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ABSTRACT 

Using smartphone sensors for Human Activity Recognition 

(HAR) has become a crucial research field with applications in 

smart settings, fitness tracking, and healthcare.  This work uses 

the widely used UCI HAR dataset to give a thorough 

comparative analysis of different machine learning and deep 

learning algorithms for HAR.  Combining a deep convolutional 

neural network (CNN) architecture with six conventional 

machine learning algorithms—Random Forest, XGBoost, 

Support Vector Machines, k-Nearest Neighbors, and Logistic 

Regression— the results have been developed and assessed.  To 

guarantee reliable performance evaluation, all models 

underwent a thorough evaluation process utilizing 5-fold 

stratified cross-validation.  As our results show, the CNN 

architecture performed better than the others (96.2% accuracy), 

closely followed by the non-linear approach SVM (95.2%) and 

the linear method Logistic Regression (95.4%). The study 

provides valuable insights into the relative strengths of 

different algorithmic approaches for sensor-based activity 

recognition and offers practical guidance for selecting 

appropriate models for HAR applications. 
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1. INTRODUCTION 
Human Activity Recognition has gained significant attention 

due to the rapid increase of sensor-rich smartphones and 

wearable devices. Their ability to accurately recognize human 

activities from inertial sensor data enables numerous 

applications, including health monitoring, elderly care, sports 

analytics, and context-aware computing. The UCI HAR dataset 

[1] has become a standard benchmark for evaluating HAR 

algorithms, containing recordings of 30 subjects performing six 

activities (walking, walking upstairs, walking downstairs, 

sitting, standing, and laying) while wearing a smartphone. 

Despite numerous studies on HAR, there remains a need for 

comprehensive and comparative analysis that evaluates both 

traditional machine learning approaches and modern deep 

learning architectures under consistent experimental 

conditions. This paper addresses this gap by providing: 

1. A systematic evaluation of six popular ML 

algorithms and one CNN architecture. 

2. Rigorous 5-fold cross-validation for reliable 

performance estimation. 

3. Detailed analysis of computational requirements and 

performance trade-offs. 

4. Practical recommendations for model selection based 

on application requirements.  

2. RELATED WORK 
Previous research on HAR has explored various approaches. 

Anguita et al. [1] introduced the UCI HAR dataset and 

employed a multiclass SVM classifier. Other popular 

traditional models applied to HAR include Random Forests [2] 

and k-Nearest Neighbors (k-NN), which often achieve high 

accuracy but remain fundamentally limited by the quality and 

completeness of the human-designed features. Subsequent 

studies have investigated ensemble methods [3], deep learning 

architectures [4], and hybrid approaches [5]. Bao and Intille [6] 

proposed the earliest HAR system that uses five wearable dual-

axis accelerometers and machine learning classifiers to identify 

20 activities of daily living, achieving an 84% classification 

accuracy, which is quite good considering the number of 

activities involved. Gyros are also used in HAR and have been 

shown to improve recognition performance when used in 

conjunction with accelerometers [7,8,9,10,11]. Ponnipa et al. 

proposed [12] a sensor-based HAR system using the 

InceptTime network. Challa et al. [13] introduced a 

multibranch CNN-BiLSTM model that captures features with 

minimal data pre-processing. The model can learn both local 

features and long-term dependencies in sequential data by 

using different filter sizes, enhancing the feature extraction 

process. The model achieved an accuracy of 88% on the 

PAMAP2 dataset, outperforming other baseline DL models. In 

[14], the authors performed a comparison between the different 

ensemble and supervised machine learning classifiers. They 

obtained more accurate result with Logistic Regression. 

However, most existing studies either focus on a limited set of 

algorithms or lack of rigorous cross-validation procedures. 

Building on these foundations, our work offers a more thorough 

comparison with improved scientific precision. 

3. METHODOLOGY 

3.1 Dataset Description 
The UCI HAR dataset contains data from 30 volunteers aged 

19-48 years performing six activities (WALKING, 

WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, 

SITTING, STANDING, LAYING). Each person performed six 

activities while wearing a Samsung Galaxy S II smartphone on 

the waist. The smartphone's embedded accelerometer and 

gyroscope captured 3-axial linear acceleration and 3-axial 

angular velocity at 50Hz. The dataset provides two versions: 
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1. Raw time-series data: 128-sample windows with 50% 

overlap (2.56 seconds per window) 

2. Precomputed features: 561 time and frequency domain 

variables 

The dataset includes 7,352 training samples and 2,947 test 

samples across six activity classes. 

 

Fig 1:Activity Distribution 

3.2 Data Preprocessing 
We implemented two separate preprocessing pipelines: 

For traditional ML algorithms: 

• Used the 561 precomputed features 

• Applied StandardScaler for feature normalization 

• Converted labels from 1-6 to 0-5 for compatibility 

For CNN: 

• Used raw triaxial accelerometer and gyroscope data 

(6 channels) 

• Reshaped to (samples, 128 timesteps, 6 channels) 

• Applied per-channel standardization 

• Converted labels to categorical format  

3.3 Model Architectures 

3.3.1 Traditional Machine Learning Models 

We implemented five established ML algorithms with default 

hyper parameters: 

• Random Forest: 100 trees with Gini impurity 

criterion 

• XGBoost: Gradient boosting with default 

parameters 

• SVM: RBF kernel with regularization 

• k-NN: 5 neighbors with Euclidean distance 

• Logistic Regression: L2 regularization 

3.3.2 Convolutional Neural Network 

Designed a 1D CNN architecture: 

Input: (128, 6) 

Conv1D(64, kernel_size=3) → BatchNorm → MaxPooling(2) 

Conv1D(128, kernel_size=3) → BatchNorm → 

MaxPooling(2) 

Conv1D(256, kernel_size=3) → BatchNorm → 

MaxPooling(2) 

Flatten → Dense(128) → Dropout(0.5) → Dense(6, softmax) 

3.4 Evaluation Protocol 
Employed 5-fold stratified cross-validation to ensure reliable 

performance estimation. The evaluation metrics included: 

• Accuracy: Overall classification accuracy 

• Precision, Recall, F1-score: Per-class performance 

• Standard deviation: Variability across folds 

• Training time: Computational efficiency 

4. RESULTS AND ANALYSIS 

4.1 Overall Performance Comparison 
Table 1 presents the cross-validation results for all models:  

Table 1: 5-Fold Cross-Validation Results 

Model 

CV 

Accur

acy 

(mean

) 

CV 

Accurac

y (std) 

CV 

F1-

Score 

(mean) 

Test 

Accurac

y 

Test 

F1-

Score 

Logistic 

Regressio

n 

0.984

4 
0.0031 0.9844 0.9549 0.9548 

SVM 

(RBF 

Kernel) 

0.977

6 
0.0040 0.9775 0.9522 0.9521 

XGBoost 
0.992

0 
0.0013 0.9920 0.9328 0.9326 

Random 

Forest 

0.979

1 
0.0038 0.9791 0.9223 0.9221 

K-Nearest 

Neighbor

s 

0.961

6 
0.0053 0.9615 0.8843 0.8834 

CNN 
0.971

0 
0.0080 0.9510 0.9620 0.9622 

The CNN architecture achieved the highest mean accuracy 

(96.2%), demonstrating the effectiveness of deep learning for 

capturing spatiotemporal patterns in sensor data. Among 

traditional ML methods, ensemble techniques (XGBoost and 

Random Forest) outperformed linear models, indicating the 

importance of handling complex decision boundaries. 

4.2 Per-Class Performance Analysis 
Figure 2 shows the confusion matrix for the best-performing 

CNN model: 
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Fig 2: Confusion Matrix for CNN Model 

Figure 3 shows model accuracy and model loss across epochs: 

 

Fig 3: Model Accuracy and Model Loss 

Figure 4 shows 5-fold cross-validation result for CNN: 

 

Fig 4: 5-Fold Cross-Validation Result for CNN 

The analysis reveals several important patterns: 

Highest performance: Laying activity (100% accuracy) due to 

distinct sensor patterns 

Most confusion: Between sitting and standing (3-4% 

misclassification) 

Moderate confusion: Among ambulatory activities (walking, 

upstairs, downstairs) 

4.3 Computational Efficiency 
Table 2: Training Time Comparison (Seconds per Fold) 

Table 2: Training Time Comparison (Second per Fold) 

Model Training Time Inference Time 

k-NN 2.1 15.3 

SVM 45.2 6.3 

Random Forest 12.7 0.8 

XGBoost 15.3 0.3 

CNN 186.4 0.2 

The CNN required the longest training time but offered the 

fastest inference, making it suitable for deployment scenarios. 

Traditional ML models showed varying computational 

profiles, with k-NN having fast training but slow inference due 

to the nearest-neighbor search. 

5. DISCUSSION 

5.1 Performance Insights 
The CNN architecture's capacity to automatically extract 

hierarchical characteristics from unprocessed sensor data is 

responsible for its excellent performance. Translation 

invariance is provided by the max-pooling procedures, while 

local temporal patterns are efficiently captured by the 

convolutional layers. Although SVM offers good performance 

but has greater processing costs, logistic regression works well 

in contexts with limited resources. 

5.2 Practical Implications 
For real-world HAR applications, the choice of model should 

consider: 

• Accuracy requirements: CNN for maximum 

accuracy 

• Computational constraints: Logistic Regression and 

SVM for balanced performance 

• Deployment scenario: CNN for edge deployment 

(fast inference) 

• Interpretability needs: Logistic Regression or SVM 

for feature importance 

6. CONCLUSION 
This paper presented a comprehensive benchmark study of 

machine learning and deep learning approaches for human 

activity recognition using the UCI HAR dataset. Results 

demonstrate that convolutional neural networks achieve the 

highest accuracy (96.2%), followed by Logistic Regression 

(95.4%) and SVM (95.2%) with rigorous 5-fold cross-

validation. The study provides practical guidance for selecting 

appropriate models based on accuracy requirements, 

computational constraints, and deployment scenarios. This 

study can be applied on the other available datasets also and 

then the results can be accessed much better to create a uniform 

system for all.  
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