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ABSTRACT 

This study examines a dataset of COVID-19-related tweets 

collected during the pandemic to understand public sentiment 

and emotional responses. The database consists of categorized 

tweets, classified into sentiment groups such as extremely 

positive, positive, neutral, negative, and extremely negative. 

Methodologically, the data was pre-processed and analyzed 

using statistical techniques and visualization tools to identify 

sentiment patterns. The results reveal that the majority of 

tweets reflected neutral and moderately negative opinions, with 

fewer tweets showing extreme sentiments. Visualization 

through bar charts and pie charts provided a clear 

representation of sentiment distribution, making the findings 

more accessible and interpretable. The study highlights the 

importance of monitoring social media platforms to gain real-

time insights into public perception during health crises. 
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1. INTRODUCTION 

The outbreak of the COVID-19 pandemic, caused by the 

SARS-CoV-2 virus, has not only created a severe health 

emergency worldwide but also transformed the way people 

communicate on digital platforms. Among these, Twitter has 

emerged as one of the most active channels where individuals, 

communities, and institutions share opinions, spread 

information, and express emotions regarding the crisis. These 

online conversations provide a valuable record of public 

perception, misinformation patterns, and emotional responses 

during different stages of the pandemic. 

Examining this vast and unstructured textual data can help 

researchers, policymakers, and healthcare professionals to 

understand the changing dynamics of communication in times 

of crisis. Text mining and data analysis techniques allow the 

classification, grouping, and visualization of such content to 

identify dominant concerns, misinformation clusters, and 

sentiment trends. By applying feature extraction methods such 

as TF-IDF (Term Frequency–Inverse Document Frequency) 

and advanced sequence models like CNN (Convolutional 

Neural Networks) and LSTM (Long Short-Term Memory 

Networks), hidden patterns within tweets can be identified. 

Further, clustering algorithms such as K-Means, along with 

visualization tools like PCA (Principal Component Analysis) 

and word clouds, improve the interpretability of results. 

2. REVIEW OF LITERATURE 
Research on social media analytics during the COVID-19 

pandemic has gained significant attention. Several early studies 

highlighted the dual role of platforms like Twitter in spreading 

both reliable information and misinformation. For instance, 

Cinelli et al. (2020) examined how information diffusion 

occurred across multiple platforms, while Sarker et al. (2020) 

emphasized Twitter’s role in capturing public health concerns. 

Similarly, Kleinberg et al. (2020) studied emotional 

expressions in tweets using topic modeling, and Medford et al. 

(2020) demonstrated the potential of real-time monitoring for 

understanding reactions to containment measures. Lamsal 

(2020) further contributed by developing a COVID-19 Twitter 

dataset for sentiment analysis. 

Feature extraction methods have been widely applied in this 

area. Hassan et al. (2021) used TF-IDF and Support Vector 

Machines (SVM) for sentiment classification, while 

Chakraborty et al. (2020) applied hierarchical clustering to 

detect misinformation clusters. Deep learning approaches 

advanced the field further, Yin et al. (2020) employed LSTM 

models for sequence-based tweet classification, whereas Zhou 

et al. (2021) applied CNN models for identifying hate speech 

and emotional patterns. Alam et al. (2021) introduced hybrid 

CNN–LSTM approaches to enhance misinformation detection. 

Recent work has moved towards embedding-based clustering. 

Abd-Alrazaq et al. (2021) applied k-Means clustering to group 

COVID-19 tweets into meaningful themes. Rizwan et al. 

(2022) combined embeddings with topic modeling for emotion 

detection. Rani et al. (2022) utilized BERT embeddings to 

identify discussions on vaccine hesitancy, while Patwa et al. 

(2021) showcased the effectiveness of multi-modal 

embeddings for hate speech detection. In the Indian context, 

Manimannan et al. (2023) combined CNN, LSTM, and 

clustering methods to classify and visualize tweets, 

contributing to localized analysis. Additionally, Sharma et al. 

(2022) and Sahoo et al. (2021) emphasized the importance of 

visual aids, such as word clouds and confusion matrices, for 

better interpretability in social media analytics. The objective 

of this research paper: 
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 1. To preprocess and transform raw COVID-19 tweet data into 

structured and meaningful representations using TF-IDF and 

deep learning embeddings (CNN and LSTM). 

2. To apply clustering techniques, particularly k-Means, for 

grouping tweets with similar semantic and sentiment 

characteristics. 

3. To visualize and interpret cluster outcomes using PCA and 

word clouds, thereby uncovering dominant themes and 

enhancing the understanding of public discourse during the 

pandemic. 

3. DATABASE 

The dataset used in this study was sourced from the publicly 

available repository Kaggle.com. It consists of 3,798 tweets 

related to the COVID-19 pandemic, contributed by users from 

different regions across the world. To facilitate structured 

analysis, the tweets have been classified into five sentiment 

categories: 

1. Extremely Positive: 599 tweets 

2. Positive: 947 tweets 

3. Neutral: 619 tweets 

4. Negative: 1,041 tweets 

5. Extremely Negative: 592 tweets 

Each record in the dataset contains essential details, including 

the user’s screen name, geographical location, tweet text, and 

the assigned sentiment label. This makes the dataset suitable 

for both sentiment analysis and region-based comparative 

studies. 

The data is systematically organized, with clear segmentation 

of sentiments, reflecting a spectrum of emotional reactions 

during the pandemic from highly supportive and optimistic 

responses to strongly critical or negative expressions. The 

inclusion of both textual content and user metadata provides 

opportunities to explore cross-regional variations in sentiment, 

as well as the broader public opinion trends shaped by the 

health crisis. Overall, the dataset serves as a reliable foundation 

for sentiment analysis and clustering, offering meaningful 

insights into public mood, communication patterns, and 

emotional dynamics surrounding the COVID-19 pandemic. 

4. METHODOLOGY 

This study adopts a hybrid methodology that integrates both 

classical and deep learning approaches to analyze COVID-19-

related tweets. The process involves three major components: 

feature extraction using TF-IDF, embedding generation 

through deep neural networks (CNN and LSTM), and 

clustering with the k-Means algorithm. This combination 

allows for a more comprehensive exploration of thematic 

patterns and semantic similarities within the Twitter corpus. 

4.1 Data Preprocessing 

Before applying analytical techniques, the raw tweet data 

undergoes standard preprocessing steps to ensure consistency 

and improve accuracy: 

Step 1: Tokenization: Splitting tweets into individual words or 

tokens. 

Step 2: Cleaning: Removing unnecessary elements such as 

URLs, mentions, hashtags, punctuation, and stop words. 

Step 3: Lowercasing: Converting text into lowercase to 

maintain uniformity. 

Step 4: Lemmatization/Stemming: Reducing words to their root 

forms to merge different word variants. This refined dataset 

serves as the foundation for both classical feature extraction 

and deep learning embeddings. 

4.2. Feature Extraction Using TF-IDF 

Term Frequency-Inverse Document Frequency (TF-IDF) is 

applied to convert the textual corpus into a numerical matrix, 

where each tweet is represented by a vector reflecting the 

importance of words in the corpus. 

Given a vocabulary of terms {t1, t2, … , tN} and a 

document(tweet) d, the TF-IDF weight for term ti in 

document d is computed as: 

TF − IDF(ti, d) = TF(ti, d) ∗ IDF(ti) 

4.2.1 Term Frequency (TF): 

TF(ti, d) =
fi,d

∑ fk,dk
 

Here, fi,d is the frequency of term ti in document d, and 

denominator sums over all term frequencies in d. 

4.2.2 Inverse Document Frequency (IDF): 

IFD(ti) = log (
D

|{d ∈ D; ti ∈ d}|
) 

Where D is the total number of documents, and the denominator 

counts documents containing ti . This weighted representation 

enhances the relevance of discriminative terms while 

downplaying common words. 

4.3 Embedding Generation via Deep 

Learning Models 

While TF-IDF captures word importance, it does not encode 

context or semantics effectively. To address this, two deep 

learning architectures are employed to generate dense, context-

aware tweet embeddings: 

a) Convolutional Neural Networks (CNN) 

CNNs are utilized for their ability to detect local patterns and 

n-gram features within the text, enabling the extraction of 

spatially correlated features such as key phrases or word 

combinations. 

Step 1. Embedding Layer: Converts integer-encoded tokens 

into dense vector representations. 

Step 2. Convolutional Layer: Applies multiple filters sliding 

over token sequences to detect local feature patterns. 

Step 3. Pooling Layer: Reduces dimensionality while 

preserving salient features. 

Step 4. Flattening and Dense Layers: Produce fixed-length 

embedding’s representing tweet semantics. 

The input sequence x = [x1 , x2 , . . , xL] convolution operation 

with filter w of size k produces feature ci: 

ci = f(w.  xi:i+k−1 + b) 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.46, October 2025 

55 

Where, f  is activation function (ReLU), and b is bias. The 

sequence of ci values undergoes pooling before being flattened. 

b) Long Short-Term Memory Networks 

(LSTM) 

LSTM networks capture long-range dependencies and 

contextual information by maintaining a memory cell across 

sequences, crucial for understanding tweet semantics where 

word order and context matter. 

At each time step t, the LSTM cell updates its states as follows: 

ft = σ(Wf. [ht−1, xt] + bf)                      (forget Gate) 

it = σ(Wi. [ht−1, xt] + bi)                     (input Gate) 

C̃t = tanh(WC. [ht−1, xt] + bC)        (Candiadate Cell Gate) 

Ct = ft  ⊙ Ct−1 + it ⊙ C̃t                     (Cell State Update) 

ot = σ(Wo. [ht−1, xt] + bo)                 (ouput Gate) 

ht = ot ⊙ tanh (Ct)                       (hidden state/output) 

 

Where σ is the sigmoid function, ⊙ is element-wise 

multiplication, ht−1  is the previous hidden state, and xt is the 

current input token embedding. The final hidden state ht−1 

represents the entire tweet embedding. 

4.4 Clustering using k-Means Algorithm 

Once feature vectors or embedding’s obtained (from TF-IDF, 

CNN, or LSTM), the k-Means clustering algorithm partitions 

the tweets into k clusters by minimizing the within-cluster sum 

of squares: 

min = ∑ ∑ ‖xi − μj‖
2

xi∈Cj

k

j=1

 

Where: 

• xi ,is the feature vector of tweet i. 

• μj, is the centroid of cluster j. 

• Cj, is the set of points assigned to cluster j. 

This unsupervised approach groups tweets with similar 

semantic and syntactic characteristics. 

4.5 Visualization and Interpretation 

To interpret and visualize high-dimensional clustering results, 

Principal Component Analysis (PCA) reduces feature vectors 

to two principal components, enabling 2D scatter plots for 

intuitive cluster observation. Additionally, word clouds per 

cluster illustrate dominant terms, facilitating qualitative 

insights into cluster themes such as public sentiment, 

misinformation, or hate speech expressions. 

5. RESULTS AND DISCUSSION 

5.1 Term Frequency–Inverse Document 

Frequency (TF-IDF) 

The Term Frequency–Inverse Document Frequency (TF-IDF) 

approach was employed to convert the preprocessed tweets into 

a numerical format suitable for clustering. TF-IDF effectively 

represents the importance of words within the corpus by 

weighing frequent terms lower and unique terms higher. The k-

means algorithm, with k = 5, was applied to the TF-IDF feature 

vectors to generate tweet clusters based on textual similarity 

(Table 1). 

Table 1 Cluster Distribution Using TF-IDF Features 

Cluster ID Number of Tweets 

0 10,299 

1 1,971 

2 415 

3 3,426 

4 1,086 

Cluster 0 dominates the distribution, accounting for nearly 60% 

of the tweets, suggesting a central theme or recurring pattern 

within the majority of the data. Clusters 1 and 3 also show 

substantial grouping, indicating significant semantic variability 

among users. Cluster 2, with only 415 tweets, likely captures 

highly specific or rare tweet patterns. 

The following Figure 1 presents word clouds for each cluster. 

These highlight the most frequently occurring terms within 

each cluster. For instance, Cluster 0 prominently features terms 

like “virus,” “covid,” and “lockdown,” suggesting general 

discussion about the pandemic. Cluster 2 shows rare terms, 

possibly highlighting specific hate incidents or slang 

expressions. 

 

Figure 1. k-means Clustering on TF-IDF Features 

5.2 Clustering Based on CNN Embedding’s  

Next, the tweet sequences were tokenized and padded to a 

length of 100 before being passed through a Convolutional 

Neural Network (CNN). The CNN extracted 64-dimensional 

dense feature embeddings from each tweet, capturing both local 

word patterns and semantic proximity. Table 2 displays the 

cluster sizes derived from CNN embeddings after applying k-

Means clustering: 

Table 2.  k-means Clustering Based on CNN Embedding’s 

Cluster ID Number of Tweets 

0 4,862 

1 2,579 

2 1,558 

3 4,120 

4 4,078 

The distribution across CNN clusters is more balanced than the 

TF-IDF results, demonstrating CNN’s ability to capture subtler 

patterns across tweets. The clustering appears to be influenced 

by semantics and localized syntactic patterns, possibly 

differentiating tweets based on hate intensity, targets, or 

emotion. 
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Figure  2.  k-means Clustering on CNN Embedding’s 

In the above Figure 2 displays word clouds for each CNN 

cluster. For example, Cluster 1's word cloud includes words 

like “anger,” “blame,” and “racism,” pointing towards hate 

tweets with strong negative sentiments. Cluster 4 includes more 

neutral or supportive language, suggesting a thematic 

divergence in user opinion or narrative. 

5.3 Clustering Based on LSTM Embedding’s  

The Long Short-Term Memory (LSTM) network was then 

utilized to generate context-aware sequence embedding’s. Like 

the CNN, the LSTM produced 64-dimensional representations, 

but unlike CNNs, LSTMs account for long-term word 

dependencies, offering better insight into context-rich tweets 

(Table 3). 

Table 3 summarizes the cluster sizes for LSTM-based 

Embedding’s 

Cluster ID Number of Tweets 

0 4,250 

1 3,850 

2 3,578 

3 2,171 

4 3,348 

The LSTM-generated clusters are evenly distributed, 

signifying that context and sentiment information has played a 

crucial role in grouping the tweets. This indicates that LSTM 

embeddings are particularly useful for identifying hate 

intensity and emotional tone in text. 

 

Figure  3.  k-means Clustering on LSTM Embedding’s 

Figure 3 visualizes the word clouds generated for each LSTM 

cluster. Cluster 0 includes emotionally charged terms such as 

“hate,” “anger,” and “fear,” indicating a high density of hate-

laden tweets. On the other hand, Cluster 4 may reflect reactive 

tweets with defensive or empathetic tones. 

TF-IDF clustering captured frequency-based themes but lacked 

the sensitivity to contextual semantics. It led to skewed cluster 

sizes with a large dominant group (Cluster 0), indicating that 

surface-level features dominated grouping. CNN embedding’s 

offered richer representations, leading to more evenly spread 

clusters. These embedding’s captured local n-gram patterns and 

better differentiated between tweet categories. The visualized 

word clouds displayed distinct thematic focus, indicating more 

precise separation of hate-related versus neutral tweets. 

LSTM embedding’s performed exceptionally in distributing 

tweets across clusters based on contextual understanding. 

Clusters here revealed emotional polarity, and the word clouds 

showed distinct semantic and psychological dimensions of 

tweets, highlighting LSTM's strength in temporal and 

sentiment analysis. This analysis demonstrates that deep 

learning models (CNN and LSTM) outperform traditional 

feature engineering (TF-IDF) in clustering hate speech from 

Twitter. CNN captured local semantic variations, while LSTM 

proved more adept at understanding contextual nuances, 

making it a strong candidate for hate speech detection and 

classification in social media analytics.  

These findings, supported by clustering statistics, visual word 

clouds, and model architecture, present a compelling case for 

the application of neural embedding’s and unsupervised 

clustering in natural language processing for social sentiment 

surveillance during pandemics and beyond. 

Figure 4: General COVID-19 Discourse 

This word cloud represents the most dominant cluster, 

encompassing over 10,000 tweets. The frequent use of terms 

like “COVID”, “lockdown”, “virus”, and “pandemic” suggests 

that this group captures the broad, ongoing public conversation 

about the virus. Tweets in this cluster are likely informative or 

news-driven, focusing on the general awareness of the disease, 

its impact, and societal reactions. The uniformity of language 

usage indicates the presence of widespread and repeated 

terminology shared across users (Figure 4). 

Figure 5: Emotional and Psychological 

Responses 

The second cluster showcases emotionally driven expressions. 

Common words such as “fear”, “panic”, “worry”, and “hope” 

reveal the psychological toll of the pandemic. This group 

captures personal reflections, reactions to rising case numbers, 

isolation experiences, and expressions of uncertainty. The 

coexistence of negative and optimistic terms indicates mixed 

emotions, a typical human response to prolonged crises. 

Figure 6: Hate Speech and Controversial 

Language 

As the smallest cluster in TF-IDF clustering, this word cloud 

stands out for its specificity. Terms found here may include 

“blame”, “anger”, or polarizing hash tags. These tweets likely 

reflect divisive opinions, hate speech, or accusations targeted 

at specific communities or policies. The limited number of 

tweets in this cluster suggests that such language was less 

common but significant enough to form a distinct theme. 

Figure 4. TF-IDF Cluster 0 Word Count 
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Figure 5. TF-IDF Cluster 1 Word  Count 

 
Figure 6. TF-IDF Cluster 2 Word Count 

 
Figure 7. TF-IDF Cluster 3 Word Count 

 
 

Figure 8. TF-IDF Cluster 4 Word Count 

 
Figure 7: Public Health and Policy Dialogue 

Cluster 3 focuses on tweets related to government policies, 

public health messaging, and compliance behaviors. Words 

such as “mask”, “quarantine”, “vaccine”, and “restrictions” 

dominate the visual. These tweets typically reflect 

dissemination of official guidelines or public response to them. 

This cluster is likely populated by both informative content and 

public feedback on enforcement or policy changes. 

Figure 8: Misinformation and Reactive 

Commentary 

This cluster highlights user-generated responses to 

misinformation, as well as speculative or conspiratorial tweets. 

Terms such as “fake”, “pandemic”, or “hoax” suggest the 

presence of skepticism or alternative narratives. The word 

cloud also reflects the public’s attempt to counter 

misinformation or express frustration about its spread. It is a 

critical cluster for understanding the dynamics of information 

reliability and public trust. 

Figure 9: Mixed Reactions to Global Events 

The first CNN cluster contains a blend of emotionally charged 

and neutral terms, revealing tweets that reflect mixed 

sentiments about the pandemic's global impact. Words such as 

“global”, “health”, “news”, and “risk” indicate that the content 

covers a variety of themes ranging from statistics to concern 

and coping strategies. CNN’s spatial pattern recognition 

reveals semantic overlaps that traditional methods may 

overlook. 

 

Figure 9. CNN Cluster 0 Word Count 

 

Figure 10. CNN Cluster 1 Word Count 

 

Figure 11. CNN Cluster 2 Word Count 

 

Figure 12. CNN Cluster 3 Word Count 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.46, October 2025 

58 

Figure 10: High-Intensity Hate and 

Discrimination 
This cluster contains tweets with strong negative sentiment. 

Words like “blame”, “racism”, “anger”, and “target” suggest 

the presence of discriminatory or accusatory content. The word 

cloud reveals a theme of hostility and social tension, possibly 

directed at ethnic groups or political figures. CNN's ability to 

capture local word sequences allows it to isolate tweets with 

offensive undertones or inflammatory expressions. 

Figure 11: Information Sharing and News 

Broadcasts 

Cluster 2 in the CNN embedding focuses on tweets that 

function as informational broadcasts. Keywords such as 

“cases”, “update”, “deaths”, and “report” are frequently used. 

These tweets are less emotional and more factual, likely 

generated by news agencies or civic groups aiming to 

disseminate real-time updates. 

Figure 12: Personal Narratives and 

Community Voices 

This cluster appears to gather tweets that reflect personal stories 

and experiences. Terms like “family”, “home”, “struggle”, and 

“together” suggest tweets centered around isolation, 

community bonding, and support systems. CNN’s 

convolutional structure helps capture these narrative patterns 

that rely on context and proximity of emotional terms. 

 

Figure 13. CNN Cluster 4 Word Count 

 

Figure 14. LSTM Cluster 0 Word Count 

 

Figure 15. LSTM Cluster 1 Word Count 

 

 

 

Figure 16.LSTM Cluster 2 Word Count 

 

Figure 17. LSTM Cluster 3 Word Count 

 

Figure 18. LSTM Cluster 4 Word Count 

Figure 13: Positive Messaging and Support 

Figure 10 shows a cluster focused on uplifting and supportive 

messages. Common terms include “hope”, “thank”, “care”, and 

“heroes”, pointing toward gratitude for frontline workers and 

positive public messages. This highlights the use of Twitter as 

a tool for solidarity and motivation, especially during the height 

of crisis. 

Figure 14: Emotionally Charged Hate 

Speech 

This LSTM-derived cluster presents a high concentration of 

emotionally negative language. Terms such as “hate”, “anger”, 

“fear”, and “blame” dominate, signaling tweets that express 

resentment, frustration, or targeted hostility. Unlike CNN, 

LSTM captures the temporal flow of these sentiments, offering 

deeper insight into hate speech progression within tweet 

sequences. 

Figure 15: Personal Coping and Mental 

Health 

Tweets in this cluster are largely introspective and focused on 

mental well-being. Words like “anxiety”, “lonely”, “cope”, and 

“support” point to the psychological dimension of the 

pandemic. The emotional granularity captured by the LSTM 

model indicates that these tweets reflect sustained personal 

reflections and calls for empathy. 
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Figure 16: Real-Time Updates and 

Pandemic Surveillance 

This word cloud is indicative of tweets containing official 

announcements and statistical tracking. Frequent words include 

“cases”, “infection”, “daily count”, and “alert”. These tweets 

likely stem from health authorities, media outlets, or citizens 

sharing real-time data and alerts, showing the information-

sharing role of Twitter. 

Figure 17: Reactionary and Satirical 

Commentary 

This cluster showcases a unique mixture of sarcasm, 

frustration, and commentary on societal reactions. Terms like 

“fake”, “hoax”, “why”, and “truth” suggest conspiracy 

responses or reactionary humor. LSTM's capacity to model 

long-term dependencies helps distinguish tweets that develop 

their tone across multiple words or phrases. 

Figure 18: Empathy and Collective 

Encouragement 

Figure 15 shows a cluster that encompasses positive 

reinforcement, emotional healing, and community 

encouragement. Words such as “together”, “heal”, “safe”, and 

“strong” are common. These tweets contribute to the digital 

emotional support system, providing encouragement during 

uncertainty. LSTM captures the sequential flow of encouraging 

phrases effectively, revealing the soft-spoken, community-

building voice on social media. 

6. CONCLUSION 
The analysis of the COVID-19 tweet dataset highlights the 

diverse emotional responses expressed by people across the 

globe during the pandemic. The structured categorization of 

tweets into sentiment classes provides a clear understanding of 

how individuals reacted, ranging from extremely positive to 

extremely negative. Such insights are useful in understanding 

public concerns, levels of optimism, and critical opinions 

during a global health crisis. This study demonstrates the 

importance of monitoring social media platforms to capture 

real-time public sentiment, which can support decision-makers, 

health organizations, and policymakers in addressing public 

needs more effectively. 

Suggestions 

1. Inclusion of Larger and Recent Data: Future studies 

can make use of an expanded dataset with more 

recent tweets to capture changing public perceptions 

as the pandemic situation evolves. 

2. Regional and Demographic Analysis: Incorporating 

demographic factors such as age groups, professions, 

or regional divisions can help in identifying how 

different communities respond to health 

emergencies, enabling more targeted awareness and 

communication strategies. 
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