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ABSTRACT

The rapid expansion of the Internet of Things (IoT) ecosystem
has provided a tremendous attack surface, and therefore, loT
devices are highly vulnerable to advanced cyberattacks, data
breaches, and privacy invasions. Rule-based intrusion detection
systems are mostly ineffective in dealing with high-
dimensional and heterogeneous traffic streams that IoT
environments produce. To fill in these gaps, this research
examines the systematic use of Artificial Intelligence (Al) and
Machine Learning (ML) methods towards IoT security
augmentation, malicious activity detection, blocking of data
leakage, and safeguarding of wuser privacy. A strict
methodology, quantitative experimental approach was adopted,
leveraging the Australian Centre for Cyber Security's
TON_10T20 dataset of actual network traffic, attack behaviours
(i.e., DDoS, data injection, password-based intrusions), and
normal run log data from various IoT devices such as smart
plugs, cameras, and thermostats. Data preprocessing steps
involved removal of duplicates, handling of missing values by
imputation, feature encoding, and scaling, followed by a
70/15/15 stratified split for training, validation, and test. Three
standard ML models, Random Forest (RF), Extreme Gradient
Boosting (XGBoost), and a Deep Neural Network (DNN) were
used in Python under a controlled Ubuntu environment and
trained on the pre-processed data.

Model performance was measured by accuracy, precision,
recall, F1-score, and ROC-AUC values, with further analysis
by means of confusion matrices and McNemar's significance
testing. The results indicate that XGBoost performed better,
with 98.9% accuracy, 98.6% precision, 99.0% recall, an F1-
score of 98.8%, and an ROC-AUC value of 0.996, with very
low values of false positives and false negatives. Statistical
testing established that the improvement of XGBoost relative

to RF and DNN was significant (p<0.05). In addition,
XGBoost provided competitive training time and the quickest
inference time, indicating its real-time suitability for IoT
intrusion detection applications.

All of these results underscore the promise of incorporating
AI/ML solutions based on XGBoost in [oT security platforms
to improve active threat detection, reduce false alarms, and
offer improved privacy protection controls. The research
provides an experimentally validated reference model towards
further studies and real-world applications of Al-driven
intrusion detection systems in real-time IoT environments.
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1. INTRODUCTION

The proliferation of the Internet of Things (IoT) has
revolutionized business and everyday life by enabling
end-to-end connectivity between billions of things. From smart
homes and wearable health trackers to industrial sensors and
autonomous vehicles, IoT networks continuously generate
high-volume, heterogeneous, and dynamic data streams. Yet, it
also comes with greater connectivity to enormously larger
attack surfaces exploited by hackers to breach confidentiality,
integrity, and availability of information (Al-Garadi et al.,
2023; Khan et al., 2024). Recent studies indicate an oncoming
trend of IoT-based cyberattacks, such as distributed
denial-of-service (DDoS) attacks, data injection, and credential
theft, which have resulted in large-scale data breaches and
privacy infringements (Ahmed et al., 2023).

Legacy rule-based and signature-based intrusion detection



systems (IDS) typically do not look after the IoT network
traffic dynamism because it changes very quickly. They lack
scope, flexibility, and the capability to identify zero-day attacks
or minor variations (Chen et al., 2022). This has prompted
scholars and practitioners in the area to investigate the
application of Artificial Intelligence (AI) and Machine
Learning (ML) methods to predictive threat modelling and
dynamic intrusion detection in IoT scenarios (Singh & Rajesh,
2023; Li et al., 2024).

Machine learning algorithms like Random Forests (RF),
Gradient Boosted Trees (like XGBoost), and Deep Neural
Networks (DNNs) have demonstrated encouraging results in
identifying sophisticated attack behaviours in
high-dimensional network traffic data (Tian et al., 2023).
XGBoost, in fact, has proven to be an appropriate choice for
cybersecurity tasks with its imbalanced dataset tolerance, fast
training, and enhanced classification accuracy on tabular data
(Xu et al., 2023). Deep learning models, though effective for
unstructured data spaces, fare poorly on tabular IoT data unless
it is heavily tuned or combined with feature engineering
techniques (Shah et al., 2024). Notwithstanding these
developments, several challenges exist. [oT devices are low-
resource devices and hence models need to be of lower
accuracy but not computational complexity (Zhang et al.,
2024). Moreover, privacy laws and principles also require that
any model deployed reveals minimal information and runs in a
strongly controlled environment. Thus, a comprehensive
investigation of various AI/ML methods on real-world publicly
available IoT traffic data sets is essential to determine optimal
solutions with a trade-off between detection accuracy,
computational cost, and privacy implications. This study
overcomes these hurdles by adopting a serious experimental
approach with the TON [0T20 dataset, a highly validated
benchmark for [oT security research. Through a comparison of
RF, XGBoost, and DNN models, this study will prove how
AI/ML can be utilized to advance IoT cybersecurity, decrease
false positives, and supply statistically validated intrusion
detection power boosts.

Objectives of the Study

The broad objective of this study is to examine and assess the
use of Artificial Intelligence (Al) and Machine Learning (ML)
methods in developing improved cybersecurity for Internet of
Things (IoT) devices to try to block data breaches and maintain
user privacy.

e  For the fulfillment of this objective, the precise objectives
are as follows:

e  To recognize and study current cybersecurity threats and
emerging risks in IoT systems and to bring forth the
vulnerabilities of traditional security systems against these
risks.

e  To train and deploy chosen AI/ML techniques (Random
Forest, XGBoost, and Deep Neural Networks) in a real-
world dataset (TON_IoT20) for intrusion detection and
anomaly detection in IoT network traffic.

e  To compare and contrast the performance of the deployed
models based on shared metrics like accuracy, precision,
recall, Fl-score, and ROC-AUC to measure their
effectiveness in identifying malicious activities.

e  To assess the real-world implications of the inclusion of
AI/ML-driven intrusion detection in IoT security systems
with respect to minimizing false alarms, boosting

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.44, September 2025

detection rates, and preserving user anonymity.

e To provide adaptive and responsive mitigation threat
recommendations based on results obtained from model
estimation and significance testing.

Research Questions

To direct this research on the use of Artificial Intelligence (AI)
and Machine Learning (ML) methods to enhance cybersecurity
in IoT devices, the research aims to enlighten on the following
questions:

What are some of the new cybersecurity threats and
vulnerabilities intrinsic to IoT ecosystems, and why do
conventional security measures fail against them?

How well do AI/ML models including Random Forest,
XGBoost, and Deep Neural Networks identify intrusions and
anomalies in IoT network traffic on real-world datasets?

Which of these AI/ML models has better detection accuracy,
precision, recall, F1-score, and ROC-AUC?

Can incorporation of AI/ML-based intrusion detection in [oT
security models lower false positives drastically and improve
detection of zero-day or dynamically changing cyber threats?

What are the practical applications and suggested mechanisms
for implementing adaptive AI/ML-based security features in
large-scale IoT systems to protect user privacy and avoid data
breaches?

2. LITERATURE REVIEW

The extensive deployment of IoT technology has driven a lot
of effort into intrusion detection systems capable of addressing
the distinctive challenges of IoT networks. In contrast with
other traditional enterprise networks, loT networks are made up
of heterogeneous devices, low-power processors, and changing
topologies, all which require effective and responsive security
(Pahlavan et al., 2023). Researchers have also mentioned that
current signature-based intrusion detection systems are
inadequate since they are static and do not help in the detection
of zero-day threats (Velmurugan et al., 2024). This has driven
researchers into the investigation of the use of Al and ML
techniques that learn sophisticated patterns and can generalize
to unseen threats.

Current research establishes the potential of ensemble learning
methods, especially tree-based methods, in IoT intrusion
detection. For instance, Abubakar et al. (2023) designed a
gradient-boosted tree classifier to counter imbalanced network
traffic data and reported better detection accuracy than
traditional classifiers. In the same vein, Hussain et al. (2022)
claimed that boosting and bagging methods outshine single-
learner models by leveraging feature importance and evading
overfitting in diverse loT data.

Concurrently, deep learning has also emerged into the
limelight, with Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks being explored
to detect sequential and temporal patterns in I[oT traffic.
Algahtani et al. (2023) designed a hybrid CNN-LSTM model
to identify anomalies in industrial [oT applications and attained
better recall scores. Though, they added that deep learning
models tend to have a high computational requirement and
large labelled training datasets, which are not always accessible
in resource-constrained [oT deployments. Feature engineering
and preprocessing are also significant factors that influence
detection performance. Vekaria et al. (2023) indicate that the
use of one-hot encoding and min-max normalization improved
significantly model convergence and stability on big IoT



benchmark datasets. Experiments in their research also
highlighted the importance of the use of stratified data splitting
for the sake of maintaining class balance for preventing biased
model assessment.

Ethical and privacy concerns are increasingly becoming the
focal point of research in cybersecurity. Rajput et al. (2024)
emphasized that intrusion detection mechanisms have to be
designed with privacy-preserving methods, e.g., federated
learning, such that sensitive information never gets transferred
out of local devices but still generates global model updates.
These methods are accompanied by increasing regulatory
pressures like GDPR and increase user trust. Furthermore,
comparative model benchmarking with respect to benchmark
datasets is also a core area of research. Sahu et al. (2023)
provided an observation that application of such datasets like
BoT-IoT and TON_IoT20 facilitates reproducibility and fair
benchmarking of models in actual traffic conditions. They also
pointed out the requirement of statistical tests like McNemar's
test to ensure that results-oriented improvement in performance
is statistically significant rather than being a chance
occurrence.

Overall, the literature indicates that tremendous progress has
been achieved in using Al and ML for IoT intrusion detection
but that there are as yet inadequacies in balancing good
detection performance, computational efficiency, and privacy
preservation. Such inadequacies necessitate more experimental
researches such as this work over alternative ML techniques
with real-world datasets and statistically verifying performance
enhancement.

The distinctive nature of IoT ecosystems categorically high
device diversity, intense data exchange with high frequency,
and low computational power have rendered IoT cybersecurity
extremely dynamic research. Researchers have, in the past few
years, suggested several paradigms of Artificial Intelligence
(AI) and Machine Learning (ML) to overcome the constraints
of conventional intrusion detection systems (IDS). In contrast
to  static,  signature-based  methodologies, @ AI/ML
methodologies are highly dynamic, learning from changing
traffic patterns and evolving to accommodate new attack
vectors (Okafor et al., 2023).

A. Al and ML Evolution in IoT Security

Early efforts to secure IoT networks depended on lightweight
rule sets and heuristic approaches, which rapidly proved
themselves inadequate against high-level, zero-day attacks and
polymorphic malware. Modern studies have focused more on
ML-based models, with tree-ensemble methods becoming
increasingly popular due to their stability on structured data.
For example, Eze et al. (2023) showed how ensemble trees like
Extra Trees and LightGBM were more effective than
conventional classifiers in botnet detection for intelligent
homes. Likewise, Jamal et al. (2022) contrasted different
boosting algorithms and pointed out their stability in
asymmetric traffic scenarios.

B. Deep Learning Methods

Parallelly, deep learning models have also been explored
extensively for discovering intricate spatial and temporal
patterns in IoT traffic. Zhao et al. (2024) introduced a
Transformer-based time-series intrusion detection system with
significant recall improvements on industrial [oT gateways. In
addition, Sujatha and Thomas (2023) used autoencoders and
gated recurrent units (GRUs) in combination for identifying
low-rate DDoS attacks in resource-constrained devices,

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.44, September 2025

although their work also mentioned the added computational
requirement of such models.

C. Data Preprocessing and Feature Optimization

Feature engineering is the most significant area to enhance
model detection performance. In a recent study, Miah et al.
(2023) found that using correlation-based feature selection and
scaling significantly enhanced F1-scores in ML models for a
number of [oT datasets. Similarly, Hossain and Pervez (2023)
suggested that normalization processes and dimensionality
reduction techniques like PCA might render models more
efficient while keeping accuracy intact.

D. Ethical and Privacy Concerns

Beyond detection performance, the literature highlights
preserving user privacy. Ghosh et al. (2024) investigated
federated learning and differential privacy frameworks and
demonstrated local training at the edge devices in IoT
minimizes data leakage risk. Their findings support larger
industry action calling for privacy-concerned Al solutions in
alignment with contemporary regulatory regimes such as
GDPR and ISO/IEC 27400:2022.

E. Benchmark Datasets and Statistical Validation

Reproducibility is also an important issue in [oT cybersecurity
research. Authors more commonly employ public datasets like
TON _10T20, BoT-IoT, and CICIoT2023 to obtain comparable
results (Barua et al., 2023). Reliable statistical practices also
become popular; Adebayo et al. (2023) gave credit to the use
of McNemar's test and paired t-tests in order to guarantee
observed improvements in model performance are statistically,
not randomly, significant.

INTERNET OF THINGS (Iot)

The Internet of Things (IoT) is a network of physical devices
e.g., sensors, smart home appliances, vehicles, and factory
equipment connected over the internet and capable of
collecting, sharing, and processing data with minimal or no
human intervention. Traditional networks maintain the
physical and digital worlds independently, but IoT systems
converge these two worlds, enabling automation, analysis, and
real-time decision making in various domains such as
healthcare, manufacturing, transportation, and intelligent living
(Dasgupta et al., 2022).

IoT systems are generally made up of three basic layers: the
perception layer (device and sensor that collect data), the
network  layer (data  transmission  protocols  for
communication), and the application layer (services that
consume and process data) (Roy et al., 2023). The layered
structure is easy to scale but leaves it weak in several points.
For example, perception-layer low-power devices are not
generally engineered with strong cryptography capability, and
transmission-layer network protocols are not designed to offer
end-to-end security (Lin & Yu, 2022).

Development of 1oT has expanded manifolds. Based on latest
industry trends, the number of internet-connected [oT devices
around the world reached over 15 billion in 2023 and is set to
cross over 29 billion by 2030 (Feng et al., 2024). This boom
has fuelled innovation in domains like predictive maintenance,
autonomous systems, and smart agriculture. It also
exponentially increases the attack surface of hackers. Threats
like Mirai botnets, ransomware attacks against loT gateways,
and unauthorized data scraping have made it imperative to have



robust and intelligent security practices (Wu et al., 2024).

Data management-wise, [oT creates enormous, heterogeneous
data streams of high velocity and volatility. Such features make
the conventional analytics pipelines difficult and invoke the
implementation of edge computing and Al-based techniques in
performing real-time threat detection and decision-making on
resource-constrained devices (Huang et al., 2023). That is why
developers are turning more attention to creating light AI/ML
models that have been tailored to fit IoT environments where
computational efficiency has to be sacrificed at the expense of
robust predictive performance. Briefly, IoT is revolutionizing
the manner systems communicate and exchange information
with each other, yet the nature of IoT openness, heterogeneity,
and sheer scale also renders security an overarching problem.
Understanding the underlying architecture and operations of
IoT is crucial prior to designing intrusion detection systems that
can stop the constantly evolving threats.

Development of Artificial Intelligence and Machine
Learning in Cyber Security

The surge in the level and rate of cyberattacks over the past
several years put into prominence the vulnerabilities of
conventional security controls that rely mainly on static rules
and human-defined signatures. As attacks on the Internet have
dynamically changed from polymorphic malware and zero-day
attacks to advanced phishing attacks, organizations are seeking
Artificial Intelligence (Al) and Machine Learning (ML) to offer
more adaptive and predictive defences (Haque et al., 2023).

A. From Static Defences to Adaptive Intelligence

Legacy intrusion detection and prevention systems struggle to
deal with the volume and diversity of today's network traffic.
Differing from rule-based solutions, Al and ML enable
ongoing learning from historical and real-time information,
enabling security systems to predict and react to newly
appearing patterns of attacks. Nandhini et al. (2024) also agree
that this move toward data-driven intelligence revolutionized
cybersecurity from a reactive to a proactive and predictive
practice.

B. Al and ML Operations in Threat Detection

Al-based solutions for cybersecurity use algorithms that detect
patterns, correlations, and deviations with accuracy. For
instance, unsupervised ML algorithms are capable of detecting
network deviation without knowing the attack signature
beforehand, essentially getting better at insider threat detection
and new attacks (Rashid et al., 2022). On the contrary, models
of supervised learning trained from labelled datasets of attacks
can easily label traffic as benign or malicious with great
precision, like shown by Liu et al. (2023) in their research on
advanced ensemble approaches for network anomaly detection.

C. Integration with Big Data and IoT

In the wake of developments in IoT and cloud infrastructures,
cybersecurity systems today process higher amounts of data
compared to ever before. Al and ML architectures are best
placed to manage such high-rate streams, deriving actionable
intelligence in real time. Gupta et al. (2023) added that
integration of ML with big-data analytics platforms allows
detection systems to scale across distributed environments,
correlating events across millions of devices at very low
latencies.

The inclusion of Al also makes autonomous response strategies
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possible. Rather than simply notify administrators, Al-based
security systems can, on their own, quarantine suspicious
computers, block malicious IP addresses, or initiate multi-
factor authentication prompts. Mehta et al. (2023) explained
that the integration of Al with orchestration tools has seen "self-
healing" networks, which respond to dynamic threats
independently, with a considerable lag in responses.

E. Challenges and Current Research

Nonetheless, while these benefits exist, Al-based cybersecurity
also faces challenges. Model explainability, attacks on ML
models using adversarial examples, and the necessity of high-
quality labeled datasets are major hurdles (Tian et al., 2024).
Explainable AI (XAI) techniques and model adversarial robust
training are being researched by scientists to overcome these
challenges and ensure that Al-based defences are reliable as
well as trustworthy. In brief, Al and ML in cybersecurity is a
shift from human, signature-based protection to intelligent,
adaptive, and scalable defence mechanisms. This shift is
critically important in IoT networks, where the sheer number
of devices and attack surfaces demand learning-based,
autonomous ways.

New Cybersecurity Threats in IoT Networks

The rapid growth of Internet of Things (IoT) networks, ranging
from smart homes, industrial automation, healthcare, and
transport, has established a massive, interconnected ecosystem
with unprecedented attack surfaces. As opposed to
conventional IT networks, IoT networks are defined by
resource-limited devices, heterogenous protocols, and even
minimal security arrangements, making them an attractive
target for cyber threats (Singh et al., 2024).

A. Botnet-Driven Distributed Attacks

One of the greatest emerging threats is that of IoT-based
botnets taking advantage of weak device authentication and
outdated firmware. The Mirai botnet attack in 2016 was merely
an early indication; newer ones like Mozi and Katana are more
sophisticated and modular, able to perform massive Distributed
Denial of Service (DDoS) attacks with little to no detection
(Sharma & Bhushan, 2023). C. Disruption of Services

These botnets take advantage of default credentials and weak
Telnet/SSH services of devices such as IP cameras and routers
with catastrophic service disruption.

B. Data Poisoning and Adversarial Manipulation

As machine learning models are being used more in IoT for use
cases such as anomaly detection and predictive maintenance,
attackers have begun targeting the training pipelines
themselves. Data poisoning attacks bring in malicious data,
with precise creation, into training sets, misleading models to
misclassify traffic or not detect real attacks (Chen et al., 2023).
Adversarial examples those perceptually indistinguishable
perturbations yet important for ML models can make an
intrusion detection system mislabel malicious traffic as benign.

C. Edge Device Vulnerability and Side-Channel Attacks

With the processing moving to the edge in IoT architectures,
processing unit vulnerabilities on local premises have been
targeted by hackers. Side-channel attacks like power analysis
and electromagnetic side-channel leakage are being witnessed
on loT gateways and microcontrollers increasingly,
compromising sensitive cryptographic keys or firmware
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information (Almeida et al.,, 2022). Such attacks evade
conventional network-level protections and infiltrate directly at
the expense of confidentiality of data in edge environments.

D. Supply-Chain and Firmware Tampering

Variety of IoT hardware providers and sophisticated supply
chains have introduced new threats in the form of preinstalled
backdoors and tampered firmware updates. Li et al. (2023)
showed that vulnerable over-the-air (OTA) update mechanisms
enable attackers to inject malicious firmware without invoking
integrity checks. These threats are especially hazardous in
industrial IoT environments, where tampered devices can
produce disruption to mission-critical infrastructure.

E. Privacy Leaks through Unsecured APIs

In most consumer IoT devices, application programming
interfaces (APIs) are poorly secured, permitting attackers to
extract private information without actually breaching the
device. Han et al. (2024) described how poorly set up
authentication in cloud-connected APIs exposed individual
health data in smart wearables. This threat class highlights the
need to incorporate privacy-by-design principles into IoT
software development. In brief, the IoT system threat landscape
is evolving very quickly and includes large-scale botnets,
adversarial data manipulation, edge exploitation, supply-chain
attacks, and API-based privacy leakage. All of these new
challenges point toward adaptive Al-driven defence systems
and continuous monitoring solutions for securing the
next-generation loT infrastructures.

Anomaly and Intrusion Detection Process

Anomaly and intrusion detection is a key security process for
real-time monitoring of network traffic or system activity,
abnormal behaviour detection, and alerting possible threats. In
Internet of Things (IoT) environments, such processes are of
great importance due to the decentralized device nature and
limited implementation of conventional endpoint defence
mechanisms (Khan et al., 2023).

A. Overview of Detection Approaches

Intrusion detection systems (IDS) are generally divided
between signature-based and anomaly-based approaches.
Signature-based approaches scan seen behaviour against a
database of seen patterns of attacks; effective against known
threats, they are not good against zero-day attacks.
Anomaly-based systems establish a profile of normal
behaviour and ring an alarm on abnormal deviation as a
possible intrusion, providing greater immunity to new attacks
(Bello et al., 2022).

In IoT settings, hybrid detection models are becoming the norm
that leverage both methods, the accuracy of signatures and ease
of anomaly detection. The models utilize layered detection,
often edge and cloud analytics integrated to effectively process
high-speed data streams (Cao et al., 2023).

B. Data Collection and Feature Extraction

It starts with ongoing data collection across sensors, gateways,
and network logs. Significant features like packet length,
protocol, connection rate, and time gaps are extracted to
describe traffic behavior across a multidimensional feature
space. Luo et al. (2024) find that in IoT networks, light-weight
feature selection processes have the important role of limiting
computational expense at the cost of detection fidelity.
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C. Model Training and Detection

Machine learning classifiers are subsequently trained against
labelled data or unsupervised records of typical behaviour. For
the detection of anomalies, the Isolation Forest or clustering
algorithms (such as DBSCAN) may typically be employed for
anomaly detection, while intrusion detection can be based on
supervised classification such as Gradient Boosted Trees or
convolutional neural networks. Saha et al. (2023) illustrated
how ensemble-based anomaly detectors could achieve high
recall rates for identifying low-frequency attack signatures in
IoT traffic.

After deployment, the model calculates incoming data in real-
time, calculating anomaly scores or class probabilities. Those
scores exceeding defined thresholds cause alerts or automated
responses.

D. Continuous Learning and Adaptation

New detection mechanisms use online learning to keep up with
changing patterns. Incremental training, for instance, enables
models to learn their parameters as new data become available,
and thus stay immune to concept drift changes in the underlying
data distribution over time (Wang et al., 2024). Dynamic
adjustment is paramount in [oT settings were device behaviour
changes with firmware updates or fresh app installations.

In short, IoT system anomaly and intrusion detection processes
comprise data gathering, feature extraction, model training,
real-time assessment, and ongoing tuning. Combining Al-
based approaches with light-weight construction makes such
systems work perfectly under the resource limitations of 0T
devices but offer extremely secure defence against known and
unknown threats.

Adaptive Threat Mitigation Framework

The evolving nature of contemporary network cyberattacks,
especially in Internet of Things (IoT) networks, has demanded
the creation of adaptive threat mitigation frameworks. Contrary
to conventional static security policies that are based on
preconfigured rules, adaptive frameworks observe network
conditions in real time, build knowledge from emerging threats,
and in real time modify their response mechanisms to reduce
damage and provide service continuity (Zhang et al., 2023).

A. Core Principle and Design Elements

An adaptive threat mitigation system integrates detection,
decision, and response layers into a closed loop of feedback.

Detection Layer: Continual surveillance of system events,
network traffic, and device logs for anomalies. Decision Layer:
Leveraging AI/ML approaches to classify threats, prioritize
alerts, and compute best mitigation courses.

Response Layer: It executes dynamic responses such as
quarantining the infected systems, throttling suspect traffic, or
deploying new firewall policies along with providing data to
the detection layer so that it becomes more informed (Ghoneim
et al., 2023).

All these layers co-operate in such a manner that whenever
there are new patterns of attacks emerging, then the system will
adjust without any human intervention.

B. Integration of Al and Context Awareness
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Modern frameworks encompass context-aware intelligence
where response to threats is tailored based on operational
requirements and device severity. For example, a hijacked
intelligent thermostat can be quarantined immediately, while an
industrial sensor with high impact can be mitigated in stepwise
fashion to avoid process disturbance (Chatterjee & Malik,
2023). Reinforcement learning and other Al models are also
being employed to make decisions more optimal in the long run
by taking into account the impact of previous responses.

C. Real-Time and Distributed Mitigation

To manage the size of IoT deployments, adaptive mitigation
frameworks are typically shared between edge and cloud
environments. Local assessment and early mitigation occur
with high speed in edge nodes, while data aggregation is
performed in the cloud for facilitating deeper forensic analysis
and policy adaptation. Nguyen et al. (2024) observed that this
kind of hybrid architecture minimizes latency and avoids
bottlenecks but facilitates global situational awareness.

D. Self-Healing and Policy Evolution

One of the most important characteristics of adaptive
frameworks is self-healing capacity—the capacity to restore
damaged elements and resume normal functioning. This may
include automated firmware patching, secure reconfiguration
of hardware, or trust re-establishment among actors in a
network. Roychowdhury et al. (2022) demonstrated how policy
evolution engines integrated within adaptive systems greatly
enhanced resilience to emerging threats such as
ransomware-as-a-service for loT.

Intrusion Detection Systems (IDS) for IoT Security

With the Internet of Things (IoT) penetrating more sensitive
domains like healthcare, transport, and smart cities, Intrusion
Detection Systems (IDS) are now necessary to secure devices
and networks from next-gen -cyberattacks. Since IoT
environments are heterogeneous, resource-limited, and highly
distributed in nature, unlike conventional IT environments, IDS
solutions must be light, adaptive, and context-aware (Abubakar
et al., 2023).

A. IDS role in IoT

An IDS keeps track of network traffic and the activity of
devices for identifying malicious events like unauthorized
access, denial-of-service attack, or data exfiltration. In the
context of IoT, IDS has a valuable role in:

Protecting the limited number of constrained devices with
extremely limited inherent security, Notifying lateral
movement attacks on connected devices, giving real-time
alerting and automated action (Mishra et al., 2022).

B. IDS types in IoT

IDS deployments in IoT security can be categorized into three
primary types:

Network-based IDS (NIDS):

These inspect traffic on gateways or routers to search for

anomalous patterns. They are best equipped to detect large-
scale scanning or DDoS attacks (Khalid et al., 2023).

Host-based IDS (HIDS):
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Installed on one [oT device to monitor logs, configurations, and
resource use. This method excels at detecting firmware
tampering or incorrect privilege escalation.

Hybrid IDS

Blends NIDS and HIDS functionality to take advantage of both
local and worldwide views, often applied in IoT setups where
cross-layer exposure is required (Sankaran et al., 2023).

C. ML-Driven IDS for IoT

Existing research combines IDS with Machine Learning (ML)
to address the volume and complexity of IoT data. Supervised
learning methods like Random Forests and Support Vector
Machines have been used to annotate network flows, and deep
methods like CNNs and LSTMs learn spatial and temporal
patterns from device behaviours (Ghosh et al., 2024). These
schemes offer very low false positive rates compared to static
signature-based systems.

D. Deployment Challenges

Though developments, IoT-based IDS deployment is
confronted with critical challenges:

Resource limitations: Scant CPU, memory, and power
longevity make deep models difficult to deploy.

Diversity of protocols: Difference in communication protocols
(ZigBee, LoRaWAN, MQTT) prevents features from being
harvested.

Scalability: With billions of connected devices, IDS needs to
function in distributed and federated systems without
occupying network resources (Okafor et al., 2023).

3. RESEARCH METHODOLOGY

This study employed an experimental quantitative method to
examine how AI/ML can be used to promote [oT cybersecurity.
The methodology involved five stages: dataset collection,
environment setup, data preprocessing, training the model, and
evaluation.

3.1 Dataset Acquisition (Real Data)

We employed the TON [0T20 dataset built by the Australian
Centre for Cyber Security for the purposes of reproducibility
and authenticity,

The dataset contains: Real network traffic captured off IoT
devices (smart plugs, cameras, and thermostats), Different
types of attacks labelled (DDoS, data injection, password
attacks), Normal operational traffic logs.

Why TON_I0T20?
It is extensively used in peer-reviewed intrusion detection

research and hence credible and directly applicable to IoT
security.

3.2 Experimental Setup

All experiments were conducted within a controlled laboratory
setting on a workstation that had: CPU: Intel Core i7 12th Gen,
RAM: 32 GB, OS: Ubuntu 22.04 LTS,

Programming Language: Python 3.10,

Libraries: Scikit-learn 1.3, TensorFlow 2.12, XGBoost 1.7,
Pandas, NumPy, Matplotlib.

Traftic Analysis Tools:
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Wireshark and Zeek employed for initial packet capture and
feature extraction in dataset structure verification.

3.3 Data Preprocessing

Actual operations carried out to TON_[0T20 CSV files: Data
Cleaning: Truncated duplicate records and unnecessary
columns (timestamps that do not impact patterns). Missing
Values Handling: Missing numeric values replaced by median,
and categorical by mode. Feature Encoding: Categorical
columns (protocols, service types) encoded using one-hot
encoding. Feature Scaling: Numerical features were scaled to
[0,1] to enhance gradient-based models' convergence.
Splitting: Stratified split into 70% training, 15% validation, and
15% test so that class balance is maintained.

Machine Learning Models and Training

Three widely used ML models were compared by testing
them:

Model Reason for Selection

Random Forest Handles high-dimensional data,

(RF) resistant to overfitting.

XGBoost Strong performance on tabular
datasets with imbalanced classes.

Deep Neural
Network (DNN)

Captures complex non-linear
relationships.

Evaluation Metrics

Quality of detection was measured with the following metrics
against the held-out test set:

Accuracy: Overall accuracy of predictions,

Precision: Actual predictions out of positive predictions,
Recall (Sensitivity): Detection of actual attacks,
F1-Score: Harmonic mean of recall and precision,
ROC-AUC: Area under the Receiver Operating Curve.

All of these are standard metrics applied in cybersecurity
intrusion detection studies.

3.4 Ethical Considerations

No personally identifiable information (PII) was gathered. The
anonymized and publicly available data used is freely
available. Experiments were restricted to offline evaluation to
prevent interfering with live networks.

4. RESULTS

The trained models were evaluated on the test subset of the
TON I0T20 dataset using the metrics defined in Section III.
The results demonstrate the comparative effectiveness of the
selected Al and ML techniques in detecting malicious activities
within [oT network traffic.

A. Overall Performance

Table 1: presents the performance metrics for Random Forest
(RF), XGBoost, and Deep Neural Network (DNN) models.
Among the three, the XGBoost model achieved the highest
overall performance.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.44, September 2025

Table 1. Performance metrics on the TON_I10T20 test

dataset
Model Accurac | Precisio | Recal | F1- ROC
y (%) n (%) 1(%) | Scor | -

e AUC

(%)
Random | 98.1 97.8 98.3 98.0 | 0.991
Forest
XGBoos | 98.9 98.6 99.0 98.8 | 0.996
t
DNN 97.5 97.1 97.8 97.4 | 0.987

The XGBoost classifier was consistently better than the others,
with accuracy at 98.9%, precision at 98.6%, and recall at
99.0%. An ROC-AUC score of 0.996 reflects an extremely
high capability to differentiate between benign and malicious
network traffic.

B. Confusion Matrix Analysis
Confusion matrices for all models were created to examine in
greater detail the distribution of correct and wrong predictions.

Table 2 is the confusion matrix for the best-performing
XGBoost model.

Table 2. XGBoost model confusion matrix

Predicted Predicted
Normal Attack

Actual 14,820 210

Normal

Actual Attack | 170 15,320

From confusion matrix:

True Positives (Attack classified correctly): 15,320
True Negatives (Normal classified correctly): 14,820
False Positives: 210

False Negatives: 170

Low false positive and false negative values validate the
model's strength in real intrusion detection situations.

Comparative Insights
The comparative study pointed out the following:

XGBoost exhibited better generalization and effective
management of intricate feature interactions in [oT network
traffic.

Random Forest produced competitive results with light fine-
tuning, and thus it can be considered a good baseline algorithm.

DNN produced lower performance slightly because of the
tabular data character of the dataset, which tended to favour
tree-based methods inherently.

E. Practical Implications
These findings indicate that the inclusion of an XGBoost-based
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intrusion detection system within [oT security systems can
minimize false alarms significantly and enhance the detection
of dynamic cyber attacks and forestall data breaches and
maintain privacy.

Model Training Prediction Time per
Time (s) sample (ms)

Random 18.5 0.10

Forest

XGBoost 223 0.08

DNN 45.0 0.15

Statistical Significance Test

To determine if performance gains of the XGBoost model over
other classifiers were significant, McNemar's tests were done
on paired prediction results. The findings are in Table 3.

INTERNET OF THING
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-~ Network Printer
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Table 3. McNemar's test results comparing model pairs

Model McNemar’s | p-value | Significance
Comparison Statistic (a=10.05)
XGBoost vs. 18.240 0.00002 | Significant
Random

Forest

XGBoost vs. 15.632 0.00008 | Significant
DNN

The comparison between Random Forest and XGBoost
provided a McNemar's statistic of 18.240 and p-value of
0.00002, which is much less than 0.05. This is a proof that the
improvement observed for XGBoost in comparison with
Random Forest is statistically significant.

Similarly, comparison between XGBoost and DNN provided a
McNemar's statistic of 15.632 and p-value of 0.00008, which is
also less than 0.05 and indicates a statistically significant
improvement.

SECURITY (loT)

Smart Appliance

Figure 1: Internet of Things Security

Anomaly & Intrusion Detection Process

\
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Figure 2: Anomaly and Intrusion Detection Process
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