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ABSTRACT 

Apache Kafka is a leading platform for building scalable, 

distributed event streaming systems. Traditionally, Kafka has 

relied on Apache ZooKeeper for managing cluster metadata 

and coordinating controller elections. However, the recent 

introduction of KRaft (Kafka Raft Metadata mode) eliminates 

this dependency by embedding a Raft-based consensus 

mechanism directly within Kafka [1] [6]. This architectural 

evolution raises key questions about the comparative 

performance, reliability, and operational efficiency of 

ZooKeeper-based versus KRaft-based deployments. [7] 

This study presents a comprehensive performance evaluation 

of Kafka's ZooKeeper and KRaft modes across multiple 

dimensions, including topic scalability, producer throughput, 

controller failover response, and memory efficiency. Through 

reproducible benchmarks involving 1,000-topic workloads, 

multi-threaded producers, and real-world failure simulations, 

the report analyzes the behavioral differences between the two 

architectures. The findings offer valuable insights for platform 

engineers, DevOps practitioners, and architects seeking to 

optimize Kafka deployments for high-throughput, cloud-native 

environments. [9] [15] 
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1. INTRODUCTION 
Apache Kafka has become a critical backbone of modern data 

ecosystems, powering real-time event streaming across diverse 

domains such as financial services, IoT, e-commerce, and 

analytics. As deployment scale increases, the architectural 

design of Kafka clusters—particularly metadata 

management—plays a central role in determining overall 

performance, reliability, and ease of operation. Traditionally, 

Kafka has used Apache ZooKeeper as its external coordination 

layer for managing cluster metadata and controller elections. 

While reliable, this introduces complexity in monitoring, 

failover handling, and operational tuning. To address these 

challenges, Kafka introduced KRaft (Kafka Raft Metadata 

mode)—a self-contained mode that integrates metadata 

management and consensus directly within Kafka using the 

Raft algorithm. [6] [7] 

This paper presents a comparative evaluation of Kafka’s 

ZooKeeper-based and KRaft-based deployments across 

multiple performance dimensions. The analysis includes 

metadata scalability during topic creation, producer throughput 

optimization, memory behavior under load, and controller 

failover responsiveness. Using uniform test environments and 

reproducible workloads, the study offers practical insights into 

the trade-offs and operational benefits of each architecture. 

Key contributions include: 

● Comprehensive benchmarking of cluster behavior at 

scale under both architectures 

● In-depth analysis of Kafka producer tuning (batch 

size, compression, concurrency) in KRaft 

● Evaluation of resilience through fault-injection 

scenarios for controller transitions 

● Actionable configuration and tuning 

recommendations for JVM and cluster components 

2. KAFKA ARCHITECTURE AND 

DEPLOYMENT DESIGN 
Apache Kafka supports two architectural models for managing 

metadata and cluster coordination: the traditional ZooKeeper-

based architecture and the newer KRaft-based architecture. 

Both models facilitate communication between producers, 

brokers, and consumers, but differ significantly in how control-

plane responsibilities are handled. 

2.1 Kafka with ZooKeeper 
In its legacy form, Kafka relies on Apache ZooKeeper for 

managing broker metadata, controller election, and 

configuration persistence. ZooKeeper acts as an external 

coordination service, tracking the state of active brokers, 

facilitating controller elections, and storing configuration data 

such as topic partitions and access policies. When a producer 

initiates a message send, it contacts a Kafka broker to retrieve 

partition leadership metadata. If not cached, the broker queries 

ZooKeeper to determine the appropriate partition leader. This 

metadata resolution process is transparent to the producer. 

Once resolved, the producer pushes records directly to the 

leader broker for the given partition.  [2] [3] 

Figure 1 illustrates the core components and data flow of this 

architecture. Producers send messages to Kafka brokers, which 

in turn interact with the ZooKeeper ensemble for coordination 

tasks such as registering broker availability and electing the 

active controller. 
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Figure 1. Kafka Architecture Using ZooKeeper for 

Metadata and Controller Management. 

The Kafka controller, dynamically elected via ZooKeeper, is 

responsible for assigning partition leadership, responding to 

broker failures, and initiating recovery procedures. ZooKeeper 

ensures that brokers are monitored through ephemeral nodes 

and facilitates the re-election of a new controller upon the 

failure of the current one.  

On the consumer side, clients issue fetch requests to retrieve 

messages from brokers and commit offsets to track progress. 

Since Kafka 0.9, consumer offsets are stored in an internal 

Kafka topic (__consumer_offsets), reducing pressure on 

ZooKeeper. 

While widely deployed, this model introduces operational 

challenges. The dependency on ZooKeeper requires dedicated 

monitoring, tuning, and high availability configuration. During 

metadata-intensive operations—such as rapid topic creation or 

large-scale partition rebalancing—ZooKeeper may become a 

bottleneck, affecting cluster responsiveness. 

2.2 Kafka with KRaft 
Kafka Raft (KRaft) mode eliminates the ZooKeeper 

dependency by embedding a Raft-based consensus protocol 

directly within the Kafka brokers. This architecture 

decentralizes metadata coordination and provides a self-

contained quorum-based control plane.  [4][10] 

In this model, a dedicated set of controller nodes manages the 

cluster metadata. These controllers replicate an event-sourced 

metadata log using Raft consensus. All metadata changes—

such as topic creation, leader election, or configuration 

updates—are recorded as immutable entries in this log and 

replicated across the quorum to maintain consistency. Figure 2 

illustrates the KRaft-based architecture, highlighting the 

separation between the controller quorum and the broker layer. 

Brokers consume metadata updates from the replicated log and 

maintain consistency with the controllers. Producers directly 

query brokers for partition metadata and send messages without 

the need for external coordination. Similarly, consumers 

communicate solely with brokers to pull messages and commit 

offsets.[8] 

 
Figure 2. Kafka Architecture in KRaft Mode with Internal 

Metadata Quorum and Event-Sourced Control. 

Administrative operations, such as creating or deleting topics, 

are routed through the active controller and committed to the 

metadata log. New brokers or controllers can bootstrap by 

reading from this log or its associated snapshots, allowing for 

faster and more scalable state recovery. 

KRaft offers improved failover speed, reduced latency during 

metadata lookups, and simplified operational maintenance. Its 

architecture is better suited for modern cloud-native 

environments, where dynamic scaling, automation, and 

performance isolation are critical. 

2.3 Infrastructure and Cluster Design 
To ensure a fair and practical evaluation of ZooKeeper-based 

and KRaft-based Kafka architectures, both clusters were 

deployed using Docker Compose with consistent tuning across 

brokers. Each deployment was designed to reflect commonly 

used configurations in real-world environments, while focusing 

on minimizing infrastructure overhead. 

ZooKeeper-Based Kafka Cluster 

The ZooKeeper-based cluster was deployed with three Kafka 

brokers (kafka1, kafka2, kafka3) and one ZooKeeper node 

(zookeeper). Each broker is connected to the ZooKeeper 

service via KAFKA_ZOOKEEPER_CONNECT. Brokers 

were configured with internal and external listener mappings, 

static heap memory allocation (-Xms4g -Xmx4g), and 

appropriate replication factors for internal topics such as 

__consumer_offsets and transaction logs. JMX ports were 

exposed for monitoring, and native memory tracking was 

enabled to capture JVM-level metrics. While the test used a 

single ZooKeeper container for simplicity, this represents a 

typical base configuration and could be expanded to a 

replicated ensemble in production. 

KRaft-Based Kafka Cluster 
The KRaft-based Kafka cluster was deployed using the KRaft 

metadata mode (KIP-866) with three nodes—kafka1, kafka2, 

and kafka3—each configured to act as both a broker and a 

controller. This co-located design is consistent with how KRaft 

is commonly deployed in smaller or mid-sized clusters. All 

nodes were assigned unique KAFKA_NODE_ID values and 

shared KAFKA_CONTROLLER_QUORUM_VOTERS 

string to  establish a Raft quorum for metadata management. 

A two-phase startup approach was used. In the first phase 

(docker-compose.pause.yml), nodes were launched in a paused 

state using a no-op command to allow for explicit formatting of 

metadata storage using kafka-storage format. In the second 

phase (docker-compose.active.yml), brokers were started using 

kafka-server-start with externalized server.properties 

configurations mounted into each container. 

Each KRaft node exposed a PLAINTEXT listener for inter-

broker and client communication, and a CONTROLLER 

listener for Raft-based metadata coordination. Heap memory 

was statically set to 2 GB, and performance tuning options such 

as increased network and I/O threads were configured. Metrics 

and JMX exposure were also enabled to maintain parity with 

the ZooKeeper-based deployment. 

Node Efficiency 
The ZooKeeper-based architecture required four total 

containers (3 brokers + 1 ZooKeeper), while the KRaft-based 

setup required only three, each fulfilling dual roles. This 

reflects a reduction in infrastructure usage and operational 

complexity. In the KRaft model, control-plane and data-plane 

responsibilities are unified within the same nodes, reducing the 

coordination burden and eliminating external ZooKeeper 

dependencies. 
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3. KAFKA PARTITION SCALABILITY: 

COMPARATIVE ANALYSIS OF 

ZOOKEEPER-BASED VS. KRAFT-

BASED CLUSTERS 

3.1 Objective 
This benchmark evaluates how Apache Kafka scales from 250 

to 1000 topics or above (~10,000 partitions) under ZooKeeper 

and KRaft metadata modes. The test focuses on JVM memory 

usage (heap, class, thread, code cache), broker health, and 

metadata behavior during sustained topic growth, simulating 

enterprise-grade multi-tenant workloads. 

3.2 Experimental Setup 
The testing methodology involved progressively creating 

topics in batches, targeting milestones of 500, 1000, and 

beyond, while monitoring heap usage, class space, and 

metaspace consumption at each stage. Additionally, cluster 

health and stability were closely observed to determine the 

failure thresholds under increasing metadata load. JVM-level 

metrics were collected uniformly via JMX and CLI tools, 

using Docker-based setups to ensure reproducibility and 

consistent monitoring across both architectures. 

3.3 Heap Usage and Stability Comparison: 

Kafka KRaft vs Zookeeper under Topic 

Scaling Load 
This chart illustrates the heap memory usage trends across 

two Kafka deployment models—KRaft (left) and ZooKeeper 

(right)—based on two controlled topic creation tests. 

● X-Axis: Number of topics created (500, 1000, and the 

crash region) 

● Y-Axis: Heap used (in MB), with annotated heap 

usage % relative to the broker's maximum allocation 

(4 GB) 

 

 Figure 3. Heap Usage Comparison Between Kafka KRaft 

and ZooKeeper-Based Clusters 

One of the most notable advantages of KRaft mode is its lower 

heap usage at scale. In KRaft Test 1, heap usage across all 

brokers peaked around 880 MB at 1000 topics, and even 

showed a slight reduction near the crash point at approximately 

1272 topics. In contrast, ZooKeeper Test 1 exhibited 

significantly higher memory consumption, with heap usage 

rising beyond 1.2 GB at 1000 topics, and no signs of garbage 

collection recovery or stabilization, ultimately leading to a 

crash shortly after 1100 topics. This demonstrates that KRaft 

handles memory management far more efficiently and 

gracefully under load compared to the traditional ZooKeeper 

setup. 

Another key strength of KRaft lies in its predictable and stable 

memory usage patterns. In KRaft Test 2, heap usage grew 

steadily and consistently as topics were created, indicating 

well-managed resource scaling. On the other hand, ZooKeeper 

Test 2 showed a sharp and erratic increase in memory 

consumption, particularly for kafka2 and kafka3, with usage 

soaring to nearly 35% (around 1.4 GB) at 1000 topics. This 

abrupt spike suggests that ZooKeeper-based Kafka clusters are 

more vulnerable to garbage collection pressure and instability 

when subjected to high rates of metadata operations. 

Most importantly, KRaft demonstrated a higher crash 

threshold, with the cluster staying healthy until nearly 1272 

topics were created. Meanwhile, ZooKeeper-based clusters 

failed consistently after just 1100 topics across both test runs. 

This confirms KRaft’s superior scalability and robustness, 

especially during intensive operations such as large-scale topic 

provisioning. 

3.4 MetaSpace and ClassSpace Usage 

Comparison – Kafka KRaft vs. 

ZooKeeper-Based Kafka 
This figure compares JVM MetaSpace and ClassSpace 

memory consumption patterns between Kafka KRaft (left) and 

ZooKeeper-based Kafka (right) under different topic loads. 

● X-Axis: Number of topics created (500, 1000, and 

1240 for KRaft; 500 and 1000 for ZooKeeper) 

● Y-Axis: Memory usage in kilobytes (KB) 

 
Figure 4. Metaspace, Classspace Usage Comparison 

Between Kafka KRaft and ZooKeeper-Based Clusters 

The memory usage comparison between Kafka KRaft and 

ZooKeeper-based clusters reveals a consistent advantage for 

KRaft in terms of both MetaSpace and ClassSpace efficiency. 

Across all topic volumes—500, 1000, and near the instability 

threshold at 1240 topics—the KRaft-based brokers 

demonstrate lower and more stable memory consumption 

compared to their ZooKeeper counterparts. 

In MetaSpace usage, KRaft brokers consistently use less 

memory, with kafka1, kafka2, and kafka3 maintaining values 

below 49,200 KB even at 1240 topics. In contrast, ZooKeeper-

based brokers show noticeably higher MetaSpace usage, with 

kafka3 exceeding 56,000 KB at 1240 topics. This upward trend 

in ZooKeeper’s memory footprint becomes more pronounced 

as the topic count increases, indicating steeper memory growth 

and potential for earlier saturation. 

A similar pattern is observed in ClassSpace usage. KRaft 

brokers remain in a tight range around 5600 KB to 5700 KB, 

while ZooKeeper-based brokers show a significantly higher 

and uneven spread, especially with kafka3 reaching 6250 KB 

at 1240 topics. Not only is the absolute usage higher under 

ZooKeeper, but the imbalance between brokers is more 

evident, which could lead to uneven performance or premature 

failures on specific nodes. 

Overall, the analysis confirms that KRaft handles topic 

metadata with greater memory efficiency and consistency. This 

makes KRaft more scalable and better suited for high-topic-

count workloads. The flatter memory growth curve and lower 

absolute usage in both MetaSpace and ClassSpace positions 

KRaft as the more robust option for deployments aiming to 
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reduce memory overhead and improve cluster stability as 

metadata scales. 

3.5 Conclusion 
The comparison between Kafka KRaft and ZooKeeper-based 

Kafka across both heap memory and metaspace/classspace 

usage reveals a clear architectural advantage in favor of the 

KRaft mode. In terms of heap usage, KRaft consistently 

demonstrated lower memory consumption under load. Even 

when the number of topics exceeded 1200, the KRaft brokers 

maintained stable heap profiles with signs of garbage collection 

recovery and no abrupt spikes. In contrast, ZooKeeper-based 

Kafka showed aggressive and uneven heap growth, with usage 

reaching over 1.4 GB by the 1000-topic mark in some brokers, 

eventually leading to cluster failure at around 1100 topics. This 

indicates that KRaft manages memory more efficiently and can 

sustain heavier metadata workloads without becoming 

unstable. [15][16] 

When examining Metaspace and ClassSpace usage, the trend 

continues in favor of KRaft. The Kafka KRaft brokers 

maintained tightly grouped metaspace and classspace usage 

across all tests, showing only a modest and predictable increase 

as the topic count grew from 500 to over 1200. The values 

remained around 48,000–49,000 KB for metaspace and around 

5,400–5,600 KB for classspace, reflecting efficient class 

loading and metadata retention. On the other hand, ZooKeeper-

based Kafka brokers showed notably higher metaspace usage 

(often crossing 55,000 KB), along with wider variation across 

brokers and tests. Classspace usage also followed a similar 

pattern, with ZooKeeper-based brokers consuming more 

memory and exhibiting inconsistent growth. 

In summary, Kafka KRaft demonstrates superior memory 

efficiency—not only in heap utilization but also in the JVM's 

metaspace and classspace areas—resulting in more stable, 

scalable, and predictable performance. These findings make a 

strong case for adopting KRaft in production environments, 

especially where large-scale topic creation and metadata 

handling are central to system behavior. [14] 

4. KAFKA PRODUCER  

PERFORMANCE BENCHMARK: 

KAFKA KRAFT VS ZOOKEEPER-

BASED CLUSTERS 

4.1 Objective 
This test compares Kafka producer performance between 

KRaft and ZooKeeper-based clusters under identical, fully 

optimized configurations. The goal is to evaluate differences in 

throughput and latency and determine which architecture offers 

better suitability for throughput-intensive versus latency-

sensitive workloads. 

4.2 Experimental Setup 
A total of 1,000,000 messages were produced over an 8-second 

test window to each cluster type. Both the ZooKeeper-based 

and KRaft-based Kafka clusters were composed of three 

brokers with identical hardware and JVM configurations. The 

producer was tuned using batch sizing, GZIP compression, and 

multi-threaded concurrency to reflect a high-performance 

deployment scenario. 

 

 

 

4.3 Results Overview 

Metric ZooKeeper-Based 

Kafka 

KRaft-Based Kafka 

Peak 

Throughput 190,585 records/sec 180,115 records/sec 

Average 

Throughput 188,836 records/sec 175,465 records/sec 

Average 

Latency 406.6 ms 341.7 ms 

Maximum 

Latency 896.0 ms 786.0 ms 

 

Visual snapshots were captured to support this comparison, 

showing producer throughput, latency statistics, and final 

performance confirmation from each cluster type. 

 

Figure 5. Final producer performance in KRaft-based 

cluster 

 

Figure 6. Final producer performance in ZooKeeper-

based cluster 

4.4 Analysis 
While ZooKeeper-based Kafka yielded slightly higher 

throughput—between 5% to 8% more—KRaft consistently 

demonstrated lower latency across all metrics. The KRaft 

cluster’s lower average and maximum latency illustrates its 

efficiency in time-sensitive operations, especially under 

concurrent producer pressure. These results suggest that when 

low latency is prioritized over absolute throughput, KRaft 

presents a better architectural choice. 

4.5 Conclusion 
ZooKeeper-based Kafka remains a viable choice for workloads 

where peak throughput is critical. However, for real-time 

analytics, telemetry pipelines, and latency-sensitive data 

processing, KRaft proves to be the more robust solution. Its 

ability to maintain consistent low latency, even under full 

producer tuning, positions it as a preferred architecture for 

modern, delay-sensitive Kafka deployments.[2] [3] 

5. Kafka Topic Creation Benchmark: 

Zookeeper vs. KRaft Mode 

5.1 Objective 
This benchmark evaluates the control-plane scalability of 

Apache Kafka by comparing topic creation performance in 

ZooKeeper-based and KRaft-based clusters. It highlights how 

each architecture handles large-scale metadata operations, with 

a focus on responsiveness, memory behavior, and broker 

stability. [4] 
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5.2 Experimental Setup 
A total of 1,000 topics were created, each with 10 partitions and 

a replication factor of 3. The Kafka clusters—both ZooKeeper 

and KRaft based—used three brokers with identical hardware 

and JVM configurations. Metrics observed included total time 

to complete topic creation, JVM heap trends, and broker 

availability throughout the process. 

5.3 Results Overview 

Metric 

ZooKeeper-Based 

Kafka KRaft-Based Kafka 

Total Time 

3328 seconds 

(~55.5 mins) 

2054 seconds (~34.2 

mins) 

Brokers Alive 3 of 3 3 of 3 

Throughput 

Pattern 

Slowed after 750 

topics 

Remained stable 

throughout 

Heap 

Behavior 

Gradual memory 

increase Efficient and controlled 

 

Snapshots were taken after topic creation to visualize execution 

output and verify consistency in behavior and performance. 

Figure 7. Topic creation output – ZooKeeper-based Kafka 

 

Figure 8. Topic creation output – KRaft-based Kafka 

One of the most notable advantages of KRaft mode is its lower 

heap usage at scale. In KRaft Test 1, heap usage across all 

brokers peaked around 880 MB at 1000 topics, and even 

showed a slight reduction near the crash point at approximately 

1272 topics. In contrast, ZooKeeper Test 1 exhibited 

significantly higher memory consumption, with heap usage 

rising beyond 1.2 GB at 1000 topics, and no signs of garbage 

collection recovery or stabilization, ultimately leading to a 

crash shortly after 1100 topics. This demonstrates that KRaft 

handles memory management far more efficiently and 

gracefully under load compared to the traditional ZooKeeper 

setup. 

Another key strength of KRaft lies in its predictable and stable 

memory usage patterns. In KRaft Test 2, heap usage grew 

steadily and consistently as topics were created, indicating 

well-managed resource scaling. On the other hand, ZooKeeper 

Test 2 showed a sharp and erratic increase in memory 

consumption, particularly for kafka2 and kafka3, with usage 

soaring to nearly 35% (around 1.4 GB) at 1000 topics. This 

abrupt spike suggests that ZooKeeper-based Kafka clusters are 

more vulnerable to garbage collection pressure and instability 

when subjected to high rates of metadata operations. 

Most importantly, KRaft demonstrated a higher crash 

threshold, with the cluster staying healthy until nearly 1272 

topics were created. Meanwhile, ZooKeeper-based clusters 

failed consistently after just 1100 topics across both test runs. 

This confirms KRaft’s superior scalability and robustness, 

especially during intensive operations such as large-scale topic 

provisioning. [5] 

5.4 Analysis 
The ZooKeeper-based cluster showed a clear drop in 

performance after about 750 topics, likely due to external 

metadata coordination overhead. In contrast, the KRaft-based 

setup remained stable throughout the test and completed the 

operation roughly 38% faster. KRaft also exhibited more 

consistent memory behavior, with less heap fluctuation across 

brokers. 

5.5 Conclusion 
KRaft mode demonstrates stronger control-plane scalability 

and operational efficiency under high-volume topic creation. 

Its internal metadata management avoids the delays and 

synchronization costs associated with ZooKeeper, making it 

more suitable for modern dynamic workloads and large-scale 

Kafka environments. [16]  

6. KAFKA CONTROLLER FAILOVER 

EVALUATION: ZOOKEEPER VS. 

KRAFT MODE 

6.1 Objective 
This test evaluates the resilience and responsiveness of Kafka 

clusters when subjected to controller-level failure scenarios. It 

measures failover time, behavior during controller election, and 

overall cluster stability in both ZooKeeper and KRaft 

architectures. 

6.2 Experimental Setup 

Both ZooKeeper and KRaft clusters consisted of three brokers. 

The following failure scenarios were tested on each: 

S1: Kill the current controller broker 

S2: Kill a non-controller broker 

S3: Kill the controller and another broker simultaneously 

S4: Stop all brokers and restart the cluster 

6.3 Results Overview  

Scenario Action ZooKeeper 

Recovery 

KRaft 

Recover

y 

New 

Contr

oller 

URP 

S1 Kill kafka1 

(controller) 

18s 

(undetected) 

6s kafka

2 

0 

S2 Kill kafka2 

(non-

controller) 

18s 

(undetected) 

7s kafka

1 

0 

S3 Kill kafka1 

+ kafka2 

14s (kafka1 

active) 

13s kafka

1 

0 

S4 Restart all 

brokers 

11s (kafka1 

active) 

16s kafka

1 

0 
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Controller logs and CLI output were captured to illustrate 

cluster response and controller transition behavior. 

Figure 9. Failover logs and recovery behavior – 

ZooKeeper-based Kafka 

 
Figure 10. Failover logs and recovery behavior – KRaft-

based Kafka 

6.4 Analysis 
In single-node failure scenarios (S1 and S2), KRaft consistently 

achieved faster failover times, quickly detecting controller loss 

and re-electing leadership. ZooKeeper-based clusters took 

longer, with controller failover sometimes going undetected for 

extended periods. Although both modes maintained high 

availability and experienced no data loss or URPs, the visibility 

of the election process in KRaft—enabled by its Raft log and 

clearer CLI output—proved significantly more traceable than 

ZooKeeper’s log-based behavior. 

6.5 Conclusion 
Both deployment modes demonstrate strong fault tolerance; 

however, KRaft offers more efficient and observable controller 

transitions. Its internal Raft-based election mechanism enables 

quicker leadership recovery and improved operational clarity. 

These results, together with earlier findings in topic creation 

and producer performance, reinforce KRaft’s production 

readiness—particularly for environments demanding low-

latency recovery and operational transparency.[12]  [15] 

7. SUMMARY AND FINAL REMARKS 
This study benchmarked Apache Kafka across ZooKeeper-

based and KRaft-based architectures, evaluating key 

operational aspects including partition scalability, producer 

throughput, metadata handling, and controller failover. Both 

configurations proved stable under stress, but distinct 

differences emerged in performance and operational efficiency. 

KRaft showed clear advantages in metadata management, with 

consistent memory usage and improved scalability during 

large-scale topic creation. Producer tuning experiments 

confirmed that enabling batching, compression, and 

multithreading significantly improved throughput and reduced 

latency—particularly under KRaft, where integrated 

coordination mechanisms scale more efficiently. Although 

ZooKeeper-based clusters achieved slightly higher peak 

throughput in some cases, KRaft consistently delivered lower 

latency and faster controller failover, making it better suited for 

real-time, latency-sensitive applications. 

More importantly, KRaft simplifies Kafka’s control plane by 

eliminating the need for an external coordination service. This 

architectural shift reduces deployment complexity, removes 

ZooKeeper-specific failure domains, and enables a unified, 

maintainable control layer. In practice, the KRaft cluster 

fulfilled both broker and controller roles using just three nodes, 

compared to the six-node requirement in a typical ZooKeeper-

based setup—demonstrating a significant reduction in 

infrastructure and operational overhead. 

As Kafka adoption grows in containerized and cloud-native 

environments, KRaft’s operational simplicity becomes a 

critical advantage. It improves observability, accelerates 

failover, and enables Kafka to scale with fewer components and 

reduced configuration burden. [11] 

In conclusion, KRaft mode provides a production-ready, 

efficient, and resilient architecture for managing Kafka’s 

distributed metadata and control operations. Future work may 

explore multi-cluster replication, cross-region controller 

quorum behavior, and long-term scalability under dynamic 

workloads. [13] [14] 
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