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ABSTRACT 

Liver cancer, specifically hepatocellular carcinoma (HCC), is a 

major public health problem with high mortality and late stage 

detection. Imaging modalities like computed tomogra- phy and 

magnetic resonance imaging have become essential in tumor 

detection and planning treatments. Manual interpretation is 

time-consuming and user-varying. Advanced developments in 

deep learning have provided automated and accurate solutions 

in the detection and classification of liver tumors and 

assessment of response. This paper provides a detailed analysis 

of the methodologies using deep learning for the analysis of 

liver tumors between 2016 and 2024 and discusses 

convolutional neural networks (CNN), transformer models, 

attention models, and multi-modal learning models. We 

compare models based on architecture, performance (Dice 

score), utilization of the dataset, and their usage in the clinic. 

Key developments include dual- path CNN models, 3D 

volumetric architectures, transferable expert nets through 

knowledge distillation, semi-supervised CNN models, and 

Gaussian-enhanced nnU-Nets models. The discussion also 

touches on emerging directions in label smoothing, shape 

priors, and model uncertainty. The aim is to identify areas of 

research and narrow the divide between the development of 

algorithms and their use in the clinic.  
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1. INTRODUCTION 
Liver cancer is a major global health concern, ranking as the 

sixth most common cancer and the third leading cause of 

cancer-related deaths globally [1]. Hepatocellular carcinoma 

(HCC) accounts for approximately 75% of all primary liver 

cancers and is typically diagnosed at a late stage, significantly 

impacting prognosis [2]. The widespread adoption of imaging 

modalities such as computed tomography (CT) and magnetic 

resonance imaging (MRI) has enhanced the ability to detect and 

monitor liver tumors. However, manual annotation and 

diagnosis by radiologists remain time-consuming and subject 

to inter-observer variability [3]. Consequently, there is an 

urgent demand for automated and accurate solutions to support 

liver tumor analysis. 

Deep learning (DL), a subset of artificial intelligence (AI), has 

emerged as a transformative force in medical image anal- ysis. 

Unlike traditional image processing techniques that rely on 

handcrafted features, DL models can automatically learn 

hierarchical features from raw data, making them especially 

suitable for complex tasks such as tumor segmentation and 

classification [4], [5]. Convolutional Neural Networks (CNNs) 

have been the foundation of most state-of-the-art segmentation 

models. For example, Huang et al. [6] proposed a dual-path 

CNN achieving a Dice coefficient of 68.1%, while Chlebus et 

al. [7] demonstrated a 2.5D Fully Convolutional Network 

(FCN) yielding comparable results.    

At its core, deep learning involves training artificial neural 

networks composed of multiple layers—each layer consisting 

of numerous interconnected nodes that mimic the structure of 

neurons in the human brain. These networks are capable of 

identifying intricate patterns in large datasets. In medical 

imaging, DL enables models to extract subtle features from CT 

or MRI scans, such as shape, texture, and boundary 

characteristics of liver tumors. Key DL concepts include 

training (the process of model learning), validation (used to 

tune parameters), and inference (the application of a trained 

model on unseen data). Performance metrics such as the Dice 

Similarity Coefficient (DSC), Intersection over Union (IoU), 

and Area Under the Curve (AUC) are used to evaluate 

segmentation and classification tasks. 

Several specialized architectures have been developed to 

handle the spatial and semantic complexities of medical im- 

ages. CNNs are commonly used for 2D image analysis, while 

3D CNNs extend the capability to volumetric data. U-Net, a 

popular encoder-decoder architecture, is frequently adapted in 

medical segmentation due to its effectiveness in localizing and 

reconstructing features. Variants such as attention U- Nets, 

transformer networks, and hybrid models integrate global 

context and improve feature representation. Additionally, aux- 

iliary concepts like knowledge distillation, multi-task learning, 

and semi-supervised training allow models to generalize well 

with limited labeled data—making them particularly useful in 

clinical settings where expert annotation is scarce. 

Subsequent research focused on enhancing spatial and 

contextual understanding through 3D architectures, such as 

Dou et al.’s 3D Deeply Supervised Network [8], and hybrid 

ensembles combining 2D and 3D pathways [9]. These models 

achieved tumor segmentation Dice coefficients as high as 

74.2%, particularly on benchmark datasets like LiTS and 

3DIRCADb. Further improvements were realized through the 

use of attention mechanisms, as seen in Wang et al.’s Pyra- mid 

Attention Network [10], and by incorporating modality specific 

knowledge in multi-modal CNNs that fuse CT and MRI data 

[11]. 

 
Figure. 1. Visualization of Liver Segmentation 
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More recent innovations have explored the utility of trans- 

formers [12], knowledge distillation [13], and semi-supervised 

teacher-student frameworks [14], allowing models to leverage 

unlabeled data and enhance generalization. Zhang et al. [11] 

reported a Dice coefficient of 84% by integrating CT and MRI 

using a multi-modal CNN. In 2024, Lin et al. [15] applied 

Gaussian filters within an nnU-Net pipeline, achieving Dice 

scores of 86% and 82% on the LiTS and 3D-IRCADb datasets, 

respectively. This evolution highlights a trend toward hybrid, 

task-specific architectures that balance model complexity with 

clinical feasibility. 

Moreover, newer models are extending their capabilities 

beyond segmentation. For example, Xia et al. [16] intro- duced 

the RECORD framework to assess treatment response, while 

Wang et al. [17] developed a weakly supervised model 

informed by clinical knowledge and label smoothing tech- 

niques.Given the diversity and rapid advancement of these 

methodologies, it becomes imperative to synthesize and evalu- 

ate the current landscape. This paper presents a comprehensive 

review of deep learning methods applied to liver tumor analy- 

sis in CT and MRI imaging. We focus on architectural innova- 

tions, dataset-specific performance, and clinical applicability. 

In doing so, we aim to bridge the gap between algorithmic 

development and real-world implementation in liver oncology. 

2. LITERATURE REVIEW  
Deep learning (DL) has greatly advanced the segmentation of 

liver tumors in medical images based on CT and MRI scans. 

Conventional manual segmentation is time-consuming and 

inconsistent, thereby necessitating automation. Numerous 

research efforts have introduced DL models to improve seg- 

mentation accuracy, generalizability, and clinical readiness. 

This review aggregates studies conducted between 2016 and 

2024, focusing on methodologies, performance, and trade-offs. 

Huang et al. [6] presented a dual-path CNN that preserved both 

local and global features in parallel streams, attaining a Dice 

score of 68.1% on the LiTS dataset. Despite effectively 

segmenting irregular and small tumors, the model’s archi- 

tecture was computationally expensive. Similarly, Chlebus et 

al. [7] developed a 2.5D fully convolutional network by 

combining adjacent CT slices to simulate volumetric data, 

achieving 67.6% Dice. However, it lacked the full 3D spatial 

context provided by volumetric CNNs. 

In contrast, Dou et al. [8] proposed a 3D Deeply Supervised 

Network (DSN) that used auxiliary supervision layers during 

training, achieving a Dice score of 74.2% on the 3DIRCADb 

dataset. The 3D context enhanced segmentation but increased 

memory usage and annotation requirements. Ma et al. [9] 

applied a multi-model ensemble combining 2D and 3D CNNs, 

reaching 74.2% Dice on LiTS and 3DIRCADb datasets, albeit 

with increased inference costs. To enhance spatial awareness, 

Wang et al. [10] introduced a Pyramid Attention Network 

(PAN) using attention gates and multi-scale pooling, achiev- 

ing 72.5% Dice on LiTS. The attention modules improved 

boundary localization but added architectural complexity. Shi 

et al. [14] addressed data scarcity through a semi-supervised 

teacher-student model that generated pseudo-labels to train the 

student model, achieving approximately 70% Dice on LiTS and 

CHAOS. However, pseudo-label inconsistency remained a 

challenge. 

 

Figure. 2. Dice Score 

Zhang et al. [11] designed a multi-modal CNN incorporating 

both CT and MRI modalities, attaining 84% Dice. This lever- 

aged complementary information but required precise image 

co-registration, which is rare in clinical settings. Fan et al.[18] 

proposed a lightweight CNN using depthwise separable 

convolutions and achieved 74% Dice on LiTS, suitable for 

mobile applications, though performance trailed larger models. 

Liu et al. [12] explored transformers for liver tumor seg- 

mentation, reporting a 74.2% Dice score on the MSD dataset. 

While capable of modeling long-range dependencies, the 

approach required large datasets and careful hyperparameter 

tuning. Zhao et al. [19] utilized a shape-aware CNN that 

integrated anatomical priors, achieving a 74.2% Dice score on 

the LiTS dataset, though it struggled with anatomical variations 

in liver structures. Chen et al. [20] enhanced seg- mentation 

performance by embedding semantic modules into a context-

aware U-Net, also achieving a 74.2% Dice score on the 

3DIRCADb dataset. While accuracy improved, the design 

significantly increased memory consumption. Lin et al. [15] 

applied a knowledge distillation strategy wherein a compact 

student model learned from a larger teacher network, 

maintaining a 74.2% Dice score on both LiTS and CHAOS 

datasets while reducing inference time. However, the model’s 

effectiveness was contingent upon the teacher’s quality and the 

distillation loss function.  

Sun et al. [21] introduced a multi-task learning framework for 

simultaneous segmentation and lesion classification. The 

model achieved a Dice coefficient greater than 74% and a 

classification AUC above 0.90. The primary limitation was the 

complexity in balancing task-specific loss functions during 

training. Gao et al. [22] implemented a Bayesian CNN to 

quantify prediction uncertainty, achieving a 74.2% Dice score 

on MSD and LiTS datasets. This uncertainty modeling added 

interpretability but required multiple stochastic forward passes, 

increasing computational costs.  

Recent contributions include Lin et al. [15], who integrated a 

Gaussian filter into the nnU-Net pipeline, achieving 86% Dice 

on LiTS and 82% on 3DIRCADb. Though boundary detection 

improved, filter calibration was labor-intensive. Kuang et 

al.[23] presented UCA-Net, a 3D cross-attention model for 
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joint segmentation of vessels and tumors, though Dice metrics 

were not reported. Chen et al. [24] proposed ASLseg, an 

adaptation of the Segment Anything Model (SAM) for semi-

supervised learning in domain-specific settings, which proved 

effective with limited annotations.  

 

Table 1. Table captions should be placed above the table 

Reference Method Name Dataset(s) Dice (%) Notes 

Huang et al. (2020) [6] Dual-path CNN LiTS 68.1 Reported Dice coefficient. 

Chlebus et al. (2018) [7]  2.5D FCN  LiTS  67.6  Achieved Dice from multi-slice 

CNN. 

Dou et al. (2016) [8] 
3D Deep Supervised 

Net 
3DIRCADb 74.2 

Deep supervision improves 

segmentation. 

Ma et al. (2020) [9] 
Multi-model  

Ensemble 
LiTS, 3DIRCADb 74.2 Aggregates multiple architectures. 

Wang et al. (2020) [10] Pyramid Attention Net LiTS 72.5 Enhanced with spatial attention. 

Shi et al. (2021) [14] 
Semi-supervised T-S 

Net 
LiTS, CHAOS ∼70 

Pseudo-labeling used for weak 

supervision. 

Zhang et al. (2021) [11] 
Multi-modal CNN  

(CT+MRI) 
Clinical CT+MRI 84.0 

Fuses modalities for better 

performance. 

Fan et al. (2021) [18] Lightweight CNN LiTS 74.0 Optimized for mobile applications. 

Liu et al. (2022) [12] Transformer-based Net MSD 74.2 Captures long-range dependencies. 

Zhao et al. (2020) [19] Shape-aware CNN LiTS 74.2 Enforces geometric constraints. 

Chen et al. (2019) [20] Context-aware U-Net 3DIRCADb 74.2 Improved inter-region context. 

Lin et al. (2021) [13] Knowledge Distillation LiTS, CHAOS 74.2 Compresses large models. 

Sun et al. (2021) [21] Multi-task Learning 
LiTS, 3DIRCADb , 

MRI 
74.2 Joint segmentation and classification. 

Gao et al. (2021) [22] Bayesian CNN MSD, LiTS 74.2 Provides uncertainty estimation. 

Song et al. (2024) Improved DL Model Not specified 
Not  

specified 

Enhanced automation; performance 

not specified  

Lin et al. (2024) [15] 
Gaussian-filter + nnU-

Net 

LiTS2017, 3D- 

IRCADb 
86.0, 82.0 Outperformed base nnU-Net. 

Kuang et al. (2023) [23] UCA-Net CT Scans 
Not  

specified 

Uses cross-attention for multi-target 

segmentation  

Chen et al. (2023) [24] 
ASLseg (SAM in 

Loop) 
LiTS 

Not  

specified 

Combines generic + task-specific 

learning. 

Wang et al. (2024) [17] 
Weakly Supervised 

(Holistic) 
HCC-TACE-Seg 

Not  

specified 

Uses label smoothing with clinical 

priors. 

Xia et al. (2024) [16] RECORD Pipeline Multiple cohorts 
Not  

specified 

Used for treatment response 

evaluation. 

Patel et al. (2023) [25] GAN-augmented UNet LiTS 73.0 Uses GAN for data augmentation. 

Lee et al. (2024) [26] Contrastive Pretraining 
CNN LiTS 75.2 Improves performance with 

contrastive pretraining  

Wang et al. [17] applied weak supervision via label smooth- 

ing informed by clinical knowledge on the HCC-TACE-Seg 

dataset. Though exact Dice scores were not disclosed, 

clinical prior integration improved segmentation 

plausibility. Xia et al. [16] developed RECORD, a pipeline 

designed to evaluate treatment response in HCC. Although 

not centered on segmen- tation, it reinforced the importance 

of accurate segmentation in clinical outcome prediction. 

3. CONCLUSION 
The sheer pace at which the deep learning methodolo- gies have 

advanced revolutionized the field of liver tumor segmentation 

in CT and MRI imaging considerably. This survey 

encompassed the impactful contributions made from 2016 to 

2024 and shed light upon the progress in the areas of 

convolutional neural networks, transformer architectures, 

attention mechanisms, semi-supervised models, and multi- 

modality learning. The imposition of techniques like 3D CNNs, 
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Gaussian-enhanced nnU-Net pipelines and the use of 

distillation resulted in significant accuracy improvements with 

Dice coefficients up to 86% being achieved in case of the 

commonly used benchmarks such as LiTS and 3DIRCADb. 

Notwithstanding the progress made so far, the issues of concern 

include clinical deployment difficulties such as the requirement 

of large labeled samples, computational costs, co-registration 

across multi-modality data, and generalizability across 

different patient populations. New directions focusing on 

modeling uncertainty, domain adaptation, weak supervision 

and the use of combined pipelines incorporating anatomy priors 

and domain-knowledge are also promising in overcom- ing the 

divide between performance and utility in real-world settings. 

Finally, this work highlights the significance of ongoing in- 

terdisciplinary coordination among deep learning researchers, 

clinicians, and radiologists to formulate strong, understand- 

able, and clinically relevant solutions to analyze liver tumors. 

Further research needs to focus especially on open benchmark- 

ing, interpretability and workflow integration to make deep 

learning tools amenable to secure and scalable adoption across 

the field of liver oncology. 
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