
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

6

Deep Learning for Edge AI: SqueezeNet CNN Training on

Distributed ARM-based Clusters

Dimitrios Papakyriakou
PhD Candidate

Department of Electronic Engineering
Hellenic Mediterranean University

Crete, Greece

Ioannis S. Barbounakis
Assistant Professor

Department of Electronic
Engineering

Hellenic Mediterranean University
Crete, Greece

ABSTRACT

The increasing demand for lightweight and energy-efficient

deep learning models at the edge has fueled interest in training

convolutional neural networks (CNNs) directly on ARM-based

CPU clusters. This study examines the feasibility and

performance constraints of distributed training for the compact

SqueezeNet v1.1 architecture, implemented using an MPI-

based parallel framework on a Beowulf cluster composed of

Raspberry Pi devices.

Experimental evaluation across up to 24 Raspberry Pi nodes

(48 MPI processes) reveals a sharp trade-off between training

acceleration and model generalization. While wall-clock

training time improves by over (11×) under increased

parallelism, test accuracy deteriorates significantly, collapsing

to chance-level performance (≈10%) as data partitions per

process become excessively small. This behavior highlights a

statistical scaling limit, beyond which computational gains are

offset by learning inefficiency. The findings are consistent with

the statistical bottlenecks identified by Shallue et al. (2019)

[11], extending their observations from large-scale GPU/CPU

systems to energy-constrained ARM-based edge clusters.

These findings underscore the importance of balanced task

decomposition in CPU-bound environments and contribute

new insights into the complex interplay between model

compactness, data sparsity, and parallel training efficiency in

edge-AI systems. This framework also provides a viable low-

power platform for real-time SNN research on edge devices.

Keywords

SqueezeNet, Distributed Deep Learning, Edge Computing,

Raspberry Pi Cluster, Beowulf Cluster, ARM Architecture,

MPI (Message Passing Interface), Low-Power AI, Strong

Scaling, Model Generalization, Statistical Scaling Limit.

1. INTRODUCTION
The rapid proliferation of artificial intelligence (AI)

applications at the network edge—ranging from autonomous

sensing systems to low-power surveillance and smart IoT

endpoints—has accelerated the demand for resource-efficient

deep learning (DL) models deployable on embedded hardware

platforms [1], [2]. While modern convolutional neural

networks (CNNs) achieve state-of-the-art accuracy across a

variety of computer vision tasks, their deployment on

lightweight hardware remains challenging due to memory,

energy, and compute limitations [3].

Recent developments in model compression and architecture

optimization have led to the emergence of compact CNN

variants, such as MobileNet and SqueezeNet, which offer a

favorable trade-off between inference speed and accuracy [4],

[5]. These models have shown promising results for edge

inference, yet the majority of existing studies rely on pre-

trained models, limiting the scope of on-device adaptation and

learning. In contrast, performing model training directly on

edge hardware—particularly in a distributed fashion—remains

largely unexplored due to the stringent constraints of low-

power CPUs and lack of GPU acceleration [6], [7].

This work addresses the gap by investigating the feasibility of

parallel CNN training using SqueezeNet v1.1 on ARM-based

edge clusters. Leveraging a message-passing interface (MPI)

strategy across multiple Raspberry Pi devices, the analysis

focuses on evaluating the trade-offs between training

throughput, communication overhead, and statistical efficiency

as the number of processes increases. Particular attention is

given to the interaction between parallelism and model

generalization, exposing a regime where increased scalability

leads to diminishing learning returns.

By extending the frontier of embedded deep learning from

inference-only systems toward scalable training architectures,

this study examines SqueezeNet v1.1 as a candidate for energy-

and memory-efficient CNN deployment in clustered edge

environments. Implementing MPI-based distributed training on

ARM-based devices reveals both the strengths and the practical

limits of this approach, highlighting the trade-offs between

computational scalability, statistical efficiency, and

generalization.

The experimental platform, illustrated in "Figure 1",[8], [9], is

built on the Raspberry Pi 4 Model B with 8 GB LPDDR4 RAM

and a 64-bit quad-core ARMv8 Cortex-A72 CPU at 1.5 GHz,

chosen for its low cost, accessibility, and suitability for high-

performance cluster assembly at the edge. This hardware

foundation provides a controlled and repeatable basis for

evaluating parallel processing and distributed deep learning

workloads, enabling insights that contribute to the design of

future edge-AI systems less dependent on cloud infrastructure.

Figure 1: Raspberry Pi 4 Model B unit used as the basic

node in the 24-node ARM-based Beowulf cluster.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

7

2. SYSTEM DESCRIPTION

2.1 Hardware Equipment
The computational platform for this study is a cost‑effective yet

capable Beowulf‑style cluster built from 24 Raspberry Pi 4

Model B units, each equipped with 8 GB LPDDR4 RAM. One

board is configured as the master node, responsible for resource

allocation and process orchestration, while the remaining 23

nodes serve as MPI‑coordinated workers executing parallel

training tasks. The physical layout "Figure 2" consists of four

vertical stacks containing six boards each, a format that offers

both space efficiency and clean, maintainable cabling.

High-speed inter-node communication is provided by TP-Link

TL-SG1024D unmanaged Gigabit Ethernet switches,

delivering 1 Gbps full-duplex bandwidth per link. This

topology ensures consistent, low-latency data exchange

between nodes, effectively replicating the communication

characteristics of a traditional high-performance computing

(HPC) environment within an ARM-based embedded system.

Stable and reliable power delivery is maintained through two

industrial-grade switch-mode power supplies, each rated

at 60 A / 5 V and precisely tuned to 5.80 V to offset voltage

drops over extended cabling. This adjustment safeguards node

stability during sustained, high-load parallel operations.

For storage, the master node hosts a 1 TB Samsung 980

PCIe 3.0 NVMe SSD to provide high-throughput access for

dataset management and orchestration tasks. Each worker node

is fitted with a 256 GB Patriot P300 NVMe M.2 SSD, ensuring

fast local I/O to support seamless data streaming during

training. This configuration supplies adequate storage

bandwidth for large-scale datasets and for maintaining

intermediate model checkpoints throughout distributed

learning.

Figure 2: 24-node Raspberry Pi 4B (8 GB) Beowulf cluster

architecture for distributed SqueezeNet training.

2.2 Software Environment and Toolchain
The software environment utilized in this study was carefully

designed to support distributed training of lightweight

convolutional neural networks on ARM-based systems. All

nodes operated under Raspberry Pi OS 64-bit Lite (Debian-

based), with Python 3.11.5 running within a shared virtual

environment mounted via NFS, ensuring a uniform software

stack and consistent execution across the entire cluster.

Inter-process communication was managed using MPICH

v4.2.0, while the distributed training logic was implemented

with the mpi4py library (v3.1.6), providing a Pythonic interface

to the underlying MPI runtime.

In addition to core scientific libraries - including NumPy

(v1.26.4), SciPy (v1.13.0), scikit-learn (v1.4.2), and psutil

(v7.0.0) - the software stack incorporated deep learning-

specific frameworks required for CNN construction, training,

and evaluation. Specifically, TensorFlow v2.15.0, with

integrated Keras APIs, was employed to support the modular

architecture of SqueezeNet and to facilitate GPU-independent

model training and evaluation.

All dependencies were compiled for compatibility with the

ARMv8-A architecture, and deployed uniformly to ensure

deterministic behavior and eliminate version drift. To support

efficient parallelism, environmental variables such as

LD_LIBRARY_PATH and UCX_TLS were explicitly

synchronized across all nodes, and passwordless SSH was

configured to allow seamless coordination during training

execution.

The entire training process was orchestrated using mpiexec,

with explicit machine file definitions and CPU core binding to

optimize resource allocation and minimize scheduling

variability. All operations were executed from within the

shared virtual environment, ensuring that experimental

reproducibility and consistency were maintained throughout

the distributed training workflow.

This configuration was tailored to the constraints and

capabilities of SqueezeNet, allowing for scalable training

without GPU support, and demonstrating the viability of

lightweight CNNs in fully distributed ARM-based edge

environments. This environment replicates many practices

from large-scale HPC clusters, adapted to resource-constrained

ARM nodes.

2.3 Design

The architectural and experimental framework for distributed

training is shown in "Figure 2" and "Figure 3", illustrating both

the physical deployment and the logical data-parallel workflow

of the Raspberry Pi 4B Beowulf cluster. The system consists of

24 ARM-based nodes, each with 8 GB of RAM and

interconnected via Gigabit Ethernet, forming a cost-effective

yet representative platform for investigating distributed deep

learning under resource constraints.

This work focuses on the distributed training of SqueezeNet

v1.1, a compact convolutional neural network that achieves

AlexNet-level accuracy while maintaining a model size below

(0.5 MB). In contrast to MobileNet, which leverages depthwise

separable convolutions to reduce computation, SqueezeNet v1.1

employs a distinctive modular design centered on "fire

modules"—comprising squeeze (1 × 1 convolution) and

expand (1 × 1 and 3 × 3 convolution) layers. This

architecture delivers aggressive parameter reduction without

significant loss in accuracy, making it highly suitable for CPU-

only embedded devices such as the Raspberry Pi.

The ultra-small footprint and low computational demand of

SqueezeNet v1.1 make it an ideal candidate for exploring fully

distributed training in scenarios characterized by limited

memory, absence of GPU acceleration, and moderate

communication latency. These constraints closely mirror those

encountered in practical edge computing deployments,

including decentralized applications in robotics, environmental

sensing, and IoT-driven event detection.

Given the platform’s lack of dedicated accelerators—such as

GPUs, Advanced Vector Extensions (AVX) (Single

Instruction, Multiple Data) SIMD extensions, or high-

throughput Direct Memory Access (DMA)—the entire neural

network workload is executed solely on quad-core ARM

Cortex-A72 CPUs. To accommodate these limitations, the

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

8

experimental protocol adopts:

- Smaller per-node batch sizes to conserve memory and

reduce compute overhead,

- A fixed, moderate number of training epochs (e.g., 10) to

maintain tractable runtimes,

- Synchronous data-parallel training using MPI, wherein

each process operates on a partitioned data shard and

participates in collective gradient aggregation.

While the objective is not to attain state-of-the-art accuracy or

speed, this design enables:

- Comprehensive benchmarking of strong scaling

performance as the number of processes increases (from 2

to 48),

- Accurate measurement of parallel efficiency for a

compact CNN under distributed execution,

- Practical demonstration of the feasibility of on-device

learning on embedded, multi-node ARM clusters.

This methodology establishes a reproducible framework for

assessing distributed CNN training under realistic edge

constraints, offering quantifiable evidence of the trade-offs

between communication overhead and statistical learning

performance.

Figure 3: MPI communication architecture of the 24-node

Raspberry Pi 4B cluster.

2.4 Theoretical Background: SqueezeNet

CNNs and Dataset Selection

Convolutional Neural Networks (CNNs) constitute a

foundational class of deep learning models widely used in

image recognition tasks, owing to their ability to extract

multiscale hierarchical features from visual data [7]. Among

the numerous lightweight CNN architectures, SqueezeNet has

emerged as a notable design, achieving AlexNet-level

classification accuracy with 50 × fewer parameters and a

model size of less than (0.5MB) when quantized [8]. This

efficiency is achieved through a unique architectural

innovation: the “fire module”, which replaces standard

convolutional layers with a two-stage module composed of

squeeze (1 × 1 convolution) and expand (1 × 1 and 3 × 3

convolution) layers

The SqueezeNet architecture eliminates the need for

computationally intensive fully connected layers and instead

utilizes global average pooling in its final stages, further

reducing parameter count while maintaining strong

representational power. Its highly compact form and modular

structure make it particularly suitable for deployment in

memory- and energy-constrained environments -, such as

ARM-based embedded platforms.

For this investigation, SqueezeNet was selected for training on

the CIFAR-10 dataset, a commonly used image classification

benchmark consisting of 60,000 color images at (32 × 32)

resolution, evenly distributed across 10 classes [9]. The dataset

includes 50,000 training images and 10,000 test images,

providing a balanced and computationally tractable workload

for evaluating the distributed training behavior of compact

CNNs under hardware constraints.

Preliminary testing indicated that CIFAR-10 aligns well with

the architectural strengths of SqueezeNet, enabling successful

training without exceeding the memory limits or thermal

thresholds of the Raspberry Pi 4B cluster. In contrast, larger or

more complex datasets such as CIFAR-100 - which increases

the output class count and dense layer complexity tenfold -

introduced significant memory pressure and degraded

synchronization efficiency, underscoring the importance of

dataset-model alignment when evaluating distributed training

on constrained hardware.

Given these constraints and objectives, CIFAR-10 was selected

as the benchmark dataset for this study to ensure stability

during execution, while still offering sufficient complexity for

analyzing model convergence and scaling performance. The

dataset’s modest size complements the efficient design of

SqueezeNet, making it an ideal choice for parallel execution

and evaluation on low-power embedded clusters.

3. METHODOLOGY

3.1 System Configuration and

Experimental Context

The experimental evaluation was conducted on a custom-built

Beowulf-style cluster composed of 24 Raspberry Pi 4 Model B

nodes, each featuring a quad-core ARM Cortex-A72 CPU and

8GB of LPDDR4 RAM. The nodes are interconnected using

unmanaged Gigabit Ethernet switches, providing a full-duplex

communication channel with 1 Gbps per link, thereby enabling

low-latency inter-node messaging suitable for MPI-based

coordination.

This embedded, low-power cluster architecture presents a

distinct set of computational constraints, including limited

memory, absence of GPU or AVX acceleration, and CPU-

bound processing. These limitations directly influence the

design and tuning of the training pipeline, particularly in terms

of model selection, dataset size, and parallelization strategy.

To accommodate these constraints, the study employs the

SqueezeNet convolutional neural network - a lightweight deep

learning architecture specifically designed to minimize model

size while retaining high classification accuracy-. Unlike more

computationally intensive CNNs, SqueezeNet utilizes fire

modules to reduce the number of parameters, replacing

traditional convolutional layers with combinations of squeeze

1 × 1 and expand (1 × 1 and 3 × 3) convolutions. This

compact structure makes the model ideally suited for training

in CPU-only, memory-constrained environments such as the

Raspberry Pi 4B platform

The CIFAR-10 dataset is selected as the training and evaluation

benchmark. It consists of 60,000 RGB images (32 × 32

pixels), evenly distributed across 10 object categories, with

50,000 samples for training and 10,000 for testing. Its moderate

size aligns well with the available memory and I/O capabilities

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

9

of the cluster, permitting full dataset preloading into memory

to avoid paging or I/O bottlenecks. In accordance with CIFAR-

10 dimensions, the input tensor for SqueezeNet is modified to

accept input shape (32 × 32 × 3) instead of its default

227 × 227 × 3), and all internal layers are adapted to ensure

shape compatibility and effective training at lower resolution.

All cluster nodes run Raspberry Pi OS 64-bit Lite, and training

is conducted within a shared Python 3.11.5 virtual

environment, mounted across nodes via NFS for consistency.

The distributed training framework is built upon TensorFlow

v2.15.0, leveraging the Keras 2.x API for model construction,

optimization, and evaluation. Notably, compatibility

adjustments were applied to the open-source keras-squeezenet

module to ensure full support under the TensorFlow 2.x

backend, replacing legacy Keras imports and resolving API

deprecations introduced in recent versions.

Inter-process communication is implemented using the MPI for

Python (mpi4py) library v3.1.6 over the MPICH v4.2.0

backend. All software packages are compiled and installed with

ARMv8-A architecture compatibility, and deployed uniformly

across the cluster to ensure consistent behavior. MPI processes

are launched using mpiexec, with machinefile definitions and

CPU core binding for improved locality, control of process

placement, and reproducibility of results.

This configuration supports the investigation of strong scaling

behaviour in lightweight CNN training, with particular focus

on training time, convergence speed, and efficiency metrics

across increasing numbers of MPI processes - ranging from (2

to 48), spanning (1 to 24) physical nodes.

3.2 Distributed Training Strategy

3.2.1 Data Parallelism Approach

This study adopts a data-parallel distributed training strategy,

leveraging Message Passing Interface (MPI) to coordinate

multiple processes across the cluster. Each MPI process

(“rank”) is assigned a unique, disjoint shard of the CIFAR-10

training dataset. The training pipeline is configured to run two

ranks per Raspberry Pi 4B node, optimizing both CPU core

utilization and memory headroom on the ARM Cortex-A72

architecture. By ensuring that each rank processes a distinct

chunk of data per epoch, the approach guarantees balanced

workload distribution and reproducibility across all

experimental runs.

3.2.2 Deterministic Strided Sharding of CIFAR-10

To maintain reproducible and uniform data splits during

distributed SqueezeNet v1.1 training, the 50,000 CIFAR-10

training samples are partitioned using a deterministic strided

indexing scheme.

Let (𝑁) denote the total number of MPI ranks in the

experiment and (𝑟) the rank identifier (𝑟 ∈ {0, 1, … , 𝑁 −
1}). For each epoch, the global training index set

(𝐼 = 0,1,2, … ,49999), is divided so that rank (𝑟) processes

the subset:

𝐼𝑟 = {𝑖 ∈ 𝐼 |𝑖 𝑚𝑜𝑑 𝑁 = 𝑟} = {𝑟, 𝑟 + 𝑁, 𝑟 + 2𝑁, … }.

This ensures non-overlapping data partitions, balanced sample

counts (≈
50,000

𝑁
 𝑝𝑒𝑟 𝑟𝑎𝑛𝑘) and complete reproducibility

across runs.

By construction, every sample is assigned to exactly one rank

in each epoch, eliminating duplication and statistical bias that

could arise from random shuffling.

After local training on its assigned shard, each rank participates

in global model synchronization, and the root rank performs

test set evaluation using the fully synchronized model

parameters.

3.2.3 Synchronous SGD via MPI Collectives

Within each epoch, every rank performs standard forward and

backward passes on its local data shard. At the end of the epoch,

synchronous stochastic gradient descent (SGD) is emulated via

MPI collectives: all ranks transmit their current model weight

tensors to the root process using comm.gather(). The root

averages these tensors across ranks, then broadcasts the

aggregated (synchronized) weights back to all ranks

using comm.bcast(). This collective pattern is functionally

equivalent to Allreduce, but was selected for transparency and

enhanced logging. Test evaluations are executed by the root

rank using the fully synchronized model, ensuring that the final

metrics reflect the converged global weights.

3.2.4 Empirical Batch Size Profiling and System

Sweeps

Batch size is the primary factor influencing per-rank memory

usage and CPU saturation in distributed CNN training. A

systematic “fast sweep” protocol was implemented—batch

sizes (8, 16, 24, 32 images/node) were benchmarked in

isolation on a single RPi (2 ranks/node), with additional spot-

checks on further nodes to rule out hardware variation. For each

sweep: epoch times, peak process memory (RSS via psutil),

node-level RAM/swap usage (free -m, vmstat), CPU utilization

(mpstat), and OOM events (dmesg) were logged for validation.

Results indicated that batch-per-node = 24 achieves the optimal

trade-off: highest throughput, consistent CPU saturation

(>107%), and safe memory usage (< 660 MB/rank). Larger

batches induced minor cache pressure and slower epochs;

smaller batches under-utilized CPU resources. Cross-node

replicates confirmed stability "Figure 4", "Figure 5", “Table 1”.

3.2.5 Benchmarking Hyperparameters and

Reproducibility

To ensure consistency across all scaling experiments,

benchmarking hyperparameters were fixed as follows:

- Epochs: 10 (upper bound before RAM or thermal

instability on sustained workloads)

- Batch size: 24 images/node (12 per rank with 2

ranks/node)

- Learning rate: 0.0005 (chosen for stable convergence

under small effective batch)

- Initialization & Codebase: All runs used identical random

seeds, an invariant training script, and uniform logging

format for reproducibility.

- Logging: Per-rank logs included epoch loss/accuracy,

wall-clock times, and peak RSS. All data was stored in

CSV for downstream analysis and verification.

Batch size (24) was empirically determined from

throughput/memory/CPU sweeps as the ideal setting, balancing

compute density and system safety, and enabling linear scaling

with additional nodes. Peak RSS remained well below RPi

limits, with each rank saturating its core allocation, and data-

parallel scaling was robust under increasing cluster size.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

10

3.2.6 Fixed benchmarking hyperparameters in

one RPi (pi@rpi4B-ma-00)

To empirically determine the optimal training configuration for

SqueezeNet v1.1 on ARM-based edge hardware, a systematic

sweep of primary hyperparameters was performed on a single

Raspberry Pi 4B node (8 GB RAM, quad-core ARM

Cortex-A72), running two MPI ranks per node. This sweep

evaluated batch sizes of (8, 16, 24, and 32) images per node

(i.e., 4, 8, 12, and 16 images per rank, respectively) under

identical runtime conditions. For each configuration, we logged

median epoch time, mean step time, global throughput

(images/sec), peak per-process resident set size (RSS), and

epoch-averaged CPU usage.

Empirical benchmarking revealed that throughput increases

markedly from batch (8 → 16 → 24), peaking at (19.92 img/s)

for batch 24/node, before dropping to (18.58 img/s) at

batch 32/node. This decline at the largest batch size is

attributed to the ARM Cortex-A72’s memory subsystem limits:

the larger working set of activations/gradients at batch 32

begins to exceed the effective capacity of the L2 cache,

resulting in increased DRAM traffic, higher cache miss rates,

and longer step times (mean step rises from 1.205 s at 24

to 1.723 s at 32) “Table 1”.

Peak RSS also trends upward at batch 32 (655.7 MB/rank)

compared to (≤ 638 MB/rank) for smaller batches, indicating

greater memory pressure.

Across all runs, CPU utilization remained high (> 107 % per

process), confirming full use of allocated cores, and no OOM

or swap events occurred. Based on this

profiling, batch-per-node = 24 was fixed for all subsequent

scaling experiments as it delivers the highest throughput,

maintains comfortable memory headroom, and avoids the

bandwidth/cache penalties observed at larger batch sizes.

Figure 4: Local training benchmark on a single RPi

comparing batch sizes 8 and 16 for computational

efficiency.

Figure 5: Local training benchmark on a single RPi

comparing batch sizes 24 and 32 for computational

efficiency.

Table 1. MPI SqueezeNet CIFAR-10, batch (Images) size

benchmarking -best option survey-.

Batch
/node

Batch
/rank

Avg.
epoch
time
(sec)

Mean
step
(sec)

Global
through

-put
(img/s)

Peak
RSS
(MB)

Avg.
Proc
-ess
CPU
(%)

8 4 91.63 0.458 17.46 638.1 108.2

16 8 166.14 0.831 19.26 637.7 107.8

24 12 241.01 1.205 19.92 637.6 107.5

32 16 344.52 1.723 18.58 655.7 111.2

Note 1:

Reported process CPU utilization values >100% per MPI

rank are expected in multi-core environments, as each rank

may utilize more than one core through internal multi-

threading (e.g., BLAS, data preprocessing). With two MPI

ranks per node on a quad-core ARM CPU, this reflects

efficient multi-threaded utilization and confirms that both

ranks are fully leveraging available compute resources

during distributed training “Table 1”.

Note 2:

RSS is a direct indicator of the memory “footprint” of the

training job at runtime, which shows how much RAM the deep

learning code is consuming per process (MPI rank) without

counting swapped or inactive pages. RSS is the live amount of

physical RAM a process occupies; it’s a key safety and

efficiency metric in distributed deep learning benchmarking

and hardware profiling. “Peak RSS” is the highest RSS

observed for a rank throughout the training run “Table 1”.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

11

3.3 Strong Scaling Training Configuration

and Execution Flow

This study adopts a strong scaling experimental design to

evaluate the distributed training performance of SqueezeNet on

a CPU-bound, ARM-based embedded cluster. Strong scaling is

critical in the context of edge AI because distributed training

on resource-constrained hardware demands not only model

compactness but also efficient parallelism. Unlike weak

scaling, where data volume increases with compute resources,

strong scaling directly reflects how well a fixed workload can

be accelerated by adding more nodes - an essential metric for

real-time, power-sensitive edge deployments-. In a strong

scaling scenario, the total workload remains constant -

specifically, the CIFAR-10 dataset and the SqueezeNet

architecture - while the number of MPI processes (np) is

gradually increased to assess parallel training behavior. The

CIFAR-10 dataset was selected for its moderate size and

compatibility with the memory and I/O constraints of the

Raspberry Pi platform.

Experiments are executed with the following MPI process

counts:

𝑛𝑝 ∈ {2, 4, 8, 16, 24, 32, 40, 48}

Given that each Raspberry Pi node executes two MPI

processes, this corresponds to: 𝑝 =
𝑛𝑝

2
 Raspberry Pi nodes.

In the experiments:

- The overall dataset (CIFAR-10, 50,000 training samples,

10,000 test samples) and SqueezeNet model architecture

remain unchanged for all trials.

- The number of MPI processes (np) is successively

increased, while the same workload and data partitioning

protocol is preserved.

- Each Raspberry Pi node executes two MPI processes

(ranks), so the total process count np corresponds to np/2

physical Raspberry Pis.

- Training Protocol: Each MPI rank receives a non-

overlapping data shard (via deterministic strided indexing)

and performs local updates using synchronous, data-

parallel SGD. Model gradients are aggregated via mpi4py

collective operations (gather and broadcast), emulating

centralized synchronous parameter updates. The training

is run for a fixed 10 epochs—empirically chosen as the

maximal stable setting before memory, swap, or thermal

fluctuations arise on the ARM edge platform.

- Experimental Controls:

All training runs use:

- Fixed learning rate (0.0005) and uniform batch size

per rank (chosen via single-node empirical sweep).

- Identical random seed and weight initialization.

- Shared codebase, containerized virtual environment,

and NFS-based distribution to enforce bitwise

reproducibility.

- Explicit machinefile specification, core binding, and

mpiexec process launching to guarantee locality and

consistent scheduling.

- Each configuration is repeated three times; results are

reported as cross-run means to account for

stochasticity and environmental noise.

- Logged Metrics and Performance Indicators: Each rank

records its local loss and accuracy per epoch into

structured (.csv) logs. Upon completion, these logs are

aggregated to compute key performance indicators:

- Mean Train Accuracy Across Ranks:

𝑀𝑒𝑎𝑛𝑇𝑟𝑎𝑛𝑖𝑛𝑔𝐴𝑐𝑐 =
1

𝑁
∑ 𝐴𝑐𝑐 𝑖

𝑁

𝑖=1

Where:

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑘𝑠 ∈ {2, 4, 8, 16, 24, 32, 40, 48}

𝐴𝑐𝑐 𝑖 = 𝑓𝑖𝑛𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑟𝑎𝑛𝑘 (𝑖) 𝑎𝑓𝑡𝑒𝑟 𝑒𝑝𝑜𝑐ℎ 10

- Total training time (as the maximum clock time over

ranks)

- Speedup S(np):

𝑆(𝑛𝑝) =
𝑇𝑏𝑎𝑠𝑒

𝑇𝑛𝑝

Where (Tbase) is the runtime for the baseline case

(np = 2)

- Parallel Efficiency E(np):

𝐸(𝑛𝑝) =
𝑆(𝑛𝑝)

𝑛𝑝
2

𝑥 100%

Note:

Efficiency is reported relative to a baseline of np=2 MPI

processes.

- Additional Considerations:

- Convergence dynamics are assessed using epoch-

wise plots of training loss and accuracy.

- Communication overhead is inferred from rising time

variance and efficiency drops at high process counts

(e.g., np ≥ 32).

- All experiments are executed in thermal isolation,

with passive cooling and controlled ambient

conditions, to eliminate performance skew due to

thermal throttling or network noise.

- Each configuration is repeated for reproducibility,

with averaged metrics used for all reported values.

This design allows for a detailed investigation into the scaling

limits and distributed training feasibility of lightweight CNNs

like SqueezeNet on low-power, decentralized edge

infrastructures.

3.4 Strong Scaling Results and Analysis

To assess the strong scaling behavior of the SqueezeNet CNN

on a distributed Raspberry Pi cluster, a series of training

experiments were conducted using MPI-based data parallelism,

varying the number of Raspberry Pi nodes and MPI processes.

All configurations performed 10 epochs of training on a shared

dataset with identical preprocessing, network architecture, and

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

12

hyperparameter settings. Key metrics collected include the

mean training loss, mean training accuracy, total training time

(maximum across ranks), speedup (Sₙ) relative to the baseline,

and parallel efficiency (Eₙ).

- Case 1: SqueezeNet-CNN_rpi-1_mpi-2:

The baseline configuration was executed with np = 2 MPI

processes on a single Raspberry Pi 4B node for 10 training

epochs. Each MPI process was bound to a dedicated core and

accessed the dataset through a shared NFS mount. Although no

inter-node communication was present, inter-process

synchronization and gradient aggregation were still

coordinated via mpi4py, introducing local network stack

overhead and I/O contention on the shared storage.

The global wall-clock training time was (5003.00 sec)

(measured as the maximum rank duration). The mean training

accuracy across ranks reached (58.74 %), with a mean training

loss of (1.1403). Final evaluation on the CIFAR-10 test set

yielded (61.61 %) accuracy and (1.0779) test loss. These results

establish that SqueezeNet v1.1 converges successfully within

10 epochs under CPU-only execution, even when restricted to

a single embedded node.

This case defines the baseline reference point for all subsequent

strong scaling experiments, with speedup defined as (S₂ = 1)

and parallel efficiency as (E₂ = 100 %) (baseline). While

limited by single-node throughput and NFS-driven overheads,

the configuration demonstrates that a compact CNN can

achieve non-trivial generalization performance on CIFAR-10

in a fully ARM-based edge environment. It thereby provides

the essential reference against which multi-node scaling

behavior is evaluated "Figure 6", “Table 2”.

Note:

The close agreement between the final test loss (1.0779)

and the mean training loss (1.1403) indicates that the

model does not overfit under this configuration. Instead,

the training process achieves a balanced fit where

generalization to unseen data is consistent with training

performance.

In the context of deep learning, (loss) quantifies the

discrepancy between the model’s predicted outputs and

the true labels of the dataset. A lower loss value

corresponds to fewer errors in prediction, whereas a high

loss signals poor alignment with ground truth. Minimizing

loss during training ensures that the model improves its

predictive accuracy, and the similarity between training

and test loss demonstrates the model’s ability to

generalize beyond the data it was explicitly trained on.

- Case 2: SqueezeNet-CNN_rpi-2_mpi-4:

The second configuration was executed with np = 4 MPI

processes distributed across two Raspberry Pi 4B nodes (2

ranks per node) for 10 training epochs. Each rank was bound

to a dedicated CPU core, and dataset shards were allocated

deterministically using the strided indexing scheme, resulting

in 12,500 training samples per rank. Gradient aggregation and

weight synchronization were managed synchronously via

mpi4py collective communication, introducing the first

instance of genuine inter-node message passing in the scaling

experiments.

The global wall-clock training time was (2535.56 sec),

reflecting a near (2×) reduction relative to the single-node

baseline. The mean training accuracy across ranks decreased to

(43.45 %), with a mean training loss of (1.5139). Evaluation on

the CIFAR-10 test set yielded (46.60 %) accuracy and (1.4356)

test loss "Figure 7", “Table 2”.

Relative to (Case 1), this experiment achieved a clear runtime

improvement while exhibiting reduced convergence quality.

Speedup for np = 4 was (S₄ ≈ 1.97), corresponding to a very

high parallel efficiency of (E₄ ≈ 98.7 %) under the np = 2

baseline definition. This indicates that doubling the number of

nodes nearly halved training time, and the overhead of inter-

node communication remained minimal at this scale. In other

words, at (np = 4) the system retained excellent computational

efficiency, and the observed accuracy drop was primarily due

to statistical factors (smaller shard sizes per rank) rather than

communication bottlenecks.

Note:

The divergence between mean training loss (1.5139) and

test loss (1.4356) is relatively small, suggesting that the

reduced accuracy arises not from overfitting but from

statistical inefficiency in distributed gradient averaging at

this scale [10], [11]. In deep learning, loss quantifies the

penalty between predicted outputs and ground-truth

labels. Here, the moderate loss values confirm that the

model continues to learn effectively, though

generalization accuracy diminishes compared to the

baseline.

- Case 3: SqueezeNet-CNN_ rpi-1_mpi-2 to rpi-24_mpi-48

- Cluster-Wide Analysis and Observed Scaling Patterns:

The cluster-wide configuration was executed with (np = 48)

MPI processes distributed across 24 Raspberry Pi 4B nodes (2

ranks per node), representing the maximum scale of the

experimental platform. Each rank received a deterministic

strided shard of the CIFAR-10 dataset, corresponding to only

(≈ 1,042) training samples per rank due to dataset partitioning

across 48 processes. The global wall-clock training time

decreased substantially to (432.11) seconds, marking a (11.6×)

speedup compared to the single-node baseline (Case 1).

However, mean training accuracy collapsed to (10.10 %), with

a mean training loss of (2.3026). Test accuracy mirrored this

collapse at (10.00 %), with test loss also saturating at (2.3026).

These values are near-random guess performance for CIFAR-

10, indicating that the model failed to converge at scale. “Table

2”, "Figure 8", "Figure 9", "Figure 10", "Figure 11", "Figure

12".

While strong scaling produced dramatic reductions in runtime,

the training process exhibited catastrophic degradation in

convergence dynamics. This can be attributed to three

interacting effects:

- Statistical Inefficiency: At 48 ranks, each rank processes a

very small dataset shard (≈ 1k samples), reducing gradient

diversity per update and leading to stagnation.

- Synchronization Overheads: Frequent global gradient

averaging across 48 processes amplifies communication

costs, diluting effective learning despite reduced compute

time per step.

- Diminished Workload per Rank: The fixed dataset (50k

samples) cannot sustain high process counts under strong

scaling, causing the training regime to fall into a regime

where communication overhead and insufficient data per

process jointly dominate, limiting convergence regardless

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

13

of raw speedup.

Note:

The final loss values (≈ 2.3026) correspond to the

entropy of a uniform random classifier across 10

classes. In deep learning terms, this indicates that the

network predictions are essentially indistinguishable

from random guessing. Unlike (Cases 1 and 2),

where training and test loss tracked closely and

convergence was evident, here both losses plateau at

the random baseline, confirming that large-scale

strong scaling under dataset-limited conditions

prevents the model from learning effectively.

- Execution Time and Speedup:

The strong scaling experiments clearly demonstrate the trade-

off between execution time and effective learning. With (np =

2) (Case 1), the baseline configuration required (5003 sec) to

complete 10 epochs, establishing the reference point (S₂ = 1.0,

E₂ = 100 %). Doubling the nodes to (np = 4) (Case 2) reduced

wall-clock time to (2535.6 sec), achieving nearly (2×) speedup

(S₄ ≈ 1.97) with very high efficiency (E₄ ≈ 99 %). At np = 8,

the speedup reached (S₈ ≈ 2.04) and efficiency remained

moderate (≈ 51 %), showing that the cluster scaled effectively

up to this level. At full cluster scale (np = 48), wall-clock time

collapsed to (432.1 sec), corresponding to an impressive raw

speedup of (11.6×) relative to baseline “Table 2”, "Figure 8",

"Figure 11".

- Learning Performance: Accuracy and Loss

While runtime scaled favorably, the learning performance of

SqueezeNet degraded significantly as the number of processes

increased. In the baseline configuration (np = 2), the model

achieved (58.7 %) training accuracy and (61.6 %) test accuracy

after 10 epochs, demonstrating that SqueezeNet can converge

successfully under ARM-only execution. At np = 4, training

accuracy dropped to (43.5 %) and test accuracy to (46.6 %),

showing the early impact of reduced shard sizes and increased

synchronization. By np = 8, accuracy fell further (≈ 32 %

training and 35.6 % test), marking the point where statistical

inefficiency begins to dominate, even though parallel

efficiency remained moderate (≈ 51 %) “Table 2”, "Figure 10",

"Figure 12".

At larger scales (np ≥ 16), convergence effectively collapsed.

Both training and test accuracies stagnated near (10 %), with

losses plateauing at (2.3026) — equivalent to random guessing

across 10 classes. This collapse is not primarily due to poor

parallel efficiency (which remained 40–50 % at these scales),

but rather due to the extremely limited number of training

images per rank. With only ~1k images per process at np = 48,

the gradient signal was insufficient for learning, and global

synchronization merely propagated noise. Such effects are

consistent with prior findings that very small batch sizes

introduce excessive gradient noise and destabilize convergence

[10].

In short, the experiments reveal a scaling ceiling for distributed

CNN training on edge-class ARM clusters. While modest

scaling (np ≤ 8) balances throughput and learning quality,

pushing to higher degrees of parallelism results in statistical

underfitting: fast training with little or no useful convergence.

This highlights that the bottleneck is not only communication

overhead but also the intrinsic data-per-rank limitation in

small-scale deep learning workloads on constrained hardware.

3.4.1 Scaling Summary

The strong scaling experiments of SqueezeNet on the 24-node

Raspberry Pi 4B cluster highlight the inherent trade-offs

between execution speed and statistical learning efficiency.

From a runtime perspective, scaling was effective: wall-clock

time for 10 epochs dropped from (5003 sec) at np = 2 (Case 1)

to (2536 sec) at np = 4 (Case 2), and further down to just (432

sec) at full scale (np = 48). This corresponds to a raw speedup

of (11.6×) compared to baseline, demonstrating that

parallelization can indeed accelerate training throughput on

embedded hardware. Parallel efficiency, defined relative to a

baseline of np = 2 processes, remained high in the early regime

(≈ 99 % at np = 4 and ≈ 51 % at np = 8), showing that the cluster

scales well up to moderate sizes. However, beyond np = 8 the

efficiency gradually declined, stabilizing around 40–50 % for

larger process counts. This indicates that while communication

and synchronization overheads do grow with scale [12], the

more critical factor is statistical inefficiency: the workload per

rank becomes too small, leaving each process with insufficient

training data per epoch (a statistical bottleneck [11]). The

experimental findings of this study on ARM-based edge

clusters are consistent with the statistical bottlenecks described

by Shallue et al. (2019) [11], where excessive parallelism leads

to convergence collapse due to insufficient data per rank.

In terms of learning, performance degraded even more

severely. The baseline run achieved (58.7 %) training accuracy

and (61.6 %) test accuracy, proving that SqueezeNet can

converge under ARM-only execution. At (np = 4), accuracy

dropped to (43.5 %) train and (46.6 %) test reflecting reduced

learning capacity primarily due to smaller shard sizes

(statistical bottleneck), with synchronization costs becoming

secondary factors at larger scales. At full scale (np = 48),

convergence collapsed entirely: mean training accuracy

stagnated at (10.1 %) and both training and test loss plateaued

at (2.3026), the entropy baseline of random guessing across 10

classes.

Taken together, these results demonstrate that while strong

scaling improves execution time, it undermines statistical

efficiency and generalization when pushed beyond dataset-

limited thresholds. For lightweight CNNs such as SqueezeNet,

distributed data-parallel training on edge clusters therefore

exhibits a scaling ceiling: modest node counts (np ≤ 8) can

balance throughput and accuracy, but aggressive scaling to

dozens of nodes leads to rapid degradation of convergence,

driven by the interplay of small per-rank batch sizes,

synchronization overhead, and limited gradient signal.

3.4.2 Practical Implications for Edge AI
The findings from this study underline a critical reality for

edge-scale distributed deep learning. Raspberry Pi clusters,

while inexpensive, energy-efficient, and highly customizable,

face a sharp trade-off between scalability and learning

performance when training compact CNNs such as

SqueezeNet. For practical edge AI deployments — such as

autonomous sensor networks, on-device vision analytics, or

distributed IoT gateways — these results suggest that training

should be confined to small-to-moderate node counts, where

accuracy remains reliable and wall-clock time is still

acceptable. At larger scales, the diminishing returns of parallel

efficiency and the collapse of convergence observed at np = 48

imply that such clusters are better suited for inference and

lightweight retraining rather than full-scale distributed training.

Nevertheless, the empirical profiling carried out here (e.g.,

identification of batch size = 24 as the throughput/memory

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

14

optimum) demonstrates that hardware-aware tuning is

essential: even within resource-constrained settings, careful

optimization can yield stable convergence without overfitting.

Thus, Raspberry Pi–based SqueezeNet clusters can play a

meaningful role as testbeds for edge AI research, enabling low-

cost exploration of distributed learning paradigms, energy-

performance trade-offs, and algorithmic strategies (e.g.,

adaptive synchronization, hybrid training) that could later

transfer to industrial IoT or mission-critical edge applications.

Ultimately, this work shows that while such embedded clusters

will not replace GPU datacenters for large-scale deep learning,

they occupy a unique niche: providing accessible, reproducible,

and hardware-constrained platforms where the challenges of

distributed training at the network’s edge can be studied under

realistic conditions — conditions that mirror the limitations of

real-world deployments in remote, mobile, or power-sensitive

environments.

Figure 6: SqueezeNet training on a single Raspberry Pi 4B

with two MPI processes (np = 2).

Figure 7: SqueezeNet training on two Raspberry Pi 4B

nodes with four MPI processes (np = 4).

Table 2. SqueezeNet CNN Model Training results: Strong Scaling Methodology

RPi’s
MPI

Processes
(np)

Epoch

Test
acc

(final)
(%)

Test
loss

(final)

Mean
Train
Loss

(unitless)
(≈)

Mean
Train

Accuracy
(%)

Total (wall)
Training Time
(slowest rank)
(Mean) (sec)

Speedup
(Sₙ)

Efficiency
 (Eₙ) (%)

1 2 10 61.61% 1.0779 1.1403 58.74% 5003.00 1
100%

(baseline)

2 4 10 46.60% 1.4356 1.5139 43.45% 2535.56 1.97313414 98.66%

4 8 10 35.61% 1.7313 1.7995 32.06% 2455.94 2.037101884 50.93%

8 16 10 10.00% 2.3026 2.3026 10.01% 1156.48 4.326058384 54.08%

12 24 10 10.00% 2.3026 2.3026 10.05% 851.04 5.878689603 48.99%

16 32 10 10.00% 2.3026 2.3026 10.00% 699.52 7.152047118 44.70%

20 40 10 10.00% 2.3026 2.3026 10.16% 627.32 7.975196072 39.88%

24 48 10 10.00% 2.3026 2.3026 10.10% 432.11 11.5780704 48.24%

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

15

Figure 8: SqueezeNet CNN Model Training: Speedup (Sₙ) vs MPI Processes (np)

Figure 9: SqueezeNet CNN Model Training: Efficiency (Eₙ) vs MPI Processes (np)

Figure 10: SqueezeNet CNN Model Training: Train Accuracy (%) vs MPI Processes (np)

1
1.97313414

2.037101884
4.326058384

5.878689603

7.152047118
7.975196072

11.5780704

0

2

4

6

8

10

12

14

0 10 20 30 40 50

Sp
ee

d
u

p
 (

Sₙ
)

MPI Processes (np)

SqueezeNetV1.1 CNN Model Training
Speedup (Sₙ) vs MPI Processes (np)

98.66%

50.93%
54.08%

48.99% 44.70%
39.88%

48.24%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 10 20 30 40 50

Ef
fi

ci
en

cy
 (

Eₙ
)

(%
)

MPI Processes (np)

SqueezeNetV1.1 CNN Model Training
Efficiency (Eₙ) vs MPI Processes (np)

58.74%

43.45%

32.06%

10.01% 10.05% 10.00% 10.16% 10.10%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 5 10 15 20 25 30 35 40 45 50

Tr
ai

n
 A

cc
u

ra
cy

 (
%

)

MPI Processes (np)

SqueezeNetV1.1 CNN Model Training
Train Accuracy (%) vs MPI Processes (np)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

16

Figure 11: SqueezeNet CNN Model Training: Total Training Time (sec) vs MPI Processes (n)

Figure 12: SqueezeNet CNN Model Training: Train Loss (Mean) vs MPI Processes

4. FUTURE WORK
The limitations observed in the distributed training of

SqueezeNet - particularly in convergence stability and

scalability across high-rank ARM clusters - motivate a deeper

investigation into alternative learning paradigms that are

inherently designed for energy efficiency and sparse

computation.

In this context, Spiking Neural Networks (SNNs) represent a

biologically-inspired and event-driven approach to deep

learning that aligns naturally with edge constraints. As a

continuation of this work, there is a plan for the authors to

explore Distributed SNN Training on ARM-Based Edge

Clusters using MPI, evaluating how spike-based models

behave under partitioned data and low-bandwidth

communication regimes. Building on the execution pipeline

developed for SqueezeNet, the authors have intention to

implement SNNs that leverage Loihi- and SpiNNaker-inspired

simulation frameworks, adapting their temporal and sparse

encoding schemes to fit CPU-bound environments.

This line of research not only extends the architectural diversity

of models studied under MPI-distributed schemes, but also

serves as a potential path toward ultra-low-power edge

intelligence, where SNNs may outperform traditional CNNs

like SqueezeNet in both computational cost and biological

plausibility.

5. CONCLUSION
This study investigated the distributed training performance of

the SqueezeNet CNN model using MPI and mpi4py on a 24-

node ARM-based edge cluster. Experimental results across

configurations from RPi-1_mpi-2 to RPi-24_mpi-48 revealed

that although SqueezeNet maintains low computational

complexity, its convergence behavior under data-parallel MPI

execution is inconsistent beyond moderate scale. Notably,

training accuracy plateaued and even degraded at higher

process counts, indicating limited benefit from aggressive

parallelism. The results empirically confirm on ARM-based

edge clusters the statistical bottlenecks previously reported by

Shallue et al. (2019), [11] in large-scale GPU/CPU training

environments, underscoring that the convergence collapse we

5003.00

2535.56

2455.94

1156.48
851.04 699.52 627.32 432.11

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

0 10 20 30 40 50

To
ta

l T
ra

in
in

g
Ti

m
e

(s
ec

)

MPI Processes (np)

SqueezeNetV1.1 CNN Model Training
Total Training Time (sec) vs MPI Processes (n)

1.1403

1.5139

1.7995

2.3026 2.3026 2.3026 2.3026 2.3026

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 10 20 30 40 50

Lo
ss

 (
M

ea
n

)
 (

%
)

MPI Processes (np)

SqueezeNetV1.1 Model Training
Train Loss (Mean) vs MPI Processes

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.47, October 2025

17

observed is not hardware-specific but a fundamental limitation

of excessive data parallelism when per-rank shard sizes fall

below critical thresholds.

In contrast to structurally heavier models like MobileNet,

SqueezeNet does not linearly benefit from MPI-based scaling

in low-power, bandwidth-constrained environments. These

findings emphasize that lightweight architectures, while

computationally efficient, may require careful tuning — such

as batch-size adjustment, hybrid pipelining, or adaptive

gradient aggregation — to sustain effective distributed

learning. Future work will extend this investigation toward

distributed Spiking Neural Networks (SNNs) using MPI,

aiming to assess the viability of neuromorphic models and

Loihi/SpiNNaker-inspired simulations on ARM clusters for

scalable and biologically plausible edge intelligence.

A distinctive contribution of this work lies in the systematic

derivation of optimal training hyperparameters through

empirical profiling rather than reliance on recommended

defaults. Single-node sweeps demonstrated that a batch size of

24 images per node maximizes throughput (≈ 19.9 img/s),

maintains safe memory utilization (≈ 638 MB per rank), and

fully saturates available CPU resources, while avoiding cache

and bandwidth penalties observed at larger batches. This

hardware-aware tuning procedure establishes a reproducible

empirical baseline for distributed training on ARM clusters,

underscoring the necessity of hyperparameter selection guided

by platform constraints rather than convention.

In summary, this work positions Raspberry Pi–based

SqueezeNet clusters not as replacements for datacenter-scale

training, but as accessible and realistic testbeds for studying

distributed deep learning under edge constraints. Such

platforms directly mirror the computational and bandwidth

limitations of real-world IoT, robotics, and environmental

monitoring systems, and thus provide practical insights into

how compact CNNs — and potentially SNNs — can be trained

and deployed in the next generation of decentralized, low-

power edge intelligence.

6. ACKNOWLEDGMENTS
My sincere gratitude to Assistant Professor Ioannis S.

Barbounakis for his precious guidelines, knowledge and

contribution for the completion of this study.

7. REFERENCES
[1] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge

computing: Vision and challenges. IEEE Internet of

Things Journal, 3(5), 637–646.

https://doi.org/10.1109/JIOT.2016.2579198.

[2] Li, S., Xu, L. D., & Zhao, S. (2018). 5G Internet of Things:

A survey. Journal of Industrial Information

Integration,10,1-9

https://doi.org/10.1016/j.jii.2018.01.005

[3] Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017).

Efficient processing of deep neural networks: A tutorial

and survey. Proceedings of the IEEE, 105(12), 2295–

2329. https://doi.org/10.1109/JPROC.2017.2761740

[4] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,

Wang, W., Weyand, T., … & Adam, H. (2017).

MobileNets: Efficient convolutional neural networks for

mobile vision applications. arXiv preprint

arXiv:1704.04861. https://arxiv.org/abs/1704.04861

[5] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,

Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-

level accuracy with 50x fewer parameters and <0.5MB

model size. arXiv

Preprint. https://doi.org/10.48550/arXiv.1602.07360

[6] Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H.

P. (2017). Pruning filters for efficient convnets.

International Conference on Learning Representations

(ICLR). https://arxiv.org/abs/1608.08710

[7] Ramesh, S., & Chakrabarty, K. (2021). Challenges and

opportunities in training deep neural networks on edge

devices. ACM Transactions on Embedded Computing

Systems (TECS), 20(5s), 1–26.

https://doi.org/10.1145/3477084

[8] Raspberry Pi 4 Model B. [Online]. Available:

raspberrypi.com/products/raspberry-pi-4-model-b/.

[9] Raspberry Pi 4 Model B specifications. [Online].

Available:

https://magpi.raspberrypi.com/articles/raspberry-pi-4-

specs-benchmarks.

[10] Masters, D., & Luschi, C. (2018). Revisiting small batch

training for deep neural networks. arXiv preprint

arXiv:1804.07612. https://arxiv.org/abs/1804.07612

[11] Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,

Frostig, R., & Dahl, G. E. (2019). Measuring the effects

of data parallelism on neural network training. Journal of

Machine Learning Research, 20(112), 1–49.

http://jmlr.org/papers/v20/18-789.html

[12] Ben-Nun, T., & Hoefler, T. (2019). Demystifying parallel

and distributed deep learning: An in-depth concurrency

analysis. ACM Computing Surveys, 52(4), 1–43.

https://doi.org/10.1145/3320060

IJCATM : www.ijcaonline.org

https://doi.org/10.1016/j.jii.2018.01.005
https://doi.org/10.48550/arXiv.1602.07360
https://magpi.raspberrypi.com/articles/raspberry-pi-4-specs-benchmarks
https://magpi.raspberrypi.com/articles/raspberry-pi-4-specs-benchmarks
https://arxiv.org/abs/1804.07612
http://jmlr.org/papers/v20/18-789.html
https://doi.org/10.1145/3320060

