International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.46, October 2025

Evaluating Apache Kafka Performance and Operational
Efficiency: A Comparative Study of ZooKeeper and
KRaft Architectures

Ramesh V.

3400 W Plano Pkwy, Plano, TX 75075

ABSTRACT

Apache Kafka is a leading platform for building scalable,
distributed event streaming systems. Traditionally, Kafka has
relied on Apache ZooKeeper for managing cluster metadata
and coordinating controller elections. However, the recent
introduction of KRaft (Kafka Raft Metadata mode) eliminates
this dependency by embedding a Raft-based consensus
mechanism directly within Kafka [1] [6]. This architectural
evolution raises key questions about the comparative
performance, reliability, and operational efficiency of
ZooKeeper-based versus KRaft-based deployments. [7]

This study presents a comprehensive performance evaluation
of Kafka's ZooKeeper and KRaft modes across multiple
dimensions, including topic scalability, producer throughput,
controller failover response, and memory efficiency. Through
reproducible benchmarks involving 1,000-topic workloads,
multi-threaded producers, and real-world failure simulations,
the report analyzes the behavioral differences between the two
architectures. The findings offer valuable insights for platform
engineers, DevOps practitioners, and architects seeking to
optimize Kafka deployments for high-throughput, cloud-native
environments. [9] [15]

General Terms
Distributed Systems, Event Streaming, System Performance;
Scalability, Fault Tolerance

Keywords
Apache Kafka, ZooKeeper, KRaft, distributed systems, Raft
consensus, event streaming, performance benchmarking

1. INTRODUCTION

Apache Kafka has become a critical backbone of modern data
ecosystems, powering real-time event streaming across diverse
domains such as financial services, 1oT, e-commerce, and
analytics. As deployment scale increases, the architectural
design of Kafka clusters—particularly = metadata
management—plays a central role in determining overall
performance, reliability, and ease of operation. Traditionally,
Kafka has used Apache ZooKeeper as its external coordination
layer for managing cluster metadata and controller elections.
While reliable, this introduces complexity in monitoring,
failover handling, and operational tuning. To address these
challenges, Kafka introduced KRaft (Kafka Raft Metadata
mode)—a self-contained mode that integrates metadata
management and consensus directly within Kafka using the
Raft algorithm. [6] [7]

This paper presents a comparative evaluation of Kafka’s
ZooKeeper-based and KRaft-based deployments across
multiple performance dimensions. The analysis includes

metadata scalability during topic creation, producer throughput
optimization, memory behavior under load, and controller
failover responsiveness. Using uniform test environments and
reproducible workloads, the study offers practical insights into
the trade-offs and operational benefits of each architecture.

Key contributions include:

e Comprehensive benchmarking of cluster behavior at
scale under both architectures

e In-depth analysis of Kafka producer tuning (batch
size, compression, concurrency) in KRaft

e Evaluation of resilience through fault-injection
scenarios for controller transitions

e Actionable configuration and tuning
recommendations for JVM and cluster components

2. KAFKA ARCHITECTURE AND
DEPLOYMENT DESIGN

Apache Kafka supports two architectural models for managing
metadata and cluster coordination: the traditional ZooKeeper-
based architecture and the newer KRaft-based architecture.
Both models facilitate communication between producers,
brokers, and consumers, but differ significantly in how control-
plane responsibilities are handled.

2.1 Kafka with ZooKeeper

In its legacy form, Kafka relies on Apache ZooKeeper for
managing broker metadata, controller election, and
configuration persistence. ZooKeeper acts as an external
coordination service, tracking the state of active brokers,
facilitating controller elections, and storing configuration data
such as topic partitions and access policies. When a producer
initiates a message send, it contacts a Kafka broker to retrieve
partition leadership metadata. If not cached, the broker queries
ZooKeeper to determine the appropriate partition leader. This
metadata resolution process is transparent to the producer.
Once resolved, the producer pushes records directly to the
leader broker for the given partition. [2] [3]

Figure 1 illustrates the core components and data flow of this
architecture. Producers send messages to Kafka brokers, which
in turn interact with the ZooKeeper ensemble for coordination
tasks such as registering broker availability and electing the
active controller.

12

Kafka Cluster

ZooKeeper Ensemble

Producer 1
e [Ceomumers]
Producer 2 . . E,,
oy, g
g I =
g » .
e B i
s, R g
oy, .
Y2 Broker 2
(Controller) |
. e

Figure 1. Kafka Architecture Using ZooKeeper for
Metadata and Controller Management.

The Kafka controller, dynamically elected via ZooKeeper, is
responsible for assigning partition leadership, responding to
broker failures, and initiating recovery procedures. ZooKeeper
ensures that brokers are monitored through ephemeral nodes
and facilitates the re-election of a new controller upon the
failure of the current one.

On the consumer side, clients issue fetch requests to retrieve
messages from brokers and commit offsets to track progress.
Since Kafka 0.9, consumer offsets are stored in an internal
Kafka topic (_ consumer offsets), reducing pressure on
ZooKeeper.

While widely deployed, this model introduces operational
challenges. The dependency on ZooKeeper requires dedicated
monitoring, tuning, and high availability configuration. During
metadata-intensive operations—such as rapid topic creation or
large-scale partition rebalancing—ZooKeeper may become a
bottleneck, affecting cluster responsiveness.

2.2 Kafka with KRaft

Kafka Raft (KRaft) mode eliminates the ZooKeeper
dependency by embedding a Raft-based consensus protocol
directly within the Kafka brokers. This architecture
decentralizes metadata coordination and provides a self-
contained quorum-based control plane. [4][10]

In this model, a dedicated set of controller nodes manages the
cluster metadata. These controllers replicate an event-sourced
metadata log using Raft consensus. All metadata changes—
such as topic creation, leader election, or configuration
updates—are recorded as immutable entries in this log and
replicated across the quorum to maintain consistency. Figure 2
illustrates the KRaft-based architecture, highlighting the
separation between the controller quorum and the broker layer.
Brokers consume metadata updates from the replicated log and
maintain consistency with the controllers. Producers directly
query brokers for partition metadata and send messages without
the need for external coordination. Similarly, consumers
communicate solely with brokers to pull messages and commit
offsets.[8]

Kafka Cluster

Kraft Controller Quorum

Controller 1 |, * [Contraller2 |~ [Controller 3
Producer 2

Push Message|

| [Pl Message

s, | s [

Offset

Create { Delete Topics

Figure 2. Kafka Architecture in KRaft Mode with Internal
Metadata Quorum and Event-Sourced Control.

Administrative operations, such as creating or deleting topics,

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.46, October 2025

are routed through the active controller and committed to the
metadata log. New brokers or controllers can bootstrap by
reading from this log or its associated snapshots, allowing for
faster and more scalable state recovery.

KRaft offers improved failover speed, reduced latency during
metadata lookups, and simplified operational maintenance. Its
architecture is better suited for modern cloud-native
environments, where dynamic scaling, automation, and
performance isolation are critical.

2.3 Infrastructure and Cluster Design

To ensure a fair and practical evaluation of ZooKeeper-based
and KRaft-based Kafka architectures, both clusters were
deployed using Docker Compose with consistent tuning across
brokers. Each deployment was designed to reflect commonly
used configurations in real-world environments, while focusing
on minimizing infrastructure overhead.

ZooKeeper-Based Kafka Cluster

The ZooKeeper-based cluster was deployed with three Kafka
brokers (kafkal, kafka2, kafka3) and one ZooKeeper node
(zookeeper). Each broker is connected to the ZooKeeper
service via KAFKA ZOOKEEPER CONNECT. Brokers
were configured with internal and external listener mappings,
static heap memory allocation (-Xms4g -Xmx4g), and
appropriate replication factors for internal topics such as
~_consumer offsets and transaction logs. JMX ports were
exposed for monitoring, and native memory tracking was
enabled to capture JVM-level metrics. While the test used a
single ZooKeeper container for simplicity, this represents a
typical base configuration and could be expanded to a
replicated ensemble in production.

KRaft-Based Kafka Cluster

The KRaft-based Kafka cluster was deployed using the KRaft
metadata mode (KIP-866) with three nodes—katkal, kafka2,
and kafka3—each configured to act as both a broker and a
controller. This co-located design is consistent with how KRaft
is commonly deployed in smaller or mid-sized clusters. All
nodes were assigned unique KAFKA NODE ID values and
shared KAFKA CONTROLLER QUORUM_VOTERS
string to establish a Raft quorum for metadata management.

A two-phase startup approach was used. In the first phase
(docker-compose.pause.yml), nodes were launched in a paused
state using a no-op command to allow for explicit formatting of
metadata storage using kafka-storage format. In the second
phase (docker-compose.active.yml), brokers were started using
kafka-server-start ~ with externalized server.properties
configurations mounted into each container.

Each KRaft node exposed a PLAINTEXT listener for inter-
broker and client communication, and a CONTROLLER
listener for Raft-based metadata coordination. Heap memory
was statically set to 2 GB, and performance tuning options such
as increased network and I/O threads were configured. Metrics
and JMX exposure were also enabled to maintain parity with
the ZooKeeper-based deployment.

Node Efficiency

The ZooKeeper-based architecture required four total
containers (3 brokers + 1 ZooKeeper), while the KRaft-based
setup required only three, each fulfilling dual roles. This
reflects a reduction in infrastructure usage and operational
complexity. In the KRaft model, control-plane and data-plane
responsibilities are unified within the same nodes, reducing the
coordination burden and eliminating external ZooKeeper
dependencies.

13

3. KAFKA PARTITION SCALABILITY:
COMPARATIVE ANALYSIS OF
ZOOKEEPER-BASED VS. KRAFT-
BASED CLUSTERS

3.1 Objective

This benchmark evaluates how Apache Kafka scales from 250
to 1000 topics or above (~10,000 partitions) under ZooKeeper
and KRaft metadata modes. The test focuses on JVM memory
usage (heap, class, thread, code cache), broker health, and
metadata behavior during sustained topic growth, simulating
enterprise-grade multi-tenant workloads.

3.2 Experimental Setup

The testing methodology involved progressively creating
topics in batches, targeting milestones of 500, 1000, and
beyond, while monitoring heap usage, class space, and
metaspace consumption at each stage. Additionally, cluster
health and stability were closely observed to determine the
failure thresholds under increasing metadata load. JVM-level
metrics were collected uniformly via JMX and CLI tools,
using Docker-based setups to ensure reproducibility and
consistent monitoring across both architectures.

3.3 Heap Usage and Stability Comparison:
Kafka KRaft vs Zookeeper under Topic
Scaling Load

This chart illustrates the heap memory usage trends across
two Kafka deployment models—KRaft (left) and ZooKeeper

(right)—based on two controlled topic creation tests.

e X-Axis: Number of topics created (500, 1000, and the
crash region)

e Y-Axis: Heap used (in MB), with annotated heap
usage % relative to the broker's maximum allocation
(4 GB)

Figure 3. Heap Usage Comparison Between Kafka KRaft
and ZooKeeper-Based Clusters

One of the most notable advantages of KRaft mode is its lower
heap usage at scale. In KRaft Test 1, heap usage across all
brokers peaked around 880 MB at 1000 topics, and even
showed a slight reduction near the crash point at approximately
1272 topics. In contrast, ZooKeeper Test 1 exhibited
significantly higher memory consumption, with heap usage
rising beyond 1.2 GB at 1000 topics, and no signs of garbage
collection recovery or stabilization, ultimately leading to a
crash shortly after 1100 topics. This demonstrates that KRaft
handles memory management far more efficiently and
gracefully under load compared to the traditional ZooKeeper
setup.

Another key strength of KRaft lies in its predictable and stable
memory usage patterns. In KRaft Test 2, heap usage grew
steadily and consistently as topics were created, indicating
well-managed resource scaling. On the other hand, ZooKeeper

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.46, October 2025

Test 2 showed a sharp and erratic increase in memory
consumption, particularly for kafka2 and kafka3, with usage
soaring to nearly 35% (around 1.4 GB) at 1000 topics. This
abrupt spike suggests that ZooKeeper-based Kafka clusters are
more vulnerable to garbage collection pressure and instability
when subjected to high rates of metadata operations.

Most importantly, KRaft demonstrated a higher crash
threshold, with the cluster staying healthy until nearly 1272
topics were created. Meanwhile, ZooKeeper-based clusters
failed consistently after just 1100 topics across both test runs.
This confirms KRaft’s superior scalability and robustness,
especially during intensive operations such as large-scale topic
provisioning.

3.4 MetaSpace and ClassSpace Usage

Comparison — Kafka KRaft vs.

ZooKeeper-Based Kafka
This figure compares JVM MetaSpace and ClassSpace

memory consumption patterns between Kafka KRaft (left) and
ZooKeeper-based Kafka (right) under different topic loads.

e X-Axis: Number of topics created (500, 1000, and
1240 for KRaft; 500 and 1000 for ZooKeeper)

e Y-Axis: Memory usage in kilobytes (KB)

Kafka KRaft Kafka ZooKeeper

T

Figure 4. Metaspace, Classspace Usage Comparison
Between Kafka KRaft and ZooKeeper-Based Clusters

The memory usage comparison between Kafka KRaft and
ZooKeeper-based clusters reveals a consistent advantage for
KRaft in terms of both MetaSpace and ClassSpace efficiency.
Across all topic volumes—500, 1000, and near the instability
threshold at 1240 topics—the KRaft-based brokers
demonstrate lower and more stable memory consumption
compared to their ZooKeeper counterparts.

In MetaSpace usage, KRaft brokers consistently use less
memory, with katkal, kafka2, and kafka3 maintaining values
below 49,200 KB even at 1240 topics. In contrast, ZooKeeper-
based brokers show noticeably higher MetaSpace usage, with
kafka3 exceeding 56,000 KB at 1240 topics. This upward trend
in ZooKeeper’s memory footprint becomes more pronounced
as the topic count increases, indicating steeper memory growth
and potential for earlier saturation.

A similar pattern is observed in ClassSpace usage. KRaft
brokers remain in a tight range around 5600 KB to 5700 KB,
while ZooKeeper-based brokers show a significantly higher
and uneven spread, especially with kafka3 reaching 6250 KB
at 1240 topics. Not only is the absolute usage higher under
ZooKeeper, but the imbalance between brokers is more
evident, which could lead to uneven performance or premature
failures on specific nodes.

Overall, the analysis confirms that KRaft handles topic
metadata with greater memory efficiency and consistency. This
makes KRaft more scalable and better suited for high-topic-
count workloads. The flatter memory growth curve and lower
absolute usage in both MetaSpace and ClassSpace positions
KRaft as the more robust option for deployments aiming to

14

reduce memory overhead and improve cluster stability as
metadata scales.

3.5 Conclusion

The comparison between Kafka KRaft and ZooKeeper-based
Kafka across both heap memory and metaspace/classspace
usage reveals a clear architectural advantage in favor of the
KRaft mode. In terms of heap usage, KRaft consistently
demonstrated lower memory consumption under load. Even
when the number of topics exceeded 1200, the KRaft brokers
maintained stable heap profiles with signs of garbage collection
recovery and no abrupt spikes. In contrast, ZooKeeper-based
Kafka showed aggressive and uneven heap growth, with usage
reaching over 1.4 GB by the 1000-topic mark in some brokers,
eventually leading to cluster failure at around 1100 topics. This
indicates that KRaft manages memory more efficiently and can
sustain heavier metadata workloads without becoming
unstable. [15][16]

When examining Metaspace and ClassSpace usage, the trend
continues in favor of KRaft. The Kafka KRaft brokers
maintained tightly grouped metaspace and classspace usage
across all tests, showing only a modest and predictable increase
as the topic count grew from 500 to over 1200. The values
remained around 48,000-49,000 KB for metaspace and around
5,400-5,600 KB for classspace, reflecting efficient class
loading and metadata retention. On the other hand, ZooKeeper-
based Katka brokers showed notably higher metaspace usage
(often crossing 55,000 KB), along with wider variation across
brokers and tests. Classspace usage also followed a similar
pattern, with ZooKeeper-based brokers consuming more
memory and exhibiting inconsistent growth.

In summary, Kafka KRaft demonstrates superior memory
efficiency—not only in heap utilization but also in the JVM's
metaspace and classspace areas—resulting in more stable,
scalable, and predictable performance. These findings make a
strong case for adopting KRaft in production environments,
especially where large-scale topic creation and metadata
handling are central to system behavior. [14]

4. KAFKA PRODUCER
PERFORMANCE BENCHMARK:
KAFKA KRAFT VS ZOOKEEPER-
BASED CLUSTERS

4.1 Objective

This test compares Kafka producer performance between
KRaft and ZooKeeper-based clusters under identical, fully
optimized configurations. The goal is to evaluate differences in
throughput and latency and determine which architecture offers
better suitability for throughput-intensive versus latency-
sensitive workloads.

4.2 Experimental Setup

A total of 1,000,000 messages were produced over an 8-second
test window to each cluster type. Both the ZooKeeper-based
and KRaft-based Kafka clusters were composed of three
brokers with identical hardware and JVM configurations. The
producer was tuned using batch sizing, GZIP compression, and
multi-threaded concurrency to reflect a high-performance
deployment scenario.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.46, October 2025

4.3 Results Overview

Metric ZooKeeper-Based KRaft-Based Kafka
Kafka

Peak

Throughput 190,585 records/sec 180,115 records/sec

Average

Throughput 188,836 records/sec 175,465 records/sec

Average

Latency 406.6 ms 341.7 ms

Maximum

Latency 896.0 ms 786.0 ms

Visual snapshots were captured to support this comparison,
showing producer throughput, latency statistics, and final
performance confirmation from each cluster type.

RaneshiafkaCluster$ sh producer-perf-test-kraft-optinized.sh

cluster

ncy, 466 ns Sith, 928 vs 95th, 935 s 59th, 94

Figure 6. Final producer performance in ZooKeeper-
based cluster

4.4 Analysis

While ZooKeeper-based Kafka yielded slightly higher
throughput—between 5% to 8% more—KRaft consistently
demonstrated lower latency across all metrics. The KRaft
cluster’s lower average and maximum latency illustrates its
efficiency in time-sensitive operations, especially under
concurrent producer pressure. These results suggest that when
low latency is prioritized over absolute throughput, KRaft
presents a better architectural choice.

4.5 Conclusion

ZooKeeper-based Kafka remains a viable choice for workloads
where peak throughput is critical. However, for real-time
analytics, telemetry pipelines, and latency-sensitive data
processing, KRaft proves to be the more robust solution. Its
ability to maintain consistent low latency, even under full
producer tuning, positions it as a preferred architecture for
modern, delay-sensitive Kafka deployments.[2] [3]

5. Kafka Topic Creation Benchmark:
Zookeeper vs. KRaft Mode
5.1 Objective

This benchmark evaluates the control-plane scalability of
Apache Kafka by comparing topic creation performance in
ZooKeeper-based and KRaft-based clusters. It highlights how
each architecture handles large-scale metadata operations, with

a focus on responsiveness, memory behavior, and broker
stability. [4]

15

5.2 Experimental Setup

A total of 1,000 topics were created, each with 10 partitions and
a replication factor of 3. The Kafka clusters—both ZooKeeper
and KRaft based—used three brokers with identical hardware
and JVM configurations. Metrics observed included total time
to complete topic creation, JVM heap trends, and broker
availability throughout the process.

5.3 Results Overview

ZooKeeper-Based

Metric Kafka KRaft-Based Kafka
3328 seconds 2054 seconds (~34.2

Total Time (~55.5 mins) mins)

Brokers Alive | 3 of 3 30f3

Throughput Slowed after 750 | Remained stable

Pattern topics throughout

Heap Gradual memory

Behavior increase Efficient and controlled

Snapshots were taken after topic creation to visualize execution
output and verify consistency in behavior and performance.

Figure 7. Topic creation output — ZooKeeper-based Kafka

Figure 8. Topic creation output — KRaft-based Kafka

One of the most notable advantages of KRaft mode is its lower
heap usage at scale. In KRaft Test 1, heap usage across all
brokers peaked around 880 MB at 1000 topics, and even
showed a slight reduction near the crash point at approximately
1272 topics. In contrast, ZooKeeper Test 1 exhibited
significantly higher memory consumption, with heap usage
rising beyond 1.2 GB at 1000 topics, and no signs of garbage
collection recovery or stabilization, ultimately leading to a
crash shortly after 1100 topics. This demonstrates that KRaft
handles memory management far more efficiently and
gracefully under load compared to the traditional ZooKeeper
setup.

Another key strength of KRaft lies in its predictable and stable
memory usage patterns. In KRaft Test 2, heap usage grew
steadily and consistently as topics were created, indicating
well-managed resource scaling. On the other hand, ZooKeeper
Test 2 showed a sharp and erratic increase in memory
consumption, particularly for kafka2 and kafka3, with usage
soaring to nearly 35% (around 1.4 GB) at 1000 topics. This
abrupt spike suggests that ZooKeeper-based Kafka clusters are
more vulnerable to garbage collection pressure and instability
when subjected to high rates of metadata operations.

Most importantly, KRaft demonstrated a higher crash

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.46, October 2025

threshold, with the cluster staying healthy until nearly 1272
topics were created. Meanwhile, ZooKeeper-based clusters
failed consistently after just 1100 topics across both test runs.
This confirms KRaft’s superior scalability and robustness,
especially during intensive operations such as large-scale topic
provisioning. [5]

5.4 Analysis

The ZooKeeper-based cluster showed a clear drop in
performance after about 750 topics, likely due to external
metadata coordination overhead. In contrast, the KRaft-based
setup remained stable throughout the test and completed the
operation roughly 38% faster. KRaft also exhibited more
consistent memory behavior, with less heap fluctuation across
brokers.

5.5 Conclusion

KRaft mode demonstrates stronger control-plane scalability
and operational efficiency under high-volume topic creation.
Its internal metadata management avoids the delays and
synchronization costs associated with ZooKeeper, making it
more suitable for modern dynamic workloads and large-scale
Kafka environments. [16]

6. KAFKA CONTROLLER FAILOVER
EVALUATION: ZOOKEEPER VS.

KRAFT MODE
6.1 Objective

This test evaluates the resilience and responsiveness of Kafka
clusters when subjected to controller-level failure scenarios. It
measures failover time, behavior during controller election, and
overall cluster stability in both ZooKeeper and KRaft
architectures.

6.2 Experimental Setup
Both ZooKeeper and KRaft clusters consisted of three brokers.
The following failure scenarios were tested on each:

S1: Kill the current controller broker
S2: Kill a non-controller broker
S3: Kill the controller and another broker simultaneously

S4: Stop all brokers and restart the cluster

6.3 Results Overview

Scenario | Action ZooKeeper 'KRaft 'New | URP

Recovery Recover | Contr

y oller

S1 Kill kafkal | 18s 6s kafka |0
(controller) | (undetected) 2

S2 Kill kafka2 | 18s 7s kaftka 0
(non- (undetected) 1
controller)

S3 Kill kafkal 14s (katkal | 13s kafka |0
+ kafka2 active) 1

S4 Restart all | 11s (katkal | 16s kafka 0
brokers active) 1

16

Controller logs and CLI output were captured to illustrate
cluster response and controller transition behavior.

Figure 9. Failover logs and recovery behavior —
ZooKeeper-based Kafka

Figure 10. Failover logs and recovery behavior — KRaft-
based Kafka

6.4 Analysis

In single-node failure scenarios (S1 and S2), KRaft consistently
achieved faster failover times, quickly detecting controller loss
and re-electing leadership. ZooKeeper-based clusters took
longer, with controller failover sometimes going undetected for
extended periods. Although both modes maintained high
availability and experienced no data loss or URPs, the visibility
of the election process in KRaft—enabled by its Raft log and
clearer CLI output—proved significantly more traceable than
ZooKeeper’s log-based behavior.

6.5 Conclusion

Both deployment modes demonstrate strong fault tolerance;
however, KRaft offers more efficient and observable controller
transitions. Its internal Raft-based election mechanism enables
quicker leadership recovery and improved operational clarity.
These results, together with earlier findings in topic creation
and producer performance, reinforce KRaft’s production
readiness—particularly for environments demanding low-
latency recovery and operational transparency.[12] [15]

7. SUMMARY AND FINAL REMARKS

This study benchmarked Apache Kafka across ZooKeeper-
based and KRaft-based architectures, evaluating key
operational aspects including partition scalability, producer
throughput, metadata handling, and controller failover. Both
configurations proved stable under stress, but distinct
differences emerged in performance and operational efficiency.

KRaft showed clear advantages in metadata management, with
consistent memory usage and improved scalability during
large-scale topic creation. Producer tuning experiments
confirmed that enabling batching, compression, and
multithreading significantly improved throughput and reduced
latency—particularly under KRaft, where integrated
coordination mechanisms scale more efficiently. Although
ZooKeeper-based clusters achieved slightly higher peak
throughput in some cases, KRaft consistently delivered lower
latency and faster controller failover, making it better suited for
real-time, latency-sensitive applications.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.46, October 2025

More importantly, KRaft simplifies Kafka’s control plane by
eliminating the need for an external coordination service. This
architectural shift reduces deployment complexity, removes
ZooKeeper-specific failure domains, and enables a unified,
maintainable control layer. In practice, the KRaft cluster
fulfilled both broker and controller roles using just three nodes,
compared to the six-node requirement in a typical ZooKeeper-
based setup—demonstrating a significant reduction in
infrastructure and operational overhead.

As Kafka adoption grows in containerized and cloud-native
environments, KRaft’s operational simplicity becomes a
critical advantage. It improves observability, accelerates
failover, and enables Kafka to scale with fewer components and
reduced configuration burden. [11]

In conclusion, KRaft mode provides a production-ready,
efficient, and resilient architecture for managing Katka’s
distributed metadata and control operations. Future work may
explore multi-cluster replication, cross-region controller
quorum behavior, and long-term scalability under dynamic
workloads. [13] [14]

8. ACKNOWLEDGMENTS

| sincerely thank the AT&T research paper reviewers for their
insightful feedback, which greatly contributed to improving
this work.

9. REFERENCES

[1] Apache Kafka Documentation, "KRaft Mode (KIP-500) —
Removing the dependency on ZooKeeper," Apache, 2024.
[Online]. Available:
https://kafka.apache.org/documentation/

[2] Apache ZooKeeper Documentation, "Apache ZooKeeper
Overview and Configuration," Apache, 2024. [Online].
Available: https://zookeeper.apache.org/doc/

[3] Confluent, "Apache Kafka Performance"[Online].
Available: https://developer.confluent.io/learn/kafka-
performance/

[4] Confluent Developer, "Understanding KRaft Mode," 2024.
[Online]. Available:
https://developer.confluent.io/learn/kraft/

[5] Spoud.io, "Embracing the Future of Kafka: Why It’s Time
to Migrate from ZooKeeper to KRaft," Medium, 2024.
[Online]. Available: https://spoud-
io.medium.com/embracing-the-future-of-katka-why-its-
time-to-migrate-from-zookeeper-to-kraft-fla5225ac48a

[6] Apache Kafka Improvement Proposal (KIP-500), "Replace
ZooKeeper with a Self-Managed Metadata Quorum,"
Apache, 2024. [Online]. Available:
https://cwiki.apache.org/confluence/display/K AFKA/KIP
-500%3 A+Replace+ZooKeeper+with+at+Self-
Managed+Metadata+Quorum

[7] Apache Katka Improvement Proposal (KIP-631), "The
Quorum-based Kafka Controller,” Apache, 2024.
[Online]. Available:
https://cwiki.apache.org/confluence/display/K AFKA/KIP
-631%3 A+ThetQuorum-based+Kafka+Controller

[8] Confluent, "The Architecture of KRaft Mode: How Kafka

Is Evolving," 2024. [Online]. Available:
https://docs.confluent.io/platform/current/kafka-
metadata/kraft.html

[9] Confluent, "Why replace ZooKeeper with Kafka Raft

17

(KRaft)," 2024. [Online]. Available:
https://www.confluent.io/blog/why-replace-zookeeper-
with-kafka-raft-the-log-of-all-logs/

[10] Confluent Documentation, "KRaft Overview," 2024.

[Online]. Available:
https://docs.confluent.io/platform/current/kafka-
metadata/kraft.html

[11] Confluent Documentation, "Migrate from ZooKeeper to
KRaft on Confluent Platform," 2024. [Online]. Available:
https://docs.confluent.io/platform/current/installation/mig
rate-zk-kraft.html

[12] Confluent, "Kafka 4.0 Release: Default KRaft, Queues,
Faster Rebalances," 2024. [Online]. Available:
https://www.confluent.io/blog/latest-apache-kafka-
release/

[13] SoftwareMill, "Apache Kafka 4.0: Simplified Architecture

I[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.46, October 2025

with Default KRaft," 2024. [Online]. Available:
https://softwaremill.com/apache-kafka-4-0-0-released-
kraft-queues-better-rebalance-performance/

[14] The New Stack, "Kafka Drops ZooKeeper for ‘Real-Time’

KRaft," 2024. [Online]. Available:
https://thenewstack.io/kafka-drops-zookeeper-for-real-
time-kraft/

[15] Arvind Kumar, "Deep Dive: How KRaft Improves Over
ZooKeeper in Kafka," Medium, 2025. [Online].
Available: https://codefarm0.medium.com/deep-dive-
how-kraft-improves-over-zookeeper-in-kafka-
f50b971e0c0e

[16] Sion Smith, "Apache Kafka’s KRaft Protocol: How to
Eliminate ZooKeeper and Boost Performance by 8x,"
0SO, 2025. [Online]. Available:
https://oso.sh/blog/apache-kafkas-kraft-protocol-how-to-
eliminate-zookeeper-and-boost-performance-by-8x/

18

https://docs.confluent.io/platform/current/kafka-metadata/kraft.html?utm_source=chatgpt.com
https://docs.confluent.io/platform/current/kafka-metadata/kraft.html?utm_source=chatgpt.com
https://docs.confluent.io/platform/current/kafka-metadata/kraft.html?utm_source=chatgpt.com
https://docs.confluent.io/platform/current/installation/migrate-zk-kraft.html?utm_source=chatgpt.com
https://docs.confluent.io/platform/current/installation/migrate-zk-kraft.html?utm_source=chatgpt.com
https://docs.confluent.io/platform/current/installation/migrate-zk-kraft.html?utm_source=chatgpt.com
https://www.confluent.io/blog/latest-apache-kafka-release/?utm_source=chatgpt.com
https://www.confluent.io/blog/latest-apache-kafka-release/?utm_source=chatgpt.com
https://www.confluent.io/blog/latest-apache-kafka-release/?utm_source=chatgpt.com
https://softwaremill.com/apache-kafka-4-0-0-released-kraft-queues-better-rebalance-performance/?utm_source=chatgpt.com
https://softwaremill.com/apache-kafka-4-0-0-released-kraft-queues-better-rebalance-performance/?utm_source=chatgpt.com
https://softwaremill.com/apache-kafka-4-0-0-released-kraft-queues-better-rebalance-performance/?utm_source=chatgpt.com
https://thenewstack.io/kafka-drops-zookeeper-for-real-time-kraft/?utm_source=chatgpt.com
https://thenewstack.io/kafka-drops-zookeeper-for-real-time-kraft/?utm_source=chatgpt.com
https://thenewstack.io/kafka-drops-zookeeper-for-real-time-kraft/?utm_source=chatgpt.com

