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ABSTRACT 

Order Promising (OP) has emerged as a critical capability in 

modern supply chains, serving as the interface between 

customer demand and supply chain execution. Traditionally, 

OP has relied on rule-based Available-to-Promise (ATP) and 

Capable-to-Promise (CTP) models embedded in Enterprise 

Resource Planning (ERP) systems. However, the increasing 

complexity of global supply chains, demand volatility, and the 

rise of digital commerce have exposed the limitations of static 

promise mechanisms. This paper develops a theoretical 

framework for Intelligent Order Promising (IOP) that 

integrates ERP systems with advanced planning platforms, 

artificial intelligence (AI), and predictive analytics. The study 

examines OP not only as a logistics execution tool but also as 

a strategic lever for customer experience, profitability, and 

resilience. The framework conceptualizes IOP as a dynamic 

decision-making layer that balances promise reliability, supply 

chain efficiency, and customer-centricity. The paper 

contributes to the literature by positioning IOP as the bridge 

between transactional systems (ERP) and cognitive supply 

chain planning, highlighting directions for future research in 

digital and sustainable supply chains. 

General Terms 

Order Promising; Supply Chain Management; Decision 

Support Systems; Optimization; Supply Chain Visibility; 

Artificial Intelligence; Resilient Supply Chains 

1. INTRODUCTION 
Order Promising (OP) has emerged as one of the most critical 

capabilities in contemporary supply chains, functioning as the 

direct interface between the customer and the firm’s internal 

planning and execution systems. The promise of an order – 

whether it is delivery within two days for an e-commerce 

retailer or a six-month lead time for a semiconductor 

manufacturer – represents a contractual and psychological 

commitment that directly influences customer trust, 

satisfaction, and retention. In supply chain theory, OP has 

traditionally been understood through  and  mechanisms, where 

customer orders are matched against inventory availability, 

production capacity, and lead-time constraints [Kilger & 

Schneeweiss, 2000]. While such mechanisms have provided a 

structured foundation for commitment management, they were 

largely designed for relatively stable supply and demand 

conditions. 

In the last decade, however, supply chains have become 

increasingly characterized by  [Bennett & Lemoine, 2014]. The 

globalization of production networks, the rise of e-commerce 

and omnichannel fulfillment, and the impact of geopolitical and 

environmental disruptions have all placed unprecedented 

pressure on organizations to respond quickly and accurately to 

customer demands. Customers today no longer evaluate firms 

solely on cost or product quality; they also judge them based 

on . In this environment, static rule-based ATP/CTP checks 

embedded in ERP systems often fail to provide accurate and 

adaptive commitments, leading to mismatches between 

customer expectations and operational realities [Chen & Zhao, 

2007]. 

This challenge has stimulated the evolution of what can be 

termed . Unlike traditional OP, which functions mainly as a , 

IOP envisions order promising as a  within the supply chain. It 

integrates the transactional backbone of  with the optimization 

capabilities of  and the adaptability of  and predictive analytics 

[Stadtler, 2005; Saberi et al., 2019]. The core premise of IOP is 

that order commitments should not only reflect current system 

constraints but should also anticipate potential disruptions, 

optimize profitability, and align with broader strategic goals 

such as customer experience, resilience, and sustainability. 

Theoretical and managerial discussions increasingly highlight 

that order promises are not merely operational commitments 

but also . For instance, in highly competitive markets, the 

ability to make differentiated promises (e.g., premium 

customers receive prioritized allocation) can significantly 

influence customer loyalty and profitability [Madhavaram & 

Varadarajan, 2008]. Similarly, in global supply chains where 

uncertainty is high, dynamic promise adjustments can enhance 

resilience by redistributing commitments based on risk 

predictions. At the same time, sustainability considerations are 

prompting organizations to rethink promises from an 

environmental perspective, where “green promises” may 

balance service performance with reduced carbon emissions 

[Golgeci et al., 2020]. 

Despite these emerging perspectives, there remains a  in 

understanding OP as an integrative, intelligence-driven 

framework. Existing research streams largely fall into three 

silos: (a) traditional deterministic ATP/CTP models, (b) ERP-

centric transactional OP, and (c) optimization-focused APS 

approaches. While recent studies have started to address AI and 

digital technologies in OP, there is a lack of holistic 

conceptualization that unites these streams into a coherent 

framework for IOP. Without such a framework, both academics 

and practitioners risk treating OP as a fragmented set of tools 

rather than a unified strategic capability. 

The purpose of this paper is to contribute to closing this gap by 

developing a . The framework positions IOP as a bridge 

between ERP-driven transaction processing and AI-enabled 

planning and decision-making. Specifically, it conceptualizes 

OP as a multi-dimensional construct characterized by . By 

doing so, the paper makes three contributions. First, it extends 

the academic understanding of OP beyond its traditional 

boundaries as a logistics execution mechanism. Second, it 

offers a managerial perspective on how firms can leverage IOP 
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to simultaneously improve operational efficiency and 

customer-centricity. Third, it highlights avenues for future 

research at the intersection of digital transformation, 

sustainability, and supply chain resilience. 

2. LITERATURE REVIEW 
Order Promising (OP) has been extensively studied within 

supply chain management, operations research, and 

information systems literature. While the terminology and 

technological enablers have evolved, the core challenge of OP 

has remained the same: aligning customer expectations with the 

realities of supply, production, and logistics constraints. To 

position the proposed framework for Intelligent Order 

Promising (IOP), it is essential to examine prior work across 

four major domains: (i) traditional OP models, (ii) ERP-centric 

approaches, (iii) Advanced Planning Systems (APS) 

integration, and (iv) the impact of digital transformation, 

including artificial intelligence (AI), blockchain, and 

sustainability considerations. 

2.1 Traditional Order Promising Models 
Early conceptualizations of OP were primarily rooted in 

deterministic models designed to ensure feasibility of 

commitments. The Available-to-Promise (ATP) mechanism, 

first formalized within materials management and early ERP 

systems, matched incoming customer orders against inventory 

on hand and planned receipts [Kilger & Schneeweiss, 2000]. 

ATP became a foundational mechanism for industries where 

lead times were short and demand variability was limited. 

However, as supply chains became more global and complex, 

ATP alone was insufficient for industries where capacity 

constraints and production lead times were significant. 

To address this, the concept of Capable-to-Promise (CTP) 

emerged, which extended ATP by incorporating production 

capacity and routing information into the promise logic [Chen 

& Zhao, 2007]. CTP enabled organizations to not only check 

whether an item was in stock, but also whether it could be 

manufactured within the required timeframe. While CTP 

provided more accurate commitments, it remained 

deterministic, assuming stability in production schedules and 

ignoring uncertainties such as supplier delays, machine 

breakdowns, or transportation disruptions. 

Scholars have also explored probabilistic and optimization-

based extensions to ATP/CTP. For instance, some studies 

introduced allocation rules for scarce capacity, where firms 

must decide how to distribute limited resources among 

competing orders (e.g., prioritizing high-margin or strategic 

customers) [Rong et al., 2008]. Others emphasized multi-site 

ATP, where promises are made based on global inventory 

visibility across multiple warehouses or plants [Stadtler, 2005]. 

Despite these advances, the underlying limitation of traditional 

OP models was their static nature—they operated on snapshots 

of data rather than continuously adapting to dynamic 

conditions. 

2.2 ERP-Centric Approaches to OP 
The rise of Enterprise Resource Planning (ERP) systems in the 

1990s and early 2000s transformed how firms executed OP in 

practice. ERP platforms such as SAP R/3, Oracle E-Business 

Suite, and later SAP S/4HANA embedded ATP and CTP 

functionality directly into the order entry process, allowing 

customer service representatives or sales teams to receive 

immediate delivery date confirmations [Madhavaram & 

Varadarajan, 2008]. This integration streamlined operations, 

reduced manual intervention, and ensured a single source of 

truth for order commitments. 

However, ERP-centric OP approaches also exhibited key 

limitations. First, they were typically constrained to 

transactional visibility within the ERP system itself. While 

ERP systems could see inventory and planned production 

orders, they often lacked full visibility into multi-tier supplier 

networks or transportation constraints. Second, ERP-based OP 

was inherently reactive: it confirmed orders based on current 

system status but did not proactively account for anticipated 

disruptions or demand fluctuations [Stadtler, 2005]. 

Researchers have criticized ERP-driven OP for being “rigid 

and deterministic,” highlighting that it fails in highly volatile 

environments such as consumer electronics or pharmaceuticals, 

where lead times are short and demand uncertainty is high 

[Chen & Zhao, 2007]. Furthermore, ERP systems often lacked 

advanced allocation logic, meaning that in situations of 

constrained supply, orders were either confirmed or rejected 

without consideration of customer prioritization, profitability, 

or long-term relationship value [Madhavaram & Varadarajan, 

2008]. 

Despite these challenges, ERP systems remain the transactional 

backbone of OP. They capture orders, execute credit checks, 

and serve as the system of record for confirmations. The 

challenge for both scholars and practitioners is to augment 

ERP’s deterministic OP with more adaptive, intelligence-

driven mechanisms. 

2.3 Advanced Planning Systems (APS) 

Integration 
To address ERP’s limitations, organizations increasingly 

turned to Advanced Planning Systems (APS) such as i2 

Technologies (now Blue Yonder), Kinaxis RapidResponse, and 

SAP Advanced Planning and Optimization (APO). APS 

platforms introduced global ATP (GATP) capabilities, 

enabling firms to consider network-wide constraints such as 

multisite inventory, supplier capacity, and distribution lead 

times when making promises [Stadtler, 2005]. 

APS-based OP approaches emphasized optimization, allowing 

companies to design sourcing rules (e.g., prioritize local plants 

to reduce transportation cost), apply allocation priorities (e.g., 

allocate scarce stock to high-margin customers first), and 

perform real-time simulations of capacity and lead times. This 

represented a significant theoretical and practical advance 

compared to ERP-only OP. 

However, APS integration also introduced complexities. First, 

there was often a data synchronization lag between ERP (as the 

system of record) and APS (as the optimization engine). This 

sometimes resulted in conflicting promise outcomes, where the 

ERP system confirmed one date but APS later suggested a 

different one [Stadtler, 2005]. Second, APS systems were 

heavily reliant on forecast accuracy and planning master data 

quality. Without reliable inputs, even the most sophisticated 

optimization algorithms could produce misleading 

commitments [Kilger & Schneeweiss, 2000]. 

From a theoretical perspective, APS-based OP represented a 

shift from transactional confirmation to optimization-driven 

promise management. Yet, APS still operated largely on 

deterministic assumptions, with limited capacity to predict 

disruptions or learn from past promise outcomes. This gap has 

opened the door for integrating AI and predictive analytics as 

the next frontier in OP. 

2.4 Digital Transformation and AI in OP 
The current wave of digital transformation in supply chain 

management has brought new perspectives on how OP can 
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evolve into a more intelligent and adaptive capability. Three 

major trends dominate this literature: artificial intelligence (AI) 

and machine learning, blockchain, and sustainability-oriented 

OP. 

2.4.1 AI and Machine Learning 
AI and machine learning offer the ability to move OP from 

deterministic to probabilistic and predictive models. For 

example, AI algorithms can analyze historical promise 

reliability to predict the likelihood of a promise being met 

under current conditions [Saberi et al., 2019]. Machine learning 

models can also detect patterns in demand shifts, supplier 

delays, or seasonal disruptions, enabling the system to adjust 

promises dynamically. Recent studies highlight that AI-driven 

OP can improve not only reliability but also profitability, by 

recommending commitments that maximize margin while 

minimizing risk exposure [Golgeci et al., 2020]. 

2.4.2 Blockchain and Transparency 
Another emerging research stream explores the use of 

blockchain technology to enhance transparency and trust in 

order commitments. In multi-tier supply chains, one of the 

challenges of OP is ensuring that promises made to customers 

are consistent with upstream supplier capabilities. Blockchain 

offers the possibility of a shared, tamper-proof ledger where 

commitments and actual deliveries can be recorded, thereby 

reducing the risk of misinformation and disputes [Saberi et al., 

2019]. Although still in early stages, blockchain-enabled OP is 

being theorized as a mechanism to enhance supply chain trust 

and accountability. 

2.4.3 Sustainability-Oriented OP 
Sustainability has also entered the discourse on OP. Traditional 

OP systems optimize primarily for customer service and 

efficiency, often ignoring environmental impact. Recent 

research has proposed the concept of “Green Order Promising,” 

where promises incorporate carbon footprint, energy use, or 

sustainability metrics into the decision-making process 

[Golgeci et al., 2020]. For example, a firm may offer customers 

a choice between a faster delivery with higher emissions or a 

slower, more environmentally friendly alternative. 

Theoretically, this positions OP as a tool for sustainability 

strategy as well as customer service. 

2.4.4 Synthesis and Research Gap 
The literature demonstrates that OP has evolved from 

inventory-based checks (ATP) to capacity-inclusive models 

(CTP), from ERP-driven transactional confirmations to APS-

based optimization, and is now entering an era of AI-enabled 

intelligence and sustainability-conscious commitments. 

Despite this evolution, two major gaps remain. 

First, research is fragmented: ERP, APS, and AI perspectives 

are often studied in isolation, with few efforts to integrate them 

into a holistic theoretical framework. Second, most existing 

studies remain operational in nature, focusing on algorithmic 

improvements or system implementations, without adequately 

theorizing OP as a strategic, multi-dimensional construct that 

balances reliability, profitability, responsiveness, resilience, 

and sustainability.This paper addresses these gaps by 

developing a framework for Intelligent Order Promising (IOP) 

that integrates ERP’s transactional backbone, APS’s 

optimization capabilities, and AI’s predictive intelligence. By 

doing so, it contributes to advancing both the academic 

discourse and managerial practice of OP. 

3. CONCEPTUAL FOUNDATIONS OF 

INTELLIGENT ORDER PROMISING 

(IOP) 
The concept of Intelligent Order Promising (IOP) extends the 

traditional scope of OP from a deterministic, system-driven 

confirmation activity to a strategic, intelligence-driven 

decision-making process. The theoretical basis of IOP rests on 

the recognition that order commitments are not merely 

operational outputs but strategic levers that influence customer 

satisfaction, profitability, risk resilience, and sustainability 

performance. 

While ERP systems and APS platforms provide the structural 

foundation for OP, they often fail to adapt to the dynamic, 

uncertain, and customer-centric environment of modern supply 

chains. To bridge this gap, IOP must be conceptualized as a 

multi-dimensional construct comprising five key dimensions: 

reliability, profitability, responsiveness, resilience, and 

sustainability. Together, these dimensions define the 

theoretical scope of IOP and distinguish it from conventional 

OP models. 

3.1 Reliability 
Reliability refers to the accuracy and consistency of promises 

made to customers. From a customer perspective, reliability is 

the most fundamental dimension of OP, as it directly affects 

trust and satisfaction. Research indicates that even if delivery 

lead times are long, customers often prefer firms that 

consistently meet promised dates over those that provide 

shorter but unreliable commitments [Chen & Zhao, 2007]. 

In traditional ERP-driven ATP/CTP, reliability was limited by 

deterministic assumptions and incomplete visibility. IOP 

enhances reliability by integrating real-time data (e.g., 

inventory positions, supplier updates, transport delays) with 

predictive analytics. For instance, machine learning models can 

identify historical patterns where promises were frequently 

delayed and proactively adjust commitments. Thus, reliability 

in IOP is not a static metric but a probabilistic and adaptive 

function, continuously learning from execution outcomes. 

3.2 Profitability 
While reliability ensures trust, firms must also consider the 

economic implications of promises. Profitability in OP refers 

to the extent to which commitments support the organization’s 

financial objectives. Traditional ATP/CTP models focused 

narrowly on feasibility, without evaluating whether a given 

promise contributed positively to margins or overall business 

strategy. 

IOP introduces profitability-aware promise mechanisms, where 

the system considers revenue, cost-to-serve, and opportunity 

costs before confirming an order. For example, when capacity 

is constrained, the system may prioritize allocating stock to 

high-margin products or strategic customers. In advanced 

scenarios, AI-enabled OP can even perform profit 

optimization, recommending delivery dates that balance 

service level agreements with cost efficiency. 

From a theoretical standpoint, profitability adds a strategic-

economic layer to OP, positioning it as a contributor to 

competitive advantage rather than a purely operational function 

[Madhavaram & Varadarajan, 2008]. 

3.3 Responsiveness 
Responsiveness captures the speed and agility of OP decisions 

in adapting to customer requests and environmental changes. In 

today’s digital economy, customers expect near-instant 
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confirmations, whether they are placing orders on an e-

commerce platform or negotiating contracts in a B2B 

environment. Traditional ERP systems often struggled with 

responsiveness due to batch data processing and limited 

computational capacity. 

IOP leverages in-memory computing, cloud infrastructure, and 

real-time analytics to provide immediate promise responses. 

More importantly, responsiveness is not only about speed but 

also about adaptability. For instance, if a supplier delay occurs 

after a promise has been made, IOP can proactively re-promise 

alternative delivery dates, communicate options to customers, 

and dynamically reallocate resources. This agility differentiates 

IOP from deterministic OP, which tends to lock in 

commitments without flexibility. 

3.4 Resilience 
Resilience refers to the ability of OP systems to withstand and 

adapt to disruptions such as supply shortages, transportation 

delays, or geopolitical risks. The COVID-19 pandemic, 

semiconductor shortages, and global shipping crises have 

highlighted the need for OP mechanisms that go beyond short-

term feasibility checks. 

Traditional OP models are fragile under uncertainty because 

they assume that planned supply and capacity will materialize 

as expected. In contrast, IOP incorporates risk-aware promise 

mechanisms that explicitly account for uncertainty. This may 

include probabilistic lead times, scenario simulations, or AI-

driven risk forecasting. For example, IOP may avoid 

committing to a supplier that has a high historical probability 

of delay, even if capacity exists on paper. 

Theoretically, resilience in IOP transforms promises from static 

commitments into risk-managed contracts, enhancing both 

customer trust and operational stability [Saberi et al., 2019]. 

3.5 Sustainability 
The final dimension of IOP is sustainability, which reflects the 

growing importance of environmental and social responsibility 

in supply chain management. Traditionally, OP systems were 

designed to optimize efficiency and customer service, with 

little regard for sustainability outcomes. However, increasing 

regulatory pressures, consumer awareness, and corporate 

sustainability commitments are reshaping how firms approach 

OP. 

Sustainability-oriented OP (Green OP) introduces 

environmental and ethical considerations into promise logic. 

For example, instead of always selecting the fastest delivery 

option, IOP may provide customers with alternatives that 

reduce carbon emissions, such as consolidated shipments or 

slower but greener modes of transport [Golgeci et al., 2020]. 

Similarly, OP may account for suppliers’ sustainability 

performance when making sourcing promises. 

By embedding sustainability, IOP positions promises not only 

as customer commitments but also as corporate responsibility 

statements, aligning operational decisions with long-term 

societal goals. 

4. INTEGRATING THE DIMENSIONS 
These five dimensions—reliability, profitability, 

responsiveness, resilience, and sustainability—together define 

the theoretical foundations of IOP. Importantly, they are not 

independent but interdependent and often conflicting. For 

instance, a highly reliable promise may reduce profitability if it 

requires costly expedited shipping. Similarly, a sustainable 

promise may lengthen lead times, affecting responsiveness. 

Thus, IOP must be conceptualized as a multi-objective 

decision-making framework that balances these dimensions 

rather than optimizing any single one in isolation. From a 

theoretical perspective, this positions IOP as a bridge between 

ERP’s transactional order capture, APS’s optimization logic, 

and AI’s predictive intelligence
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4.1 Conceptual Foundations and 

Methodology 
Order promising, at its core, is not only a transactional activity 

but also a strategic decision-making process that integrates 

demand management, supply chain visibility, and optimization. 

In this section, the conceptual foundations of order promising 

are articulated, followed by an explanation of the 

methodological approach adopted in this study. 

4.1.1 Conceptual Foundations 
Order promising traditionally draws upon three major 

constructs: Available-to-Promise (ATP), Capable-to-Promise 

(CTP), and Profitable-to-Promise (PTP). 

• Available-to-Promise (ATP): ATP provides visibility into 

current and projected inventory levels. It matches demand 

against existing stock and planned receipts, thereby enabling 

firms to confirm whether an order can be met on the promised 

date. ATP is foundational in environments with stable demand 

and relatively short lead times (Meyr, Wagner, & Rohde, 

2005). 

• Capable-to-Promise (CTP): CTP extends ATP by 

incorporating capacity constraints such as production 

schedules, resource availability, and supplier lead times. It is 

particularly relevant in engineer-to-order or make-to-order 

environments where inventory alone cannot guarantee 

fulfillment. CTP requires close integration of order promising 

engines with Advanced Planning and Scheduling (APS) 

systems (Kilger, Schneeweiss, & Zimmermann, 2017). 

• Profitable-to-Promise (PTP): PTP integrates profitability 

metrics into the order promising decision. By considering 

margin, contribution to customer lifetime value, or strategic 

priority, firms can decide not only whether to accept an order, 

but also whether it should be prioritized over competing 

requests (Chen, 2018). 

These constructs underscore the evolution of order promising 

from an operational decision (ATP) to a strategic lever (PTP). 

Modern implementations, such as those in Blue Yonder Order 

Promiser (BYOP) or SAP Advanced ATP (aATP), increasingly 

blend these perspectives using advanced algorithms and real-

time data integration. 

4.1.2 Methodological Approach 
This paper adopts a conceptual research methodology 

grounded in framework development and illustrative 

application. The choice of methodology is guided by the dual 

objectives of the research: (1) to integrate existing knowledge 

into a coherent theoretical framework, and (2) to demonstrate 

the framework’s relevance through application in enterprise 

contexts. 

The methodological design includes the following steps: 

1.. Literature Synthesis: A systematic review of scholarly and 

practitioner-oriented literature on order promising, advanced 

planning systems, and digital supply chain integration. This 

ensures that the framework is theoretically robust and aligned 

with contemporary practices. 

2. Framework Development: Building on insights from the 

literature, a conceptual framework is proposed (see Section 3). 

The framework emphasizes the interplay between supply chain 

visibility, optimization algorithms, and decision support 

mechanisms. 

3. Case Illustration: To demonstrate applicability, the 

framework is contextualized within a hypothetical but industry-

representative scenario: the integration of SAP S/4HANA with 

Blue Yonder Order Promiser. This allows us to discuss 

challenges of data integration, credit check blocks, location 

substitution rules, and demand prioritization in a real-world 

inspired setting. 

4. Evaluation through Analytical Generalization: Instead of 

empirical testing, this study employs analytical generalization 

(Yin, 2014). The framework is compared with extant theories 

in supply chain planning and order fulfillment, enabling 

assessment of its theoretical contributions and practical value. 

4.1.3 Justification of Methodology 
The decision to adopt a conceptual and illustrative 

methodology is grounded in three key considerations: 

• First, order promising remains a domain where theory and 

practice often diverge. By structuring existing practices into a 

coherent theoretical model, this study aims to bridge that gap. 

• Second, empirical data on order promising processes is 

typically proprietary and difficult to access, especially in 

enterprise-level implementations (e.g., SAP, Blue Yonder, 

Oracle). Thus, conceptual frameworks with case illustrations 

are more feasible for advancing knowledge. 

• Finally, a conceptual approach allows the identification of 

emerging trends—such as AI-driven promise optimization, 

blockchain-enabled supply visibility, and sustainability-

oriented promise metrics—that may not yet be empirically 

documented. 

5. THEORETICAL FRAMEWORK 
The theoretical framework for order promising integrates 

supply chain theory, decision sciences, and information 

systems into a cohesive model that captures the multi-

dimensional nature of fulfillment commitments. The 

framework proposed in this study is designed to conceptualize 

order promising not merely as a transactional verification 

process, but as a decision-making architecture that balances 

operational feasibility, customer satisfaction, and 

organizational profitability. 

At its foundation, the framework rests on three interconnected 

dimensions: Visibility, Optimization, and Decision Support. 

5.1 Supply Chain Visibility 
Visibility constitutes the informational backbone of order 

promising. It refers to the extent to which organizations can 

access, in real time, data about inventory positions, production 

schedules, transportation availability, and supplier capacities 

across the network. Theoretical contributions from resource-

based and information-processing perspectives (Galbraith, 

1974) suggest that visibility reduces uncertainty and enhances 

responsiveness. Within order promising, visibility ensures that 

ATP, CTP, and PTP calculations are based on accurate and 

timely data rather than static or siloed records. 

5.2 Optimization Algorithms 
Optimization represents the analytical core of the framework. 

Building on operations research and mathematical 

programming traditions, optimization algorithms transform 

raw visibility into actionable commitments. Linear 

programming, heuristic methods, and increasingly machine 

learning approaches allow the simultaneous consideration of 

multiple constraints (e.g., inventory, capacity, transportation) 

and objectives (e.g., service level, cost, profit). This aligns with 
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classical supply chain optimization models (Chopra & Meindl, 

2020) while extending them to real-time, customer-specific 

decision contexts. Importantly, optimization within order 

promising is not a single-shot calculation but a dynamic process 

that must adapt as new orders, disruptions, or cancellations 

occur. 

5.3 Decision Support Mechanisms 
Decision support closes the loop between analytical 

optimization and managerial action. Drawing upon decision 

support system (DSS) theory (Power, 2002), this component 

highlights the importance of presenting optimized 

commitments in a manner that is transparent, explainable, and 

aligned with organizational strategy. Decision support in order 

promising includes not only the system-generated delivery 

dates or quantities but also guidance on trade-offs, such as 

whether prioritizing a high-margin order may delay fulfillment 

for a lower-margin but strategically critical customer. 

5.4 Integrative Perspective 
By linking visibility, optimization, and decision support, the 

framework captures the transition of order promising from an 

operational tool to a strategic enabler. The theoretical 

implication is that effective order promising requires 

organizations to simultaneously invest in data integration, 

analytical sophistication, and managerial interpretability. 

Neglecting any one of these dimensions risks undermining the 

overall effectiveness of the promise process: without visibility, 

optimization operates on flawed assumptions; without 

optimization, visibility yields no actionable insights; without 

decision support, optimal results may fail to translate into 

strategic alignment. 

5.5 Dynamic Capabilities View 
Finally, the framework can be situated within the broader 

theoretical lens of dynamic capabilities (Teece, Pisano, & 

Shuen, 1997). Order promising is inherently dynamic, as it 

requires continuous sensing of demand signals, seizing of 

profitable opportunities, and reconfiguring of resources in the 

face of uncertainty. The proposed framework thus 

conceptualizes order promising not as a static decision but as 

an ongoing organizational capability, central to competitive 

advantage in digital supply chains. 

6. APPLICATION AND CASE 

ILLUSTRATION 
To demonstrate the practical applicability of the proposed 

theoretical framework, this section presents a conceptual case 

illustration drawn from a global manufacturing supply chain. 

The example highlights how visibility, optimization, and 

decision support interact to improve the quality of customer 

commitments, without relying on proprietary system 

references. 

1. Case Context 

Consider a mid-sized electronics manufacturer with a global 

supply network spanning component suppliers in Asia, 

assembly plants in Europe, and distribution centers across 

North America. The company faces increasing customer 

demands for shorter lead times, customized configurations, and 

reliable delivery dates. Traditional rule-based order 

confirmation methods have proved insufficient, often leading 

to missed deadlines, excess safety stock, or costly expedited 

shipping. The adoption of a structured order promising 

framework offers an opportunity to enhance both operational 

performance and customer trust. 

2. Visibility in Practice 

The first step involves integrating real-time data streams from 

suppliers, production lines, and logistics partners. For instance, 

component inventory levels from multiple suppliers are 

continuously updated, while production capacity utilization is 

monitored through connected shop-floor systems. 

Transportation schedules from logistics providers are also 

linked to the platform, offering an end-to-end view of supply 

chain status. This visibility allows the manufacturer to move 

away from static assumptions and toward dynamic availability 

checks. 

3. Optimization in Practice 

With reliable visibility in place, the system applies 

optimization models to evaluate order requests. For example, 

when a high-volume order arrives from a North American 

retailer, the optimization engine simultaneously considers: 

• Available raw material inventory across suppliers. 

• Assembly line capacities over the next four weeks. 

• Transit times and shipping costs from European plants to 

U.S. distribution centers. 

By balancing these variables, the system identifies the most 

cost-effective fulfillment plan while meeting the retailer’s 

requested delivery window. Importantly, alternative scenarios 

are also generated—for example, splitting the order across two 

plants to reduce lead time. 

4. Decision Support in Practice 

The results are presented to the sales and planning teams 

through an interactive decision-support interface. Instead of 

merely outputting a promised delivery date, the system 

provides transparency into the rationale behind the 

recommendation. Decision-makers are shown trade-offs: 

accepting the order in full may delay smaller but higher-margin 

orders; alternatively, partial shipment commitments may 

satisfy multiple customers simultaneously. By aligning the 

decision with corporate strategy—whether prioritizing volume, 

margin, or customer loyalty—the system transforms 

optimization results into informed managerial action. 

5. Strategic Outcomes 

The case illustration demonstrates several strategic benefits: 

1. Reduced uncertainty through real-time visibility. 

2. Improved efficiency by aligning production and logistics to 

demand commitments. 

3. Customer satisfaction via reliable and explainable delivery 

dates. 

4. Strategic flexibility through scenario-based decision 

support. 

Overall, the application highlights how the theoretical 

framework is not limited to academic abstraction but can be 

operationalized across industries with complex supply chains. 

The value lies in its adaptability—whether in electronics, 

pharmaceuticals, or consumer goods—where the ability to 

promise orders accurately is increasingly a source of 

competitive differentiation. 
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7. DISCUSSION 
The proposed framework for intelligent order promising 

extends the traditional role of order management from a 

transactional function to a strategic capability. While existing 

approaches often emphasize rule-based availability checks or 

static allocation policies, this framework integrates visibility, 

optimization, and decision support to create a more adaptive 

and resilient process. In this section, we discuss the broader 

implications, challenges, and research opportunities that 

emerge from this conceptualization. 

1. Theoretical Implications 

From a theoretical standpoint, the framework contributes to the 

growing body of supply chain literature by situating order 

promising at the intersection of operations planning, analytics, 

and organizational decision-making. Whereas past research has 

often treated order promising as an operational extension of 

production planning, this study positions it as a decision layer 

that directly shapes customer experience, profitability, and 

strategic differentiation. This reframing encourages future 

studies to investigate order promising not merely as a technical 

problem but as a socio-technical system that combines data, 

algorithms, and human judgment. 

2. Managerial Implications 

For managers, the framework emphasizes that successful order 

promising requires a holistic perspective. Visibility ensures that 

decisions are grounded in accurate, real-time data rather than 

static assumptions. Optimization provides a structured means 

to balance competing priorities such as cost, lead time, and 

customer service. Decision support, finally, bridges the 

technical outputs with managerial strategy, ensuring that 

commitments reflect not only operational feasibility but also 

business objectives. Managers adopting this framework are 

better positioned to handle uncertainty, align supply chain 

capabilities with market demands, and strengthen customer 

trust. 

3. Challenges in Implementation 

Despite its potential, several challenges remain. Integrating 

visibility requires data standardization across diverse partners, 

which can be difficult in global networks with heterogeneous 

systems. Optimization models, while powerful, often face the 

trade-off between computational complexity and real-time 

responsiveness. Additionally, decision support requires 

organizational willingness to embrace transparency, which 

may be resisted in hierarchical or siloed structures. Addressing 

these barriers necessitates investments not only in technology 

but also in change management, governance, and cross-

functional collaboration. 

4. Comparison with Existing Approaches 

Compared with conventional rule-based order promising, the 

proposed framework offers greater adaptability and 

responsiveness. Traditional systems typically confirm orders 

based on available-to-promise (ATP) or capable-to-promise 

(CTP) logic without fully incorporating cost structures, demand 

volatility, or long-term strategic goals. By contrast, the 

framework accommodates multi-objective optimization and 

allows scenario-based exploration of trade-offs. It also differs 

from purely algorithmic approaches by embedding a decision-

support dimension, recognizing that human judgment remains 

essential in balancing short-term efficiency with long-term 

customer relationships. 

5. Research Opportunities 

The discussion opens several avenues for future research. 

Empirical studies could investigate how organizations adopt 

such frameworks across different industries, assessing 

contextual factors such as supply chain complexity, digital 

maturity, and market volatility. Simulation-based studies could 

evaluate the performance of alternative optimization models 

under varying demand scenarios. Finally, interdisciplinary 

research could explore how behavioral factors influence 

managerial use of decision-support tools in order promising 

contexts. 

In summary, the discussion underscores that intelligent order 

promising represents both a technological innovation and an 

organizational transformation. Its success lies not only in the 

sophistication of algorithms but also in the ability of firms to 

integrate visibility, optimization, and decision support into a 

coherent and adaptive system. 

8. CONCLUSION 
This study has proposed a conceptual framework for intelligent 

order promising, positioning it as a strategic capability that 

extends beyond the boundaries of traditional transactional 

systems. By structuring the framework around three pillars—

visibility, optimization, and decision support—the paper 

highlights how organizations can transform order promising 

into a dynamic process that not only meets operational 

feasibility but also advances broader business objectives. 

The emphasis on visibility reflects the critical need for real-

time, accurate, and comprehensive information across global 

supply networks. Without synchronized data flows, firms risk 

making commitments based on outdated or incomplete 

information, undermining customer trust and operational 

reliability. Optimization, in turn, underscores the role of 

advanced algorithms and decision models in balancing 

competing objectives such as cost efficiency, lead time 

reduction, and service differentiation. Finally, the integration 

of decision support acknowledges that managerial judgment 

and strategic priorities must guide technical outcomes, ensuring 

that order promising aligns with long-term organizational goals 

rather than short-term expediency. 

The proposed framework contributes to the academic literature 

by reframing order promising as a socio-technical system 

situated at the intersection of operations research, supply chain 

management, and decision sciences. Rather than viewing it as 

a back-end function of production planning, the framework 

situates order promising as a strategic touchpoint that directly 

shapes customer experience and firm competitiveness. This 

conceptualization invites further empirical and theoretical 

research on how firms implement such systems under varying 

industry conditions. 

For practitioners, the framework offers a roadmap for 

navigating the complexities of modern supply chains. By 

investing in integrated visibility tools, scalable optimization 

engines, and user-oriented decision-support mechanisms, 

organizations can not only improve fulfillment accuracy but 

also enhance profitability, responsiveness, and resilience. 

However, the paper also acknowledges the implementation 

challenges that arise, particularly with respect to data 

integration, computational trade-offs, and organizational 

change management. These challenges highlight the need for 

future research that blends technical innovation with 

managerial insights. 
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In closing, intelligent order promising is not merely a 

technological upgrade but a strategic transformation of how 

firms engage with their customers and structure their supply 

chains. Its true potential lies in the capacity to integrate 

information, analytics, and decision-making into a unified 

framework that balances efficiency with adaptability. As 

supply chains continue to face heightened uncertainty and 

demand volatility, the relevance of such a framework will only 

increase. Future research should build upon this foundation, 

advancing both the theoretical understanding and practical 

applications of order promising in the digital age. 

9. REFERENCES 
[1] Kilger, C., & Schneeweiss, C. (2000). Supply Chain 

Management and Advanced Planning: Concepts, Models, 

Software and Case Studies. Springer. 

[2] Bennett, N., & Lemoine, G. J. (2014). What VUCA really 

means for you. Harvard Business Review, 92(1–2), 27. 

[3] Chen, F., & Zhao, L. (2007). A profit-maximizing model 

for order promising. Operations Research Letters, 35(2), 

199–208. 

[4] Stadtler, H. (2005). Supply chain management and 

advanced planning—basics, overview, and challenges. 

European Journal of Operational Research, 163(3), 575–

588. 

[5] Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). 

Blockchain technology and its relationships to sustainable 

supply chain management. International Journal of 

Production Research, 57(7), 2117–2135. 

[6] Madhavaram, S., & Varadarajan, R. (2008). Marketing 

strategy modeling: Theoretical perspectives and decision 

frameworks. Journal of the Academy of Marketing 

Science, 36(1), 69–83. 

[7] Golgeci, I., Gligor, D. M., & Tatoglu, E. (2020). A 

relational view of environmental performance: What role 

do supply chain resilience and agility play? Journal of 

Business Research, 117, 118–129. 

[8] Rong, A., Akkerman, R., & Grunow, M. (2008). An 

optimization approach for managing the order promising 

process under capacity constraints. Computers & 

Operations Research, 35(11), 3396–3414. 

[9] Meyr, H., Wagner, M., & Rohde, J. (2005). Structure of 

Advanced Planning Systems. In H. Stadtler & C. Kilger 

(Eds.), Supply Chain Management and Advanced 

Planning (pp. 109–128). Springer. 

[10] Kilger, C., Schneeweiss, C., & Zimmermann, J. (2017). 

Advanced Planning in Supply Chains: SAP APO Case 

Studies. Springer. 

[11] Chen, J. (2018). Profitable-to-promise decisions in supply 

chain management: Models and methods. International 

Journal of Production Economics, 197, 1–12. 

[12] Galbraith, J. R. (1974). Organization design: An 

information processing view. Interfaces, 4(3), 28–36. 

[13] Chopra, S., & Meindl, P. (2020). Supply Chain 

Management: Strategy, Planning, and Operation (8th ed.). 

Pearson. 

[14] Power, D. J. (2002). Decision Support Systems: Concepts 

and Resources for Managers. Greenwood Publishing 

Group. 

[15] Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic 

capabilities and strategic management. Strategic 

Management Journal, 18(7), 509–533. 

[16] Yin, R. K. (2014). Case Study Research: Design and 

Methods (5th ed.). Sage Publications. 

 

IJCATM : www.ijcaonline.org 


