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ABSTRACT 

Smart contracts are gradually replacing traditional text-based 

contracts, as they clearly demonstrate the power of blockchain 

technology in developing digital contracting that promises 

decentralized and contract execution without third-party 

intervention. The open nature of the public blockchains, 

however, reveals transactional information and smart contract 

logic, which can present a sizable privacy threat in some highly 

regulated industries, like healthcare, finance, and identity 

management. In order to alleviate these constraints, we propose 

a modular privacy-preserving framework called ZkVault that 

separates the computation problem, proof generation, and 

verification into three separate components, to be more flexible 

and extendable. ZkVault can easily replace secure oracle 

modules in order to read privacy-preserving off-chain data 

feeds that allow dynamic contract interaction with external 

data. Constructed out of zero-knowledge succinct non-

interactive arguments of knowledge (zk-SNARKs) and 

Pedersen commitments, ZkVault ensures: (1) data 

confidentiality hiding the inputs and intermediate 

computations; (2) verifiable computation which can be proven 

to third parties that no contract stages have been corrupted, 

without revealing any private data; and (3) scalability which 

off-loads most of the computation off-chain to reduce 

blockchain overhead. According to experiments that 

demonstrate that ZkVault can achieve a 40-60 % gas savings 

over legacy on-chain mechanisms, proof generation imposes a 

relatively small overhead of ~4s per transaction, which in 

practice is reasonable. These findings show that ZkVault can 

provide very robust privacy guarantees and implementation 

efficiency without sacrificing auditability, and as such, is a 

strong candidate for next-generation privacy-preserving 

dApps. 

Keywords 

Zero-Knowledge Proofs, zk-SNARKs, Groth16, Pedersen 

Commitments, Oracle Security, DeFi Privacy, Smart Contracts, 
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1. INTRODUCTION 
Blockchain technology has revolutionized the world of digital 

technology to provide tamper-protected distributed ledgers that 

do not require trusted central authorities [1, 2]. Among the most 

impressive developments undertaken are smart contracts, self-

executing program codes that facilitate agreements whose 

terms are executed in a transparent and immutable manner 

through blockchain consensus [3]. The downside of this 

transparency is the loss of privacy: transaction values, contract 

inputs, and executed logic are all publicly visible in a public 

blockchain like Ethereum, which is not acceptable in privacy-

sensitive use cases, such as healthcare, decentralized finance 

(DeFi), supply-chain management, and identity management 

[4, 5]. Public blockchains are prone to disclosure of sensitive 

data (sender/receiver addresses, function parameters, business 

rules, and data provided by an oracle): revealing financial 

position, health records, or trade secrets [6, 7]. Besides on-

chain privacy issues, smart contracts are often dependent on 

off-chain data sources via oracles, which can be compromised 

by data leakage/manipulation and malicious ordering to 

threaten accuracy and fairness [8, 9]. To remedy these privacy 

concerns, zero-knowledge proofs (zk-SNARKs) and 

subsequent technology, including Zcash, Aztec, Nightfall, and 

Mimblewimble, were discovered to enforce the confidentiality 

of transactions [10, 11, 12, 13], whereas schemes like DECO 

and Town Crier ensure oracle integrity [14, 15]. However, the 

majority of these frameworks have nonetheless considered 

either oracle correctness or transaction privacy at the cost of 

performance, i.e., high gas cost, large proof size, or slow 

generation of proofs [16, 17]. The requirement to comply with 

data privacy laws, such as GDPR, HIPAA, and financial 

regulations, also requires privacy assurance without 

compromising auditability and verifiability, a space where 

existing solutions fail [18, 19]. We address these limitations by 

creating ZkVault, a privacy-preserving, end-to-end smart 

contract framework, which combines confidential transactions 

with privacy-averse oracle feeds into a unified system. ZkVault 

uses zk-SNARKs and Pedersen commitments to (1) hide inputs 

and intermediate states of contract execution, (2) have those 

intermediate states publicly verifiable through a succinct proof, 

and (3) off-chain proof generation to achieve scalability [1, 17]. 

Experiments show that ZkVault uses 40-60% less gas than 

conventional transparent execution with acceptable proof 

generation times (~4s) [1, 16]. 

The major objectives of the current study have been to address 

the following two questions: 

1. To protect the privacy of smart-contract transactions, without 

compromising auditability or soundness. 

2. To deliver confidentiality of off-chain data feeds (oracles) by 

feeding encrypted, attestable privacy-preserving data to on-

chain logic. 

The current implementation of ZkVault carries out these two 

goals, but the architecture is also sufficiently modular so that 

one can, in a sense, explore these additional two goals as 

extensions as opposed to current contributions: 

3. Trusted-oracle reputation scoring attempted to perform these 

tasks in a cryptographically verifiable way, called reputation 

systems. 

4. Mitigation of transaction-ordering dependence (TOD) and 

frontrunning using commitment schemes and verifiable-delay 

cryptography. 
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ZkVault proposes a scalable application of zero-knowledge 

cryptography as a part of smart contract execution and oracle 

pipelines, thus providing an efficient and expandable 

framework of next-generation privacy-preserving 

decentralized applications. 

 
Fig 1: ZkVault Modular Architecture & Oracle Integration 

2. PROBLEM STATEMENT  
Even though smart contracts can potentially revolutionize the 

automation of trustless transactions, they’re not being 

inherently privacy-aware may translate to serious downsides in 

privacy-sensitive sectors of finance, healthcare, and corporate 

information handling [1, 3, 4]. Smart contract information 

(such as input/output parameters of functions and internal state) 

is openly available on the blockchain, thus leading to 

essentially no transaction privacy [3, 5, 6]. This transparency 

may reveal sensitive data and may cause competitive 

drawbacks and subject participants to bad actors [6, 7]. Also, 

most smart contracts use external data feeds (oracles) to interact 

with the real world [5, 7]. Nonetheless, there are two significant 

threats of such oracles, i.e., data leakage and trust warranties [6 

- 8]. When the external data is committed to the chain, it 

becomes publicly readable, which is of concern to confidential 

applications like pricing, medical, or sensitive operations -user 

metrics [4, 5]. There is also a chance of manipulation, 

inaccuracy, and breached contract logic due to a lack of 

credible mechanisms to verify the credibility and source of 

oracle data [6, 7, 18]. This study particularly looks at these two 

important issues by concentrating on: 

• How to create a mechanism of personal transaction in 

smart contracts with Zero-Knowledge Proof. 

• Crafting a solution that would allow confidential off-chain 

data feeds to be safely added to smart contracts. 

The presented solution, ZkVault, may find its application in the 

existing critical gap between the blockchain transparency and 

decentralization on the one hand and data privacy on the other. 
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Fig 2: zkVault 

3. LITERATURE REVIEW 
Such a need to protect the privacy of the blockchain-based 

smart contracts has triggered the search for numerous 

cryptographic means to shield the information about 

transactions and protect the external data sources. In this 

section, relevant work is reviewed in two main areas, namely, 

confidentiality of transactions and secure oracle data feeds, 

which, respectively, directly address the aims of the first two 

objectives of this study. 

3.1 Privacy in Smart Contract Transactions 

There exists inherent transparency in smart contracts; every 

step of actions, reading, and writing is observable on the 

blockchain. In order to alleviate that, Zero-Knowledge Proofs 

(ZKPs), particularly zk-SNARKs (Succinct Non-Interactive 

Arguments of Knowledge) have found widespread use. ZKPs 

enable one party to demonstrate that data is correct, and this 

demonstration does not require disclosure of information. 

Shielded transactions such as Zcash are based on this principle 

since they allow values and addresses to be secret, but not the 

transaction, as the lender and borrower can prove [1]. Ernst & 

Young is developing zk-SNARKs projects such as Nightfall 

and Aztec Protocol for Ethereum to allow zk-SNARKs-based 

asset transfers. Nonetheless, these deployments can be 

characterized by high computational overhead, excessive proof 

times, and gas-intensive processes, and thus are not suitable 

when frequent use of smart contracts is intended [2][3]. Others 

like Mimblewimble and Confidential Transactions (CTs) are 

based on Pedersen Commitments and range proofs. The Grin 

and Beam make use of Mimblewimble, which uses an approach 

to scalability and confidentiality that does not involve address 

data and bundles transactions together [4]. As productive, these 

methods do not fit the Ethereum Virtual Machine (EVM), 

which hinders their wider application to Solidity-based 

contracts. Even with advances, all present systems tend to 

prioritize privacy or composability, but not both. This supports 

the necessity of a framework such as ZkVault, which allows 
finding a balance between privacy, verifiability, and 

deployability in EVM settings. 

3.2 Privacy and Trust in Oracle Data Feeds 

Blockchain oracles retrieve the information on the chain in 

smart contracts. Examples of outstanding oracle networks are 

Chainlink, Band Protocol, and API3, which have assisted in 

decentralization of oracles and data access [5]. Nevertheless, 

such solutions do not ensure the confidentiality of the data after 

passing into the blockchain. Oracle data submitted is 

immediately made on-chain and permanent. Examples of 

research work toward better oracle security and privacy are 

Town Crier, which uses Trusted Execution Environments 

(TEE) such as Intel SGX to safely load HTTPS-protected data 

to serve smart contracts [6]. In a similar way, the DECO, which 

is developed by Chainlink Labs and Cornell University, 

leverages zero-knowledge techniques to prove the facts relating 

to the web data that lies in the privacy [7]. Although it sounds 

promising, using software and hardware enclaves creates 

centralization risks and vulnerabilities. 

In addition, although cryptographic signatures ensure the 

correct identity of oracles, they do not protect against leakage, 
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and existing solutions are thus inadequate for applications such 

as privacy-preserving auctions, financial derivatives, or 

confidential clinical reporting. 

3.3 Gaps and Research Need 

Privacy-related practices that are promising in smart contracts 

and oracle design are found in the literature. However, the 

current frameworks only support one part of the privacy of 

transactions or trust of oracles. There are a few systems that 

have a unified solution of both, and a solution that can fit EVM 

and scale to a real deployment. The table 1 summarize existing 

privacy preserving smart contract and oracle solution 

This gap drives towards the creation of a ZkVault modular and 

extendable framework that: 

• Facilitates the confidentiality of transactions in smart 

contracts that are zk-SNARK-based. 

• Endorses Oracle data feeds that are secure, encrypted, and 

verifiable. 

• Sets the basis of future extensions of oracle scoring and 

transaction-ordering defense. 

ZkVault can thereby effectively solve the two problems of 

transaction and oracle privacy in one fell swoop and provide a 

realistic way to fully confidential decentralized apps. 

Table 1. Comparison of Existing Privacy-Preserving 

Smart Contract and Oracle Solutions 

Framew

ork / 

Protocol 

Privac

y 

Focus 

EVM 

Comp

atible 

Ora

cle 

Priv

acy 

Gas 

Cost 

& 

Proof 

Time 

Limitati

ons 

Zcash Transa

ction 

anony

mity 

No No Mode

rate–

High 

Custom 

blockch

ain only, 

not 

compos

able 

with 

Ethereu

m 

Aztec / 

Nightfall 

(EY) 

zk-

SNAR

K 

asset 

transfe

r 

Yes No High 

gas, 

long 

proofs 

No 

support 

for 

oracle 

confiden

tiality 

Mimble

wimble 

(Grin/Be

am) 

Peders

en-

based 

transac

tion 

CT 

No No Low Not 

deploya

ble on 

EVM, 

limited 

smart-

contract 

support 

Chainlin

k / Band 

Data 

authen

ticity 

Yes No Low Data 

revealed 

on-chain 

→ no 

(signat

ures) 

confiden

tiality 

Town 

Crier / 

DECO 

Oracle 

integri

ty & 

privac

y 

Partiall

y 

Yes Low Relies 

on SGX 

→ 

centraliz

ation & 

TEE 

vulnerab

ilities 

ZkVault 

(Propose

d) 

Unifie

d tx & 

oracle 

privac

y 

Yes Yes Mode

rate 

(240k 

gas, 

~4 s 

proof) 

Full-

stack 

confiden

tiality + 

EVM 

support, 

modular 

future 

extensio

ns 

 

4. METHODOLOGY 
The ZkVault framework is designed to ensure end-to-end 

privacy in smart contract systems by addressing two important 

parts of confidentiality: (1) transactions performed in smart 

contracts, and (2) External data streams provided by oracles. 

To accomplish this, ZkVault employs sophisticated 

cryptographic primitives and algorithms, such as Zero-

Knowledge Succinct Non-Interactive Arguments of 

Knowledge (zk-SNARKs) and Pedersen Commitments, as well 

as digital signatures and data encryption methods. These 

mechanisms are closely integrated into the smart contract 

execution pipeline, allowing them to maintain privacy without 

compromising the correctness and verifiability of the 

execution. 

4.1 Confidential Transactions via zk-

SNARKs 

In conventional Ethereum-based smart contracts, transaction 

inputs (e.g., transfer amounts, sender addresses) are openly 

visible on-chain. To preserve privacy, ZkVault utilizes zk-

SNARKs to validate computations without revealing 

underlying values. 

Pedersen Commitment 

A value v is first committed using a Pedersen Commitment, 

which hides the value while allowing zero-knowledge proof 

construction: 

𝐶 = 𝑔𝑣 ⋅ ℎ𝑟………………...1 

• g,hg: Generators of an elliptic curve group. 

• v: Value being transferred (e.g., tokens). 

• r: Random blinding factor to maintain 

confidentiality. 

• C: Commitment value published on-chain. 

This commitment is both hiding and binding, ensuring value, 

privacy, and integrity. 
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4.2 zk-SNARK Proof Generation 

The transaction sender generates a zk-SNARK proof π\piπ 

over a zk-circuit that validates correctness (e.g., value 

balance, authorization, signature validity) without disclosing 

inputs: 

π = Prove(witness,statement)……………….2 

• witness: Secret inputs such as sender balance, 

transfer amount. 

• statement: Public commitment or hash of 

transaction. 

4.3 On-chain Verification 

The smart contract uses an embedded verifier (e.g., via 

Groth16 or Plonk) to confirm: 

𝑉𝑒𝑟𝑖𝑓𝑦(𝐶, 𝜋) ⇒ 𝑇𝑟𝑢𝑒 𝑜𝑟 𝐹𝑎𝑙𝑠𝑒…………….3 

Only valid proofs allow the transaction to proceed, achieving 

full privacy without compromising trust. 

Table 2: System Module Mapping 

Module 

Name 

Technique Used Objective 

Addressed 

Confidential 

Transaction 

Engine 

zk-SNARKs, 

Pedersen 

Commitments 

Objective 1 

(Transaction 

Privacy) 

Oracle 

Privacy 

Verifier 

Digital Signatures, 

AES/ElGamal 

Encryption 

Objective 2 (Data 

Feed Privacy) 

Trust 

Scoring 

Module 

(Planned) 

Reputation 

Ledger, 

Cryptographic 

Auditing 

Objective 3 (Oracle 

Trustworthiness) 

TOD 

Defense 

Layer 

(Planned) 

Commit-Reveal, 

VDFs (Verifiable 

Delay Functions) 

Objective 4 

(Transaction 

Ordering Defense) 

 

4.4 Advantages of Methodology 

• Privacy-Preserving: Ensures neither transaction values 

nor data feeds are leaked publicly. 

• Verifiable: All operations can be cryptographically 

proven on-chain. 

• Composable: Modules are deployable in standard EVM 

smart contracts. 

• Future-Proof: Designed to be extended with TOD and 

trustworthiness mechanisms. 

 

 

 

Algorithm 1: ZkVault Privacy-Preserving Execution 

Input: 

    TxData       ← Transaction data (sender, recipient, value 

v) 

    zkCircuit    ← Zero-knowledge circuit for transaction 

validity 

    D_enc        ← Encrypted oracle data 

    σ            ← Digital signature of data D 

    pk_oracle    ← Oracle’s public key 

    C            ← Pedersen's commitment of value v 

    π            ← zk-SNARK proof 

Output: 

    Smart contract execution result (Success / Failure) 

Procedure ZkVault_Execute: 

    1. if NOT VerifyZKProof(zkCircuit, C, π) then 

    2.     return Failure: Invalid zk-SNARK Proof 

    3. D ← Decrypt(D_enc) 

    4. if NOT VerifySignature(D, σ, pk_oracle) then 

    5.     return Failure: Invalid Oracle Signature 

    6. ExecuteSmartContract(TxData, D) 

    7. return Success: Private Contract Execution Complete 

 

ZkVault Privacy-Preserving Execution Algorithm provides a 

confidential and secure operation of smart contracts with the 

help of a dual-layer privacy model. The initial step is where a 

user produces a zero-knowledge proof to verify the transaction, 

yet keeping data sensitive like the sender, receiver, or the value 

of the transaction to themselves. Together with it, an encrypted 

piece of data by a trusted oracle is received along with a digital 

signature to determine its authenticity. The smart contract starts 

by ensuring that a zero-knowledge proof indicates that the 

transaction follows the rules that have been outlined. In case 

the proof is true, then the oracle data is decrypted and the 

signature verified with the oracle public key to confirm that the 

data could not be altered in transit. The smart contract kicks off 

only when both the transaction and the oracle input have 

successfully validated. This is how privacy, integrity, and 

verifiability can be ensured during the lifetime of the 

transaction, and thus, ZkVault may find use in privacy-

sensitive decentralized applications in finance, healthcare, and 

data-driven automation. 
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4.5 Flowchart: 
Figure 3 shows the flow of the ZkVault off-chain proof and 

oracle verification process flow. 

 

 

 

Fig 3: ZkVault Off-Chain Proof and Oracle Verification Flow

5. SYSTEM ARCHITECTURE 
 

Figure 4 shows the architecture of the ZkVault system for 

privacy preserving  of smart contract data.

 

Fig 4: ZkVault System Architecture: Privacy-Preserving Smart Contract 

ZkVault is used as a system architecture to execute privacy-

preserving smart contracts, integrating security oracles with 

zero-knowledge cryptography. The architecture is covered by 

three primary layers, namely, the User Client, the Oracle Node, 

and the Blockchain Network. From the user side, a zk-SNARK 

Prover module creates a cryptographic proof of private 
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transaction data. These proofs, together with Pedersen 

commitments, are passed to the ZkVault smart contract that is 

deployed in the blockchain. It makes sure that the transaction 

holds valid without the exposure of the sensitive data like the 

sender, recipient, or the transfer amount. At the same time, 

oracle nodes retrieve external reality-world data (e.g., weather, 

prices) and encrypt it, as well as digitally sign the payload. Our 

encrypted information and its signature are given to the 

ZkVault contract in order to be verified. The validity of the zk-

proof is checked by the smart contract, applying a verifier on 

chain, and the veracity of the oracle data, by means of its 

signature. With either of the two validated, the contract is then 

set to perform the predetermined logic with secret input. The 

outcomes of the calculations are provided to the user without 

disclosing changes of values on the inside. It is also the 

architecture where the commitments and state changes are 

recorded on-chain. This modular architecture provides 

confidentiality, data integrity, and verifiability features, which 

make ZkVault applicable to use cases requiring privacy, in 

sensitive data processing, and in transactions involving finance 

and insurance. 

5.1 Threat Model and Assumed Trust 
ZkVault allows a typical semi-honest (honest-but-curious) 

blockchain model where on-chain nodes follow the protocol 

precisely but can have a dishonest goal of trying to learn 

confidential information about states of contracts and oracle 

input. Enemies can read the full contents of all public ledgers, 

inspect network traffic, and may be able to engage in inference 

through making use of transaction-ordering attacks (e.g., 

frontrunning). Execution of smart contracts is presumed to be 

deterministic by the Ethereum Virtual Machine and to be 

correct. In the case of oracle feeds, we suppose that Person 

oracle nodes might be adversarial, rational or compromised, but 

not every oracle can be corrupted at once. Data authenticity is 

signed with cryptographic signatures to the oracle that receives 

the queries; Data confidentiality is achieved through end-to-

end encryption; however, confidence is placed in the oracle set 

to possess an honest oracle capable of returning true and 

tamper-free data. The zero-knowledge proof system 

underneath (Groth16 zk-SNARKs with Pedersen 

commitments) is supposed to be secure based on the standard 

cryptographic hardness assumptions (e.g., discrete logarithm 

problem). Side-channel attacks, hardware-level device attacks 

(e.g., SGX leakage), and denial-of-service attacks are out of 

scope. ZkVault, under these assumptions, would safeguard the 

privacy of the input to a transaction, oracle data values, 

intermediate computations, and would maintain verifiability of 

the output against semi-honest observers. 

6.  RESULTS ANALYSIS 
ZkVault was evaluated along three axes: proof efficiency, 

oracle data validation, and comparative privacy-contract 

behavior. Simulations were conducted on a virtual Ethereum 

medium (Hardhat, Geth) with Groth16 zk-SNARKs and 

ECDSA-supported oracle streams, followed by 30 empirical 

runs on the Goerli testnet. Results are summarized in Tables 

1–Y. 

6.1. zk-SNARK Transaction Evaluation 
Table 3 shows the details about the zk-SNARK transaction 

evaluation. 

 

 

Table 3. zk-SNARK Transaction Evaluation 

Metric Value Observation 

Proof Size 192 bytes Compact for on-chain 

submission 

Proof Generation 

Time 

3.6–4.2 sec Acceptable off-chain 

latency 

On-chain 

Verification Time 

2.1–2.4 ms Efficient for real-time 

execution 

Gas Cost 240,000 – 

260,000 

Moderate with zk-

circuit optimized 

Proofs are compact (192 bytes), generated in ~4 seconds off-

chain, and verified on-chain in <3 ms, ensuring negligible 

block-latency impact. Gas costs (~250k) are competitive for 

privacy-preserving transactions. 

 

6.2. Oracle Data Validation Performance 

Table 4 shows the validation performance of the Oracle data. 

Table 4. Oracle Data Validation Performance 

Metric Value Observation 

Signature Type ECDSA 

(secp256k1) 

Ethereum-compatible 

Signature Size 64 bytes Lightweight 

Verification 

Time 

< 1 ms Practically real-time 

Gas 

Consumption 

~63,000 Efficient for contract 

integration 

Oracle data validation is secure and low-cost. On-chain 

verification prevents reliance on unverified oracle feeds, with 

negligible latency (<1 ms) and predictable gas overhead. 
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6.3. Comparative Privacy-Contract 

Evaluation 

Table 5. Comparative Privacy-Contract Evaluation 

Feature ZkVault Traditional 

SC 

ZK + 

Oracle 

Baseline 

Transaction 

Privacy 

Complete None Partial 

Oracle Data 

Confidentiality 

Encrypted Exposed Sometimes 

Signature 

Verification 

On-chain Not 

validated 

On-chain 

zk-Proof 

Efficiency 

Optimized Not 

supported 

Moderate 

Gas Efficiency Medium High Low 

Unlike traditional contracts, ZkVault ensures full privacy, 

encrypted oracle data, and on-chain signature verification, 

while optimizing gas efficiency. This balance of trust, 

confidentiality, and cost distinguishes it from existing 

solutions. 

 

6.4. Baseline Comparison with Existing 

Frameworks 

Table 6. Baseline Comparison of ZkVault with Existing 

Privacy Frameworks (Goerli Testnet Deployment) 

Frame

work 

Privacy 

Mechan

ism 

Avg. 

Gas 

Cost 

per Tx 

Proof 

Generat

ion 

Time 

Oracle 

Privacy 

Support 

EVM 

Deplo

yable 

Aztec zk-

SNARK 

(Groth1

6) 

420k – 

450k 

~3 s No Yes 

Nightfal

l v3 

zk-

SNARK 

(Groth1

6) 

380k – 

410k 

~3 s No Yes 

ZkVaul

t 

zk-

SNARK 

+ 

Pederse

n 

240k – 

260k 

~4 s Yes Yes 

ZkVault achieves lower gas consumption (~250k vs. ~400k+) 

while uniquely supporting oracle data privacy. Proof time is 

slightly longer (~4 s), but since proofs are generated off-chain, 

the tradeoff is favorable. 

 

6. 5. Statistical Gas & Proof Time Analysis 

Table 7. Statistical Analysis of Gas Cost and Proof Time 

(30 runs on Goerli Testnet) 

Framework Avg. Gas Cost 

(95% CI) 

Avg. Proof Generation 

Time (95% CI) 

Aztec 435,600 ± 8,900 

gas 

3.21 ± 0.12 s 

Nightfall v3 395,200 ± 7,450 

gas 

3.18 ± 0.10 s 

ZkVault 250,300 ± 4,820 

gas 

4.02 ± 0.15 s 
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Gas savings with ZkVault are statistically significant (non-

overlapping 95% CIs compared with Aztec and Nightfall). 

Proof generation time is slightly higher but operationally 

negligible when using relayers or batch provers. 

 

6.6. Summary & Insights 

• Efficiency: ZkVault reduces gas costs by ~35–40% 

compared to Aztec and Nightfall. 

• Privacy: Only framework with both transaction 

confidentiality and oracle privacy. 

• Latency: Off-chain proof generation (~4 s) is the 

main cost, but verification remains ultra-fast. 

• Scalability: Optimized for modular integration into 

Ethereum-compatible environments. 

ZkVault balances privacy, efficiency, and trust, 

outperforming existing privacy-preserving frameworks 

in most practical deployment scenarios. 

6.7 Security Analysis  
Assuming the security of underlying cryptographic primitives 

(Pedersen Commitments, Groth16 zk-SNARKs, IND-CPA 

encryption and EUF-CMA signatures), ZkVault possesses the 

following properties: 

• Confidentiality: Private input to transactions and oracle 

inputs are kept secret, even to a polynomial-time 

adversary viewing the blockchain because of the perfect 

hiding property of Pedersen Commitments, and the zero-

knowledge assurance of the zk-SNARK proof system. 

• Integrity: A destabilization of data in transactions or 

oracle feeds produces invalid proofs and signature 

mismatches, which are off-chain rejected with high 

probability. 

• Verifiability (Soundness): When a proof passes through 

the on-chain verifier, then Groth16 will be knowledge-

sound and, consequently, there must exist a witness of its 

workability, thus only valid transactions and authenticated 

oracle feeds will get through. 

ZkVault therefore establishes a formal provable guarantee of 

privacy and correctness against the standard blockchain attack 

model. 

7. CONCLUSION 
The study introduced a high-tech privacy-preserving smart 

contract protocol, ZkVault, which is intended to provide 

confidentiality of both on-chain operations and externally 

derived oracle data. Its internal innovation is its utilization of 

zk-SNARK-based proofs to confirm transactions anonymously 

without having access to sensitive input information, and 

signing the oracle inputs with digital signatures or encrypting 

them to guarantee the safety and authenticity of the data 

ingested by the contract. With more salient testing, ZkVault 

was found to have short verification latency (less than 2.5 

milliseconds) and acceptable gas costing, making the 

establishment of the lawsuit realistic in practice to be deployed 

on permissionless blockchains, such as Ethereum. Its system is 

a trade-off between privacy, auditability, and gas efficiency, 

providing an improved alternative to the traditional smart 

contract approach, which tends to give everyone in the system 

the ability to read the logic and data related to the transactions. 

The architecture of zkVault allows confidential computation 

and so safeguards the user inputs as well as outsider data 

providers, and concludes with decentralized implementation of 

the logic. It applies especially to privacy-sensitive applications 

in the decentralized finance (DeFi), healthcare, and legal 

contract execution. Solving two main problems of transaction 

privacy and oracle credibility, ZkVault opens the possibility of 

a new family of verifiable but confidential smart contracts. It 

can also improve oracle assessment and protection against the 

transaction-ordering attack in the future, thanks to its modular 

nature, thus allowing it to serve as a scalable and safe space to 

run the next-generation decentralized application. 

8. FUTURE WORK 
To develop more future versions of ZkVault, to constantly 

expand it, we will work on solving the problem of considering 

oracle trust verification and transaction-ordering attacks. 

Specifically: 

• Credible Oracle Mechanism: Introduce a decentralized 

oracle scoring scheme, cryptographic attestation, and 

slashing-based economic incentives to catch oracles who 

behave unreliably, punish them and protect their 

reputation. 

• Transaction-Ordering Dependence (TOD): 

Implementations that help to guard against front-running 

and reordering by implementing commit-reveal patterns 

or inserting fair-ordering tiers such as Flashbots or Suave. 

• Cross-Platform Interoperability: Bring interoperability to 

ZkVault by supporting it with cross-chain proofs on a 

variety of blockchain platforms (e.g., Ethereum L2s, 

Polkadot, Cosmos). 

• zk-Rollup Integration: See how to combine ZkVault with 

rollup implementations to support scalability on the one 

hand and maintain confidentiality on the other. 

These upcoming improvements will change ZkVault from a 

privacy utility to a privacy-by-design smart contract 

framework. 
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