particularly in terms 

of model selection, dataset size, and parallelization strategy. 

To accommodate these constraints, the study employs the 

SqueezeNet convolutional neural network - a lightweight deep 

learning architecture specifically designed to minimize model 

size while retaining high classification accuracy-. Unlike more 

computationally intensive CNNs, SqueezeNet utilizes fire 

modules to reduce the number of parameters, replacing 

traditional convolutional layers with combinations of squeeze 

1 × 1  and expand (1 × 1  and 3 × 3 ) convolutions. This 

compact structure makes the model ideally suited for training 

in CPU-only, memory-constrained environments such as the 

Raspberry Pi 4B platform 

The CIFAR-10 dataset is selected as the training and evaluation 

benchmark. It consists of 60,000 RGB images ( 32 × 32  

pixels), evenly distributed across 10 object categories, with 

50,000 samples for training and 10,000 for testing. Its moderate 

size aligns well with the available memory and I/O capabilities 
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of the cluster, permitting full dataset preloading into memory 

to avoid paging or I/O bottlenecks. In accordance with CIFAR-

10 dimensions, the input tensor for SqueezeNet is modified to 

accept input shape (32 × 32 × 3)  instead of its default 

227 × 227 × 3), and all internal layers are adapted to ensure 

shape compatibility and effective training at lower resolution. 

All cluster nodes run Raspberry Pi OS 64-bit Lite, and training 

is conducted within a shared Python 3.11.5 virtual 

environment, mounted across nodes via NFS for consistency. 

The distributed training framework is built upon TensorFlow 

v2.15.0, leveraging the Keras 2.x API for model construction, 

optimization, and evaluation. Notably, compatibility 

adjustments were applied to the open-source keras-squeezenet 

module to ensure full support under the TensorFlow 2.x 

backend, replacing legacy Keras imports and resolving API 

deprecations introduced in recent versions. 

Inter-process communication is implemented using the MPI for 

Python (mpi4py) library v3.1.6 over the MPICH v4.2.0 

backend. All software packages are compiled and installed with 

ARMv8-A architecture compatibility, and deployed uniformly 

across the cluster to ensure consistent behavior. MPI processes 

are launched using mpiexec, with machinefile definitions and 

CPU core binding for improved locality, control of process 

placement, and reproducibility of results. 

This configuration supports the investigation of strong scaling 

behaviour in lightweight CNN training, with particular focus 

on training time, convergence speed, and efficiency metrics 

across increasing numbers of MPI processes - ranging from (2 

to 48), spanning (1 to 24) physical nodes. 

3.2 Distributed Training Strategy 

3.2.1 Data Parallelism Approach 

This study adopts a data-parallel distributed training strategy, 

leveraging Message Passing Interface (MPI) to coordinate 

multiple processes across the cluster. Each MPI process 

(“rank”) is assigned a unique, disjoint shard of the CIFAR-10 

training dataset. The training pipeline is configured to run two 

ranks per Raspberry Pi 4B node, optimizing both CPU core 

utilization and memory headroom on the ARM Cortex-A72 

architecture. By ensuring that each rank processes a distinct 

chunk of data per epoch, the approach guarantees balanced 

workload distribution and reproducibility across all 

experimental runs. 

3.2.2 Deterministic Strided Sharding of CIFAR-10 

To maintain reproducible and uniform data splits during 

distributed SqueezeNet v1.1 training, the 50,000 CIFAR-10 

training samples are partitioned using a deterministic strided 

indexing scheme. 

Let ( 𝑁 )  denote the total number of MPI ranks in the 

experiment and ( 𝑟 )   the rank identifier (𝑟 ∈ {0, 1, … , 𝑁 −
1} ). For each epoch, the global training index set 

( 𝐼 = 0,1,2, … ,49999), is divided so that rank ( 𝑟 ) processes 

the subset: 

𝐼𝑟 = {𝑖 ∈ 𝐼 |𝑖 𝑚𝑜𝑑 𝑁 = 𝑟} = {𝑟, 𝑟 + 𝑁, 𝑟 + 2𝑁, … }. 

This ensures non-overlapping data partitions, balanced sample 

counts (≈
50,000

𝑁
 𝑝𝑒𝑟 𝑟𝑎𝑛𝑘) and complete reproducibility 

across runs. 

By construction, every sample is assigned to exactly one rank 

in each epoch, eliminating duplication and statistical bias that 

could arise from random shuffling. 

After local training on its assigned shard, each rank participates 

in global model synchronization, and the root rank performs 

test set evaluation using the fully synchronized model 

parameters. 

3.2.3 Synchronous SGD via MPI Collectives 

Within each epoch, every rank performs standard forward and 

backward passes on its local data shard. At the end of the epoch, 

synchronous stochastic gradient descent (SGD) is emulated via 

MPI collectives: all ranks transmit their current model weight 

tensors to the root process using comm.gather(). The root 

averages these tensors across ranks, then broadcasts the 

aggregated (synchronized) weights back to all ranks 

using comm.bcast(). This collective pattern is functionally 

equivalent to Allreduce, but was selected for transparency and 

enhanced logging. Test evaluations are executed by the root 

rank using the fully synchronized model, ensuring that the final 

metrics reflect the converged global weights. 

3.2.4 Empirical Batch Size Profiling and System 

Sweeps 

Batch size is the primary factor influencing per-rank memory 

usage and CPU saturation in distributed CNN training. A 

systematic “fast sweep” protocol was implemented—batch 

sizes (8, 16, 24, 32 images/node) were benchmarked in 

isolation on a single RPi (2 ranks/node), with additional spot-

checks on further nodes to rule out hardware variation. For each 

sweep: epoch times, peak process memory (RSS via psutil), 

node-level RAM/swap usage (free -m, vmstat), CPU utilization 

(mpstat), and OOM events (dmesg) were logged for validation. 

Results indicated that batch-per-node = 24 achieves the optimal 

trade-off: highest throughput, consistent CPU saturation 

(>107%), and safe memory usage (< 660 MB/rank). Larger 

batches induced minor cache pressure and slower epochs; 

smaller batches under-utilized CPU resources. Cross-node 

replicates confirmed stability "Figure 4", "Figure 5", “Table 1”. 

3.2.5 Benchmarking Hyperparameters and 

Reproducibility 

To ensure consistency across all scaling experiments, 

benchmarking hyperparameters were fixed as follows: 

- Epochs: 10 (upper bound before RAM or thermal 

instability on sustained workloads) 

 

- Batch size: 24 images/node (12 per rank with 2 

ranks/node) 

 

- Learning rate: 0.0005 (chosen for stable convergence 

under small effective batch) 

 

- Initialization & Codebase: All runs used identical random 

seeds, an invariant training script, and uniform logging 

format for reproducibility. 

 

- Logging: Per-rank logs included epoch loss/accuracy, 

wall-clock times, and peak RSS. All data was stored in 

CSV for downstream analysis and verification. 

Batch size (24) was empirically determined from 

throughput/memory/CPU sweeps as the ideal setting, balancing 

compute density and system safety, and enabling linear scaling 

with additional nodes. Peak RSS remained well below RPi 

limits, with each rank saturating its core allocation, and data-

parallel scaling was robust under increasing cluster size. 
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3.2.6 Fixed benchmarking hyperparameters in 

one RPi (pi@rpi4B-ma-00) 

To empirically determine the optimal training configuration for 

SqueezeNet v1.1 on ARM-based edge hardware, a systematic 

sweep of primary hyperparameters was performed on a single 

Raspberry Pi 4B node (8 GB RAM, quad-core ARM 

Cortex-A72), running two MPI ranks per node. This sweep 

evaluated batch sizes of (8, 16, 24, and 32) images per node 

(i.e., 4, 8, 12, and 16 images per rank, respectively) under 

identical runtime conditions. For each configuration, we logged 

median epoch time, mean step time, global throughput 

(images/sec), peak per-process resident set size (RSS), and 

epoch-averaged CPU usage.  

Empirical benchmarking revealed that throughput increases 

markedly from batch (8 → 16 → 24), peaking at (19.92 img/s) 

for batch 24/node, before dropping to (18.58 img/s) at 

batch 32/node. This decline at the largest batch size is 

attributed to the ARM Cortex-A72’s memory subsystem limits: 

the larger working set of activations/gradients at batch 32 

begins to exceed the effective capacity of the L2 cache, 

resulting in increased DRAM traffic, higher cache miss rates, 

and longer step times (mean step rises from 1.205 s at 24 

to 1.723 s at 32) “Table 1”.  

Peak RSS also trends upward at batch 32 (655.7 MB/rank) 

compared to (≤ 638 MB/rank) for smaller batches, indicating 

greater memory pressure.  

Across all runs, CPU utilization remained high (> 107 % per 

process), confirming full use of allocated cores, and no OOM 

or swap events occurred. Based on this 

profiling, batch-per-node = 24 was fixed for all subsequent 

scaling experiments as it delivers the highest throughput, 

maintains comfortable memory headroom, and avoids the 

bandwidth/cache penalties observed at larger batch sizes. 

 

Figure 4: Local training benchmark on a single RPi 

comparing batch sizes 8 and 16 for computational 

efficiency. 

 

Figure 5: Local training benchmark on a single RPi 

comparing batch sizes 24 and 32 for computational 

efficiency. 

Table 1. MPI SqueezeNet CIFAR-10, batch (Images) size 

benchmarking -best option survey-. 

Batch 
/node 

Batch 
/rank 

Avg. 
epoch 
time 
(sec) 

Mean 
step  
(sec) 

Global 
through 

-put 
(img/s) 

Peak 
RSS  
(MB) 

 
Avg. 
Proc 
-ess 
CPU 
(%) 

8 4 91.63 0.458 17.46 638.1 108.2 

16 8 166.14 0.831 19.26 637.7 107.8 

24 12 241.01 1.205 19.92 637.6 107.5 

32 16 344.52 1.723 18.58 655.7 111.2 

Note 1: 

Reported process CPU utilization values >100% per MPI 

rank are expected in multi-core environments, as each rank 

may utilize more than one core through internal multi-

threading (e.g., BLAS, data preprocessing). With two MPI 

ranks per node on a quad-core ARM CPU, this reflects 

efficient multi-threaded utilization and confirms that both 

ranks are fully leveraging available compute resources 

during distributed training “Table 1”. 

Note 2: 

RSS is a direct indicator of the memory “footprint” of the 

training job at runtime, which shows how much RAM the deep 

learning code is consuming per process (MPI rank) without 

counting swapped or inactive pages. RSS is the live amount of 

physical RAM a process occupies; it’s a key safety and 

efficiency metric in distributed deep learning benchmarking 

and hardware profiling. “Peak RSS” is the highest RSS 

observed for a rank throughout the training run “Table 1”.  
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3.3 Strong Scaling Training Configuration 

and Execution Flow 

This study adopts a strong scaling experimental design to 

evaluate the distributed training performance of SqueezeNet on 

a CPU-bound, ARM-based embedded cluster. Strong scaling is 

critical in the context of edge AI because distributed training 

on resource-constrained hardware demands not only model 

compactness but also efficient parallelism. Unlike weak 

scaling, where data volume increases with compute resources, 

strong scaling directly reflects how well a fixed workload can 

be accelerated by adding more nodes - an essential metric for 

real-time, power-sensitive edge deployments-. In a strong 

scaling scenario, the total workload remains constant - 

specifically, the CIFAR-10 dataset and the SqueezeNet 

architecture - while the number of MPI processes (np) is 

gradually increased to assess parallel training behavior. The 

CIFAR-10 dataset was selected for its moderate size and 

compatibility with the memory and I/O constraints of the 

Raspberry Pi platform. 

Experiments are executed with the following MPI process 

counts: 

𝑛𝑝 ∈ {2, 4, 8, 16, 24, 32, 40, 48} 

Given that each Raspberry Pi node executes two MPI 

processes, this corresponds to:  𝑝 =  
𝑛𝑝

2
   Raspberry Pi nodes. 

In the experiments: 

- The overall dataset (CIFAR-10, 50,000 training samples, 

10,000 test samples) and SqueezeNet model architecture 

remain unchanged for all trials. 

 

- The number of MPI processes (np) is successively 

increased, while the same workload and data partitioning 

protocol is preserved. 

 

- Each Raspberry Pi node executes two MPI processes 

(ranks), so the total process count np corresponds to np/2 

physical Raspberry Pis. 

 

- Training Protocol: Each MPI rank receives a non-

overlapping data shard (via deterministic strided indexing) 

and performs local updates using synchronous, data-

parallel SGD. Model gradients are aggregated via mpi4py 

collective operations (gather and broadcast), emulating 

centralized synchronous parameter updates. The training 

is run for a fixed 10 epochs—empirically chosen as the 

maximal stable setting before memory, swap, or thermal 

fluctuations arise on the ARM edge platform. 

 

- Experimental Controls: 

 

All training runs use: 

 

- Fixed learning rate (0.0005) and uniform batch size 

per rank (chosen via single-node empirical sweep). 

 

- Identical random seed and weight initialization. 

 

- Shared codebase, containerized virtual environment, 

and NFS-based distribution to enforce bitwise 

reproducibility. 

 

- Explicit machinefile specification, core binding, and 

mpiexec process launching to guarantee locality and 

consistent scheduling. 

 

- Each configuration is repeated three times; results are 

reported as cross-run means to account for 

stochasticity and environmental noise. 

 

- Logged Metrics and Performance Indicators: Each rank 

records its local loss and accuracy per epoch into 

structured (.csv) logs. Upon completion, these logs are 

aggregated to compute key performance indicators: 

 

- Mean Train Accuracy Across Ranks: 

 

𝑀𝑒𝑎𝑛𝑇𝑟𝑎𝑛𝑖𝑛𝑔𝐴𝑐𝑐 =
1

𝑁
∑ 𝐴𝑐𝑐 𝑖

𝑁

𝑖=1

 

 

Where: 

 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑘𝑠 ∈  {2, 4, 8, 16, 24, 32, 40, 48}  

 

𝐴𝑐𝑐 𝑖 = 𝑓𝑖𝑛𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑟𝑎𝑛𝑘 (𝑖) 𝑎𝑓𝑡𝑒𝑟 𝑒𝑝𝑜𝑐ℎ 10 

 

- Total training time (as the maximum clock time over 

ranks) 

 

- Speedup S(np): 

𝑆(𝑛𝑝) =  
𝑇𝑏𝑎𝑠𝑒

𝑇𝑛𝑝
 

 

Where (Tbase) is the runtime for the baseline case 

(np = 2) 

 

- Parallel Efficiency E(np): 

𝐸(𝑛𝑝) =  
𝑆(𝑛𝑝)

𝑛𝑝
2

𝑥 100% 

Note:  

Efficiency is reported relative to a baseline of np=2 MPI 

processes. 

 

- Additional Considerations: 

 

- Convergence dynamics are assessed using epoch-

wise plots of training loss and accuracy. 

- Communication overhead is inferred from rising time 

variance and efficiency drops at high process counts 

(e.g., np ≥ 32). 

- All experiments are executed in thermal isolation, 

with passive cooling and controlled ambient 

conditions, to eliminate performance skew due to 

thermal throttling or network noise. 

- Each configuration is repeated for reproducibility, 

with averaged metrics used for all reported values. 

This design allows for a detailed investigation into the scaling 

limits and distributed training feasibility of lightweight CNNs 

like SqueezeNet on low-power, decentralized edge 

infrastructures. 

3.4 Strong Scaling Results and Analysis  

To assess the strong scaling behavior of the SqueezeNet CNN 

on a distributed Raspberry Pi cluster, a series of training 

experiments were conducted using MPI-based data parallelism, 

varying the number of Raspberry Pi nodes and MPI processes. 

All configurations performed 10 epochs of training on a shared 

dataset with identical preprocessing, network architecture, and 
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hyperparameter settings. Key metrics collected include the 

mean training loss, mean training accuracy, total training time 

(maximum across ranks), speedup (Sₙ) relative to the baseline, 

and parallel efficiency (Eₙ). 

- Case 1: SqueezeNet-CNN_rpi-1_mpi-2:  

The baseline configuration was executed with np = 2 MPI 

processes on a single Raspberry Pi 4B node for 10 training 

epochs. Each MPI process was bound to a dedicated core and 

accessed the dataset through a shared NFS mount. Although no 

inter-node communication was present, inter-process 

synchronization and gradient aggregation were still 

coordinated via mpi4py, introducing local network stack 

overhead and I/O contention on the shared storage. 

The global wall-clock training time was (5003.00 sec) 

(measured as the maximum rank duration). The mean training 

accuracy across ranks reached (58.74 %), with a mean training 

loss of (1.1403). Final evaluation on the CIFAR-10 test set 

yielded (61.61 %) accuracy and (1.0779) test loss. These results 

establish that SqueezeNet v1.1 converges successfully within 

10 epochs under CPU-only execution, even when restricted to 

a single embedded node. 

This case defines the baseline reference point for all subsequent 

strong scaling experiments, with speedup defined as (S₂ = 1) 

and parallel efficiency as (E₂ = 100 %) (baseline). While 

limited by single-node throughput and NFS-driven overheads, 

the configuration demonstrates that a compact CNN can 

achieve non-trivial generalization performance on CIFAR-10 

in a fully ARM-based edge environment. It thereby provides 

the essential reference against which multi-node scaling 

behavior is evaluated "Figure 6", “Table 2”. 

Note: 

The close agreement between the final test loss (1.0779) 

and the mean training loss (1.1403) indicates that the 

model does not overfit under this configuration. Instead, 

the training process achieves a balanced fit where 

generalization to unseen data is consistent with training 

performance. 

 

In the context of deep learning, (loss) quantifies the 

discrepancy between the model’s predicted outputs and 

the true labels of the dataset. A lower loss value 

corresponds to fewer errors in prediction, whereas a high 

loss signals poor alignment with ground truth. Minimizing 

loss during training ensures that the model improves its 

predictive accuracy, and the similarity between training 

and test loss demonstrates the model’s ability to 

generalize beyond the data it was explicitly trained on. 

 

- Case 2: SqueezeNet-CNN_rpi-2_mpi-4:  

The second configuration was executed with np = 4 MPI 

processes distributed across two Raspberry Pi 4B nodes (2 

ranks per node) for 10 training epochs. Each rank was bound 

to a dedicated CPU core, and dataset shards were allocated 

deterministically using the strided indexing scheme, resulting 

in 12,500 training samples per rank. Gradient aggregation and 

weight synchronization were managed synchronously via 

mpi4py collective communication, introducing the first 

instance of genuine inter-node message passing in the scaling 

experiments. 

The global wall-clock training time was (2535.56 sec), 

reflecting a near (2×) reduction relative to the single-node 

baseline. The mean training accuracy across ranks decreased to 

(43.45 %), with a mean training loss of (1.5139). Evaluation on 

the CIFAR-10 test set yielded (46.60 %) accuracy and (1.4356) 

test loss "Figure 7", “Table 2”. 

Relative to (Case 1), this experiment achieved a clear runtime 

improvement while exhibiting reduced convergence quality. 

Speedup for np = 4 was (S₄ ≈ 1.97), corresponding to a very 

high parallel efficiency of (E₄ ≈ 98.7 %) under the np = 2 

baseline definition. This indicates that doubling the number of 

nodes nearly halved training time, and the overhead of inter-

node communication remained minimal at this scale. In other 

words, at (np = 4) the system retained excellent computational 

efficiency, and the observed accuracy drop was primarily due 

to statistical factors (smaller shard sizes per rank) rather than 

communication bottlenecks. 

Note: 

The divergence between mean training loss (1.5139) and 

test loss (1.4356) is relatively small, suggesting that the 

reduced accuracy arises not from overfitting but from 

statistical inefficiency in distributed gradient averaging at 

this scale [10], [11]. In deep learning, loss quantifies the 

penalty between predicted outputs and ground-truth 

labels. Here, the moderate loss values confirm that the 

model continues to learn effectively, though 

generalization accuracy diminishes compared to the 

baseline. 

 

- Case 3: SqueezeNet-CNN_ rpi-1_mpi-2 to rpi-24_mpi-48 

- Cluster-Wide Analysis and Observed Scaling Patterns: 

 

The cluster-wide configuration was executed with (np = 48) 

MPI processes distributed across 24 Raspberry Pi 4B nodes (2 

ranks per node), representing the maximum scale of the 

experimental platform. Each rank received a deterministic 

strided shard of the CIFAR-10 dataset, corresponding to only 

(≈ 1,042) training samples per rank due to dataset partitioning 

across 48 processes. The global wall-clock training time 

decreased substantially to (432.11) seconds, marking a (11.6×) 

speedup compared to the single-node baseline (Case 1). 

However, mean training accuracy collapsed to (10.10 %), with 

a mean training loss of (2.3026). Test accuracy mirrored this 

collapse at (10.00 %), with test loss also saturating at (2.3026). 

These values are near-random guess performance for CIFAR-

10, indicating that the model failed to converge at scale. “Table 

2”, "Figure 8", "Figure 9", "Figure 10", "Figure 11", "Figure 

12". 

While strong scaling produced dramatic reductions in runtime, 

the training process exhibited catastrophic degradation in 

convergence dynamics. This can be attributed to three 

interacting effects: 

- Statistical Inefficiency: At 48 ranks, each rank processes a 

very small dataset shard (≈ 1k samples), reducing gradient 

diversity per update and leading to stagnation. 

 

- Synchronization Overheads: Frequent global gradient 

averaging across 48 processes amplifies communication 

costs, diluting effective learning despite reduced compute 

time per step. 

 

- Diminished Workload per Rank: The fixed dataset (50k 

samples) cannot sustain high process counts under strong 

scaling, causing the training regime to fall into a regime 

where communication overhead and insufficient data per 

process jointly dominate, limiting convergence regardless 
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of raw speedup. 

Note: 

The final loss values (≈ 2.3026) correspond to the 

entropy of a uniform random classifier across 10 

classes. In deep learning terms, this indicates that the 

network predictions are essentially indistinguishable 

from random guessing. Unlike (Cases 1 and 2), 

where training and test loss tracked closely and 

convergence was evident, here both losses plateau at 

the random baseline, confirming that large-scale 

strong scaling under dataset-limited conditions 

prevents the model from learning effectively. 

 

- Execution Time and Speedup: 

The strong scaling experiments clearly demonstrate the trade-

off between execution time and effective learning. With (np = 

2) (Case 1), the baseline configuration required (5003 sec) to 

complete 10 epochs, establishing the reference point (S₂ = 1.0, 

E₂ = 100 %). Doubling the nodes to (np = 4) (Case 2) reduced 

wall-clock time to (2535.6 sec), achieving nearly (2×) speedup 

(S₄ ≈ 1.97) with very high efficiency (E₄ ≈ 99 %). At np = 8, 

the speedup reached (S₈ ≈ 2.04) and efficiency remained 

moderate (≈ 51 %), showing that the cluster scaled effectively 

up to this level. At full cluster scale (np = 48), wall-clock time 

collapsed to (432.1 sec), corresponding to an impressive raw 

speedup of (11.6×) relative to baseline “Table 2”, "Figure 8", 

"Figure 11". 

- Learning Performance: Accuracy and Loss 

While runtime scaled favorably, the learning performance of 

SqueezeNet degraded significantly as the number of processes 

increased. In the baseline configuration (np = 2), the model 

achieved (58.7 %) training accuracy and (61.6 %) test accuracy 

after 10 epochs, demonstrating that SqueezeNet can converge 

successfully under ARM-only execution. At np = 4, training 

accuracy dropped to (43.5 %) and test accuracy to (46.6 %), 

showing the early impact of reduced shard sizes and increased 

synchronization. By np = 8, accuracy fell further (≈ 32 % 

training and 35.6 % test), marking the point where statistical 

inefficiency begins to dominate, even though parallel 

efficiency remained moderate (≈ 51 %) “Table 2”, "Figure 10", 

"Figure 12". 

At larger scales (np ≥ 16), convergence effectively collapsed. 

Both training and test accuracies stagnated near (10 %), with 

losses plateauing at (2.3026) — equivalent to random guessing 

across 10 classes. This collapse is not primarily due to poor 

parallel efficiency (which remained 40–50 % at these scales), 

but rather due to the extremely limited number of training 

images per rank. With only ~1k images per process at np = 48, 

the gradient signal was insufficient for learning, and global 

synchronization merely propagated noise. Such effects are 

consistent with prior findings that very small batch sizes 

introduce excessive gradient noise and destabilize convergence 

[10]. 

In short, the experiments reveal a scaling ceiling for distributed 

CNN training on edge-class ARM clusters. While modest 

scaling (np ≤ 8) balances throughput and learning quality, 

pushing to higher degrees of parallelism results in statistical 

underfitting: fast training with little or no useful convergence. 

This highlights that the bottleneck is not only communication 

overhead but also the intrinsic data-per-rank limitation in 

small-scale deep learning workloads on constrained hardware. 

 

3.4.1 Scaling Summary 

The strong scaling experiments of SqueezeNet on the 24-node 

Raspberry Pi 4B cluster highlight the inherent trade-offs 

between execution speed and statistical learning efficiency. 

From a runtime perspective, scaling was effective: wall-clock 

time for 10 epochs dropped from (5003 sec) at np = 2 (Case 1) 

to (2536 sec) at np = 4 (Case 2), and further down to just (432 

sec) at full scale (np = 48). This corresponds to a raw speedup 

of (11.6×) compared to baseline, demonstrating that 

parallelization can indeed accelerate training throughput on 

embedded hardware. Parallel efficiency, defined relative to a 

baseline of np = 2 processes, remained high in the early regime 

(≈ 99 % at np = 4 and ≈ 51 % at np = 8), showing that the cluster 

scales well up to moderate sizes. However, beyond np = 8 the 

efficiency gradually declined, stabilizing around 40–50 % for 

larger process counts. This indicates that while communication 

and synchronization overheads do grow with scale [12], the 

more critical factor is statistical inefficiency: the workload per 

rank becomes too small, leaving each process with insufficient 

training data per epoch (a statistical bottleneck [11]). The 

experimental findings of this study on ARM-based edge 

clusters are consistent with the statistical bottlenecks described 

by Shallue et al. (2019) [11], where excessive parallelism leads 

to convergence collapse due to insufficient data per rank. 

In terms of learning, performance degraded even more 

severely. The baseline run achieved (58.7 %) training accuracy 

and (61.6 %) test accuracy, proving that SqueezeNet can 

converge under ARM-only execution. At (np = 4), accuracy 

dropped to (43.5 %) train and (46.6 %) test reflecting reduced 

learning capacity primarily due to smaller shard sizes 

(statistical bottleneck), with synchronization costs becoming 

secondary factors at larger scales. At full scale (np = 48), 

convergence collapsed entirely: mean training accuracy 

stagnated at (10.1 %) and both training and test loss plateaued 

at (2.3026), the entropy baseline of random guessing across 10 

classes. 

Taken together, these results demonstrate that while strong 

scaling improves execution time, it undermines statistical 

efficiency and generalization when pushed beyond dataset-

limited thresholds. For lightweight CNNs such as SqueezeNet, 

distributed data-parallel training on edge clusters therefore 

exhibits a scaling ceiling: modest node counts (np ≤ 8) can 

balance throughput and accuracy, but aggressive scaling to 

dozens of nodes leads to rapid degradation of convergence, 

driven by the interplay of small per-rank batch sizes, 

synchronization overhead, and limited gradient signal. 

3.4.2 Practical Implications for Edge AI  
The findings from this study underline a critical reality for 

edge-scale distributed deep learning. Raspberry Pi clusters, 

while inexpensive, energy-efficient, and highly customizable, 

face a sharp trade-off between scalability and learning 

performance when training compact CNNs such as 

SqueezeNet. For practical edge AI deployments — such as 

autonomous sensor networks, on-device vision analytics, or 

distributed IoT gateways — these results suggest that training 

should be confined to small-to-moderate node counts, where 

accuracy remains reliable and wall-clock time is still 

acceptable. At larger scales, the diminishing returns of parallel 

efficiency and the collapse of convergence observed at np = 48 

imply that such clusters are better suited for inference and 

lightweight retraining rather than full-scale distributed training. 

Nevertheless, the empirical profiling carried out here (e.g., 

identification of batch size = 24 as the throughput/memory 
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optimum) demonstrates that hardware-aware tuning is 

essential: even within resource-constrained settings, careful 

optimization can yield stable convergence without overfitting. 

Thus, Raspberry Pi–based SqueezeNet clusters can play a 

meaningful role as testbeds for edge AI research, enabling low-

cost exploration of distributed learning paradigms, energy-

performance trade-offs, and algorithmic strategies (e.g., 

adaptive synchronization, hybrid training) that could later 

transfer to industrial IoT or mission-critical edge applications. 

Ultimately, this work shows that while such embedded clusters 

will not replace GPU datacenters for large-scale deep learning, 

they occupy a unique niche: providing accessible, reproducible, 

and hardware-constrained platforms where the challenges of 

distributed training at the network’s edge can be studied under 

realistic conditions — conditions that mirror the limitations of 

real-world deployments in remote, mobile, or power-sensitive 

environments. 

 

Figure 6: SqueezeNet training on a single Raspberry Pi 4B 

with two MPI processes (np = 2). 

  

Figure 7: SqueezeNet training on two Raspberry Pi 4B 

nodes with four MPI processes (np = 4). 

 

 

 

 

 

 

 

Table 2. SqueezeNet CNN Model Training results: Strong Scaling Methodology 

RPi’s 
MPI 

Processes 
(np) 

Epoch 

Test  
acc   

(final)  
(%) 

Test 
loss 

(final) 
 

Mean 
Train 
Loss  

(unitless)  
(≈) 

Mean 
Train 

Accuracy 
(%) 

Total (wall) 
Training Time 
(slowest rank) 
(Mean) (sec) 

Speedup  
(Sₙ) 

Efficiency 
 (Eₙ) (%) 

1 2 10 61.61% 1.0779 1.1403 58.74% 5003.00 1 
100% 

(baseline)  

2 4 10 46.60% 1.4356 1.5139 43.45% 2535.56 1.97313414 98.66% 

4 8 10 35.61% 1.7313 1.7995 32.06% 2455.94 2.037101884 50.93% 

8 16 10 10.00% 2.3026 2.3026 10.01% 1156.48 4.326058384 54.08% 

12 24 10 10.00% 2.3026 2.3026 10.05% 851.04 5.878689603 48.99% 

16 32 10 10.00% 2.3026 2.3026 10.00% 699.52 7.152047118 44.70% 

20 40 10 10.00% 2.3026 2.3026 10.16% 627.32 7.975196072 39.88% 

24 48 10 10.00% 2.3026 2.3026 10.10% 432.11 11.5780704 48.24% 
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Figure 8: SqueezeNet CNN Model Training: Speedup (Sₙ) vs MPI Processes (np) 

 

Figure 9: SqueezeNet CNN Model Training: Efficiency (Eₙ) vs MPI Processes (np) 

 

Figure 10: SqueezeNet CNN Model Training: Train Accuracy (%) vs MPI Processes (np) 
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Figure 11: SqueezeNet CNN Model Training: Total Training Time (sec) vs MPI Processes (n) 

 

Figure 12: SqueezeNet CNN Model Training: Train Loss (Mean) vs MPI Processes

4. FUTURE WORK 
The limitations observed in the distributed training of 

SqueezeNet - particularly in convergence stability and 

scalability across high-rank ARM clusters - motivate a deeper 

investigation into alternative learning paradigms that are 

inherently designed for energy efficiency and sparse 

computation.  

In this context, Spiking Neural Networks (SNNs) represent a 

biologically-inspired and event-driven approach to deep 

learning that aligns naturally with edge constraints. As a 

continuation of this work, there is a plan for the authors to 

explore Distributed SNN Training on ARM-Based Edge 

Clusters using MPI, evaluating how spike-based models 

behave under partitioned data and low-bandwidth 

communication regimes. Building on the execution pipeline 

developed for SqueezeNet, the authors have intention to 

implement SNNs that leverage Loihi- and SpiNNaker-inspired 

simulation frameworks, adapting their temporal and sparse 

encoding schemes to fit CPU-bound environments.  

This line of research not only extends the architectural diversity 

of models studied under MPI-distributed schemes, but also 

serves as a potential path toward ultra-low-power edge 

intelligence, where SNNs may outperform traditional CNNs 

like SqueezeNet in both computational cost and biological 

plausibility. 

5. CONCLUSION 
This study investigated the distributed training performance of 

the SqueezeNet CNN model using MPI and mpi4py on a 24-

node ARM-based edge cluster. Experimental results across 

configurations from RPi-1_mpi-2 to RPi-24_mpi-48 revealed 

that although SqueezeNet maintains low computational 

complexity, its convergence behavior under data-parallel MPI 

execution is inconsistent beyond moderate scale. Notably, 

training accuracy plateaued and even degraded at higher 

process counts, indicating limited benefit from aggressive 

parallelism. The results empirically confirm on ARM-based 

edge clusters the statistical bottlenecks previously reported by 

Shallue et al. (2019), [11] in large-scale GPU/CPU training 

environments, underscoring that the convergence collapse we 
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observed is not hardware-specific but a fundamental limitation 

of excessive data parallelism when per-rank shard sizes fall 

below critical thresholds.  

In contrast to structurally heavier models like MobileNet, 

SqueezeNet does not linearly benefit from MPI-based scaling 

in low-power, bandwidth-constrained environments. These 

findings emphasize that lightweight architectures, while 

computationally efficient, may require careful tuning — such 

as batch-size adjustment, hybrid pipelining, or adaptive 

gradient aggregation — to sustain effective distributed 

learning. Future work will extend this investigation toward 

distributed Spiking Neural Networks (SNNs) using MPI, 

aiming to assess the viability of neuromorphic models and 

Loihi/SpiNNaker-inspired simulations on ARM clusters for 

scalable and biologically plausible edge intelligence. 

A distinctive contribution of this work lies in the systematic 

derivation of optimal training hyperparameters through 

empirical profiling rather than reliance on recommended 

defaults. Single-node sweeps demonstrated that a batch size of 

24 images per node maximizes throughput (≈ 19.9 img/s), 

maintains safe memory utilization (≈ 638 MB per rank), and 

fully saturates available CPU resources, while avoiding cache 

and bandwidth penalties observed at larger batches. This 

hardware-aware tuning procedure establishes a reproducible 

empirical baseline for distributed training on ARM clusters, 

underscoring the necessity of hyperparameter selection guided 

by platform constraints rather than convention. 

In summary, this work positions Raspberry Pi–based 

SqueezeNet clusters not as replacements for datacenter-scale 

training, but as accessible and realistic testbeds for studying 

distributed deep learning under edge constraints. Such 

platforms directly mirror the computational and bandwidth 

limitations of real-world IoT, robotics, and environmental 

monitoring systems, and thus provide practical insights into 

how compact CNNs — and potentially SNNs — can be trained 

and deployed in the next generation of decentralized, low-

power edge intelligence. 
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