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ABSTRACT
This study investigates whether second-order geometric
cues—planar curvature magnitude, curvature sign, and gradi-
ent orientation—are sufficient on their own to drive a multilayer
perceptron (MLP) classifier for handwritten character recognition
(HCR), offering an interpretable alternative to convolutional neural
networks (CNNs). Using these three handcrafted feature maps as
inputs, the curvature–orientation MLP achieves 97 % accuracy on
MNIST digits and 89 % on EMNIST letters. These results under-
score the discriminative power of curvature-based representations
for handwritten character images and demonstrate that competitive
performance is achievable with lightweight, explicitly engineered
features.
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1. INTRODUCTION
Handwritten-character recognition (HCR) is commonly ap-
proached with convolutional neural networks (CNNs), which learn
features directly from pixels. However, much of the discriminative
information lies in the geometry of strokes—where they bend, how
sharply they bend, and on which side of the tangent the curve turns.
This paper investigate planar curvature as an explicit, interpretable
descriptor for HCR and examines how far a simple multilayer per-
ceptron (MLP) can go when fed only with curvature-derived maps.

1.1 Motivation: Why Curvature?
Curvature magnitude highlights loops, hooks, and corners; curva-
ture sign distinguishes concave from convex turns; and local gradi-
ent orientation provides first-order context around each bend. To-
gether, these channels surface the cues humans rely on to tell apart
visually similar letters (e.g., C vs. G).
Curvature-based maps reveal exactly what distinguishes many
handwritten glyphs: where a stroke bends, how much it bends, and
which way it bends.

1.2 Approach and Findings
Three maps per glyph are computed—curvature magnitude |κ|, cur-
vature sign signκ, and gradient orientation θ—which are stacked

and flattened into a 2352-D vector, then used to train a compact
MLP classifier. On standard benchmarks, the model reaches 97 %
test accuracy on MNIST and 89 % on EMNIST Letters.

1.3 Contributions
A practical, self-contained pipeline for estimating discrete pla-
nar curvature and orientation on raster glyphs, with simple sta-
bilization and normalization choices.
A lightweight MLP baseline driven solely by curvature-derived
maps, with strong results on MNIST and EMNIST Letters.
Reproducible code and training protocol to facilitate follow-up
work (see Code Availability).

2. RELATED WORK
Contour-based gradient features has appeared in HCR pipelines
since the 1990s [9, 7]. Recent CNN variants incorporate learn-
able higher-order derivative filters for edge-aware feature extrac-
tion [12, 13], leveraging convolutional inductive biases.
The present work differs by coupling curvature to an all-dense
MLP, thereby maintaining a fixed memory footprint and explicit
interpretability [5].

3. BACKGROUND: PLANAR CURVATURE
3.1 Geometric Intuition
Imagine tracing a pen along a stroke. Where the pen goes straight,
the turning rate is near zero; where it bends sharply (e.g., around a
loop or at a hook), the turning rate spikes. The magnitude of that
turning rate indicates how much the stroke bends; its sign indicates
which way it bends (concave vs. convex relative to the local tan-
gent).

3.2 Analytical Definition (Continuous Curves)
For a twice-differentiable planar curve γ(t) = (x(t), y(t)), the
signed curvature is [3]

κ(t) =
x′(t) y′′(t)− y′(t)x′′(t)(

x′(t)2 + y′(t)2
)3/2 , (1)

with the conventional right-handed sign (counterclockwise posi-
tive).
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3.3 Normalized Curvature Function and Invariances
Reparameterize by arc length s ∈ [0, 1] and define k(s) =

Lκ(t(s)) with L =
∫ 1

0
∥γ ′(t)∥ dt. Two curves are similar (up to

uniform scaling, rotation, and translation) if and only if they share
the same k(s) [11].

3.4 Practical Pitfalls and Remedies
Discrete curvature can spike at endpoints and junctions and be
noisy under weak gradients; gentle stabilization and reflection at
borders mitigate these effects.

4. METHODOLOGY
This section specifies (i) how curvature and orientation maps are
computed on raster glyphs and (ii) the MLP classifier and train-
ing protocol used for all experiments. Only second-order geome-
try (planar curvature) and first-order orientation are used—no other
edge features enter the descriptor.

4.1 Preprocessing
Input images are 28×28 grayscale glyphs with intensities in [0, 1].
No deskewing, thinning, or binarization is performed.

4.2 Scale-Space Derivatives
Spatial derivatives are computed using 3 × 3 Sobel operators
to obtain first-order gradients Ix, Iy and second-order terms
Ixx, Iyy, Ixy . Zero padding is used at the image boundary.

4.3 Curvature and Orientation Maps
Let gx = Ix and gy = Iy . The signed image curvature κ at each
pixel is computed as

κ =
Ixx g

2
y − 2 Ixy gxgy + Iyy g

2
x(

g2x + g2y + ε
)3/2 , (2)

with ε = 10−8 to avoid division by zero when ∥∇I∥ is small [2].
The gradient orientation is θ = atan2(gy, gx) ∈ (−π, π], mapped
to [0, 1] as θ = (θ + π)/(2π). Three channels are retained: (i)
curvature magnitude |κ|; (ii) curvature sign sign(κ) ∈ {−1, 0, 1};
and (iii) orientation θ.

4.4 Vectorization
The three 28 × 28 maps are stacked along the channel dimension
and flattened to a single 2352-D feature vector per glyph.

4.5 Classifier Architecture
A compact MLP processes the 2352-D vector using fully connected
(FC) blocks with batch normalization (BN), ReLU, and dropout.
The configuration is summarized in Table 1. For digit recognition,
the output layer has 10 units; for letters, 26 units.

4.6 Training Protocol
Weights are randomly initialized (Glorot uniform). Optimization
uses Adam (learning rate 10−3), batch size 128, and sparse cross-
entropy. Early stopping monitors validation accuracy with patience
8 and restores the best epoch. A ReduceLROnPlateau scheduler
halves the learning rate on validation-loss plateaus (patience 4,
floor 10−6). No L2 penalty or augmentation is used.

Table 1. MLP for curvature–orientation inputs.

Layer Dimension Components

Input 2352 –

Hidden 1 2048 FC + BN + ReLU + Dropout (0.5)

Hidden 2 1024 FC + BN + ReLU + Dropout (0.5)

Hidden 3 512 FC + BN + ReLU + Dropout (0.4)

Hidden 4 256 FC + BN + ReLU + Dropout (0.3)

Output (digits) 10 FC + Softmax

Output (letters) 26 FC + Softmax

Table 2. Stratified 80/20 split of TFDS train+test (with 10% of
the training portion used for validation at fit time).

Dataset Total Train Val Test

MNIST (0–9) 70,000 50,400 5,600 14,000

EMNIST Letters (A–Z) 145,600 104,832 11,648 29,120

4.7 Reproducibility
Experiments are implemented in TensorFlow 2.x/Keras with fixed
seeds for NumPy and TensorFlow. Unless noted, results report the
held-out test split after a single run with early stopping. Code and
scripts are available (Code Availability).

5. EXPERIMENTAL SETUP
5.1 Datasets
MNIST digits [4] (70,000 images) and EMNIST Letters [1]
(145,600 uppercase letters) are used. Data are loaded via Tensor-
Flow Datasets (TFDS) [10].

5.2 Split Protocol
The TFDS train and test partitions are concatenated, followed
by a stratified 80/20 split. During training, Keras holds out 10% of
the training portion as validation via validation split=0.1.
Table 2 shows the resulting sizes.

5.3 Label Handling
For the EMNIST Letters dataset, which consists of 26 classes, the
implementation shifts the labels to the range 0–25 for consistency
with zero-based indexing.

5.4 Evaluation Metrics
Both datasets use balanced classes with stratification. Accord-
ingly, top-1 accuracy is the primary metric. Macro-averaged pre-
cision/recall/F1 and micro-averaged scores are also reported.

6. RESULTS
6.1 Aggregate Metrics
Table 3 reports macro/micro F1, precision and recall. On MNIST,
the model reaches 97% accuracy. On EMNIST Letters, accuracy is
89%.
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Table 3. Aggregate metrics on the held-out test sets (present run,
whole-percentage rounding).

Dataset Accuracy Precision Recall F1macro F1micro

MNIST 97% 97% 97% 97% 97%

EMNIST Letters 89% 89% 89% 89% 89%

6.2 Confusion-Matrix Analysis (MNIST)
Figure 1 shows the confusion matrix for MNIST digits. The vertical
axis represents the true labels, while the horizontal axis denotes
predicted labels.
Overall, predictions are strongly diagonal, confirming the reliabil-
ity of the curvature–orientation MLP in discriminating among dig-
its. Nevertheless, several consistent misclassification patterns are
visible:

Fig. 1. Confusion matrix on the MNIST test set (raw counts).

Notation. We write i→j : c to indicate that c test samples with true
label i were predicted as j.
The largest off-diagonal confusions are summarized below:

4→9 : 20 — The most frequent confusion occurs between dig-
its “4” and “9”. Closed-top “4”s exhibit a curvature field similar
to the open-loop of “9,” particularly near their upper-right cor-
ners.

9→ 4 : 19 — The reverse confusion also appears, where “9”s
with straight vertical stems are interpreted as “4”s.

0→ 6 : 19 — Slightly open “0”s mimic the spiral curvature of
“6”.

6.3 Confusion-Matrix Analysis (EMNIST Letters)
The confusion matrix for EMNIST Letters in figure 2 shows
a strong diagonal dominance, confirming that the curva-
ture–orientation MLP performs consistently well across all 26 let-
ter classes. However, four noticeable off-diagonal cells stand out,
corresponding to systematic confusions where letters share nearly
identical stroke geometry.

Fig. 2. Confusion matrix on the EMNIST Letters test set (raw counts).

Indexing and legend. Classes are indexed 0–25, corresponding to
the uppercase alphabet A–Z. All numeric tick marks in figure 2 use
this index; the mapping below converts indices to letters.

A–Z (0-based index).
A(0), B(1), C(2), D(3), E(4), F(5), G(6), H(7), I(8), J(9), K(10),
L(11), M(12), N(13), O(14), P(15), Q(16), R(17), S(18), T(19),
U(20), V(21), W(22), X(23), Y(24), Z(25).

8↔11 — (I↔L) The most prominent misclassification pair,
with I → L : 219 and L→ I : 204. Both characters consist
primarily of a single vertical stroke, yielding nearly uniform
curvature magnitude and minimal orientation variance, leaving
the MLP few cues to separate them.

6 ↔ 16 — (G ↔ Q), with G → Q : 115 and Q → G : 84.
The round shapes are nearly indistinguishable when the tail of
“Q” is short or disconnected; curvature maps capture almost
identical closed-loop geometry.
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6.4 ROC–AUC Analysis

Fig. 3. One-vs-rest ROC curves for MNIST (micro AUC ≈ 0.9992, macro
AUC ≈ 0.9992).

Fig. 4. One-vs-rest ROC curves for EMNIST Letters (micro AUC ≈
0.9971, macro AUC ≈ 0.9965).

All one-vs-rest ROC curves in figure 3 exceed 0.999 AUC for
MNIST and 0.996 for EMNIST Letters (figure 4), indicating strong
separability of curvature–orientation embeddings. The near-unity
micro- and macro-average AUC scores confirm that the MLP effec-
tively learns a smooth global decision boundary without overfitting
to particular digits or letters.

6.5 Error Analysis
The confusion matrices in figures 1 and 2 show a small number
of concentrated off-diagonal blocks. Below are the key observed
failure modes:

Straight-stroke degeneracy. Glyphs dominated by long
straight segments produce near-zero curvature almost every-
where, yielding weakly informative maps (typical of tall stem
letters and some digit forms).
Terminal-stroke fragility. Feet, hooks, and short tails occupy
few pixels; if faint or slightly misaligned, their curvature peaks
vanish, collapsing distinctions between visually close classes.
Topological ambiguity. Curvature alone does not encode the
number of enclosed regions (holes) or whether a loop is truly
open/closed; shapes with similar loop structure become hard to
separate.
Orientation wrap/noise. A scalar angle θ has a discontinuity at
±π; near that boundary small perturbations flip the value, and
where gradients are weak the orientation is noisy.

7. CONCLUSION AND FUTURE WORK
This work presents a handwritten-character recognizer that op-
erates on second-order geometry: curvature magnitude, curvature
sign, and local gradient orientation. With a compact MLP and a
fixed dense compute pattern, the method achieves 97 % test ac-
curacy on MNIST and 89 % on EMNIST Letters, while keeping
the descriptor interpretable. By making bends and their polarity ex-
plicit, the model learns decision rules that align closely with the
visual cues humans use for thin glyphs.
However, this approach has some limitations. Discrete curvature
can amplify noise in regions with weak gradients; the orientation
angle has a wraparound boundary at −π to π; junctions and end-
points often produce spiky estimates; and we have not formally
evaluated robustness under severe rotation, blur, or elastic distor-
tions. These constraints limit both performance and generalizabil-
ity. Several concrete directions for future work are therefore appar-
ent:

(1) Orientation encoding. Replace scalar θ with a continuous rep-
resentation, e.g. (sin θ, cos θ), to remove angle wrapping and
improve optimization.

(2) Robustness. Systematically evaluate and harden the model
against noise, blur, small rotations, and stroke-thickness varia-
tion via targeted augmentation.

(3) Larger benchmarks and scripts. Extend evaluation to EM-
NIST Balanced and NIST SD19 to measure scalability and
script diversity.

(4) Deployment. Study quantization and low-precision inference
on CPUs/MCUs, reporting latency, memory footprint, and en-
ergy per glyph.

Overall, curvature–orientation maps provide a transparent and ef-
fective inductive bias for character shapes, and they offer a strong
foundation for lightweight recognizers that remain straightforward
to analyze and deploy.

8. CODE AVAILABILITY
All code, pre-trained weights, and training scripts are available at
https://github.com/MN-21/Curvature-Orientation-MLP.
An archived release is preserved on Zenodo [6].
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