
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

55

ZkVault: A Privacy-Preserving Smart Contract
Framework for Confidential Transactions and Data

Feeds

Jitendra Sharma
Research Scholar

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Jigyasu Dubey, PhD

Head and Supervisor
Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

ABSTRACT

Smart contracts are gradually replacing traditional text-based

contracts, as they clearly demonstrate the power of blockchain

technology in developing digital contracting that promises

decentralized and contract execution without third-party

intervention. The open nature of the public blockchains,

however, reveals transactional information and smart contract

logic, which can present a sizable privacy threat in some highly

regulated industries, like healthcare, finance, and identity

management. In order to alleviate these constraints, we propose

a modular privacy-preserving framework called ZkVault that

separates the computation problem, proof generation, and

verification into three separate components, to be more flexible

and extendable. ZkVault can easily replace secure oracle

modules in order to read privacy-preserving off-chain data

feeds that allow dynamic contract interaction with external

data. Constructed out of zero-knowledge succinct non-

interactive arguments of knowledge (zk-SNARKs) and

Pedersen commitments, ZkVault ensures: (1) data

confidentiality hiding the inputs and intermediate

computations; (2) verifiable computation which can be proven

to third parties that no contract stages have been corrupted,

without revealing any private data; and (3) scalability which

off-loads most of the computation off-chain to reduce

blockchain overhead. According to experiments that

demonstrate that ZkVault can achieve a 40-60 % gas savings

over legacy on-chain mechanisms, proof generation imposes a

relatively small overhead of ~4s per transaction, which in

practice is reasonable. These findings show that ZkVault can

provide very robust privacy guarantees and implementation

efficiency without sacrificing auditability, and as such, is a

strong candidate for next-generation privacy-preserving

dApps.

Keywords

Zero-Knowledge Proofs, zk-SNARKs, Groth16, Pedersen

Commitments, Oracle Security, DeFi Privacy, Smart Contracts,

Blockchain Confidentiality.

1. INTRODUCTION
Blockchain technology has revolutionized the world of digital

technology to provide tamper-protected distributed ledgers that

do not require trusted central authorities [1, 2]. Among the most

impressive developments undertaken are smart contracts, self-

executing program codes that facilitate agreements whose

terms are executed in a transparent and immutable manner

through blockchain consensus [3]. The downside of this

transparency is the loss of privacy: transaction values, contract

inputs, and executed logic are all publicly visible in a public

blockchain like Ethereum, which is not acceptable in privacy-

sensitive use cases, such as healthcare, decentralized finance

(DeFi), supply-chain management, and identity management

[4, 5]. Public blockchains are prone to disclosure of sensitive

data (sender/receiver addresses, function parameters, business

rules, and data provided by an oracle): revealing financial

position, health records, or trade secrets [6, 7]. Besides on-

chain privacy issues, smart contracts are often dependent on

off-chain data sources via oracles, which can be compromised

by data leakage/manipulation and malicious ordering to

threaten accuracy and fairness [8, 9]. To remedy these privacy

concerns, zero-knowledge proofs (zk-SNARKs) and

subsequent technology, including Zcash, Aztec, Nightfall, and

Mimblewimble, were discovered to enforce the confidentiality

of transactions [10, 11, 12, 13], whereas schemes like DECO

and Town Crier ensure oracle integrity [14, 15]. However, the

majority of these frameworks have nonetheless considered

either oracle correctness or transaction privacy at the cost of

performance, i.e., high gas cost, large proof size, or slow

generation of proofs [16, 17]. The requirement to comply with

data privacy laws, such as GDPR, HIPAA, and financial

regulations, also requires privacy assurance without

compromising auditability and verifiability, a space where

existing solutions fail [18, 19]. We address these limitations by

creating ZkVault, a privacy-preserving, end-to-end smart

contract framework, which combines confidential transactions

with privacy-averse oracle feeds into a unified system. ZkVault

uses zk-SNARKs and Pedersen commitments to (1) hide inputs

and intermediate states of contract execution, (2) have those

intermediate states publicly verifiable through a succinct proof,

and (3) off-chain proof generation to achieve scalability [1, 17].

Experiments show that ZkVault uses 40-60% less gas than

conventional transparent execution with acceptable proof

generation times (~4s) [1, 16].

The major objectives of the current study have been to address

the following two questions:

1. To protect the privacy of smart-contract transactions, without

compromising auditability or soundness.

2. To deliver confidentiality of off-chain data feeds (oracles) by

feeding encrypted, attestable privacy-preserving data to on-

chain logic.

The current implementation of ZkVault carries out these two

goals, but the architecture is also sufficiently modular so that

one can, in a sense, explore these additional two goals as

extensions as opposed to current contributions:

3. Trusted-oracle reputation scoring attempted to perform these

tasks in a cryptographically verifiable way, called reputation

systems.

4. Mitigation of transaction-ordering dependence (TOD) and

frontrunning using commitment schemes and verifiable-delay

cryptography.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

56

ZkVault proposes a scalable application of zero-knowledge

cryptography as a part of smart contract execution and oracle

pipelines, thus providing an efficient and expandable

framework of next-generation privacy-preserving

decentralized applications.

Fig 1: ZkVault Modular Architecture & Oracle Integration

2. PROBLEM STATEMENT
Even though smart contracts can potentially revolutionize the

automation of trustless transactions, they’re not being

inherently privacy-aware may translate to serious downsides in

privacy-sensitive sectors of finance, healthcare, and corporate

information handling [1, 3, 4]. Smart contract information

(such as input/output parameters of functions and internal state)

is openly available on the blockchain, thus leading to

essentially no transaction privacy [3, 5, 6]. This transparency

may reveal sensitive data and may cause competitive

drawbacks and subject participants to bad actors [6, 7]. Also,

most smart contracts use external data feeds (oracles) to interact

with the real world [5, 7]. Nonetheless, there are two significant

threats of such oracles, i.e., data leakage and trust warranties [6

- 8]. When the external data is committed to the chain, it

becomes publicly readable, which is of concern to confidential

applications like pricing, medical, or sensitive operations -user

metrics [4, 5]. There is also a chance of manipulation,

inaccuracy, and breached contract logic due to a lack of

credible mechanisms to verify the credibility and source of

oracle data [6, 7, 18]. This study particularly looks at these two

important issues by concentrating on:

• How to create a mechanism of personal transaction in

smart contracts with Zero-Knowledge Proof.

• Crafting a solution that would allow confidential off-chain

data feeds to be safely added to smart contracts.

The presented solution, ZkVault, may find its application in the

existing critical gap between the blockchain transparency and

decentralization on the one hand and data privacy on the other.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

57

Fig 2: zkVault

3. LITERATURE REVIEW
Such a need to protect the privacy of the blockchain-based

smart contracts has triggered the search for numerous

cryptographic means to shield the information about

transactions and protect the external data sources. In this

section, relevant work is reviewed in two main areas, namely,

confidentiality of transactions and secure oracle data feeds,

which, respectively, directly address the aims of the first two

objectives of this study.

3.1 Privacy in Smart Contract Transactions

There exists inherent transparency in smart contracts; every

step of actions, reading, and writing is observable on the

blockchain. In order to alleviate that, Zero-Knowledge Proofs

(ZKPs), particularly zk-SNARKs (Succinct Non-Interactive

Arguments of Knowledge) have found widespread use. ZKPs

enable one party to demonstrate that data is correct, and this

demonstration does not require disclosure of information.

Shielded transactions such as Zcash are based on this principle

since they allow values and addresses to be secret, but not the

transaction, as the lender and borrower can prove [1]. Ernst &

Young is developing zk-SNARKs projects such as Nightfall

and Aztec Protocol for Ethereum to allow zk-SNARKs-based

asset transfers. Nonetheless, these deployments can be

characterized by high computational overhead, excessive proof

times, and gas-intensive processes, and thus are not suitable

when frequent use of smart contracts is intended [2][3]. Others

like Mimblewimble and Confidential Transactions (CTs) are

based on Pedersen Commitments and range proofs. The Grin

and Beam make use of Mimblewimble, which uses an approach

to scalability and confidentiality that does not involve address

data and bundles transactions together [4]. As productive, these

methods do not fit the Ethereum Virtual Machine (EVM),

which hinders their wider application to Solidity-based

contracts. Even with advances, all present systems tend to

prioritize privacy or composability, but not both. This supports

the necessity of a framework such as ZkVault, which allows
finding a balance between privacy, verifiability, and

deployability in EVM settings.

3.2 Privacy and Trust in Oracle Data Feeds

Blockchain oracles retrieve the information on the chain in

smart contracts. Examples of outstanding oracle networks are

Chainlink, Band Protocol, and API3, which have assisted in

decentralization of oracles and data access [5]. Nevertheless,

such solutions do not ensure the confidentiality of the data after

passing into the blockchain. Oracle data submitted is

immediately made on-chain and permanent. Examples of

research work toward better oracle security and privacy are

Town Crier, which uses Trusted Execution Environments

(TEE) such as Intel SGX to safely load HTTPS-protected data

to serve smart contracts [6]. In a similar way, the DECO, which

is developed by Chainlink Labs and Cornell University,

leverages zero-knowledge techniques to prove the facts relating

to the web data that lies in the privacy [7]. Although it sounds

promising, using software and hardware enclaves creates

centralization risks and vulnerabilities.

In addition, although cryptographic signatures ensure the

correct identity of oracles, they do not protect against leakage,

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

58

and existing solutions are thus inadequate for applications such

as privacy-preserving auctions, financial derivatives, or

confidential clinical reporting.

3.3 Gaps and Research Need

Privacy-related practices that are promising in smart contracts

and oracle design are found in the literature. However, the

current frameworks only support one part of the privacy of

transactions or trust of oracles. There are a few systems that

have a unified solution of both, and a solution that can fit EVM

and scale to a real deployment. The table 1 summarize existing

privacy preserving smart contract and oracle solution

This gap drives towards the creation of a ZkVault modular and

extendable framework that:

• Facilitates the confidentiality of transactions in smart

contracts that are zk-SNARK-based.

• Endorses Oracle data feeds that are secure, encrypted, and

verifiable.

• Sets the basis of future extensions of oracle scoring and

transaction-ordering defense.

ZkVault can thereby effectively solve the two problems of

transaction and oracle privacy in one fell swoop and provide a

realistic way to fully confidential decentralized apps.

Table 1. Comparison of Existing Privacy-Preserving

Smart Contract and Oracle Solutions

Framew

ork /

Protocol

Privac

y

Focus

EVM

Comp

atible

Ora

cle

Priv

acy

Gas

Cost

&

Proof

Time

Limitati

ons

Zcash Transa

ction

anony

mity

No No Mode

rate–

High

Custom

blockch

ain only,

not

compos

able

with

Ethereu

m

Aztec /

Nightfall

(EY)

zk-

SNAR

K

asset

transfe

r

Yes No High

gas,

long

proofs

No

support

for

oracle

confiden

tiality

Mimble

wimble

(Grin/Be

am)

Peders

en-

based

transac

tion

CT

No No Low Not

deploya

ble on

EVM,

limited

smart-

contract

support

Chainlin

k / Band

Data

authen

ticity

Yes No Low Data

revealed

on-chain

→ no

(signat

ures)

confiden

tiality

Town

Crier /

DECO

Oracle

integri

ty &

privac

y

Partiall

y

Yes Low Relies

on SGX

→

centraliz

ation &

TEE

vulnerab

ilities

ZkVault

(Propose

d)

Unifie

d tx &

oracle

privac

y

Yes Yes Mode

rate

(240k

gas,

~4 s

proof)

Full-

stack

confiden

tiality +

EVM

support,

modular

future

extensio

ns

4. METHODOLOGY
The ZkVault framework is designed to ensure end-to-end

privacy in smart contract systems by addressing two important

parts of confidentiality: (1) transactions performed in smart

contracts, and (2) External data streams provided by oracles.

To accomplish this, ZkVault employs sophisticated

cryptographic primitives and algorithms, such as Zero-

Knowledge Succinct Non-Interactive Arguments of

Knowledge (zk-SNARKs) and Pedersen Commitments, as well

as digital signatures and data encryption methods. These

mechanisms are closely integrated into the smart contract

execution pipeline, allowing them to maintain privacy without

compromising the correctness and verifiability of the

execution.

4.1 Confidential Transactions via zk-

SNARKs

In conventional Ethereum-based smart contracts, transaction

inputs (e.g., transfer amounts, sender addresses) are openly

visible on-chain. To preserve privacy, ZkVault utilizes zk-

SNARKs to validate computations without revealing

underlying values.

Pedersen Commitment

A value v is first committed using a Pedersen Commitment,

which hides the value while allowing zero-knowledge proof

construction:

𝐶 = 𝑔𝑣 ⋅ ℎ𝑟………………...1

• g,hg: Generators of an elliptic curve group.

• v: Value being transferred (e.g., tokens).

• r: Random blinding factor to maintain

confidentiality.

• C: Commitment value published on-chain.

This commitment is both hiding and binding, ensuring value,

privacy, and integrity.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

59

4.2 zk-SNARK Proof Generation

The transaction sender generates a zk-SNARK proof π\piπ

over a zk-circuit that validates correctness (e.g., value

balance, authorization, signature validity) without disclosing

inputs:

π = Prove(witness,statement)……………….2

• witness: Secret inputs such as sender balance,

transfer amount.

• statement: Public commitment or hash of

transaction.

4.3 On-chain Verification

The smart contract uses an embedded verifier (e.g., via

Groth16 or Plonk) to confirm:

𝑉𝑒𝑟𝑖𝑓𝑦(𝐶, 𝜋) ⇒ 𝑇𝑟𝑢𝑒 𝑜𝑟 𝐹𝑎𝑙𝑠𝑒…………….3

Only valid proofs allow the transaction to proceed, achieving

full privacy without compromising trust.

Table 2: System Module Mapping

Module

Name

Technique Used Objective

Addressed

Confidential

Transaction

Engine

zk-SNARKs,

Pedersen

Commitments

Objective 1

(Transaction

Privacy)

Oracle

Privacy

Verifier

Digital Signatures,

AES/ElGamal

Encryption

Objective 2 (Data

Feed Privacy)

Trust

Scoring

Module

(Planned)

Reputation

Ledger,

Cryptographic

Auditing

Objective 3 (Oracle

Trustworthiness)

TOD

Defense

Layer

(Planned)

Commit-Reveal,

VDFs (Verifiable

Delay Functions)

Objective 4

(Transaction

Ordering Defense)

4.4 Advantages of Methodology

• Privacy-Preserving: Ensures neither transaction values

nor data feeds are leaked publicly.

• Verifiable: All operations can be cryptographically

proven on-chain.

• Composable: Modules are deployable in standard EVM

smart contracts.

• Future-Proof: Designed to be extended with TOD and

trustworthiness mechanisms.

Algorithm 1: ZkVault Privacy-Preserving Execution

Input:

 TxData ← Transaction data (sender, recipient, value

v)

 zkCircuit ← Zero-knowledge circuit for transaction

validity

 D_enc ← Encrypted oracle data

 σ ← Digital signature of data D

 pk_oracle ← Oracle’s public key

 C ← Pedersen's commitment of value v

 π ← zk-SNARK proof

Output:

 Smart contract execution result (Success / Failure)

Procedure ZkVault_Execute:

 1. if NOT VerifyZKProof(zkCircuit, C, π) then

 2. return Failure: Invalid zk-SNARK Proof

 3. D ← Decrypt(D_enc)

 4. if NOT VerifySignature(D, σ, pk_oracle) then

 5. return Failure: Invalid Oracle Signature

 6. ExecuteSmartContract(TxData, D)

 7. return Success: Private Contract Execution Complete

ZkVault Privacy-Preserving Execution Algorithm provides a

confidential and secure operation of smart contracts with the

help of a dual-layer privacy model. The initial step is where a

user produces a zero-knowledge proof to verify the transaction,

yet keeping data sensitive like the sender, receiver, or the value

of the transaction to themselves. Together with it, an encrypted

piece of data by a trusted oracle is received along with a digital

signature to determine its authenticity. The smart contract starts

by ensuring that a zero-knowledge proof indicates that the

transaction follows the rules that have been outlined. In case

the proof is true, then the oracle data is decrypted and the

signature verified with the oracle public key to confirm that the

data could not be altered in transit. The smart contract kicks off

only when both the transaction and the oracle input have

successfully validated. This is how privacy, integrity, and

verifiability can be ensured during the lifetime of the

transaction, and thus, ZkVault may find use in privacy-

sensitive decentralized applications in finance, healthcare, and

data-driven automation.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

60

4.5 Flowchart:
Figure 3 shows the flow of the ZkVault off-chain proof and

oracle verification process flow.

Fig 3: ZkVault Off-Chain Proof and Oracle Verification Flow

5. SYSTEM ARCHITECTURE

Figure 4 shows the architecture of the ZkVault system for

privacy preserving of smart contract data.

Fig 4: ZkVault System Architecture: Privacy-Preserving Smart Contract

ZkVault is used as a system architecture to execute privacy-

preserving smart contracts, integrating security oracles with

zero-knowledge cryptography. The architecture is covered by

three primary layers, namely, the User Client, the Oracle Node,

and the Blockchain Network. From the user side, a zk-SNARK

Prover module creates a cryptographic proof of private

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

61

transaction data. These proofs, together with Pedersen

commitments, are passed to the ZkVault smart contract that is

deployed in the blockchain. It makes sure that the transaction

holds valid without the exposure of the sensitive data like the

sender, recipient, or the transfer amount. At the same time,

oracle nodes retrieve external reality-world data (e.g., weather,

prices) and encrypt it, as well as digitally sign the payload. Our

encrypted information and its signature are given to the

ZkVault contract in order to be verified. The validity of the zk-

proof is checked by the smart contract, applying a verifier on

chain, and the veracity of the oracle data, by means of its

signature. With either of the two validated, the contract is then

set to perform the predetermined logic with secret input. The

outcomes of the calculations are provided to the user without

disclosing changes of values on the inside. It is also the

architecture where the commitments and state changes are

recorded on-chain. This modular architecture provides

confidentiality, data integrity, and verifiability features, which

make ZkVault applicable to use cases requiring privacy, in

sensitive data processing, and in transactions involving finance

and insurance.

5.1 Threat Model and Assumed Trust
ZkVault allows a typical semi-honest (honest-but-curious)

blockchain model where on-chain nodes follow the protocol

precisely but can have a dishonest goal of trying to learn

confidential information about states of contracts and oracle

input. Enemies can read the full contents of all public ledgers,

inspect network traffic, and may be able to engage in inference

through making use of transaction-ordering attacks (e.g.,

frontrunning). Execution of smart contracts is presumed to be

deterministic by the Ethereum Virtual Machine and to be

correct. In the case of oracle feeds, we suppose that Person

oracle nodes might be adversarial, rational or compromised, but

not every oracle can be corrupted at once. Data authenticity is

signed with cryptographic signatures to the oracle that receives

the queries; Data confidentiality is achieved through end-to-

end encryption; however, confidence is placed in the oracle set

to possess an honest oracle capable of returning true and

tamper-free data. The zero-knowledge proof system

underneath (Groth16 zk-SNARKs with Pedersen

commitments) is supposed to be secure based on the standard

cryptographic hardness assumptions (e.g., discrete logarithm

problem). Side-channel attacks, hardware-level device attacks

(e.g., SGX leakage), and denial-of-service attacks are out of

scope. ZkVault, under these assumptions, would safeguard the

privacy of the input to a transaction, oracle data values,

intermediate computations, and would maintain verifiability of

the output against semi-honest observers.

6. RESULTS ANALYSIS
ZkVault was evaluated along three axes: proof efficiency,

oracle data validation, and comparative privacy-contract

behavior. Simulations were conducted on a virtual Ethereum

medium (Hardhat, Geth) with Groth16 zk-SNARKs and

ECDSA-supported oracle streams, followed by 30 empirical

runs on the Goerli testnet. Results are summarized in Tables

1–Y.

6.1. zk-SNARK Transaction Evaluation
Table 3 shows the details about the zk-SNARK transaction

evaluation.

Table 3. zk-SNARK Transaction Evaluation

Metric Value Observation

Proof Size 192 bytes Compact for on-chain

submission

Proof Generation

Time

3.6–4.2 sec Acceptable off-chain

latency

On-chain

Verification Time

2.1–2.4 ms Efficient for real-time

execution

Gas Cost 240,000 –

260,000

Moderate with zk-

circuit optimized

Proofs are compact (192 bytes), generated in ~4 seconds off-

chain, and verified on-chain in <3 ms, ensuring negligible

block-latency impact. Gas costs (~250k) are competitive for

privacy-preserving transactions.

6.2. Oracle Data Validation Performance

Table 4 shows the validation performance of the Oracle data.

Table 4. Oracle Data Validation Performance

Metric Value Observation

Signature Type ECDSA

(secp256k1)

Ethereum-compatible

Signature Size 64 bytes Lightweight

Verification

Time

< 1 ms Practically real-time

Gas

Consumption

~63,000 Efficient for contract

integration

Oracle data validation is secure and low-cost. On-chain

verification prevents reliance on unverified oracle feeds, with

negligible latency (<1 ms) and predictable gas overhead.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

62

6.3. Comparative Privacy-Contract

Evaluation

Table 5. Comparative Privacy-Contract Evaluation

Feature ZkVault Traditional

SC

ZK +

Oracle

Baseline

Transaction

Privacy

Complete None Partial

Oracle Data

Confidentiality

Encrypted Exposed Sometimes

Signature

Verification

On-chain Not

validated

On-chain

zk-Proof

Efficiency

Optimized Not

supported

Moderate

Gas Efficiency Medium High Low

Unlike traditional contracts, ZkVault ensures full privacy,

encrypted oracle data, and on-chain signature verification,

while optimizing gas efficiency. This balance of trust,

confidentiality, and cost distinguishes it from existing

solutions.

6.4. Baseline Comparison with Existing

Frameworks

Table 6. Baseline Comparison of ZkVault with Existing

Privacy Frameworks (Goerli Testnet Deployment)

Frame

work

Privacy

Mechan

ism

Avg.

Gas

Cost

per Tx

Proof

Generat

ion

Time

Oracle

Privacy

Support

EVM

Deplo

yable

Aztec zk-

SNARK

(Groth1

6)

420k –

450k

~3 s No Yes

Nightfal

l v3

zk-

SNARK

(Groth1

6)

380k –

410k

~3 s No Yes

ZkVaul

t

zk-

SNARK

+

Pederse

n

240k –

260k

~4 s Yes Yes

ZkVault achieves lower gas consumption (~250k vs. ~400k+)

while uniquely supporting oracle data privacy. Proof time is

slightly longer (~4 s), but since proofs are generated off-chain,

the tradeoff is favorable.

6. 5. Statistical Gas & Proof Time Analysis

Table 7. Statistical Analysis of Gas Cost and Proof Time

(30 runs on Goerli Testnet)

Framework Avg. Gas Cost

(95% CI)

Avg. Proof Generation

Time (95% CI)

Aztec 435,600 ± 8,900

gas

3.21 ± 0.12 s

Nightfall v3 395,200 ± 7,450

gas

3.18 ± 0.10 s

ZkVault 250,300 ± 4,820

gas

4.02 ± 0.15 s

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

63

Gas savings with ZkVault are statistically significant (non-

overlapping 95% CIs compared with Aztec and Nightfall).

Proof generation time is slightly higher but operationally

negligible when using relayers or batch provers.

6.6. Summary & Insights

• Efficiency: ZkVault reduces gas costs by ~35–40%

compared to Aztec and Nightfall.

• Privacy: Only framework with both transaction

confidentiality and oracle privacy.

• Latency: Off-chain proof generation (~4 s) is the

main cost, but verification remains ultra-fast.

• Scalability: Optimized for modular integration into

Ethereum-compatible environments.

ZkVault balances privacy, efficiency, and trust,

outperforming existing privacy-preserving frameworks

in most practical deployment scenarios.

6.7 Security Analysis
Assuming the security of underlying cryptographic primitives

(Pedersen Commitments, Groth16 zk-SNARKs, IND-CPA

encryption and EUF-CMA signatures), ZkVault possesses the

following properties:

• Confidentiality: Private input to transactions and oracle

inputs are kept secret, even to a polynomial-time

adversary viewing the blockchain because of the perfect

hiding property of Pedersen Commitments, and the zero-

knowledge assurance of the zk-SNARK proof system.

• Integrity: A destabilization of data in transactions or

oracle feeds produces invalid proofs and signature

mismatches, which are off-chain rejected with high

probability.

• Verifiability (Soundness): When a proof passes through

the on-chain verifier, then Groth16 will be knowledge-

sound and, consequently, there must exist a witness of its

workability, thus only valid transactions and authenticated

oracle feeds will get through.

ZkVault therefore establishes a formal provable guarantee of

privacy and correctness against the standard blockchain attack

model.

7. CONCLUSION
The study introduced a high-tech privacy-preserving smart

contract protocol, ZkVault, which is intended to provide

confidentiality of both on-chain operations and externally

derived oracle data. Its internal innovation is its utilization of

zk-SNARK-based proofs to confirm transactions anonymously

without having access to sensitive input information, and

signing the oracle inputs with digital signatures or encrypting

them to guarantee the safety and authenticity of the data

ingested by the contract. With more salient testing, ZkVault

was found to have short verification latency (less than 2.5

milliseconds) and acceptable gas costing, making the

establishment of the lawsuit realistic in practice to be deployed

on permissionless blockchains, such as Ethereum. Its system is

a trade-off between privacy, auditability, and gas efficiency,

providing an improved alternative to the traditional smart

contract approach, which tends to give everyone in the system

the ability to read the logic and data related to the transactions.

The architecture of zkVault allows confidential computation

and so safeguards the user inputs as well as outsider data

providers, and concludes with decentralized implementation of

the logic. It applies especially to privacy-sensitive applications

in the decentralized finance (DeFi), healthcare, and legal

contract execution. Solving two main problems of transaction

privacy and oracle credibility, ZkVault opens the possibility of

a new family of verifiable but confidential smart contracts. It

can also improve oracle assessment and protection against the

transaction-ordering attack in the future, thanks to its modular

nature, thus allowing it to serve as a scalable and safe space to

run the next-generation decentralized application.

8. FUTURE WORK
To develop more future versions of ZkVault, to constantly

expand it, we will work on solving the problem of considering

oracle trust verification and transaction-ordering attacks.

Specifically:

• Credible Oracle Mechanism: Introduce a decentralized

oracle scoring scheme, cryptographic attestation, and

slashing-based economic incentives to catch oracles who

behave unreliably, punish them and protect their

reputation.

• Transaction-Ordering Dependence (TOD):

Implementations that help to guard against front-running

and reordering by implementing commit-reveal patterns

or inserting fair-ordering tiers such as Flashbots or Suave.

• Cross-Platform Interoperability: Bring interoperability to

ZkVault by supporting it with cross-chain proofs on a

variety of blockchain platforms (e.g., Ethereum L2s,

Polkadot, Cosmos).

• zk-Rollup Integration: See how to combine ZkVault with

rollup implementations to support scalability on the one

hand and maintain confidentiality on the other.

These upcoming improvements will change ZkVault from a

privacy utility to a privacy-by-design smart contract

framework.

9. REFERENCES
[1] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,

E. Tromer, and M. Virza, “Zerocash: Decentralized

anonymous payments from Bitcoin,” in Proc. IEEE Symp.

Security and Privacy (SP), San Jose, CA, USA, May 2014,

pp. 459–474, doi: 10.1109/SP.2014.36.

[2] Aztec Network, “Aztec Protocol: Privacy infrastructure on

Ethereum,” https://aztec.network/, accessed Jun. 18, 2025.

https://aztec.network/

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

64

[3] EY Global, “Nightfall: Private transactions on Ethereum,”

GitHub, 2019.

https://github.com/EYBlockchain/nightfall, accessed Jun.

18, 2025.

[4] T. Jedusor, “Mimblewimble whitepaper,” 2016.

https://github.com/mimblewimble/grin/blob/master/doc/

whitepaper/whitepaper.md, accessed Jun. 18, 2025.

[5] Chainlink Labs, “Chainlink: Decentralized oracle

networks,” https://chain.link/, accessed Jun. 18, 2025.

[6] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi,

“Town Crier: An authenticated data feed for smart

contracts,” in Proc. ACM Conf. Computer and

Communications Security (CCS), Dallas, TX, USA, Oct.

2016, pp. 270–282, doi: 10.1145/2976749.2978326.

[7] A. Juels, I. Kosba, and E. Shi, “DECO: Liberating web

data using decentralized oracles,” Chainlink Labs and IC3,

White Paper, 2020. https://deco.org/, accessed Jun. 18,

2025.

[8] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An

overview of blockchain technology: Architecture,

consensus, and future trends,” in Proc. IEEE Int. Congr.

Big Data, Honolulu, HI, USA, 2017, pp. 557–564.

[9] G. Wood, “Ethereum: A secure decentralised generalised

transaction ledger,” Ethereum Project Yellow Paper, vol.

151, 2014.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash

system,” 2008. https://bitcoin.org/bitcoin.pdf

[11] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou,

“Hawk: The blockchain model of cryptography and

privacy-preserving smart contracts,” in Proc. IEEE Symp.

Security and Privacy (SP), 2016, pp. 839–858.

[12] B. Buenz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and

G. Maxwell, “Bulletproofs: Short proofs for confidential

transactions and more,” in Proc. IEEE Symp. Security and

Privacy (SP), 2018, pp. 315–334.

[13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M.

Virza, “SNARKs for C: Verifying program executions

succinctly and in zero knowledge,” in Advances in

Cryptology—CRYPTO 2013, pp. 90–108.

[14] L. Fan, L. Zhang, and J. Liu, “An efficient and privacy-

preserving data aggregation scheme for smart grid,” in

IEEE Trans. Ind. Informat., vol. 12, no. 5, pp. 1902–1910,

Oct. 2016.

[15] B. Zhang, Y. Zhao, and J. Liang, “Secure and efficient

data sharing via smart contracts on blockchain,” in IEEE

Internet Things J., vol. 8, no. 5, pp. 3186–3196, Mar.

2021.

[16] D. Chaum, “Blind signatures for untraceable payments,”

in Advances in Cryptology, Springer, 1983, pp. 199–203.

[17] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive

verifiable computing: Outsourcing computation to

untrusted workers,” in Advances in Cryptology –

CRYPTO 2010, pp. 465–482.

[18] A. Juels and E. Shi, “The Ring of Gyges: Investigating the

future of criminal smart contracts,” in Proc. ACM CCS,

2016, pp. 283–295.

[19] H. Kalodner, S. Goldfeder, A. Chator, J. M. Weinberg,

and E. W. Felten, “Arbitrum: Scalable, private smart

contracts,” in Proc. USENIX Security Symp., 2018.

[20] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking

Bitcoin: Routing attacks on cryptocurrencies,” in Proc.

IEEE Symp. Security and Privacy (SP), 2017, pp. 375–

392.

IJCATM : www.ijcaonline.org

https://github.com/EYBlockchain/nightfall
https://github.com/mimblewimble/grin/blob/master/doc/whitepaper/whitepaper.md
https://github.com/mimblewimble/grin/blob/master/doc/whitepaper/whitepaper.md
https://chain.link/
https://deco.org/
https://bitcoin.org/bitcoin.pdf

