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ABSTRACT

The increasing demand for lightweight and energy-efficient
deep learning models at the edge has fueled interest in training
convolutional neural networks (CNNs) directly on ARM-based
CPU clusters. This study examines the feasibility and
performance constraints of distributed training for the compact
SqueezeNet v1.1 architecture, implemented using an MPI-
based parallel framework on a Beowulf cluster composed of
Raspberry Pi devices.

Experimental evaluation across up to 24 Raspberry Pi nodes
(48 MPI processes) reveals a sharp trade-off between training
acceleration and model generalization. While wall-clock
training time improves by over (11x) under increased
parallelism, test accuracy deteriorates significantly, collapsing
to chance-level performance (=10%) as data partitions per
process become excessively small. This behavior highlights a
statistical scaling limit, beyond which computational gains are
offset by learning inefficiency. The findings are consistent with
the statistical bottlenecks identified by Shallue et al. (2019)
[11], extending their observations from large-scale GPU/CPU
systems to energy-constrained ARM-based edge clusters.

These findings underscore the importance of balanced task
decomposition in CPU-bound environments and contribute
new insights into the complex interplay between model
compactness, data sparsity, and parallel training efficiency in
edge-Al systems. This framework also provides a viable low-
power platform for real-time SNN research on edge devices.
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1. INTRODUCTION

The rapid proliferation of artificial intelligence (Al)
applications at the network edge—ranging from autonomous
sensing systems to low-power surveillance and smart [oT
endpoints—has accelerated the demand for resource-efficient
deep learning (DL) models deployable on embedded hardware
platforms [1], [2]. While modern convolutional neural
networks (CNNs) achieve state-of-the-art accuracy across a
variety of computer vision tasks, their deployment on
lightweight hardware remains challenging due to memory,
energy, and compute limitations [3].

Recent developments in model compression and architecture
optimization have led to the emergence of compact CNN
variants, such as MobileNet and SqueezeNet, which offer a
favorable trade-off between inference speed and accuracy [4],
[5]. These models have shown promising results for edge
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inference, yet the majority of existing studies rely on pre-
trained models, limiting the scope of on-device adaptation and
learning. In contrast, performing model training directly on
edge hardware—particularly in a distributed fashion—remains
largely unexplored due to the stringent constraints of low-
power CPUs and lack of GPU acceleration [6], [7].

This work addresses the gap by investigating the feasibility of
parallel CNN training using SqueezeNet vI.I on ARM-based
edge clusters. Leveraging a message-passing interface (MPI)
strategy across multiple Raspberry Pi devices, the analysis
focuses on evaluating the trade-offs between training
throughput, communication overhead, and statistical efficiency
as the number of processes increases. Particular attention is
given to the interaction between parallelism and model
generalization, exposing a regime where increased scalability
leads to diminishing learning returns.

By extending the frontier of embedded deep learning from
inference-only systems toward scalable training architectures,
this study examines SqueezeNet v1.1 as a candidate for energy-
and memory-efficient CNN deployment in clustered edge
environments. Implementing MPI-based distributed training on
ARM-based devices reveals both the strengths and the practical
limits of this approach, highlighting the trade-offs between
computational  scalability, statistical efficiency, and
generalization.

The experimental platform, illustrated in "Figure 1",[8], [9], is
built on the Raspberry Pi 4 Model B with 8 GB LPDDR4 RAM
and a 64-bit quad-core ARMvS Cortex-A72 CPU at 1.5 GHz,
chosen for its low cost, accessibility, and suitability for high-
performance cluster assembly at the edge. This hardware
foundation provides a controlled and repeatable basis for
evaluating parallel processing and distributed deep learning
workloads, enabling insights that contribute to the design of
future edge-Al systems less dependent on cloud infrastructure.
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Figure 1: Raspberry Pi 4 Model B unit used as the basic
node in the 24-node ARM-based Beowulf cluster.



2. SYSTEM DESCRIPTION
2.1 Hardware Equipment

The computational platform for this study is a cost-effective yet
capable Beowulf-style cluster built from 24 Raspberry Pi4
Model B units, each equipped with 8 GB LPDDR4 RAM. One
board is configured as the master node, responsible for resource
allocation and process orchestration, while the remaining 23
nodes serve as MPI-coordinated workers executing parallel
training tasks. The physical layout "Figure 2" consists of four
vertical stacks containing six boards each, a format that offers
both space efficiency and clean, maintainable cabling.

High-speed inter-node communication is provided by TP-Link
TL-SG1024D unmanaged  Gigabit ~ Ethernet  switches,
delivering 1 Gbps full-duplex bandwidth per link. This
topology ensures consistent, low-latency data exchange
between nodes, effectively replicating the communication
characteristics of a traditional high-performance computing
(HPC) environment within an ARM-based embedded system.

Stable and reliable power delivery is maintained through two
industrial-grade switch-mode power supplies, each rated
at 60 A /5V and precisely tuned to 5.80 V to offset voltage
drops over extended cabling. This adjustment safeguards node
stability during sustained, high-load parallel operations.

For storage, the master nodehosts alTB Samsung 980
PCle 3.0 NVMe SSD to provide high-throughput access for
dataset management and orchestration tasks. Each worker node
is fitted with a 256 GB Patriot P300 NVMe M.2 SSD, ensuring
fast local I/O to support seamless data streaming during
training. This configuration supplies adequate storage
bandwidth for large-scale datasets and for maintaining
intermediate model checkpoints throughout distributed
learning.

|

Figure 2: 24-node Raspberry Pi 4B (8 GB) Beowulf cluster
architecture for distributed SqueezeNet training.

2.2 Software Environment and Toolchain
The software environment utilized in this study was carefully
designed to support distributed training of lightweight
convolutional neural networks on ARM-based systems. All
nodes operated under Raspberry Pi OS 64-bit Lite (Debian-
based), with Python 3.11.5 running within a shared virtual
environment mounted via NFS, ensuring a uniform software
stack and consistent execution across the entire cluster.

Inter-process communication was managed using MPICH
v4.2.0, while the distributed training logic was implemented
with the mpidpy library (v3.1.6), providing a Pythonic interface
to the underlying MPI runtime.

In addition to core scientific libraries - including NumPy
(v1.26.4), SciPy (v1.13.0), scikit-learn (v1.4.2), and psutil
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(v7.0.0) - the software stack incorporated deep learning-
specific frameworks required for CNN construction, training,
and evaluation. Specifically, TensorFlow v2.15.0, with
integrated Keras APIs, was employed to support the modular
architecture of SqueezeNet and to facilitate GPU-independent
model training and evaluation.

All dependencies were compiled for compatibility with the
ARMVS-A architecture, and deployed uniformly to ensure
deterministic behavior and eliminate version drift. To support
efficient parallelism, environmental variables such as
LD LIBRARY PATH and UCX TLS were explicitly
synchronized across all nodes, and passwordless SSH was
configured to allow seamless coordination during training
execution.

The entire training process was orchestrated using mpiexec,
with explicit machine file definitions and CPU core binding to
optimize resource allocation and minimize scheduling
variability. All operations were executed from within the
shared virtual environment, ensuring that experimental
reproducibility and consistency were maintained throughout
the distributed training workflow.

This configuration was tailored to the constraints and
capabilities of SqueezeNet, allowing for scalable training
without GPU support, and demonstrating the viability of
lightweight CNNs in fully distributed ARM-based edge
environments. This environment replicates many practices
from large-scale HPC clusters, adapted to resource-constrained
ARM nodes.

2.3 Design

The architectural and experimental framework for distributed
training is shown in "Figure 2" and "Figure 3", illustrating both
the physical deployment and the logical data-parallel workflow
of the Raspberry Pi 4B Beowulf cluster. The system consists of
24 ARM-based nodes, each with 8 GB of RAM and
interconnected via Gigabit Ethernet, forming a cost-effective
yet representative platform for investigating distributed deep
learning under resource constraints.

This work focuses on the distributed training of SqueezeNet
vl.1, a compact convolutional neural network that achieves
AlexNet-level accuracy while maintaining a model size below
(0.5 MB). In contrast to MobileNet, which leverages depthwise
separable convolutions to reduce computation, SqueezeNet v1.1
employs a distinctive modular design centered on "fire
modules"—comprising squeeze ( 1 X 1 convolution) and
expand (1 X1 and 3 X3 convolution) layers. This
architecture delivers aggressive parameter reduction without
significant loss in accuracy, making it highly suitable for CPU-
only embedded devices such as the Raspberry Pi.

The ultra-small footprint and low computational demand of
SqueezeNet vi.1 make it an ideal candidate for exploring fully
distributed training in scenarios characterized by limited
memory, absence of GPU acceleration, and moderate
communication latency. These constraints closely mirror those
encountered in practical edge computing deployments,
including decentralized applications in robotics, environmental
sensing, and loT-driven event detection.

Given the platform’s lack of dedicated accelerators—such as
GPUs, Advanced Vector Extensions (AVX) (Single
Instruction, Multiple Data) SIMD extensions, or high-
throughput Direct Memory Access (DMA)—the entire neural
network workload is executed solely on quad-core ARM
Cortex-A72 CPUs. To accommodate these limitations, the



experimental protocol adopts:

- Smaller per-node batch sizes to conserve memory and
reduce compute overhead,

- A fixed, moderate number of training epochs (e.g., 10) to
maintain tractable runtimes,

- Synchronous data-parallel training using MPI, wherein
each process operates on a partitioned data shard and
participates in collective gradient aggregation.

While the objective is not to attain state-of-the-art accuracy or
speed, this design enables:

- Comprehensive  benchmarking  of strong  scaling
performance as the number of processes increases (from 2
to 48),

- Accurate measurement of parallel efficiency for a
compact CNN under distributed execution,

- Practical demonstration of the feasibility of on-device
learning on embedded, multi-node ARM clusters.

This methodology establishes a reproducible framework for
assessing distributed CNN training under realistic edge
constraints, offering quantifiable evidence of the trade-offs
between communication overhead and statistical learning
performance.
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Figure 3: MPI communication architecture of the 24-node
Raspberry Pi 4B cluster.

2.4 Theoretical Background: SqueezeNet
CNNs and Dataset Selection

Convolutional Neural Networks (CNNs) constitute a
foundational class of deep learning models widely used in
image recognition tasks, owing to their ability to extract
multiscale hierarchical features from visual data [7]. Among
the numerous lightweight CNN architectures, SqueezeNet has
emerged as a notable design, achieving AlexNet-level
classification accuracy with 50 X fewer parameters and a
model size of less than (0.5MB) when quantized [8]. This
efficiency is achieved through a unique architectural
innovation: “fire module”, which replaces standard
convolutional layers with a two-stage module composed of
squeeze (1 X 1 convolution) and expand (1 X1 and 3 X 3
convolution) layers

The SqueezeNet architecture eliminates the need for
computationally intensive fully connected layers and instead
utilizes global average pooling in its final stages, further
reducing parameter count while maintaining strong
representational power. Its highly compact form and modular
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structure make it particularly suitable for deployment in
memory- and energy-constrained environments -, such as
ARM-based embedded platforms.

For this investigation, SqueezeNet was selected for training on
the CIFAR-10 dataset, a commonly used image classification
benchmark consisting of 60,000 color images at (32 X 32 )
resolution, evenly distributed across 10 classes [9]. The dataset
includes 50,000 training images and 10,000 test images,
providing a balanced and computationally tractable workload
for evaluating the distributed training behavior of compact
CNNs under hardware constraints.

Preliminary testing indicated that CIFAR-10 aligns well with
the architectural strengths of SqueezeNet, enabling successful
training without exceeding the memory limits or thermal
thresholds of the Raspberry Pi 4B cluster. In contrast, larger or
more complex datasets such as CIFAR-100 - which increases
the output class count and dense layer complexity tenfold -
introduced significant memory pressure and degraded
synchronization efficiency, underscoring the importance of
dataset-model alignment when evaluating distributed training
on constrained hardware.

Given these constraints and objectives, CIFAR-10 was selected
as the benchmark dataset for this study to ensure stability
during execution, while still offering sufficient complexity for
analyzing model convergence and scaling performance. The
dataset’s modest size complements the efficient design of
SqueezeNet, making it an ideal choice for parallel execution
and evaluation on low-power embedded clusters.

3. METHODOLOGY

3.1 System Configuration and
Experimental Context

The experimental evaluation was conducted on a custom-built
Beowulf-style cluster composed of 24 Raspberry Pi 4 Model B
nodes, each featuring a quad-core ARM Cortex-A72 CPU and
8GB of LPDDR4 RAM. The nodes are interconnected using
unmanaged Gigabit Ethernet switches, providing a full-duplex
communication channel with 1 Gbps per link, thereby enabling
low-latency inter-node messaging suitable for MPI-based
coordination.

This embedded, low-power cluster architecture presents a
distinct set of computational constraints, including limited
memory, absence of GPU or AVX acceleration, and CPU-
bound processing. These limitations directly influence the
design and tuning of the training pipeline, particularly in terms
of model selection, dataset size, and parallelization strategy.

To accommodate these constraints, the study employs the
SqueezeNet convolutional neural network - a lightweight deep
learning architecture specifically designed to minimize model
size while retaining high classification accuracy-. Unlike more
computationally intensive CNNs, SqueezeNet utilizes fire
modules to reduce the number of parameters, replacing
traditional convolutional layers with combinations of squeeze
1 X1 and expand (1 X1 and 3 X 3 ) convolutions. This
compact structure makes the model ideally suited for training
in CPU-only, memory-constrained environments such as the
Raspberry Pi 4B platform

The CIFAR-10 dataset is selected as the training and evaluation
benchmark. It consists of 60,000 RGB images ( 32 X 32
pixels), evenly distributed across 10 object categories, with
50,000 samples for training and 10,000 for testing. Its moderate
size aligns well with the available memory and I/O capabilities



of the cluster, permitting full dataset preloading into memory
to avoid paging or I/O bottlenecks. In accordance with CIFAR-
10 dimensions, the input tensor for SqueezeNet is modified to
accept input shape (32 X 32 X 3) instead of its default
227 x 227 X 3), and all internal layers are adapted to ensure
shape compatibility and effective training at lower resolution.

All cluster nodes run Raspberry Pi OS 64-bit Lite, and training
is conducted within a shared Python 3.11.5 virtual
environment, mounted across nodes via NFS for consistency.
The distributed training framework is built upon TensorFlow
v2.15.0, leveraging the Keras 2.x API for model construction,
optimization, and evaluation. Notably, compatibility
adjustments were applied to the open-source keras-squeezenet
module to ensure full support under the TensorFlow 2.x
backend, replacing legacy Keras imports and resolving API
deprecations introduced in recent versions.

Inter-process communication is implemented using the MPI for
Python (mpidpy) library v3.1.6 over the MPICH v4.2.0
backend. All software packages are compiled and installed with
ARMVS8-A architecture compatibility, and deployed uniformly
across the cluster to ensure consistent behavior. MPI processes
are launched using mpiexec, with machinefile definitions and
CPU core binding for improved locality, control of process
placement, and reproducibility of results.

This configuration supports the investigation of strong scaling
behaviour in lightweight CNN training, with particular focus
on training time, convergence speed, and efficiency metrics
across increasing numbers of MPI processes - ranging from (2
to 48), spanning (1 to 24) physical nodes.

3.2 Distributed Training Strategy
3.2.1 Data Parallelism Approach

This study adopts a data-parallel distributed training strategy,
leveraging Message Passing Interface (MPI) to coordinate
multiple processes across the cluster. Each MPI process
(“rank”) is assigned a unique, disjoint shard of the CIFAR-10
training dataset. The training pipeline is configured to run two
ranks per Raspberry Pi 4B node, optimizing both CPU core
utilization and memory headroom on the ARM Cortex-A72
architecture. By ensuring that each rank processes a distinct
chunk of data per epoch, the approach guarantees balanced
workload distribution and reproducibility across all
experimental runs.

3.2.2 Deterministic Strided Sharding of CIFAR-10

To maintain reproducible and uniform data splits during
distributed SqueezeNetvI.1 training, the 50,000 CIFAR-10
training samples are partitioned using a deterministic strided
indexing scheme.

Let (N) denote the total number of MPI ranks in the
experiment and (7 ) the rank identifier (r € {0,1,...,N —
1}). For each epoch, the global training index set

(I1=01,2,..,49999), is divided so that rank (7 ) processes
the subset:

I.,={i €ellimod N=7r}={r,r+ N,r+2N,..}.
This ensures non-overlapping data partitions, balanced sample

50,000
N

counts (= per rank) and complete reproducibility

across runs.

By construction, every sample is assigned to exactly one rank
in each epoch, eliminating duplication and statistical bias that
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could arise from random shuffling.
After local training on its assigned shard, each rank participates
in global model synchronization, and the root rank performs
test set evaluation using the fully synchronized model
parameters.

3.2.3 Synchronous SGD via MPI Collectives

Within each epoch, every rank performs standard forward and
backward passes on its local data shard. At the end of the epoch,
synchronous stochastic gradient descent (SGD) is emulated via
MPI collectives: all ranks transmit their current model weight
tensors to the root process using comm.gather(). The root
averages these tensors across ranks, then broadcasts the
aggregated (synchronized) weights back to all ranks
using comm.bcast(). This collective pattern is functionally
equivalent to Allreduce, but was selected for transparency and
enhanced logging. Test evaluations are executed by the root
rank using the fully synchronized model, ensuring that the final
metrics reflect the converged global weights.

3.2.4 Empirical Batch Size Profiling and System
Sweeps

Batch size is the primary factor influencing per-rank memory
usage and CPU saturation in distributed CNN training. A
systematic “fast sweep” protocol was implemented—batch
sizes (8, 16, 24, 32 images/node) were benchmarked in
isolation on a single RPi (2 ranks/node), with additional spot-
checks on further nodes to rule out hardware variation. For each
sweep: epoch times, peak process memory (RSS via psutil),
node-level RAM/swap usage (free -m, vmstat), CPU utilization
(mpstat), and OOM events (dmesg) were logged for validation.
Results indicated that batch-per-node = 24 achieves the optimal
trade-off: highest throughput, consistent CPU saturation
(>107%), and safe memory usage (< 660 MB/rank). Larger
batches induced minor cache pressure and slower epochs;
smaller batches under-utilized CPU resources. Cross-node
replicates confirmed stability "Figure 4", "Figure 5", “Table 1”.

3.2.5 Benchmarking Hyperparameters and
Reproducibility

To ensure consistency across all scaling experiments,
benchmarking hyperparameters were fixed as follows:

- Epochs: 10 (upper bound before RAM or thermal
instability on sustained workloads)

- Batch size: 24 images/node (12 per rank with 2
ranks/node)

- Learning rate: 0.0005 (chosen for stable convergence
under small effective batch)

- Initialization & Codebase: All runs used identical random
seeds, an invariant training script, and uniform logging
format for reproducibility.

- Logging: Per-rank logs included epoch loss/accuracy,
wall-clock times, and peak RSS. All data was stored in
CSV for downstream analysis and verification.

Batch size (24) was empirically determined from
throughput/memory/CPU sweeps as the ideal setting, balancing
compute density and system safety, and enabling linear scaling
with additional nodes. Peak RSS remained well below RPi
limits, with each rank saturating its core allocation, and data-
parallel scaling was robust under increasing cluster size.



3.2.6 Fixed benchmarking hyperparameters in
one RPi (pi@rpi4B-ma-00)

To empirically determine the optimal training configuration for
SqueezeNet vl.1 on ARM-based edge hardware, a systematic
sweep of primary hyperparameters was performed on a single
Raspberry Pi4B node (8GB RAM, quad-core ARM
Cortex-A72), running two MPI ranks per node. This sweep
evaluated batch sizes of (8, 16, 24, and 32) images per node
(i.e., 4, 8, 12, and 16 images per rank, respectively) under
identical runtime conditions. For each configuration, we logged
median epoch time, mean step time, global throughput
(images/sec), peak per-process resident set size (RSS), and
epoch-averaged CPU usage.

Empirical benchmarking revealed that throughput increases
markedly from batch (8§ — 16 — 24), peaking at (19.92 img/s)
for batch24/node, before dropping to (18.58 img/s) at
batch 32/node. This decline at the largest batch size is
attributed to the ARM Cortex-A72’s memory subsystem limits:
the larger working set of activations/gradients at batch 32
begins to exceed the effective capacity of the L2 cache,
resulting in increased DRAM traffic, higher cache miss rates,
and longer step times (mean step rises from 1.205s at24
to 1.723 s at 32) “Table 1.

Peak RSS also trends upward at batch 32 (655.7 MB/rank)
compared to (<638 MB/rank) for smaller batches, indicating
greater memory pressure.

Across all runs, CPU utilization remained high (> 107 % per
process), confirming full use of allocated cores, and no OOM
or swap events occurred. Based on this
profiling, batch-per-node =24 was fixed for all subsequent
scaling experiments as it delivers the highest throughput,
maintains comfortable memory headroom, and avoids the
bandwidth/cache penalties observed at larger batch sizes.
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Figure 4: Local training benchmark on a single RPi
comparing batch sizes 8 and 16 for computational
efficiency.
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Table 1. MPI SqueezeNet CIFAR-10, batch (Images) size
benchmarking -best option survey-.

Avg. Mean Global Peak Avg.

Batch | Batch | epoch ste through RSS Proc
/node | /rank time (seg) -put (MB) -ess
(sec) (img/s) CPU

(%)

8 4 91.63 | 0.458 | 17.46 | 638.1 | 1082
16 8 166.14 | 0.831 | 19.26 | 637.7 | 107.8
24 12 | 241.01 | 1.205 | 19.92 | 637.6 | 1075
32 16 | 34452 | 1.723 | 1858 | 6557 | 111.2

Note I:

Reported process CPU utilization values >100% per MPI
rank are expected in multi-core environments, as each rank
may utilize more than one core through internal multi-
threading (e.g., BLAS, data preprocessing). With two MPI
ranks per node on a quad-core ARM CPU, this reflects
efficient multi-threaded utilization and confirms that both
ranks are fully leveraging available compute resources
during distributed training “Table 1.

Note 2:

RSS is a direct indicator of the memory “footprint” of the
training job at runtime, which shows how much RAM the deep
learning code is consuming per process (MPI rank) without
counting swapped or inactive pages. RSS is the live amount of
physical RAM a process occupies; it’s a key safety and
efficiency metric in distributed deep learning benchmarking
and hardware profiling. “Peak RSS” is the highest RSS
observed for a rank throughout the training run “Table 1.

10



3.3 Strong Scaling Training Configuration
and Execution Flow

This study adopts a strong scaling experimental design to
evaluate the distributed training performance of SqueezeNet on
a CPU-bound, ARM-based embedded cluster. Strong scaling is
critical in the context of edge Al because distributed training
on resource-constrained hardware demands not only model
compactness but also efficient parallelism. Unlike weak
scaling, where data volume increases with compute resources,
strong scaling directly reflects how well a fixed workload can
be accelerated by adding more nodes - an essential metric for
real-time, power-sensitive edge deployments-. In a strong
scaling scenario, the total workload remains constant -
specifically, the CIFAR-10 dataset and the SqueezeNet
architecture - while the number of MPI processes (np) is
gradually increased to assess parallel training behavior. The
CIFAR-10 dataset was selected for its moderate size and
compatibility with the memory and I/O constraints of the
Raspberry Pi platform.

Experiments are executed with the following MPI process
counts:

np € {2,4,8,16,24,32,40,48}

Given that each Raspberry Pi node executes two MPI

processes, this corresponds to: p = nz—p Raspberry Pi nodes.

In the experiments:

- The overall dataset (CIFAR-10, 50,000 training samples,
10,000 test samples) and SqueezeNet model architecture
remain unchanged for all trials.

- The number of MPI processes (np) is successively
increased, while the same workload and data partitioning
protocol is preserved.

- Each Raspberry Pi node executes two MPI processes
(ranks), so the total process count np corresponds to np/2
physical Raspberry Pis.

- Training Protocol: Each MPI rank receives a non-
overlapping data shard (via deterministic strided indexing)
and performs local updates using synchronous, data-
parallel SGD. Model gradients are aggregated via mpi4py
collective operations (gather and broadcast), emulating
centralized synchronous parameter updates. The training
is run for a fixed 10 epochs—empirically chosen as the
maximal stable setting before memory, swap, or thermal
fluctuations arise on the ARM edge platform.

- Experimental Controls:
All training runs use:

- Fixed learning rate (0.0005) and uniform batch size
per rank (chosen via single-node empirical sweep).

- Identical random seed and weight initialization.
- Shared codebase, containerized virtual environment,
and NFS-based distribution to enforce bitwise

reproducibility.

- Explicit machinefile specification, core binding, and
mpiexec process launching to guarantee locality and
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consistent scheduling.

- Each configuration is repeated three times; results are
reported as cross-run means to account for
stochasticity and environmental noise.

- Logged Metrics and Performance Indicators: Each rank
records its local loss and accuracy per epoch into
structured (.csv) logs. Upon completion, these logs are
aggregated to compute key performance indicators:

- Mean Train Accuracy Across Ranks:

N
1
MeanTraningAcc = Nz Acc;

i=1
Where:
N = number of ranks € {2,4,8,16,24,32,40,48}
Acc; = final accuracy of rank (i) after epoch 10

- Total training time (as the maximum clock time over
ranks)

- Speedup S(np):
base

Thp

S(np) =
Where (Thase) is the runtime for the baseline case
(np =2)
- Parallel Efficiency E(np):
S
E(mp) = 222 x 100%

np

2
Note:
Efficiency is reported relative to a baseline of np=2 MPI
processes.

- Additional Considerations:

- Convergence dynamics are assessed using epoch-
wise plots of training loss and accuracy.

- Communication overhead is inferred from rising time
variance and efficiency drops at high process counts
(e.g., np >32).

- All experiments are executed in thermal isolation,
with passive cooling and controlled ambient
conditions, to eliminate performance skew due to
thermal throttling or network noise.

- Each configuration is repeated for reproducibility,
with averaged metrics used for all reported values.

This design allows for a detailed investigation into the scaling
limits and distributed training feasibility of lightweight CNNs
like SqueezeNet on low-power, decentralized edge
infrastructures.

3.4 Strong Scaling Results and Analysis

To assess the strong scaling behavior of the SqueezeNet CNN
on a distributed Raspberry Pi cluster, a series of training
experiments were conducted using MPI-based data parallelism,
varying the number of Raspberry Pi nodes and MPI processes.
All configurations performed 10 epochs of training on a shared
dataset with identical preprocessing, network architecture, and

11



hyperparameter settings. Key metrics collected include the
mean training loss, mean training accuracy, total training time
(maximum across ranks), speedup (S,) relative to the baseline,
and parallel efficiency (E,).

- Case 1: SqueezeNet-CNN _rpi-1_mpi-2:

The baseline configuration was executed with np = 2 MPI
processes on a single Raspberry Pi 4B node for 10 training
epochs. Each MPI process was bound to a dedicated core and
accessed the dataset through a shared NFS mount. Although no
inter-node communication was present, inter-process
synchronization and gradient aggregation were still
coordinated via mpi4py, introducing local network stack
overhead and I/O contention on the shared storage.

The global wall-clock training time was (5003.00 sec)
(measured as the maximum rank duration). The mean training
accuracy across ranks reached (58.74 %), with a mean training
loss of (1.1403). Final evaluation on the CIFAR-10 test set
yielded (61.61 %) accuracy and (1.0779) test loss. These results
establish that SqueezeNet v1.1 converges successfully within
10 epochs under CPU-only execution, even when restricted to
a single embedded node.

This case defines the baseline reference point for all subsequent
strong scaling experiments, with speedup defined as (S: = 1)
and parallel efficiency as (E: = 100 %) (baseline). While
limited by single-node throughput and NFS-driven overheads,
the configuration demonstrates that a compact CNN can
achieve non-trivial generalization performance on CIFAR-10
in a fully ARM-based edge environment. It thereby provides
the essential reference against which multi-node scaling
behavior is evaluated "Figure 6", “Table 2”.

Note:

The close agreement between the final test loss (1.0779)
and the mean training loss (1.1403) indicates that the
model does not overfit under this configuration. Instead,
the training process achieves a balanced fit where
generalization to unseen data is consistent with training
performance.

In the context of deep learning, (loss) quantifies the
discrepancy between the model’s predicted outputs and
the true labels of the dataset. A lower loss value
corresponds to fewer errors in prediction, whereas a high
loss signals poor alignment with ground truth. Minimizing
loss during training ensures that the model improves its
predictive accuracy, and the similarity between training
and test loss demonstrates the model’s ability to
generalize beyond the data it was explicitly trained on.

- Case 2: SqueezeNet-CNN _rpi-2 _mpi-4:

The second configuration was executed with np = 4 MPI
processes distributed across two Raspberry Pi 4B nodes (2
ranks per node) for 10 training epochs. Each rank was bound
to a dedicated CPU core, and dataset shards were allocated
deterministically using the strided indexing scheme, resulting
in 12,500 training samples per rank. Gradient aggregation and
weight synchronization were managed synchronously via
mpi4py collective communication, introducing the first
instance of genuine inter-node message passing in the scaling
experiments.

The global wall-clock training time was (2535.56 sec),
reflecting a near (2x) reduction relative to the single-node
baseline. The mean training accuracy across ranks decreased to
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(43.45 %), with a mean training loss of (1.5139). Evaluation on
the CIFAR-10 test set yielded (46.60 %) accuracy and (1.4356)
test loss "Figure 7", “Table 2”.

Relative to (Case 1), this experiment achieved a clear runtime
improvement while exhibiting reduced convergence quality.
Speedup for np = 4 was (Ss = 1.97), corresponding to a very
high parallel efficiency of (Es =~ 98.7 %) under the np = 2
baseline definition. This indicates that doubling the number of
nodes nearly halved training time, and the overhead of inter-
node communication remained minimal at this scale. In other
words, at (np = 4) the system retained excellent computational
efficiency, and the observed accuracy drop was primarily due
to statistical factors (smaller shard sizes per rank) rather than
communication bottlenecks.

Note:

The divergence between mean training loss (1.5139) and
test loss (1.4356) is relatively small, suggesting that the
reduced accuracy arises not from overfitting but from
statistical inefficiency in distributed gradient averaging at
this scale [10], [11]. In deep learning, loss quantifies the
penalty between predicted outputs and ground-truth
labels. Here, the moderate loss values confirm that the
model  continues to learn effectively,  though
generalization accuracy diminishes compared to the
baseline.

- Case 3: SqueezeNet-CNN _ rpi-1_mpi-2 to rpi-24_mpi-48
- Cluster-Wide Analysis and Observed Scaling Patterns:

The cluster-wide configuration was executed with (np = 48)
MPI processes distributed across 24 Raspberry Pi 4B nodes (2
ranks per node), representing the maximum scale of the
experimental platform. Each rank received a deterministic
strided shard of the CIFAR-10 dataset, corresponding to only
(= 1,042) training samples per rank due to dataset partitioning
across 48 processes. The global wall-clock training time
decreased substantially to (432.11) seconds, marking a (11.6%)
speedup compared to the single-node baseline (Case I).
However, mean training accuracy collapsed to (10.10 %), with
a mean training loss of (2.3026). Test accuracy mirrored this
collapse at (10.00 %), with test loss also saturating at (2.3026).
These values are near-random guess performance for CIFAR-
10, indicating that the model failed to converge at scale. “Table
2”, "Figure 8", "Figure 9", "Figure 10", "Figure 11", "Figure
12"

While strong scaling produced dramatic reductions in runtime,
the training process exhibited catastrophic degradation in
convergence dynamics. This can be attributed to three
interacting effects:

- Statistical Inefficiency: At 48 ranks, each rank processes a
very small dataset shard (= 1k samples), reducing gradient
diversity per update and leading to stagnation.

- Synchronization Overheads: Frequent global gradient
averaging across 48 processes amplifies communication
costs, diluting effective learning despite reduced compute
time per step.

- Diminished Workload per Rank: The fixed dataset (50k
samples) cannot sustain high process counts under strong
scaling, causing the training regime to fall into a regime
where communication overhead and insufficient data per
process jointly dominate, limiting convergence regardless
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of raw speedup.
Note:

The final loss values (= 2.3026) correspond to the
entropy of a uniform random classifier across 10
classes. In deep learning terms, this indicates that the
network predictions are essentially indistinguishable
from random guessing. Unlike (Cases 1 and 2),
where training and test loss tracked closely and
convergence was evident, here both losses plateau at
the random baseline, confirming that large-scale
strong scaling under dataset-limited conditions
prevents the model from learning effectively.

- Execution Time and Speedup:

The strong scaling experiments clearly demonstrate the trade-
off between execution time and effective learning. With (np =
2) (Case 1), the baseline configuration required (5003 sec) to
complete 10 epochs, establishing the reference point (S2 = 1.0,
E2 =100 %). Doubling the nodes to (np = 4) (Case 2) reduced
wall-clock time to (2535.6 sec), achieving nearly (2x) speedup
(S4 = 1.97) with very high efficiency (E+ = 99 %). Atnp =8,
the speedup reached (Ss = 2.04) and efficiency remained
moderate (=~ 51 %), showing that the cluster scaled effectively
up to this level. At full cluster scale (np = 48), wall-clock time
collapsed to (432.1 sec), corresponding to an impressive raw
speedup of (11.6x%) relative to baseline “Table 2”, "Figure 8",
"Figure 11".

- Learning Performance: Accuracy and Loss

While runtime scaled favorably, the learning performance of
SqueezeNet degraded significantly as the number of processes
increased. In the baseline configuration (np = 2), the model
achieved (58.7 %) training accuracy and (61.6 %) test accuracy
after 10 epochs, demonstrating that SqueezeNet can converge
successfully under ARM-only execution. At np = 4, training
accuracy dropped to (43.5 %) and test accuracy to (46.6 %),
showing the early impact of reduced shard sizes and increased
synchronization. By np = 8, accuracy fell further (= 32 %
training and 35.6 % test), marking the point where statistical
inefficiency begins to dominate, even though parallel
efficiency remained moderate (=~ 51 %) “Table 2”, "Figure 10",
"Figure 12".

At larger scales (np > 16), convergence effectively collapsed.
Both training and test accuracies stagnated near (10 %), with
losses plateauing at (2.3026) — equivalent to random guessing
across 10 classes. This collapse is not primarily due to poor
parallel efficiency (which remained 40-50 % at these scales),
but rather due to the extremely limited number of training
images per rank. With only ~1k images per process at np = 48,
the gradient signal was insufficient for learning, and global
synchronization merely propagated noise. Such effects are
consistent with prior findings that very small batch sizes
introduce excessive gradient noise and destabilize convergence
[10].

In short, the experiments reveal a scaling ceiling for distributed
CNN training on edge-class ARM clusters. While modest
scaling (np < 8) balances throughput and learning quality,
pushing to higher degrees of parallelism results in statistical
underfitting: fast training with little or no useful convergence.
This highlights that the bottleneck is not only communication
overhead but also the intrinsic data-per-rank limitation in
small-scale deep learning workloads on constrained hardware.
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3.4.1 Scaling Summary

The strong scaling experiments of SqueezeNet on the 24-node
Raspberry Pi 4B cluster highlight the inherent trade-offs
between execution speed and statistical learning efficiency.

From a runtime perspective, scaling was effective: wall-clock
time for 10 epochs dropped from (5003 sec) at np =2 (Case 1)
to (2536 sec) at np = 4 (Case 2), and further down to just (432
sec) at full scale (np = 48). This corresponds to a raw speedup
of (11.6x) compared to baseline, demonstrating that
parallelization can indeed accelerate training throughput on
embedded hardware. Parallel efficiency, defined relative to a
baseline of np =2 processes, remained high in the early regime
(=99 % atnp =4 and = 51 % at np = 8), showing that the cluster
scales well up to moderate sizes. However, beyond np = 8 the
efficiency gradually declined, stabilizing around 40-50 % for
larger process counts. This indicates that while communication
and synchronization overheads do grow with scale [12], the
more critical factor is statistical inefficiency: the workload per
rank becomes too small, leaving each process with insufficient
training data per epoch (a statistical bottleneck [11]). The
experimental findings of this study on ARM-based edge
clusters are consistent with the statistical bottlenecks described
by Shallue et al. (2019) [11], where excessive parallelism leads
to convergence collapse due to insufficient data per rank.

In terms of learning, performance degraded even more
severely. The baseline run achieved (58.7 %) training accuracy
and (61.6 %) test accuracy, proving that SqueezeNet can
converge under ARM-only execution. At (np = 4), accuracy
dropped to (43.5 %) train and (46.6 %) test reflecting reduced
learning capacity primarily due to smaller shard sizes
(statistical bottleneck), with synchronization costs becoming
secondary factors at larger scales. At full scale (np = 4§),
convergence collapsed entirely: mean training accuracy
stagnated at (10.1 %) and both training and test loss plateaued
at (2.3026), the entropy baseline of random guessing across 10
classes.

Taken together, these results demonstrate that while strong
scaling improves execution time, it undermines statistical
efficiency and generalization when pushed beyond dataset-
limited thresholds. For lightweight CNNs such as SqueezeNet,
distributed data-parallel training on edge clusters therefore
exhibits a scaling ceiling: modest node counts (np < 8) can
balance throughput and accuracy, but aggressive scaling to
dozens of nodes leads to rapid degradation of convergence,
driven by the interplay of small per-rank batch sizes,
synchronization overhead, and limited gradient signal.

3.4.2 Practical Implications for Edge Al

The findings from this study underline a critical reality for
edge-scale distributed deep learning. Raspberry Pi clusters,
while inexpensive, energy-efficient, and highly customizable,
face a sharp trade-off between scalability and learning
performance when training compact CNNs such as
SqueezeNet. For practical edge Al deployments — such as
autonomous sensor networks, on-device vision analytics, or
distributed [oT gateways — these results suggest that training
should be confined to small-to-moderate node counts, where
accuracy remains reliable and wall-clock time is still
acceptable. At larger scales, the diminishing returns of parallel
efficiency and the collapse of convergence observed at np =48
imply that such clusters are better suited for inference and
lightweight retraining rather than full-scale distributed training.

Nevertheless, the empirical profiling carried out here (e.g.,
identification of batch size = 24 as the throughput/memory
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optimum) demonstrates that hardware-aware tuning is
essential: even within resource-constrained settings, careful
optimization can yield stable convergence without overfitting.
Thus, Raspberry Pi-based SqueezeNet clusters can play a
meaningful role as testbeds for edge Al research, enabling low-
cost exploration of distributed learning paradigms, energy-
performance trade-offs, and algorithmic strategies (e.g.,
adaptive synchronization, hybrid training) that could later
transfer to industrial IoT or mission-critical edge applications.

Ultimately, this work shows that while such embedded clusters
will not replace GPU datacenters for large-scale deep learning,
they occupy a unique niche: providing accessible, reproducible,
and hardware-constrained platforms where the challenges of
distributed training at the network’s edge can be studied under
realistic conditions — conditions that mirror the limitations of
real-world deployments in remote, mobile, or power-sensitive
environments.
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Table 2. SqueezeNet CNN Model Training results: Strong Scaling Methodology

Test Test Me:fm Mean Total (wall)
MPI acc loss Train X s -
. ) ) Train Training Time Speedup Efficiency
RPi’s | Processes | Epoch (final) (final) Loss
) Accuracy (slowest rank) (Sa) (En) (%)
(np) (%) (unitless)
() (%) (Mean) (sec)
0,
1 2 10 61.61% 1.0779 1.1403 58.74% 5003.00 1 IOO.A’
(baseline)
2 4 10 46.60% 1.4356 1.5139 43.45% 2535.56 1.97313414 98.66%
4 8 10 35.61% 1.7313 1.7995 32.06% 2455.94 2.037101884 50.93%
8 16 10 10.00% 2.3026 2.3026 10.01% 1156.48 4.326058384 54.08%
12 24 10 10.00% 2.3026 2.3026 10.05% 851.04 5.878689603 48.99%
16 32 10 10.00% 2.3026 2.3026 10.00% 699.52 7.152047118 44.70%
20 40 10 10.00% 2.3026 2.3026 10.16% 627.32 7.975196072 39.88%
24 48 10 10.00% 2.3026 2.3026 10.10% 432.11 11.5780704 48.24%
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SqueezeNetV1.1 CNN Model Training
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Figure 10: SqueezeNet CNN Model Training: Train Accuracy (%) vs MPI Processes (np)
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4. FUTURE WORK

The limitations observed in the distributed training of
SqueezeNet - particularly in convergence stability and
scalability across high-rank ARM clusters - motivate a deeper
investigation into alternative learning paradigms that are
inherently designed for energy efficiency and sparse
computation.

In this context, Spiking Neural Networks (SNNs) represent a
biologically-inspired and event-driven approach to deep
learning that aligns naturally with edge constraints. As a
continuation of this work, there is a plan for the authors to
explore Distributed SNN Training on ARM-Based Edge
Clusters using MPI, evaluating how spike-based models
behave under partitioned data and low-bandwidth
communication regimes. Building on the execution pipeline
developed for SqueezeNet, the authors have intention to
implement SNNs that leverage Loihi- and SpiNNaker-inspired
simulation frameworks, adapting their temporal and sparse
encoding schemes to fit CPU-bound environments.

This line of research not only extends the architectural diversity
of models studied under MPI-distributed schemes, but also
serves as a potential path toward ultra-low-power edge
intelligence, where SNNs may outperform traditional CNNs
like SqueezeNet in both computational cost and biological
plausibility.

5. CONCLUSION

This study investigated the distributed training performance of
the SqueezeNet CNN model using MPI and mpi4py on a 24-
node ARM-based edge cluster. Experimental results across
configurations from RPi-1_mpi-2 to RPi-24 mpi-48 revealed
that although SqueezeNet maintains low computational
complexity, its convergence behavior under data-parallel MPI
execution is inconsistent beyond moderate scale. Notably,
training accuracy plateaued and even degraded at higher
process counts, indicating limited benefit from aggressive
parallelism. The results empirically confirm on ARM-based
edge clusters the statistical bottlenecks previously reported by
Shallue et al. (2019), [11] in large-scale GPU/CPU training
environments, underscoring that the convergence collapse we
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observed is not hardware-specific but a fundamental limitation
of excessive data parallelism when per-rank shard sizes fall
below critical thresholds.

In contrast to structurally heavier models like MobileNet,
SqueezeNet does not linearly benefit from MPI-based scaling
in low-power, bandwidth-constrained environments. These
findings emphasize that lightweight architectures, while
computationally efficient, may require careful tuning — such
as batch-size adjustment, hybrid pipelining, or adaptive
gradient aggregation — to sustain effective distributed
learning. Future work will extend this investigation toward
distributed Spiking Neural Networks (SNNs) using MPI,
aiming to assess the viability of neuromorphic models and
Loihi/SpiNNaker-inspired simulations on ARM clusters for
scalable and biologically plausible edge intelligence.

A distinctive contribution of this work lies in the systematic
derivation of optimal training hyperparameters through
empirical profiling rather than reliance on recommended
defaults. Single-node sweeps demonstrated that a batch size of
24 images per node maximizes throughput (= 19.9 img/s),
maintains safe memory utilization (= 638 MB per rank), and
fully saturates available CPU resources, while avoiding cache
and bandwidth penalties observed at larger batches. This
hardware-aware tuning procedure establishes a reproducible
empirical baseline for distributed training on ARM clusters,
underscoring the necessity of hyperparameter selection guided
by platform constraints rather than convention.

In summary, this work positions Raspberry Pi-based
SqueezeNet clusters not as replacements for datacenter-scale
training, but as accessible and realistic testbeds for studying
distributed deep learning under edge constraints. Such
platforms directly mirror the computational and bandwidth
limitations of real-world IoT, robotics, and environmental
monitoring systems, and thus provide practical insights into
how compact CNNs — and potentially SNNs — can be trained
and deployed in the next generation of decentralized, low-
power edge intelligence.
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