
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.46, October 2025

12

Evaluating Apache Kafka Performance and Operational

Efficiency: A Comparative Study of ZooKeeper and

KRaft Architectures

Ramesh V.
AT&T

3400 W Plano Pkwy, Plano, TX 75075

ABSTRACT

Apache Kafka is a leading platform for building scalable,

distributed event streaming systems. Traditionally, Kafka has

relied on Apache ZooKeeper for managing cluster metadata

and coordinating controller elections. However, the recent

introduction of KRaft (Kafka Raft Metadata mode) eliminates

this dependency by embedding a Raft-based consensus

mechanism directly within Kafka [1] [6]. This architectural

evolution raises key questions about the comparative

performance, reliability, and operational efficiency of

ZooKeeper-based versus KRaft-based deployments. [7]

This study presents a comprehensive performance evaluation

of Kafka's ZooKeeper and KRaft modes across multiple

dimensions, including topic scalability, producer throughput,

controller failover response, and memory efficiency. Through

reproducible benchmarks involving 1,000-topic workloads,

multi-threaded producers, and real-world failure simulations,

the report analyzes the behavioral differences between the two

architectures. The findings offer valuable insights for platform

engineers, DevOps practitioners, and architects seeking to

optimize Kafka deployments for high-throughput, cloud-native

environments. [9] [15]

General Terms

Distributed Systems, Event Streaming, System Performance;

Scalability, Fault Tolerance

Keywords
Apache Kafka, ZooKeeper, KRaft, distributed systems, Raft

consensus, event streaming, performance benchmarking

1. INTRODUCTION
Apache Kafka has become a critical backbone of modern data

ecosystems, powering real-time event streaming across diverse

domains such as financial services, IoT, e-commerce, and

analytics. As deployment scale increases, the architectural

design of Kafka clusters—particularly metadata

management—plays a central role in determining overall

performance, reliability, and ease of operation. Traditionally,

Kafka has used Apache ZooKeeper as its external coordination

layer for managing cluster metadata and controller elections.

While reliable, this introduces complexity in monitoring,

failover handling, and operational tuning. To address these

challenges, Kafka introduced KRaft (Kafka Raft Metadata

mode)—a self-contained mode that integrates metadata

management and consensus directly within Kafka using the

Raft algorithm. [6] [7]

This paper presents a comparative evaluation of Kafka’s

ZooKeeper-based and KRaft-based deployments across

multiple performance dimensions. The analysis includes

metadata scalability during topic creation, producer throughput

optimization, memory behavior under load, and controller

failover responsiveness. Using uniform test environments and

reproducible workloads, the study offers practical insights into

the trade-offs and operational benefits of each architecture.

Key contributions include:

● Comprehensive benchmarking of cluster behavior at

scale under both architectures

● In-depth analysis of Kafka producer tuning (batch

size, compression, concurrency) in KRaft

● Evaluation of resilience through fault-injection

scenarios for controller transitions

● Actionable configuration and tuning

recommendations for JVM and cluster components

2. KAFKA ARCHITECTURE AND

DEPLOYMENT DESIGN
Apache Kafka supports two architectural models for managing

metadata and cluster coordination: the traditional ZooKeeper-

based architecture and the newer KRaft-based architecture.

Both models facilitate communication between producers,

brokers, and consumers, but differ significantly in how control-

plane responsibilities are handled.

2.1 Kafka with ZooKeeper
In its legacy form, Kafka relies on Apache ZooKeeper for

managing broker metadata, controller election, and

configuration persistence. ZooKeeper acts as an external

coordination service, tracking the state of active brokers,

facilitating controller elections, and storing configuration data

such as topic partitions and access policies. When a producer

initiates a message send, it contacts a Kafka broker to retrieve

partition leadership metadata. If not cached, the broker queries

ZooKeeper to determine the appropriate partition leader. This

metadata resolution process is transparent to the producer.

Once resolved, the producer pushes records directly to the

leader broker for the given partition. [2] [3]

Figure 1 illustrates the core components and data flow of this

architecture. Producers send messages to Kafka brokers, which

in turn interact with the ZooKeeper ensemble for coordination

tasks such as registering broker availability and electing the

active controller.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.46, October 2025

13

Figure 1. Kafka Architecture Using ZooKeeper for

Metadata and Controller Management.

The Kafka controller, dynamically elected via ZooKeeper, is

responsible for assigning partition leadership, responding to

broker failures, and initiating recovery procedures. ZooKeeper

ensures that brokers are monitored through ephemeral nodes

and facilitates the re-election of a new controller upon the

failure of the current one.

On the consumer side, clients issue fetch requests to retrieve

messages from brokers and commit offsets to track progress.

Since Kafka 0.9, consumer offsets are stored in an internal

Kafka topic (__consumer_offsets), reducing pressure on

ZooKeeper.

While widely deployed, this model introduces operational

challenges. The dependency on ZooKeeper requires dedicated

monitoring, tuning, and high availability configuration. During

metadata-intensive operations—such as rapid topic creation or

large-scale partition rebalancing—ZooKeeper may become a

bottleneck, affecting cluster responsiveness.

2.2 Kafka with KRaft
Kafka Raft (KRaft) mode eliminates the ZooKeeper

dependency by embedding a Raft-based consensus protocol

directly within the Kafka brokers. This architecture

decentralizes metadata coordination and provides a self-

contained quorum-based control plane. [4][10]

In this model, a dedicated set of controller nodes manages the

cluster metadata. These controllers replicate an event-sourced

metadata log using Raft consensus. All metadata changes—

such as topic creation, leader election, or configuration

updates—are recorded as immutable entries in this log and

replicated across the quorum to maintain consistency. Figure 2

illustrates the KRaft-based architecture, highlighting the

separation between the controller quorum and the broker layer.

Brokers consume metadata updates from the replicated log and

maintain consistency with the controllers. Producers directly

query brokers for partition metadata and send messages without

the need for external coordination. Similarly, consumers

communicate solely with brokers to pull messages and commit

offsets.[8]

Figure 2. Kafka Architecture in KRaft Mode with Internal

Metadata Quorum and Event-Sourced Control.

Administrative operations, such as creating or deleting topics,

are routed through the active controller and committed to the

metadata log. New brokers or controllers can bootstrap by

reading from this log or its associated snapshots, allowing for

faster and more scalable state recovery.

KRaft offers improved failover speed, reduced latency during

metadata lookups, and simplified operational maintenance. Its

architecture is better suited for modern cloud-native

environments, where dynamic scaling, automation, and

performance isolation are critical.

2.3 Infrastructure and Cluster Design
To ensure a fair and practical evaluation of ZooKeeper-based

and KRaft-based Kafka architectures, both clusters were

deployed using Docker Compose with consistent tuning across

brokers. Each deployment was designed to reflect commonly

used configurations in real-world environments, while focusing

on minimizing infrastructure overhead.

ZooKeeper-Based Kafka Cluster

The ZooKeeper-based cluster was deployed with three Kafka

brokers (kafka1, kafka2, kafka3) and one ZooKeeper node

(zookeeper). Each broker is connected to the ZooKeeper

service via KAFKA_ZOOKEEPER_CONNECT. Brokers

were configured with internal and external listener mappings,

static heap memory allocation (-Xms4g -Xmx4g), and

appropriate replication factors for internal topics such as

__consumer_offsets and transaction logs. JMX ports were

exposed for monitoring, and native memory tracking was

enabled to capture JVM-level metrics. While the test used a

single ZooKeeper container for simplicity, this represents a

typical base configuration and could be expanded to a

replicated ensemble in production.

KRaft-Based Kafka Cluster
The KRaft-based Kafka cluster was deployed using the KRaft

metadata mode (KIP-866) with three nodes—kafka1, kafka2,

and kafka3—each configured to act as both a broker and a

controller. This co-located design is consistent with how KRaft

is commonly deployed in smaller or mid-sized clusters. All

nodes were assigned unique KAFKA_NODE_ID values and

shared KAFKA_CONTROLLER_QUORUM_VOTERS

string to establish a Raft quorum for metadata management.

A two-phase startup approach was used. In the first phase

(docker-compose.pause.yml), nodes were launched in a paused

state using a no-op command to allow for explicit formatting of

metadata storage using kafka-storage format. In the second

phase (docker-compose.active.yml), brokers were started using

kafka-server-start with externalized server.properties

configurations mounted into each container.

Each KRaft node exposed a PLAINTEXT listener for inter-

broker and client communication, and a CONTROLLER

listener for Raft-based metadata coordination. Heap memory

was statically set to 2 GB, and performance tuning options such

as increased network and I/O threads were configured. Metrics

and JMX exposure were also enabled to maintain parity with

the ZooKeeper-based deployment.

Node Efficiency
The ZooKeeper-based architecture required four total

containers (3 brokers + 1 ZooKeeper), while the KRaft-based

setup required only three, each fulfilling dual roles. This

reflects a reduction in infrastructure usage and operational

complexity. In the KRaft model, control-plane and data-plane

responsibilities are unified within the same nodes, reducing the

coordination burden and eliminating external ZooKeeper

dependencies.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.46, October 2025

14

3. KAFKA PARTITION SCALABILITY:

COMPARATIVE ANALYSIS OF

ZOOKEEPER-BASED VS. KRAFT-

BASED CLUSTERS

3.1 Objective
This benchmark evaluates how Apache Kafka scales from 250

to 1000 topics or above (~10,000 partitions) under ZooKeeper

and KRaft metadata modes. The test focuses on JVM memory

usage (heap, class, thread, code cache), broker health, and

metadata behavior during sustained topic growth, simulating

enterprise-grade multi-tenant workloads.

3.2 Experimental Setup
The testing methodology involved progressively creating

topics in batches, targeting milestones of 500, 1000, and

beyond, while monitoring heap usage, class space, and

metaspace consumption at each stage. Additionally, cluster

health and stability were closely observed to determine the

failure thresholds under increasing metadata load. JVM-level

metrics were collected uniformly via JMX and CLI tools,

using Docker-based setups to ensure reproducibility and

consistent monitoring across both architectures.

3.3 Heap Usage and Stability Comparison:

Kafka KRaft vs Zookeeper under Topic

Scaling Load
This chart illustrates the heap memory usage trends across

two Kafka deployment models—KRaft (left) and ZooKeeper

(right)—based on two controlled topic creation tests.

● X-Axis: Number of topics created (500, 1000, and the

crash region)

● Y-Axis: Heap used (in MB), with annotated heap

usage % relative to the broker's maximum allocation

(4 GB)

 Figure 3. Heap Usage Comparison Between Kafka KRaft

and ZooKeeper-Based Clusters

One of the most notable advantages of KRaft mode is its lower

heap usage at scale. In KRaft Test 1, heap usage across all

brokers peaked around 880 MB at 1000 topics, and even

showed a slight reduction near the crash point at approximately

1272 topics. In contrast, ZooKeeper Test 1 exhibited

significantly higher memory consumption, with heap usage

rising beyond 1.2 GB at 1000 topics, and no signs of garbage

collection recovery or stabilization, ultimately leading to a

crash shortly after 1100 topics. This demonstrates that KRaft

handles memory management far more efficiently and

gracefully under load compared to the traditional ZooKeeper

setup.

Another key strength of KRaft lies in its predictable and stable

memory usage patterns. In KRaft Test 2, heap usage grew

steadily and consistently as topics were created, indicating

well-managed resource scaling. On the other hand, ZooKeeper

Test 2 showed a sharp and erratic increase in memory

consumption, particularly for kafka2 and kafka3, with usage

soaring to nearly 35% (around 1.4 GB) at 1000 topics. This

abrupt spike suggests that ZooKeeper-based Kafka clusters are

more vulnerable to garbage collection pressure and instability

when subjected to high rates of metadata operations.

Most importantly, KRaft demonstrated a higher crash

threshold, with the cluster staying healthy until nearly 1272

topics were created. Meanwhile, ZooKeeper-based clusters

failed consistently after just 1100 topics across both test runs.

This confirms KRaft’s superior scalability and robustness,

especially during intensive operations such as large-scale topic

provisioning.

3.4 MetaSpace and ClassSpace Usage

Comparison – Kafka KRaft vs.

ZooKeeper-Based Kafka
This figure compares JVM MetaSpace and ClassSpace

memory consumption patterns between Kafka KRaft (left) and

ZooKeeper-based Kafka (right) under different topic loads.

● X-Axis: Number of topics created (500, 1000, and

1240 for KRaft; 500 and 1000 for ZooKeeper)

● Y-Axis: Memory usage in kilobytes (KB)

Figure 4. Metaspace, Classspace Usage Comparison

Between Kafka KRaft and ZooKeeper-Based Clusters

The memory usage comparison between Kafka KRaft and

ZooKeeper-based clusters reveals a consistent advantage for

KRaft in terms of both MetaSpace and ClassSpace efficiency.

Across all topic volumes—500, 1000, and near the instability

threshold at 1240 topics—the KRaft-based brokers

demonstrate lower and more stable memory consumption

compared to their ZooKeeper counterparts.

In MetaSpace usage, KRaft brokers consistently use less

memory, with kafka1, kafka2, and kafka3 maintaining values

below 49,200 KB even at 1240 topics. In contrast, ZooKeeper-

based brokers show noticeably higher MetaSpace usage, with

kafka3 exceeding 56,000 KB at 1240 topics. This upward trend

in ZooKeeper’s memory footprint becomes more pronounced

as the topic count increases, indicating steeper memory growth

and potential for earlier saturation.

A similar pattern is observed in ClassSpace usage. KRaft

brokers remain in a tight range around 5600 KB to 5700 KB,

while ZooKeeper-based brokers show a significantly higher

and uneven spread, especially with kafka3 reaching 6250 KB

at 1240 topics. Not only is the absolute usage higher under

ZooKeeper, but the imbalance between brokers is more

evident, which could lead to uneven performance or premature

failures on specific nodes.

Overall, the analysis confirms that KRaft handles topic

metadata with greater memory efficiency and consistency. This

makes KRaft more scalable and better suited for high-topic-

count workloads. The flatter memory growth curve and lower

absolute usage in both MetaSpace and ClassSpace positions

KRaft as the more robust option for deployments aiming to

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.46, October 2025

15

reduce memory overhead and improve cluster stability as

metadata scales.

3.5 Conclusion
The comparison between Kafka KRaft and ZooKeeper-based

Kafka across both heap memory and metaspace/classspace

usage reveals a clear architectural advantage in favor of the

KRaft mode. In terms of heap usage, KRaft consistently

demonstrated lower memory consumption under load. Even

when the number of topics exceeded 1200, the KRaft brokers

maintained stable heap profiles with signs of garbage collection

recovery and no abrupt spikes. In contrast, ZooKeeper-based

Kafka showed aggressive and uneven heap growth, with usage

reaching over 1.4 GB by the 1000-topic mark in some brokers,

eventually leading to cluster failure at around 1100 topics. This

indicates that KRaft manages memory more efficiently and can

sustain heavier metadata workloads without becoming

unstable. [15][16]

When examining Metaspace and ClassSpace usage, the trend

continues in favor of KRaft. The Kafka KRaft brokers

maintained tightly grouped metaspace and classspace usage

across all tests, showing only a modest and predictable increase

as the topic count grew from 500 to over 1200. The values

remained around 48,000–49,000 KB for metaspace and around

5,400–5,600 KB for classspace, reflecting efficient class

loading and metadata retention. On the other hand, ZooKeeper-

based Kafka brokers showed notably higher metaspace usage

(often crossing 55,000 KB), along with wider variation across

brokers and tests. Classspace usage also followed a similar

pattern, with ZooKeeper-based brokers consuming more

memory and exhibiting inconsistent growth.

In summary, Kafka KRaft demonstrates superior memory

efficiency—not only in heap utilization but also in the JVM's

metaspace and classspace areas—resulting in more stable,

scalable, and predictable performance. These findings make a

strong case for adopting KRaft in production environments,

especially where large-scale topic creation and metadata

handling are central to system behavior. [14]

4. KAFKA PRODUCER

PERFORMANCE BENCHMARK:

KAFKA KRAFT VS ZOOKEEPER-

BASED CLUSTERS

4.1 Objective
This test compares Kafka producer performance between

KRaft and ZooKeeper-based clusters under identical, fully

optimized configurations. The goal is to evaluate differences in

throughput and latency and determine which architecture offers

better suitability for throughput-intensive versus latency-

sensitive workloads.

4.2 Experimental Setup
A total of 1,000,000 messages were produced over an 8-second

test window to each cluster type. Both the ZooKeeper-based

and KRaft-based Kafka clusters were composed of three

brokers with identical hardware and JVM configurations. The

producer was tuned using batch sizing, GZIP compression, and

multi-threaded concurrency to reflect a high-performance

deployment scenario.

4.3 Results Overview

Metric ZooKeeper-Based

Kafka

KRaft-Based Kafka

Peak

Throughput 190,585 records/sec 180,115 records/sec

Average

Throughput 188,836 records/sec 175,465 records/sec

Average

Latency 406.6 ms 341.7 ms

Maximum

Latency 896.0 ms 786.0 ms

Visual snapshots were captured to support this comparison,

showing producer throughput, latency statistics, and final

performance confirmation from each cluster type.

Figure 5. Final producer performance in KRaft-based

cluster

Figure 6. Final producer performance in ZooKeeper-

based cluster

4.4 Analysis
While ZooKeeper-based Kafka yielded slightly higher

throughput—between 5% to 8% more—KRaft consistently

demonstrated lower latency across all metrics. The KRaft

cluster’s lower average and maximum latency illustrates its

efficiency in time-sensitive operations, especially under

concurrent producer pressure. These results suggest that when

low latency is prioritized over absolute throughput, KRaft

presents a better architectural choice.

4.5 Conclusion
ZooKeeper-based Kafka remains a viable choice for workloads

where peak throughput is critical. However, for real-time

analytics, telemetry pipelines, and latency-sensitive data

processing, KRaft proves to be the more robust solution. Its

ability to maintain consistent low latency, even under full

producer tuning, positions it as a preferred architecture for

modern, delay-sensitive Kafka deployments.[2] [3]

5. Kafka Topic Creation Benchmark:

Zookeeper vs. KRaft Mode

5.1 Objective
This benchmark evaluates the control-plane scalability of

Apache Kafka by comparing topic creation performance in

ZooKeeper-based and KRaft-based clusters. It highlights how

each architecture handles large-scale metadata operations, with

a focus on responsiveness, memory behavior, and broker

stability. [4]

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.46, October 2025

16

5.2 Experimental Setup
A total of 1,000 topics were created, each with 10 partitions and

a replication factor of 3. The Kafka clusters—both ZooKeeper

and KRaft based—used three brokers with identical hardware

and JVM configurations. Metrics observed included total time

to complete topic creation, JVM heap trends, and broker

availability throughout the process.

5.3 Results Overview

Metric

ZooKeeper-Based

Kafka KRaft-Based Kafka

Total Time

3328 seconds

(~55.5 mins)

2054 seconds (~34.2

mins)

Brokers Alive 3 of 3 3 of 3

Throughput

Pattern

Slowed after 750

topics

Remained stable

throughout

Heap

Behavior

Gradual memory

increase Efficient and controlled

Snapshots were taken after topic creation to visualize execution

output and verify consistency in behavior and performance.

Figure 7. Topic creation output – ZooKeeper-based Kafka

Figure 8. Topic creation output – KRaft-based Kafka

One of the most notable advantages of KRaft mode is its lower

heap usage at scale. In KRaft Test 1, heap usage across all

brokers peaked around 880 MB at 1000 topics, and even

showed a slight reduction near the crash point at approximately

1272 topics. In contrast, ZooKeeper Test 1 exhibited

significantly higher memory consumption, with heap usage

rising beyond 1.2 GB at 1000 topics, and no signs of garbage

collection recovery or stabilization, ultimately leading to a

crash shortly after 1100 topics. This demonstrates that KRaft

handles memory management far more efficiently and

gracefully under load compared to the traditional ZooKeeper

setup.

Another key strength of KRaft lies in its predictable and stable

memory usage patterns. In KRaft Test 2, heap usage grew

steadily and consistently as topics were created, indicating

well-managed resource scaling. On the other hand, ZooKeeper

Test 2 showed a sharp and erratic increase in memory

consumption, particularly for kafka2 and kafka3, with usage

soaring to nearly 35% (around 1.4 GB) at 1000 topics. This

abrupt spike suggests that ZooKeeper-based Kafka clusters are

more vulnerable to garbage collection pressure and instability

when subjected to high rates of metadata operations.

Most importantly, KRaft demonstrated a higher crash

threshold, with the cluster staying healthy until nearly 1272

topics were created. Meanwhile, ZooKeeper-based clusters

failed consistently after just 1100 topics across both test runs.

This confirms KRaft’s superior scalability and robustness,

especially during intensive operations such as large-scale topic

provisioning. [5]

5.4 Analysis
The ZooKeeper-based cluster showed a clear drop in

performance after about 750 topics, likely due to external

metadata coordination overhead. In contrast, the KRaft-based

setup remained stable throughout the test and completed the

operation roughly 38% faster. KRaft also exhibited more

consistent memory behavior, with less heap fluctuation across

brokers.

5.5 Conclusion
KRaft mode demonstrates stronger control-plane scalability

and operational efficiency under high-volume topic creation.

Its internal metadata management avoids the delays and

synchronization costs associated with ZooKeeper, making it

more suitable for modern dynamic workloads and large-scale

Kafka environments. [16]

6. KAFKA CONTROLLER FAILOVER

EVALUATION: ZOOKEEPER VS.

KRAFT MODE

6.1 Objective
This test evaluates the resilience and responsiveness of Kafka

clusters when subjected to controller-level failure scenarios. It

measures failover time, behavior during controller election, and

overall cluster stability in both ZooKeeper and KRaft

architectures.

6.2 Experimental Setup

Both ZooKeeper and KRaft clusters consisted of three brokers.

The following failure scenarios were tested on each:

S1: Kill the current controller broker

S2: Kill a non-controller broker

S3: Kill the controller and another broker simultaneously

S4: Stop all brokers and restart the cluster

6.3 Results Overview

Scenario Action ZooKeeper

Recovery

KRaft

Recover

y

New

Contr

oller

URP

S1 Kill kafka1

(controller)

18s

(undetected)

6s kafka

2

0

S2 Kill kafka2

(non-

controller)

18s

(undetected)

7s kafka

1

0

S3 Kill kafka1

+ kafka2

14s (kafka1

active)

13s kafka

1

0

S4 Restart all

brokers

11s (kafka1

active)

16s kafka

1

0

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.46, October 2025

17

Controller logs and CLI output were captured to illustrate

cluster response and controller transition behavior.

Figure 9. Failover logs and recovery behavior –

ZooKeeper-based Kafka

Figure 10. Failover logs and recovery behavior – KRaft-

based Kafka

6.4 Analysis
In single-node failure scenarios (S1 and S2), KRaft consistently

achieved faster failover times, quickly detecting controller loss

and re-electing leadership. ZooKeeper-based clusters took

longer, with controller failover sometimes going undetected for

extended periods. Although both modes maintained high

availability and experienced no data loss or URPs, the visibility

of the election process in KRaft—enabled by its Raft log and

clearer CLI output—proved significantly more traceable than

ZooKeeper’s log-based behavior.

6.5 Conclusion
Both deployment modes demonstrate strong fault tolerance;

however, KRaft offers more efficient and observable controller

transitions. Its internal Raft-based election mechanism enables

quicker leadership recovery and improved operational clarity.

These results, together with earlier findings in topic creation

and producer performance, reinforce KRaft’s production

readiness—particularly for environments demanding low-

latency recovery and operational transparency.[12] [15]

7. SUMMARY AND FINAL REMARKS
This study benchmarked Apache Kafka across ZooKeeper-

based and KRaft-based architectures, evaluating key

operational aspects including partition scalability, producer

throughput, metadata handling, and controller failover. Both

configurations proved stable under stress, but distinct

differences emerged in performance and operational efficiency.

KRaft showed clear advantages in metadata management, with

consistent memory usage and improved scalability during

large-scale topic creation. Producer tuning experiments

confirmed that enabling batching, compression, and

multithreading significantly improved throughput and reduced

latency—particularly under KRaft, where integrated

coordination mechanisms scale more efficiently. Although

ZooKeeper-based clusters achieved slightly higher peak

throughput in some cases, KRaft consistently delivered lower

latency and faster controller failover, making it better suited for

real-time, latency-sensitive applications.

More importantly, KRaft simplifies Kafka’s control plane by

eliminating the need for an external coordination service. This

architectural shift reduces deployment complexity, removes

ZooKeeper-specific failure domains, and enables a unified,

maintainable control layer. In practice, the KRaft cluster

fulfilled both broker and controller roles using just three nodes,

compared to the six-node requirement in a typical ZooKeeper-

based setup—demonstrating a significant reduction in

infrastructure and operational overhead.

As Kafka adoption grows in containerized and cloud-native

environments, KRaft’s operational simplicity becomes a

critical advantage. It improves observability, accelerates

failover, and enables Kafka to scale with fewer components and

reduced configuration burden. [11]

In conclusion, KRaft mode provides a production-ready,

efficient, and resilient architecture for managing Kafka’s

distributed metadata and control operations. Future work may

explore multi-cluster replication, cross-region controller

quorum behavior, and long-term scalability under dynamic

workloads. [13] [14]

8. ACKNOWLEDGMENTS
I sincerely thank the AT&T research paper reviewers for their

insightful feedback, which greatly contributed to improving

this work.

9. REFERENCES
[1] Apache Kafka Documentation, "KRaft Mode (KIP-500) –

Removing the dependency on ZooKeeper," Apache, 2024.

[Online]. Available:

https://kafka.apache.org/documentation/

[2] Apache ZooKeeper Documentation, "Apache ZooKeeper

Overview and Configuration," Apache, 2024. [Online].

Available: https://zookeeper.apache.org/doc/

[3] Confluent, "Apache Kafka Performance"[Online].

Available: https://developer.confluent.io/learn/kafka-

performance/

[4] Confluent Developer, "Understanding KRaft Mode," 2024.

[Online]. Available:

https://developer.confluent.io/learn/kraft/

[5] Spoud.io, "Embracing the Future of Kafka: Why It’s Time

to Migrate from ZooKeeper to KRaft," Medium, 2024.

[Online]. Available: https://spoud-

io.medium.com/embracing-the-future-of-kafka-why-its-

time-to-migrate-from-zookeeper-to-kraft-f1a5225ac48a

[6] Apache Kafka Improvement Proposal (KIP-500), "Replace

ZooKeeper with a Self-Managed Metadata Quorum,"

Apache, 2024. [Online]. Available:

https://cwiki.apache.org/confluence/display/KAFKA/KIP

-500%3A+Replace+ZooKeeper+with+a+Self-

Managed+Metadata+Quorum

[7] Apache Kafka Improvement Proposal (KIP-631), "The

Quorum-based Kafka Controller," Apache, 2024.

[Online]. Available:

https://cwiki.apache.org/confluence/display/KAFKA/KIP

-631%3A+The+Quorum-based+Kafka+Controller

[8] Confluent, "The Architecture of KRaft Mode: How Kafka

Is Evolving," 2024. [Online]. Available:

https://docs.confluent.io/platform/current/kafka-

metadata/kraft.html

[9] Confluent, "Why replace ZooKeeper with Kafka Raft

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.46, October 2025

18

(KRaft)," 2024. [Online]. Available:

https://www.confluent.io/blog/why-replace-zookeeper-

with-kafka-raft-the-log-of-all-logs/

[10] Confluent Documentation, "KRaft Overview," 2024.

[Online]. Available:

https://docs.confluent.io/platform/current/kafka-

metadata/kraft.html

[11] Confluent Documentation, "Migrate from ZooKeeper to

KRaft on Confluent Platform," 2024. [Online]. Available:

https://docs.confluent.io/platform/current/installation/mig

rate-zk-kraft.html

[12] Confluent, "Kafka 4.0 Release: Default KRaft, Queues,

Faster Rebalances," 2024. [Online]. Available:

https://www.confluent.io/blog/latest-apache-kafka-

release/

[13] SoftwareMill, "Apache Kafka 4.0: Simplified Architecture

with Default KRaft," 2024. [Online]. Available:

https://softwaremill.com/apache-kafka-4-0-0-released-

kraft-queues-better-rebalance-performance/

[14] The New Stack, "Kafka Drops ZooKeeper for ‘Real-Time’

KRaft," 2024. [Online]. Available:

https://thenewstack.io/kafka-drops-zookeeper-for-real-

time-kraft/

[15] Arvind Kumar, "Deep Dive: How KRaft Improves Over

ZooKeeper in Kafka," Medium, 2025. [Online].

Available: https://codefarm0.medium.com/deep-dive-

how-kraft-improves-over-zookeeper-in-kafka-

f50b971e0c0e

[16] Sion Smith, "Apache Kafka’s KRaft Protocol: How to

Eliminate ZooKeeper and Boost Performance by 8x,"

OSO, 2025. [Online]. Available:

https://oso.sh/blog/apache-kafkas-kraft-protocol-how-to-

eliminate-zookeeper-and-boost-performance-by-8x/

IJCATM : www.ijcaonline.org

https://docs.confluent.io/platform/current/kafka-metadata/kraft.html?utm_source=chatgpt.com
https://docs.confluent.io/platform/current/kafka-metadata/kraft.html?utm_source=chatgpt.com
https://docs.confluent.io/platform/current/kafka-metadata/kraft.html?utm_source=chatgpt.com
https://docs.confluent.io/platform/current/installation/migrate-zk-kraft.html?utm_source=chatgpt.com
https://docs.confluent.io/platform/current/installation/migrate-zk-kraft.html?utm_source=chatgpt.com
https://docs.confluent.io/platform/current/installation/migrate-zk-kraft.html?utm_source=chatgpt.com
https://www.confluent.io/blog/latest-apache-kafka-release/?utm_source=chatgpt.com
https://www.confluent.io/blog/latest-apache-kafka-release/?utm_source=chatgpt.com
https://www.confluent.io/blog/latest-apache-kafka-release/?utm_source=chatgpt.com
https://softwaremill.com/apache-kafka-4-0-0-released-kraft-queues-better-rebalance-performance/?utm_source=chatgpt.com
https://softwaremill.com/apache-kafka-4-0-0-released-kraft-queues-better-rebalance-performance/?utm_source=chatgpt.com
https://softwaremill.com/apache-kafka-4-0-0-released-kraft-queues-better-rebalance-performance/?utm_source=chatgpt.com
https://thenewstack.io/kafka-drops-zookeeper-for-real-time-kraft/?utm_source=chatgpt.com
https://thenewstack.io/kafka-drops-zookeeper-for-real-time-kraft/?utm_source=chatgpt.com
https://thenewstack.io/kafka-drops-zookeeper-for-real-time-kraft/?utm_source=chatgpt.com

