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ABSTRACT

Order Promising (OP) has emerged as a critical capability in
modern supply chains, serving as the interface between
customer demand and supply chain execution. Traditionally,
OP has relied on rule-based Available-to-Promise (ATP) and
Capable-to-Promise (CTP) models embedded in Enterprise
Resource Planning (ERP) systems. However, the increasing
complexity of global supply chains, demand volatility, and the
rise of digital commerce have exposed the limitations of static
promise mechanisms. This paper develops a theoretical
framework for Intelligent Order Promising (IOP) that
integrates ERP systems with advanced planning platforms,
artificial intelligence (Al), and predictive analytics. The study
examines OP not only as a logistics execution tool but also as
a strategic lever for customer experience, profitability, and
resilience. The framework conceptualizes IOP as a dynamic
decision-making layer that balances promise reliability, supply
chain efficiency, and customer-centricity. The paper
contributes to the literature by positioning IOP as the bridge
between transactional systems (ERP) and cognitive supply
chain planning, highlighting directions for future research in
digital and sustainable supply chains.

General Terms

Order Promising; Supply Chain Management; Decision
Support Systems; Optimization; Supply Chain Visibility;
Artificial Intelligence; Resilient Supply Chains

1. INTRODUCTION

Order Promising (OP) has emerged as one of the most critical
capabilities in contemporary supply chains, functioning as the
direct interface between the customer and the firm’s internal
planning and execution systems. The promise of an order —
whether it is delivery within two days for an e-commerce
retailer or a six-month lead time for a semiconductor
manufacturer — represents a contractual and psychological
commitment that directly influences customer trust,
satisfaction, and retention. In supply chain theory, OP has
traditionally been understood through and mechanisms, where
customer orders are matched against inventory availability,
production capacity, and lead-time constraints [Kilger &
Schneeweiss, 2000]. While such mechanisms have provided a
structured foundation for commitment management, they were
largely designed for relatively stable supply and demand
conditions.

In the last decade, however, supply chains have become
increasingly characterized by [Bennett & Lemoine, 2014]. The
globalization of production networks, the rise of e-commerce
and omnichannel fulfillment, and the impact of geopolitical and
environmental disruptions have all placed unprecedented
pressure on organizations to respond quickly and accurately to
customer demands. Customers today no longer evaluate firms

solely on cost or product quality; they also judge them based
on . In this environment, static rule-based ATP/CTP checks
embedded in ERP systems often fail to provide accurate and
adaptive commitments, leading to mismatches between
customer expectations and operational realities [Chen & Zhao,
2007].

This challenge has stimulated the evolution of what can be
termed . Unlike traditional OP, which functions mainly as a ,
IOP envisions order promising as a within the supply chain. It
integrates the transactional backbone of with the optimization
capabilities of and the adaptability of and predictive analytics
[Stadtler, 2005; Saberi et al., 2019]. The core premise of IOP is
that order commitments should not only reflect current system
constraints but should also anticipate potential disruptions,
optimize profitability, and align with broader strategic goals
such as customer experience, resilience, and sustainability.

Theoretical and managerial discussions increasingly highlight
that order promises are not merely operational commitments
but also . For instance, in highly competitive markets, the
ability to make differentiated promises (e.g., premium
customers receive prioritized allocation) can significantly
influence customer loyalty and profitability [Madhavaram &
Varadarajan, 2008]. Similarly, in global supply chains where
uncertainty is high, dynamic promise adjustments can enhance
resilience by redistributing commitments based on risk
predictions. At the same time, sustainability considerations are
prompting organizations to rethink promises from an
environmental perspective, where “green promises” may
balance service performance with reduced carbon emissions
[Golgeci et al., 2020].

Despite these emerging perspectives, there remains a in
understanding OP as an integrative, intelligence-driven
framework. Existing research streams largely fall into three
silos: (a) traditional deterministic ATP/CTP models, (b) ERP-
centric transactional OP, and (c) optimization-focused APS
approaches. While recent studies have started to address Al and
digital technologies in OP, there is a lack of holistic
conceptualization that unites these streams into a coherent
framework for IOP. Without such a framework, both academics
and practitioners risk treating OP as a fragmented set of tools
rather than a unified strategic capability.

The purpose of this paper is to contribute to closing this gap by
developing a . The framework positions IOP as a bridge
between ERP-driven transaction processing and Al-enabled
planning and decision-making. Specifically, it conceptualizes
OP as a multi-dimensional construct characterized by . By
doing so, the paper makes three contributions. First, it extends
the academic understanding of OP beyond its traditional
boundaries as a logistics execution mechanism. Second, it
offers a managerial perspective on how firms can leverage IOP
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to simultaneously improve operational efficiency and
customer-centricity. Third, it highlights avenues for future
research at the intersection of digital transformation,
sustainability, and supply chain resilience.

2. LITERATURE REVIEW

Order Promising (OP) has been extensively studied within
supply chain management, operations research, and
information systems literature. While the terminology and
technological enablers have evolved, the core challenge of OP
has remained the same: aligning customer expectations with the
realities of supply, production, and logistics constraints. To
position the proposed framework for Intelligent Order
Promising (IOP), it is essential to examine prior work across
four major domains: (i) traditional OP models, (i) ERP-centric
approaches, (iii) Advanced Planning Systems (APS)
integration, and (iv) the impact of digital transformation,
including artificial intelligence (AI), blockchain, and
sustainability considerations.

2.1 Traditional Order Promising Models
Early conceptualizations of OP were primarily rooted in
deterministic models designed to ensure feasibility of
commitments. The Available-to-Promise (ATP) mechanism,
first formalized within materials management and early ERP
systems, matched incoming customer orders against inventory
on hand and planned receipts [Kilger & Schneeweiss, 2000].
ATP became a foundational mechanism for industries where
lead times were short and demand variability was limited.
However, as supply chains became more global and complex,
ATP alone was insufficient for industries where capacity
constraints and production lead times were significant.

To address this, the concept of Capable-to-Promise (CTP)
emerged, which extended ATP by incorporating production
capacity and routing information into the promise logic [Chen
& Zhao, 2007]. CTP enabled organizations to not only check
whether an item was in stock, but also whether it could be
manufactured within the required timeframe. While CTP
provided more accurate commitments, it remained
deterministic, assuming stability in production schedules and
ignoring uncertainties such as supplier delays, machine
breakdowns, or transportation disruptions.

Scholars have also explored probabilistic and optimization-
based extensions to ATP/CTP. For instance, some studies
introduced allocation rules for scarce capacity, where firms
must decide how to distribute limited resources among
competing orders (e.g., prioritizing high-margin or strategic
customers) [Rong et al., 2008]. Others emphasized multi-site
ATP, where promises are made based on global inventory
visibility across multiple warehouses or plants [Stadtler, 2005].
Despite these advances, the underlying limitation of traditional
OP models was their static nature—they operated on snapshots
of data rather than continuously adapting to dynamic
conditions.

2.2 ERP-Centric Approaches to OP

The rise of Enterprise Resource Planning (ERP) systems in the
1990s and early 2000s transformed how firms executed OP in
practice. ERP platforms such as SAP R/3, Oracle E-Business
Suite, and later SAP S/4HANA embedded ATP and CTP
functionality directly into the order entry process, allowing
customer service representatives or sales teams to receive
immediate delivery date confirmations [Madhavaram &
Varadarajan, 2008]. This integration streamlined operations,
reduced manual intervention, and ensured a single source of
truth for order commitments.
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However, ERP-centric OP approaches also exhibited key
limitations. First, they were typically constrained to
transactional visibility within the ERP system itself. While
ERP systems could see inventory and planned production
orders, they often lacked full visibility into multi-tier supplier
networks or transportation constraints. Second, ERP-based OP
was inherently reactive: it confirmed orders based on current
system status but did not proactively account for anticipated
disruptions or demand fluctuations [Stadtler, 2005].

Researchers have criticized ERP-driven OP for being “rigid
and deterministic,” highlighting that it fails in highly volatile
environments such as consumer electronics or pharmaceuticals,
where lead times are short and demand uncertainty is high
[Chen & Zhao, 2007]. Furthermore, ERP systems often lacked
advanced allocation logic, meaning that in situations of
constrained supply, orders were either confirmed or rejected
without consideration of customer prioritization, profitability,
or long-term relationship value [Madhavaram & Varadarajan,
2008].

Despite these challenges, ERP systems remain the transactional
backbone of OP. They capture orders, execute credit checks,
and serve as the system of record for confirmations. The
challenge for both scholars and practitioners is to augment
ERP’s deterministic OP with more adaptive, intelligence-
driven mechanisms.

2.3 Advanced Planning Systems (APS)

Integration

To address ERP’s limitations, organizations increasingly
turned to Advanced Planning Systems (APS) such as i2
Technologies (now Blue Yonder), Kinaxis RapidResponse, and
SAP Advanced Planning and Optimization (APO). APS
platforms introduced global ATP (GATP) capabilities,
enabling firms to consider network-wide constraints such as
multisite inventory, supplier capacity, and distribution lead
times when making promises [Stadtler, 2005].

APS-based OP approaches emphasized optimization, allowing
companies to design sourcing rules (e.g., prioritize local plants
to reduce transportation cost), apply allocation priorities (e.g.,
allocate scarce stock to high-margin customers first), and
perform real-time simulations of capacity and lead times. This
represented a significant theoretical and practical advance
compared to ERP-only OP.

However, APS integration also introduced complexities. First,
there was often a data synchronization lag between ERP (as the
system of record) and APS (as the optimization engine). This
sometimes resulted in conflicting promise outcomes, where the
ERP system confirmed one date but APS later suggested a
different one [Stadtler, 2005]. Second, APS systems were
heavily reliant on forecast accuracy and planning master data
quality. Without reliable inputs, even the most sophisticated
optimization  algorithms could produce misleading
commitments [Kilger & Schneeweiss, 2000].

From a theoretical perspective, APS-based OP represented a
shift from transactional confirmation to optimization-driven
promise management. Yet, APS still operated largely on
deterministic assumptions, with limited capacity to predict
disruptions or learn from past promise outcomes. This gap has
opened the door for integrating Al and predictive analytics as
the next frontier in OP.

2.4 Digital Transformation and Al in OP

The current wave of digital transformation in supply chain
management has brought new perspectives on how OP can
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evolve into a more intelligent and adaptive capability. Three
major trends dominate this literature: artificial intelligence (AI)
and machine learning, blockchain, and sustainability-oriented
OP.

2.4.1 Al and Machine Learning

Al and machine learning offer the ability to move OP from
deterministic to probabilistic and predictive models. For
example, Al algorithms can analyze historical promise
reliability to predict the likelihood of a promise being met
under current conditions [Saberi et al., 2019]. Machine learning
models can also detect patterns in demand shifts, supplier
delays, or seasonal disruptions, enabling the system to adjust
promises dynamically. Recent studies highlight that Al-driven
OP can improve not only reliability but also profitability, by
recommending commitments that maximize margin while
minimizing risk exposure [Golgeci et al., 2020].

2.4.2 Blockchain and Transparency

Another emerging research stream explores the use of
blockchain technology to enhance transparency and trust in
order commitments. In multi-tier supply chains, one of the
challenges of OP is ensuring that promises made to customers
are consistent with upstream supplier capabilities. Blockchain
offers the possibility of a shared, tamper-proof ledger where
commitments and actual deliveries can be recorded, thereby
reducing the risk of misinformation and disputes [Saberi et al.,
2019]. Although still in early stages, blockchain-enabled OP is
being theorized as a mechanism to enhance supply chain trust
and accountability.

2.4.3 Sustainability-Oriented OP

Sustainability has also entered the discourse on OP. Traditional
OP systems optimize primarily for customer service and
efficiency, often ignoring environmental impact. Recent
research has proposed the concept of “Green Order Promising,”
where promises incorporate carbon footprint, energy use, or
sustainability metrics into the decision-making process
[Golgeci et al., 2020]. For example, a firm may offer customers
a choice between a faster delivery with higher emissions or a
slower, more environmentally friendly alternative.
Theoretically, this positions OP as a tool for sustainability
strategy as well as customer service.

2.4.4 Synthesis and Research Gap

The literature demonstrates that OP has evolved from
inventory-based checks (ATP) to capacity-inclusive models
(CTP), from ERP-driven transactional confirmations to APS-
based optimization, and is now entering an era of Al-enabled
intelligence and sustainability-conscious commitments.
Despite this evolution, two major gaps remain.

First, research is fragmented: ERP, APS, and Al perspectives
are often studied in isolation, with few efforts to integrate them
into a holistic theoretical framework. Second, most existing
studies remain operational in nature, focusing on algorithmic
improvements or system implementations, without adequately
theorizing OP as a strategic, multi-dimensional construct that
balances reliability, profitability, responsiveness, resilience,
and sustainability.This paper addresses these gaps by
developing a framework for Intelligent Order Promising (IOP)
that integrates ERP’s transactional backbone, APS’s
optimization capabilities, and AI’s predictive intelligence. By
doing so, it contributes to advancing both the academic
discourse and managerial practice of OP.
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3. CONCEPTUAL FOUNDATIONS OF
INTELLIGENT ORDER PROMISING

(IOP)

The concept of Intelligent Order Promising (IOP) extends the
traditional scope of OP from a deterministic, system-driven
confirmation activity to a strategic, intelligence-driven
decision-making process. The theoretical basis of IOP rests on
the recognition that order commitments are not merely
operational outputs but strategic levers that influence customer
satisfaction, profitability, risk resilience, and sustainability
performance.

While ERP systems and APS platforms provide the structural
foundation for OP, they often fail to adapt to the dynamic,
uncertain, and customer-centric environment of modern supply
chains. To bridge this gap, IOP must be conceptualized as a
multi-dimensional construct comprising five key dimensions:
reliability, profitability, responsiveness, resilience, and
sustainability. Together, these dimensions define the
theoretical scope of IOP and distinguish it from conventional
OP models.

3.1 Reliability

Reliability refers to the accuracy and consistency of promises
made to customers. From a customer perspective, reliability is
the most fundamental dimension of OP, as it directly affects
trust and satisfaction. Research indicates that even if delivery
lead times are long, customers often prefer firms that
consistently meet promised dates over those that provide
shorter but unreliable commitments [Chen & Zhao, 2007].

In traditional ERP-driven ATP/CTP, reliability was limited by
deterministic assumptions and incomplete visibility. IOP
enhances reliability by integrating real-time data (e.g.,
inventory positions, supplier updates, transport delays) with
predictive analytics. For instance, machine learning models can
identify historical patterns where promises were frequently
delayed and proactively adjust commitments. Thus, reliability
in IOP is not a static metric but a probabilistic and adaptive
function, continuously learning from execution outcomes.

3.2 Profitability

While reliability ensures trust, firms must also consider the
economic implications of promises. Profitability in OP refers
to the extent to which commitments support the organization’s
financial objectives. Traditional ATP/CTP models focused
narrowly on feasibility, without evaluating whether a given
promise contributed positively to margins or overall business
strategy.

1OP introduces profitability-aware promise mechanisms, where
the system considers revenue, cost-to-serve, and opportunity
costs before confirming an order. For example, when capacity
is constrained, the system may prioritize allocating stock to
high-margin products or strategic customers. In advanced
scenarios, Al-enabled OP can even perform profit
optimization, recommending delivery dates that balance
service level agreements with cost efficiency.

From a theoretical standpoint, profitability adds a strategic-
economic layer to OP, positioning it as a contributor to
competitive advantage rather than a purely operational function
[Madhavaram & Varadarajan, 2008].

3.3 Responsiveness

Responsiveness captures the speed and agility of OP decisions
in adapting to customer requests and environmental changes. In
today’s digital economy, customers expect near-instant
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confirmations, whether they are placing orders on an e-
commerce platform or negotiating contracts in a B2B
environment. Traditional ERP systems often struggled with
responsiveness due to batch data processing and limited
computational capacity.

IOP leverages in-memory computing, cloud infrastructure, and
real-time analytics to provide immediate promise responses.
More importantly, responsiveness is not only about speed but
also about adaptability. For instance, if a supplier delay occurs
after a promise has been made, IOP can proactively re-promise
alternative delivery dates, communicate options to customers,
and dynamically reallocate resources. This agility differentiates
IOP from deterministic OP, which tends to lock in
commitments without flexibility.

3.4 Resilience

Resilience refers to the ability of OP systems to withstand and
adapt to disruptions such as supply shortages, transportation
delays, or geopolitical risks. The COVID-19 pandemic,
semiconductor shortages, and global shipping crises have
highlighted the need for OP mechanisms that go beyond short-
term feasibility checks.

Traditional OP models are fragile under uncertainty because
they assume that planned supply and capacity will materialize
as expected. In contrast, [OP incorporates risk-aware promise
mechanisms that explicitly account for uncertainty. This may
include probabilistic lead times, scenario simulations, or Al-
driven risk forecasting. For example, IOP may avoid
committing to a supplier that has a high historical probability
of delay, even if capacity exists on paper.

Theoretically, resilience in IOP transforms promises from static
commitments into risk-managed contracts, enhancing both
customer trust and operational stability [Saberi et al., 2019].
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3.5 Sustainability

The final dimension of IOP is sustainability, which reflects the
growing importance of environmental and social responsibility
in supply chain management. Traditionally, OP systems were
designed to optimize efficiency and customer service, with
little regard for sustainability outcomes. However, increasing
regulatory pressures, consumer awareness, and corporate
sustainability commitments are reshaping how firms approach
OP.

Sustainability-oriented =~ OP  (Green  OP) introduces
environmental and ethical considerations into promise logic.
For example, instead of always selecting the fastest delivery
option, IOP may provide customers with alternatives that
reduce carbon emissions, such as consolidated shipments or
slower but greener modes of transport [Golgeci et al., 2020].
Similarly, OP may account for suppliers’ sustainability
performance when making sourcing promises.

By embedding sustainability, IOP positions promises not only
as customer commitments but also as corporate responsibility
statements, aligning operational decisions with long-term
societal goals.

4. INTEGRATING THE DIMENSIONS

These five dimensions—reliability, profitability,
responsiveness, resilience, and sustainability—together define
the theoretical foundations of IOP. Importantly, they are not
independent but interdependent and often conflicting. For
instance, a highly reliable promise may reduce profitability if it
requires costly expedited shipping. Similarly, a sustainable
promise may lengthen lead times, affecting responsiveness.

Thus, IOP must be conceptualized as a multi-objective
decision-making framework that balances these dimensions
rather than optimizing any single one in isolation. From a
theoretical perspective, this positions IOP as a bridge between
ERP’s transactional order capture, APS’s optimization logic,
and AI’s predictive intelligence

Conceptual Foundations of Intelligent Order Promising

ERP

4 N

Reliability
Profitability
Responsiveness
Resilience

Sustainability

\ J/

Figure 1 Conceptual Foundations of Intelligent Order Promising
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4.1 Conceptual Foundations and
Methodology

Order promising, at its core, is not only a transactional activity
but also a strategic decision-making process that integrates
demand management, supply chain visibility, and optimization.
In this section, the conceptual foundations of order promising
are articulated, followed by an explanation of the
methodological approach adopted in this study.

4.1.1 Conceptual Foundations

Order promising traditionally draws upon three major
constructs: Available-to-Promise (ATP), Capable-to-Promise
(CTP), and Profitable-to-Promise (PTP).

* Available-to-Promise (ATP): ATP provides visibility into
current and projected inventory levels. It matches demand
against existing stock and planned receipts, thereby enabling
firms to confirm whether an order can be met on the promised
date. ATP is foundational in environments with stable demand
and relatively short lead times (Meyr, Wagner, & Rohde,
2005).

+ Capable-to-Promise (CTP): CTP extends ATP by
incorporating capacity constraints such as production
schedules, resource availability, and supplier lead times. It is
particularly relevant in engineer-to-order or make-to-order
environments where inventory alone cannot guarantee
fulfillment. CTP requires close integration of order promising
engines with Advanced Planning and Scheduling (APS)
systems (Kilger, Schneeweiss, & Zimmermann, 2017).

* Profitable-to-Promise (PTP): PTP integrates profitability
metrics into the order promising decision. By considering
margin, contribution to customer lifetime value, or strategic
priority, firms can decide not only whether to accept an order,
but also whether it should be prioritized over competing
requests (Chen, 2018).

These constructs underscore the evolution of order promising
from an operational decision (ATP) to a strategic lever (PTP).
Modern implementations, such as those in Blue Yonder Order
Promiser (BYOP) or SAP Advanced ATP (aATP), increasingly
blend these perspectives using advanced algorithms and real-
time data integration.

4.1.2 Methodological Approach

This paper adopts a conceptual research methodology
grounded in framework development and illustrative
application. The choice of methodology is guided by the dual
objectives of the research: (1) to integrate existing knowledge
into a coherent theoretical framework, and (2) to demonstrate
the framework’s relevance through application in enterprise
contexts.

The methodological design includes the following steps:

1.. Literature Synthesis: A systematic review of scholarly and
practitioner-oriented literature on order promising, advanced
planning systems, and digital supply chain integration. This
ensures that the framework is theoretically robust and aligned
with contemporary practices.

2. Framework Development: Building on insights from the
literature, a conceptual framework is proposed (see Section 3).
The framework emphasizes the interplay between supply chain
visibility, optimization algorithms, and decision support
mechanisms.
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3. Case Illustration: To demonstrate applicability, the
framework is contextualized within a hypothetical but industry-
representative scenario: the integration of SAP S/4AHANA with
Blue Yonder Order Promiser. This allows us to discuss
challenges of data integration, credit check blocks, location
substitution rules, and demand prioritization in a real-world
inspired setting.

4. Evaluation through Analytical Generalization: Instead of
empirical testing, this study employs analytical generalization
(Yin, 2014). The framework is compared with extant theories
in supply chain planning and order fulfillment, enabling
assessment of its theoretical contributions and practical value.

4.1.3 Justification of Methodology

The decision to adopt a conceptual and illustrative
methodology is grounded in three key considerations:

« First, order promising remains a domain where theory and
practice often diverge. By structuring existing practices into a
coherent theoretical model, this study aims to bridge that gap.

* Second, empirical data on order promising processes is
typically proprietary and difficult to access, especially in
enterprise-level implementations (e.g., SAP, Blue Yonder,
Oracle). Thus, conceptual frameworks with case illustrations
are more feasible for advancing knowledge.

* Finally, a conceptual approach allows the identification of
emerging trends—such as Al-driven promise optimization,
blockchain-enabled supply visibility, and sustainability-
oriented promise metrics—that may not yet be empirically
documented.

5. THEORETICAL FRAMEWORK

The theoretical framework for order promising integrates
supply chain theory, decision sciences, and information
systems into a cohesive model that captures the multi-
dimensional nature of fulfillment commitments. The
framework proposed in this study is designed to conceptualize
order promising not merely as a transactional verification
process, but as a decision-making architecture that balances
operational ~ feasibility,  customer  satisfaction, and
organizational profitability.

At its foundation, the framework rests on three interconnected
dimensions: Visibility, Optimization, and Decision Support.

5.1 Supply Chain Visibility

Visibility constitutes the informational backbone of order
promising. It refers to the extent to which organizations can
access, in real time, data about inventory positions, production
schedules, transportation availability, and supplier capacities
across the network. Theoretical contributions from resource-
based and information-processing perspectives (Galbraith,
1974) suggest that visibility reduces uncertainty and enhances
responsiveness. Within order promising, visibility ensures that
ATP, CTP, and PTP calculations are based on accurate and
timely data rather than static or siloed records.

5.2 Optimization Algorithms

Optimization represents the analytical core of the framework.
Building on operations research and mathematical
programming traditions, optimization algorithms transform
raw visibility into actionable commitments. Linear
programming, heuristic methods, and increasingly machine
learning approaches allow the simultaneous consideration of
multiple constraints (e.g., inventory, capacity, transportation)
and objectives (e.g., service level, cost, profit). This aligns with
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classical supply chain optimization models (Chopra & Meindl,
2020) while extending them to real-time, customer-specific
decision contexts. Importantly, optimization within order
promising is not a single-shot calculation but a dynamic process
that must adapt as new orders, disruptions, or cancellations
occur.

5.3 Decision Support Mechanisms

Decision support closes the loop between analytical
optimization and managerial action. Drawing upon decision
support system (DSS) theory (Power, 2002), this component
highlights the importance of presenting optimized
commitments in a manner that is transparent, explainable, and
aligned with organizational strategy. Decision support in order
promising includes not only the system-generated delivery
dates or quantities but also guidance on trade-offs, such as
whether prioritizing a high-margin order may delay fulfillment
for a lower-margin but strategically critical customer.

5.4 Integrative Perspective

By linking visibility, optimization, and decision support, the
framework captures the transition of order promising from an
operational tool to a strategic enabler. The theoretical
implication is that effective order promising requires
organizations to simultaneously invest in data integration,
analytical sophistication, and managerial interpretability.
Neglecting any one of these dimensions risks undermining the
overall effectiveness of the promise process: without visibility,
optimization operates on flawed assumptions; without
optimization, visibility yields no actionable insights; without
decision support, optimal results may fail to translate into
strategic alignment.

5.5 Dynamic Capabilities View

Finally, the framework can be situated within the broader
theoretical lens of dynamic capabilities (Teece, Pisano, &
Shuen, 1997). Order promising is inherently dynamic, as it
requires continuous sensing of demand signals, seizing of
profitable opportunities, and reconfiguring of resources in the
face of uncertainty. The proposed framework thus
conceptualizes order promising not as a static decision but as
an ongoing organizational capability, central to competitive
advantage in digital supply chains.

6. APPLICATION AND CASE

ILLUSTRATION

To demonstrate the practical applicability of the proposed
theoretical framework, this section presents a conceptual case
illustration drawn from a global manufacturing supply chain.
The example highlights how visibility, optimization, and
decision support interact to improve the quality of customer
commitments, without relying on proprietary system
references.

1. Case Context

Consider a mid-sized electronics manufacturer with a global
supply network spanning component suppliers in Asia,
assembly plants in Europe, and distribution centers across
North America. The company faces increasing customer
demands for shorter lead times, customized configurations, and
reliable delivery dates. Traditional rule-based order
confirmation methods have proved insufficient, often leading
to missed deadlines, excess safety stock, or costly expedited
shipping. The adoption of a structured order promising
framework offers an opportunity to enhance both operational
performance and customer trust.
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2. Visibility in Practice

The first step involves integrating real-time data streams from
suppliers, production lines, and logistics partners. For instance,
component inventory levels from multiple suppliers are
continuously updated, while production capacity utilization is
monitored  through  connected  shop-floor  systems.
Transportation schedules from logistics providers are also
linked to the platform, offering an end-to-end view of supply
chain status. This visibility allows the manufacturer to move
away from static assumptions and toward dynamic availability
checks.

3. Optimization in Practice

With reliable visibility in place, the system applies
optimization models to evaluate order requests. For example,
when a high-volume order arrives from a North American
retailer, the optimization engine simultaneously considers:

* Available raw material inventory across suppliers.
» Assembly line capacities over the next four weeks.

« Transit times and shipping costs from European plants to
U.S. distribution centers.

By balancing these variables, the system identifies the most
cost-effective fulfillment plan while meeting the retailer’s
requested delivery window. Importantly, alternative scenarios
are also generated—for example, splitting the order across two
plants to reduce lead time.

4. Decision Support in Practice

The results are presented to the sales and planning teams
through an interactive decision-support interface. Instead of
merely outputting a promised delivery date, the system
provides transparency into the rationale behind the
recommendation. Decision-makers are shown trade-offs:
accepting the order in full may delay smaller but higher-margin
orders; alternatively, partial shipment commitments may
satisfy multiple customers simultaneously. By aligning the
decision with corporate strategy—whether prioritizing volume,
margin, or customer loyalty—the system transforms
optimization results into informed managerial action.

5. Strategic Outcomes
The case illustration demonstrates several strategic benefits:
1. Reduced uncertainty through real-time visibility.

2. Improved efficiency by aligning production and logistics to
demand commitments.

3. Customer satisfaction via reliable and explainable delivery
dates.

4. Strategic flexibility through scenario-based decision
support.

Overall, the application highlights how the theoretical
framework is not limited to academic abstraction but can be
operationalized across industries with complex supply chains.
The value lies in its adaptability—whether in electronics,
pharmaceuticals, or consumer goods—where the ability to
promise orders accurately is increasingly a source of
competitive differentiation.
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7. DISCUSSION

The proposed framework for intelligent order promising
extends the traditional role of order management from a
transactional function to a strategic capability. While existing
approaches often emphasize rule-based availability checks or
static allocation policies, this framework integrates visibility,
optimization, and decision support to create a more adaptive
and resilient process. In this section, we discuss the broader
implications, challenges, and research opportunities that
emerge from this conceptualization.

1. Theoretical Implications

From a theoretical standpoint, the framework contributes to the
growing body of supply chain literature by situating order
promising at the intersection of operations planning, analytics,
and organizational decision-making. Whereas past research has
often treated order promising as an operational extension of
production planning, this study positions it as a decision layer
that directly shapes customer experience, profitability, and
strategic differentiation. This reframing encourages future
studies to investigate order promising not merely as a technical
problem but as a socio-technical system that combines data,
algorithms, and human judgment.

2. Managerial Implications

For managers, the framework emphasizes that successful order
promising requires a holistic perspective. Visibility ensures that
decisions are grounded in accurate, real-time data rather than
static assumptions. Optimization provides a structured means
to balance competing priorities such as cost, lead time, and
customer service. Decision support, finally, bridges the
technical outputs with managerial strategy, ensuring that
commitments reflect not only operational feasibility but also
business objectives. Managers adopting this framework are
better positioned to handle uncertainty, align supply chain
capabilities with market demands, and strengthen customer
trust.

3. Challenges in Implementation

Despite its potential, several challenges remain. Integrating
visibility requires data standardization across diverse partners,
which can be difficult in global networks with heterogeneous
systems. Optimization models, while powerful, often face the
trade-off between computational complexity and real-time
responsiveness. Additionally, decision support requires
organizational willingness to embrace transparency, which
may be resisted in hierarchical or siloed structures. Addressing
these barriers necessitates investments not only in technology
but also in change management, governance, and cross-
functional collaboration.

4. Comparison with Existing Approaches

Compared with conventional rule-based order promising, the
proposed framework offers greater adaptability and
responsiveness. Traditional systems typically confirm orders
based on available-to-promise (ATP) or capable-to-promise
(CTP) logic without fully incorporating cost structures, demand
volatility, or long-term strategic goals. By contrast, the
framework accommodates multi-objective optimization and
allows scenario-based exploration of trade-offs. It also differs
from purely algorithmic approaches by embedding a decision-
support dimension, recognizing that human judgment remains
essential in balancing short-term efficiency with long-term
customer relationships.
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5. Research Opportunities

The discussion opens several avenues for future research.
Empirical studies could investigate how organizations adopt
such frameworks across different industries, assessing
contextual factors such as supply chain complexity, digital
maturity, and market volatility. Simulation-based studies could
evaluate the performance of alternative optimization models
under varying demand scenarios. Finally, interdisciplinary
research could explore how behavioral factors influence
managerial use of decision-support tools in order promising
contexts.

In summary, the discussion underscores that intelligent order
promising represents both a technological innovation and an
organizational transformation. Its success lies not only in the
sophistication of algorithms but also in the ability of firms to
integrate visibility, optimization, and decision support into a
coherent and adaptive system.

8. CONCLUSION

This study has proposed a conceptual framework for intelligent
order promising, positioning it as a strategic capability that
extends beyond the boundaries of traditional transactional
systems. By structuring the framework around three pillars—
visibility, optimization, and decision support—the paper
highlights how organizations can transform order promising
into a dynamic process that not only meets operational
feasibility but also advances broader business objectives.

The emphasis on visibility reflects the critical need for real-
time, accurate, and comprehensive information across global
supply networks. Without synchronized data flows, firms risk
making commitments based on outdated or incomplete
information, undermining customer trust and operational
reliability. Optimization, in turn, underscores the role of
advanced algorithms and decision models in balancing
competing objectives such as cost efficiency, lead time
reduction, and service differentiation. Finally, the integration
of decision support acknowledges that managerial judgment
and strategic priorities must guide technical outcomes, ensuring
that order promising aligns with long-term organizational goals
rather than short-term expediency.

The proposed framework contributes to the academic literature
by reframing order promising as a socio-technical system
situated at the intersection of operations research, supply chain
management, and decision sciences. Rather than viewing it as
a back-end function of production planning, the framework
situates order promising as a strategic touchpoint that directly
shapes customer experience and firm competitiveness. This
conceptualization invites further empirical and theoretical
research on how firms implement such systems under varying
industry conditions.

For practitioners, the framework offers a roadmap for
navigating the complexities of modern supply chains. By
investing in integrated visibility tools, scalable optimization
engines, and user-oriented decision-support mechanisms,
organizations can not only improve fulfillment accuracy but
also enhance profitability, responsiveness, and resilience.
However, the paper also acknowledges the implementation
challenges that arise, particularly with respect to data
integration, computational trade-offs, and organizational
change management. These challenges highlight the need for
future research that blends technical innovation with
managerial insights.
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In closing, intelligent order promising is not merely a
technological upgrade but a strategic transformation of how
firms engage with their customers and structure their supply
chains. Its true potential lies in the capacity to integrate
information, analytics, and decision-making into a unified
framework that balances efficiency with adaptability. As
supply chains continue to face heightened uncertainty and
demand volatility, the relevance of such a framework will only
increase. Future research should build upon this foundation,
advancing both the theoretical understanding and practical
applications of order promising in the digital age.
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