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ABSTRACT

Using smartphone sensors for Human Activity Recognition
(HAR) has become a crucial research field with applications in
smart settings, fitness tracking, and healthcare. This work uses
the widely used UCI HAR dataset to give a thorough
comparative analysis of different machine learning and deep
learning algorithms for HAR. Combining a deep convolutional
neural network (CNN) architecture with six conventional
machine learning algorithms—Random Forest, XGBoost,
Support Vector Machines, k-Nearest Neighbors, and Logistic
Regression— the results have been developed and assessed. To
guarantee reliable performance evaluation, all models
underwent a thorough evaluation process utilizing 5-fold
stratified cross-validation. As our results show, the CNN
architecture performed better than the others (96.2% accuracy),
closely followed by the non-linear approach SVM (95.2%) and
the linear method Logistic Regression (95.4%). The study
provides valuable insights into the relative strengths of
different algorithmic approaches for sensor-based activity
recognition and offers practical guidance for selecting
appropriate models for HAR applications.
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1. INTRODUCTION

Human Activity Recognition has gained significant attention
due to the rapid increase of sensor-rich smartphones and
wearable devices. Their ability to accurately recognize human
activities from inertial sensor data enables numerous
applications, including health monitoring, elderly care, sports
analytics, and context-aware computing. The UCI HAR dataset
[1] has become a standard benchmark for evaluating HAR
algorithms, containing recordings of 30 subjects performing six
activities (walking, walking upstairs, walking downstairs,
sitting, standing, and laying) while wearing a smartphone.
Despite numerous studies on HAR, there remains a need for
comprehensive and comparative analysis that evaluates both
traditional machine learning approaches and modern deep
learning  architectures under consistent experimental
conditions. This paper addresses this gap by providing:

1. A systematic evaluation of six popular ML
algorithms and one CNN architecture.

2. Rigorous 5-fold cross-validation for reliable
performance estimation.
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3. Detailed analysis of computational requirements and
performance trade-offs.

4, Practical recommendations for model selection based
on application requirements.

2. RELATED WORK

Previous research on HAR has explored various approaches.
Anguita et al. [1] introduced the UCI HAR dataset and
employed a multiclass SVM classifier. Other popular
traditional models applied to HAR include Random Forests [2]
and k-Nearest Neighbors (k-NN), which often achieve high
accuracy but remain fundamentally limited by the quality and
completeness of the human-designed features. Subsequent
studies have investigated ensemble methods [3], deep learning
architectures [4], and hybrid approaches [5]. Bao and Intille [6]
proposed the earliest HAR system that uses five wearable dual-
axis accelerometers and machine learning classifiers to identify
20 activities of daily living, achieving an 84% classification
accuracy, which is quite good considering the number of
activities involved. Gyros are also used in HAR and have been
shown to improve recognition performance when used in
conjunction with accelerometers [7,8,9,10,11]. Ponnipa et al.
proposed [12] a sensor-based HAR system using the
InceptTime network. Challa et al. [13] introduced a
multibranch CNN-BiLSTM model that captures features with
minimal data pre-processing. The model can learn both local
features and long-term dependencies in sequential data by
using different filter sizes, enhancing the feature extraction
process. The model achieved an accuracy of 88% on the
PAMAP?2 dataset, outperforming other baseline DL models. In
[14], the authors performed a comparison between the different
ensemble and supervised machine learning classifiers. They
obtained more accurate result with Logistic Regression.
However, most existing studies either focus on a limited set of
algorithms or lack of rigorous cross-validation procedures.
Building on these foundations, our work offers a more thorough
comparison with improved scientific precision.

3. METHODOLOGY

3.1 Dataset Description

The UCI HAR dataset contains data from 30 volunteers aged
19-48 years performing six activities (WALKING,
WALKING UPSTAIRS, WALKING DOWNSTAIRS,
SITTING, STANDING, LAYING). Each person performed six
activities while wearing a Samsung Galaxy S II smartphone on
the waist. The smartphone's embedded accelerometer and
gyroscope captured 3-axial linear acceleration and 3-axial
angular velocity at S0Hz. The dataset provides two versions:
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1. Raw time-series data: 128-sample windows with 50%
overlap (2.56 seconds per window)

2. Precomputed features: 561 time and frequency domain
variables

The dataset includes 7,352 training samples and 2,947 test
samples across six activity classes.
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Fig 1:Activity Distribution

3.2 Data Preprocessing
We implemented two separate preprocessing pipelines:

For traditional ML algorithms:

. Used the 561 precomputed features

. Applied StandardScaler for feature normalization

. Converted labels from 1-6 to 0-5 for compatibility
For CNN:

. Used raw triaxial accelerometer and gyroscope data
(6 channels)

. Reshaped to (samples, 128 timesteps, 6 channels)

. Applied per-channel standardization

. Converted labels to categorical format

3.3 Model Architectures

3.3.1 Traditional Machine Learning Models

We implemented five established ML algorithms with default
hyper parameters:

. Random Forest: 100 trees with Gini impurity
criterion

. XGBoost: Gradient boosting with default
parameters

. SVM: RBF kernel with regularization

. k-NN: 5 neighbors with Euclidean distance

. Logistic Regression: L2 regularization

3.3.2 Convolutional Neural Network
Designed a 1D CNN architecture:

Input: (128, 6)
Conv1D(64, kernel size=3) — BatchNorm — MaxPooling(2)
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Conv1D(128, kernel size=3) — BatchNorm —
MaxPooling(2)

Conv1D(256, kernel size=3) — BatchNorm —
MaxPooling(2)

Flatten — Dense(128) — Dropout(0.5) — Dense(6, softmax)

3.4 Evaluation Protocol
Employed 5-fold stratified cross-validation to ensure reliable
performance estimation. The evaluation metrics included:

. Accuracy: Overall classification accuracy

. Precision, Recall, F1-score: Per-class performance
. Standard deviation: Variability across folds

. Training time: Computational efficiency

4. RESULTS AND ANALYSIS

4.1 Overall Performance Comparison
Table 1 presents the cross-validation results for all models:

Table 1: 5-Fold Cross-Validation Results

(A%
Accur Ccv glv Test Test

Model acy Accurac Accurac F1-
(mean (std) Score y Score
) Y (mean)

Logistic | ey

Regressio 4 0.0031 0.9844 | 0.9549 | 0.9548

n

SVM 0.977

(RBF 0.0040 | 09775 | 0.9522 | 0.9521
6

Kernel)

XGBoost 0'%92 0.0013 | 0.9920 | 0.9328 | 0.9326

R .

andom 0979 1 5038 | 0.9791 | 09223 | 0.9221

Forest 1

K-Nearest 0.961

Neighbor .6 0.0053 | 09615 | 0.8843 | 0.8834

S

CNN 0'%71 0.0080 | 0.9510 | 0.9620 | 0.9622

The CNN architecture achieved the highest mean accuracy
(96.2%), demonstrating the effectiveness of deep learning for
capturing spatiotemporal patterns in sensor data. Among
traditional ML methods, ensemble techniques (XGBoost and
Random Forest) outperformed linear models, indicating the
importance of handling complex decision boundaries.

4.2 Per-Class Performance Analysis
Figure 2 shows the confusion matrix for the best-performing
CNN model:
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Fig 2: Confusion Matrix for CNN Model

Figure 3 shows model accuracy and model loss across epochs:
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Fig 3: Model Accuracy and Model Loss

Figure 4 shows 5-fold cross-validation result for CNN:
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Fig 4: 5-Fold Cross-Validation Result for CNN

The analysis reveals several important patterns:

Highest performance: Laying activity (100% accuracy) due to
distinct sensor patterns

Most confusion: Between sitting and standing (3-4%
misclassification)

Moderate confusion: Among ambulatory activities (walking,
upstairs, downstairs)

4.3 Computational Efficiency
Table 2: Training Time Comparison (Seconds per Fold)
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Table 2: Training Time Comparison (Second per Fold)

Model Training Time Inference Time
k-NN 2.1 15.3
SVM 452 6.3
Random Forest 12.7 0.8
XGBoost 153 0.3
CNN 186.4 0.2

The CNN required the longest training time but offered the
fastest inference, making it suitable for deployment scenarios.
Traditional ML models showed varying computational
profiles, with k-NN having fast training but slow inference due
to the nearest-neighbor search.

5. DISCUSSION

5.1 Performance Insights

The CNN architecture's capacity to automatically extract
hierarchical characteristics from unprocessed sensor data is
responsible for its excellent performance. Translation
invariance is provided by the max-pooling procedures, while
local temporal patterns are efficiently captured by the
convolutional layers. Although SVM offers good performance
but has greater processing costs, logistic regression works well
in contexts with limited resources.

5.2 Practical Implications
For real-world HAR applications, the choice of model should
consider:

e Accuracy requirements: CNN for maximum
accuracy

e  Computational constraints: Logistic Regression and
SVM for balanced performance

e Deployment scenario: CNN for edge deployment
(fast inference)

e Interpretability needs: Logistic Regression or SVM
for feature importance

6. CONCLUSION

This paper presented a comprehensive benchmark study of
machine learning and deep learning approaches for human
activity recognition using the UCI HAR dataset. Results
demonstrate that convolutional neural networks achieve the
highest accuracy (96.2%), followed by Logistic Regression
(95.4%) and SVM (95.2%) with rigorous 5-fold cross-
validation. The study provides practical guidance for selecting
appropriate models based on accuracy requirements,
computational constraints, and deployment scenarios. This
study can be applied on the other available datasets also and
then the results can be accessed much better to create a uniform
system for all.
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