
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

27

A Comparative Evaluation of Test Cases Generation

Approaches based on Unified Modeling Language for

Web-based Applications

Dhafer AbdulAmeer AbdulMonim
Department of Computer Science, Open Educational College

Ministry of Education
Najaf, Iraq

ABSTRACT

Currently, web-based applications have a huge role in

providing online services across the world in various sectors

such as social media, e-commerce, e-education, e-health, etc.,

due to the rapid growth, dynamic nature and heterogeneity of

web-based applications, Rigorous testing techniques are

required to produce reliable web-based applications. Therefore,

the process of testing web-based applications is a very

important issue. Software testing is an important and essential

stage in software development to improve its quality and

reliability. There are many methods presented in the literature

for creating test cases. Besides, you can take the test manually

or automatically using different test tools. Therefore, this paper

focuses on reviewing the literature and reviewing many

different existing methods performed on Model Based Testing

(MBT) for web-based applications. In addition, this research

paper offers a comparative evaluation based on testing

approaches for web-based applications that used UML

diagrams in order to provide guidance for researchers to select

an appropriate MBT approach and provide a basis for relevant

future research.

Keywords
Model-Based Testing (MBT), Unified Modeling Language

(UML), Web-Based Applications, Test Case Generation.

1. INTRODUCTION
In recent years, web-based applications have become used in

important aspects of life, such as social media, education,

entertainment, and online shopping [1]. A web-based

application usually consists of a graphical interface that the user

can interact with by navigating between pages through the

browser [2]. There are two main types of web-based

applications; One that only displays web pages is called static,

and the other that allows the user to interact by entering

information for the web page is called dynamic [3]. Given the

importance of web-based applications in many areas, it is

necessary to conduct testing with methods appropriate to their

dynamic environment. Although testing using traditional

testing techniques is expensive and time consuming [4].

Software testing has an essential and important role to verify

that the system behavior matches its requirements and operates

accurately and reliably [5]. The testing process is the process

of assessing the quality of the system under test (SUT). The

stages of the testing process are creating test cases, executing

test cases, and finally evaluating test cases [6]. A test case is a

series of inputs that lead to the expected output values. There

are two techniques for generating test cases. The first is

structural testing, which generates test cases based on source

code and is called white box testing. In addition, functional

testing, in which the generation of test cases depends on the

specifications of the systems, is called black box testing [7].

Software testing is an important and costly process in the

software development life cycle. In the current researches, new

methods have been explored to create test cases based on

system models, characterized by low test cost and time [8].

Model-based testing (MBT) is one of the black box testing

approaches that have a role in improving the traditional testing

process. MBT is a convenient approach to web-based

application testing because it has the advantage of lower cost

and time detection of defects compared to traditional testing

approaches [10]. In MBT, test cases are created from abstract

models to capture SUT behavior. System models are created

depending on the system requirements during the design phase

[11]. One of the models suitable for generating test cases is the

behavioral models of the system [12]. In the literature, there are

different types of models that are used to generate test cases,

including behavioral models, such as state diagrams, petri

networks, and Finite State Machines (FSM) [13]. Due to the

importance of MBT and Unified Modeling Language (UML),

as well as the widespread use of UML, UML diagrams have

been used to create test cases. [14]. In fact, there are many

proposed test case generation approaches for web-based

applications. Therefore, this paper reviews the most prominent

approaches to generate test cases based on UML models for

web-based applications to identify existing MBT methods.

Furthermore, this paper presents a comparative evaluation

made on MBT approaches for web-based applications.

Comparison criteria include UML models of representation,

test type, test technique, automation tool, and approach’s

limitations.

The rest of the paper is organized as follows. Section 2 provides

the basic concepts for MBT process. Section 3,4 describes the

UML diagrams and test case generation respectively. In section

5, a review of test case generation approaches presented.

Section 6 provides results and discussion for a comparative

evaluation of current literatures. Finally, section 7 presents the

conclusions and directions for future research.

2. MODEL-BASED TESTING
Model-based testing (MBT) is a testing approach that relies on

generating test cases from a system design model and executing

automatically generated test cases to detect many errors

compared to manual testing [15]. Systems models are

expressed in various ways such as a use case diagram or a class

diagram [16]. There are some tools available to implement

MBT. Testing tools can help reduce time and cost and improve

automation testing functionality [17]. Due to the high

complexity of some models, the number of test cases generated

is very large. So executing all test cases for SUT is usually not

feasible. Thus, different test coverage criteria are used to define

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

28

the testing process [18]. For example, all paths coverage i.e.

each path is executed at least once. On the other hand, branch

coverage i.e. every possible branch of the decision point is

executed [19]. The algorithm for automatically generating test

cases is the core of the MBT approach (i.e. the algorithm

outputs a set of test cases) applied to the specification model

either offline or with an internet connection [20]. The generated

test cases can be executed on the system under test [21]. Then

the results of the test implementation are compared with the

expected results in the specification test model [22]. In the case

of offline testing, the test cases generated are written down as

scripts. Using offline testing can improve the final test set

before execution and store for later use [23]. On the other hand,

in the test case with internet connection, test cases are

generated, executed and evaluated together, and then the next

test input is generated based on the test output [24]. In this case,

online testing is adaptable and more convenient than offline

testing [25]. In MBT, the last step is to analyze the output of

the test cases that have been executed to generate the test report

based on the test results [26]. For example, requirements not

covered by test cases and requirements that are validated at the

end of the test can be checked [27]. The importance of MBT is

to increase the effectiveness and efficiency, which is related to

the criteria for choosing a test model if the system model is

structural or behavioral [28]. MBT generally generates test

cases from an abstract model of the system, including formal,

semi-formal specifications such as UML diagrams [29]. UML

relies on behavior models based on expected inputs and outputs

to generate a test case in its implementation [30]. UML

behavior models relied on expected inputs and outputs in order

to generate test cases [30]. MBT based on different methods to

generate test cases such as Labelled Transition Systems (LTS),

Finite State Machine (FSM), Message Sequence Charts (MSC),

and others [31]. One of the most used models for MBT is UML

Diagrams [32], which will be explained in the next section.

3. UNIFIED MODELING LANGUAGE
Unified Modeling Language (UML) is a standard visual

modeling language designed for documenting and designing

object-based systems [33]. It is provided by the Object

Management Group (OMG) [34]. Because UML is a visual

language that supports modeling of system structure and

behavior, it has been widely used for software design and

modeling [35]. Currently there are many applications that have

used UML to design, test, maintain, etc. in a model-driven

software development environment [36]. The UML contains a

number of diagrams to display specific features of the system

[37]. UML models fall into two categories that include

organization diagrams and behavior diagrams. Organization

Diagrams (Body Diagrams mean the static structure of a system

and its representation of the various levels of abstraction and

implementation). By contrast, behavioral schemas (behavioral

schemas mean the complex action of objects in a system) [38].

Structural models are represented by class diagrams,

component diagrams, deployment diagrams, object diagrams,

package diagrams, profile diagrams, and compound diagrams.

Interaction diagrams fall into the category of behavioral

models. Other diagrams in this category are use case diagrams,

case diagrams, and activity diagrams [39].

4. TEST CASE GENERATION
The testing process consists of three phases: generation of test

cases, test execution, and test evaluation. Generating test cases

is the most challenging compared to the other two phases [40].

Generating test cases manually is usually error-prone and time-

consuming, so automating the generation of test cases is more

efficient and effective [41]. In addition to saving time and effort

and reducing the number of errors. Moreover, the automated

test reduces the cost compared to the manual test and also

increases the reliability [42]. It is more efficient and reusable to

generate test cases from models at an early stage of system

design, which can then be easily updated if specifications

change [43]. Generating test case from UML models is more

effective because it allows the testing process to be executed in

parallel with the software development cycle, resulting in

reduced development time and cost and improved software

quality and reliability [44].

5. TEST CASES GENERATION

APPROACHES
Web-based application is significantly different from

traditional application. It is either dynamic or interactive.

Therefore, traditional testing methods and tools are not

sufficient and suitable for web-based application testing [45].

Therefore, a variety of web-based applications testing

approaches has been proposed. This section gives a review of

several of these approaches.

Rika and Tonila [46] proposed an approach to testing web-

based applications with a high level of abstraction. The

proposed approach is based on static HTML links and does not

integrate any dynamic aspects of the program. Through the

approach any web-based applications can be materialized with

a UML model. The model is supported by a tool that generates

tests consisting of a sequence of URLs and another tool that

creates a static graph based on HTML links. Based on the

navigation path of web-based applications s and to create linked

test cases semi-automatically the proposed approach used the

UML class diagram to define white box test criteria. On the

other hand, Cho and Chong [47] proposed an approach to

generating test cases for web-based applications s from a UML

sequence diagram. The proposed approach generates three

types of test cases to be tested, starting with a single web page

test, then cross web page testing and finally integrated web

page testing. The test was conducted with the help of a testing

tool called OnlineTestWeb. Another approach to web-based

applications testing suggested by Huang and Chen [48]. Their

approach is generating test cases by using activity diagram for

web-based applications testing. The approach focuses on

testing the functional scenario of a web-based applications. The

approach is based on the use of HttpUnit (a web test tool) and

test cases in the form of test codes. Besides using the Web

Application Scenario Automated Testing Tool (WASATT),

test cases are created.

Finally compile and run the test codes. The proposed approach

can reduce errors and the work can be extended to include a

fully functional model of the web-based applications, moreover

carefully checking the dynamic semantics of the web page. The

Use Transition Case Model (UCTM) is the proposed approach

by Li et al. [49]. An approach that designs web-based

applications as UML state diagrams and uses a hierarchical

profile called. By traversing UCTM from top to bottom, each

use case is described as a sequential graph, which automatically

converts it into a Restricted Message On Vertex Graph

(RMOVG). The header in RMOVG represents one message in

the sequence diagram. According to the CMC standards, each

message must be passed at least once. Test cases generated

from RMOVG satisfy CMC and result in reduced number of

test cases. Besides, Fujiwara et al. [50] have introduced an

approach to generate test cases for web-based applications

using class diagram and Object Constraints Language (OCL).

UML class diagrams are used to represent the structure of data

while OCL is used to model the behavior and limitations of that

data. Each generated test case has three levels: a pre-state, a

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

29

post-state, and an event start. The Modulo Theorem (SMT)

analyzer is used for compatibility with more complex data

types.

Moreover, García and Dueñas [51] They provided an approach

to automated testing of web-based applications. The proposed

approach includes four phases which are generation of test

cases, then test derivation of data, then test case

implementation, and finally reporting of test case. In addition

to the approach inputs are UML models, XML files or

Selenium scripts. The output as a report submitted for each test

case. Furthermore, Nabuco and Paiva [52] introduced an

approach that uses UML diagrams which are sequence

diagrams (which provide dynamic navigation of the application

under test) and web diagrams (which provide functional

requirements such as attributes, operation, shape, and frameset)

to generate test cases for web-based applications s. By applying

the principles of data mining in SQL, test cases are created.

This approach was validated and validated by a case study.

Their study concluded that problems with deleted data were

overcome and information on test cases improved. Because test

cases are generated automatically from sequence diagrams and

web diagrams, it has contributed to capturing the dynamic

behavior of web-based applications.

6. RESULTS AND DISCUSSION
This section compares, analyzes and evaluates MBT

approaches for web-based applications testing based on

specific parameters. The comparative parameters are UML

diagram, testing type, testing technique, automation tool,

approach’s limitations. These parameters are important to

select a proper MBT approach for web-based applications

testing. Based on currently literatures review of testing

approaches, the results are obtained and summarized in Table

1.

As most web applications are an important resource for

providing online services in many critical areas including

commercial ones that require their reliability. Therefore, it must

be tested and ensured for its effectiveness and accuracy. But

web-based applications testing using traditional testing

techniques is a major and complex problem because these

techniques are expensive and time consuming. Therefore,

researchers have introduced several MBT methods and this

approach is feasible for testing web-based applications because

it detects flaws while reducing cost and time.

Based on Table 1, test cases approaches in literature used

different UML diagrams as use case, class, sequence, and

activity. As well as, testing techniques used as black box or

white box. Moreover, the approaches used are automated.

Comparative evaluation explains the different approaches used

in the testing process by showing the drawbacks of each

approach. The results show that a better approach to test case

generated is required. It may involve combining more UML

diagrams as well as combining two or more technologies to

improve existing approaches.

7. CONCLUSION
This study, presented the applicability of MBT to web-based

applications as Testing Type, Testing Technique, automation

tool. In addition, the UML diagrams used in these methods are

highlighted. The results of the evaluation comparison showed

that the majority of the UML diagrams used in the mentioned

methods are Class Diagram, Sequence Diagram, Activity

Diagram, Use Case. Moreover, the approach was analyzed to

highlight issues and limitations such as complex or

weaknesses. Based on the comparative evaluation presented of

MBT methods for web-based applications. This study fulfilled

its main objective of providing guidance to researchers for

selecting an appropriate MBT approach. Besides providing

future guidance to researchers and planning work for different

web-based application areas such as load testing, security and

navigation.

Table 1: Comparative evaluation on proposed approaches of web-based applications testing

No Reference
UML Model

Used

Testing Type

Testing

Technique T
o

o
l

Limitations

1

Ricca & Tonella

(2001)

[46]

Class Diagram
Factional

Testing

White Box

Testing
✓

This approach is suitable for testing static web

pages only, and there is a possibility that the size of

the test suite will expand due to the path explosion.

2

Cho & Chong

(2005)

[47]

Sequence

Diagram

Unit Testing

And

Integration

Testing

Black Box

Testing
✓

The approach is fairly simple and straightforward

however, the tool used is no longer available

online.

3

Huang & Chen

(2006)

[48]

Activity Diagram
Factional

Testing

White Box

Testing
✓

The approach is considered tedious as the test

schematic diagram then needs to be translated into

assembled test scripts.

4

Li et al.

(2008)

[49]

Use Case

Diagram and

Sequence

Diagram

Unit Testing

White Box

Testing
✓

The approach is limited to branch testing so

requires slicing in the case of large web

applications.

5

Fujiwara et al

(2011)

[50]

Class Diagram

And OCL

Unit Testing

Black Box

Testing
✓

The approach has proven to be effective, but it

requires that the tester be well trained in formal

modeling.

6

García &

Dueñas

(2011)

[51]

Use Case,

Activity, And

Presentation

Diagram

Functional

Testing

Gray Box

Testing
✓

The approach is very suitable for asynchronous

web systems. Because he did not use graphs to

represent navigation as a set of states and

transitions rather than web pages and links.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

30

7

Nabuco & Paiva

(2014)

[52]

Sequence

Diagram and

Web Diagram

Functional

Testing

Black Box

Testing
✓

The approach uses model testing as a tool for

building static and specific models based on user

interface patterns to build test models and to

generate and execute test cases. But to avoid test

case explosion, test cases should be filtered based

on specific configuration or randomly filtered.

8. REFERENCES
[1] Raut, V., & Patil, P. (2016). Use of Social Media in

Education: Positive and Negative impact on the

students. International Journal on Recent and Innovation

Trends in Computing and Communication, 4(1), 281-285.

[2] Ullah, S. E., Alauddin, T., & Zaman, H. U. (2016,

January). Developing an E-commerce website. In 2016

International Conference on Microelectronics, Computing

and Communications (MicroCom) (pp. 1-4). IEEE.

[3] Srivastava, N., Kumar, U., & Singh, P. (2021). Software

and performance testing tools. Journal of Informatics

Electrical and Electronics Engineering (JIEEE), 2(1), 1-

12.

[4] Kundu, S. (2012). Web testing: tool, challenges and

methods. IJCSI International Journal of Computer Science

Issues, 9(2), 1694-0814.

[5] Ammann, P., & Offutt, J. (2016). Introduction to software

testing. Cambridge University Press.

[6] Thanakorncharuwit, W., Kamonsantiroj, S., &

Pipanmaekaporn, L. (2016, December). Generating test

cases from UML activity diagram based on business flow

constraints. In Proceedings of the Fifth International

Conference on Network, Communication and

Computing (pp. 155-160).

[7] Sawant, A. A., Bari, P. H., & Chawan, P. M. (2012).

Software testing techniques and strategies. International

Journal of Engineering Research and Applications

(IJERA), 2(3), 980-986.

[8] Tuteja, M., & Dubey, G. (2012). A research study on

importance of testing and quality assurance in software

development life cycle (SDLC) models. International

Journal of Soft Computing and Engineering (IJSCE), 2(3),

251-257.

[9] Akour, M., Falah, B., & Kaddouri, K. (2016). ADBT

Frame work as a testing technique: An improvement in

comparison with traditional model based testing.

International Journal of Advanced Computer Science and

Applications, 7(5).

[10] Garousi, V., Keleş, A. B., Balaman, Y., Güler, Z. Ö., &

Arcuri, A. (2021). Model-based testing in practice: An

experience report from the web applications domain.

Journal of Systems and Software, 180, 111032.

[11] Lebeau, F., Legeard, B., Peureux, F., & Vernotte, A.

(2013, March). Model-based vulnerability testing for web

applications. In 2013 IEEE Sixth International Conference

on Software Testing, Verification and Validation

Workshops (pp. 445-452). IEEE.

[12] Mariani, L., Pezze, M., Riganelli, O., & Santoro, M.

(2012, April). Autoblacktest: Automatic black-box testing

of interactive applications. In 2012 IEEE fifth

international conference on software testing, verification

and validation (pp. 81-90). IEEE.

[13] Kumar, S. S. (2019). Model Based Object-Oriented

Software Testing.

[14] Ahmad, T., Iqbal, J., Ashraf, A., Truscan, D., & Porres, I.

(2019). Model-based testing using UML activity

diagrams: A systematic mapping study. Computer Science

Review, 33, 98-112.

[15] Villalobos-Arias, L., Quesada-López, C., Martinez, A., &

Jenkins, M. (2019). Model-based testing areas, tools and

challenges: A tertiary study. CLEI Electronic Journal,

22(1), 3-1.

[16] Ma, C., & Provost, J. (2019). Introducing plant features to

model-based testing of programmable controllers in

automation systems. Control Engineering Practice, 90,

301-310.

[17] Li, W., Gall, F. L., & Spaseski, N. (2017, March). A

survey on model-based testing tools for test case

generation. In International Conference on Tools and

Methods for Program Analysis (pp. 77-89). Springer,

Cham.

[18] Utting, M., Pretschner, A., & Legeard, B. (2012). A

taxonomy of model‐based testing approaches. Software

testing, verification and reliability, 22(5), 297-312.

[19] Schieferdecker, I., & Hoffmann, A. (2012). Model-Based

Testing. IEEE software, 29(1), 14-18.

[20] Saifan, A., & Dingel, J. (2008). Model-based testing of

distributed systems. Technichal report, 548(2008).

[21] Gurbuz, H. G., & Tekinerdogan, B. (2018). Model-based

testing for software safety: a systematic mapping study.

Software Quality Journal, 26(4), 1327-1372.

[22] Schieferdecker, I., & Hoffmann, A. (2012). Model-Based

Testing. IEEE software, 29(1), 14-18.

[23] Gutiérrez, J. J., Escalona, M. J., & Mejías, M. (2015). A

model-driven approach for functional test case generation.

Journal of Systems and Software, 109, 214-228.

[24] Veanes, M., Campbell, C., Schulte, W., & Tillmann, N.

(2005, September). Online testing with model programs.

In Proceedings of the 10th European software engineering

conference held jointly with 13th ACM SIGSOFT

international symposium on Foundations of software

engineering (pp. 273-282).

[25] Hielscher, J., Kazhamiakin, R., Metzger, A., & Pistore, M.

(2008, December). A framework for proactive self-

adaptation of service-based applications based on online

testing. In European Conference on a Service-Based

Internet (pp. 122-133). Springer, Berlin, Heidelberg.

[26] Bouquet, F., Jaffuel, E., Legeard, B., Peureux, F., &

Utting, M. (2005). Requirements traceability in automated

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.44, September 2025

31

test generation: application to smart card software

validation. ACM SIGSOFT Software Engineering Notes,

30(4), 1-7.

[27] Legeard, B. (2010). Model-based testing: Next generation

functional software testing. In Dagstuhl Seminar

Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik.

[28] - Rocha, M., Simão, A., & Sousa, T. (2021). Model-based

test case generation from UML sequence diagrams using

extended finite state machines. Software Quality Journal,

29(3), 597-627.

[29] Kansomkeat, S., Offutt, J., Abdurazik, A., & Baldini, A.

(2008, August). A comparative evaluation of tests

generated from different UML diagrams. In 2008 Ninth

ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking, and

Parallel/Distributed Computing (pp. 867-872). IEEE.

[30] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C.,

Baumgartner, M., Sostawa, B., ... & Stauner, T. (2005,

May). One evaluation of model-based testing and its

automation. In Proceedings of the 27th international

conference on Software engineering (pp. 392-401).

[31] Shirole, M., & Kumar, R. (2013). UML behavioral model

based test case generation: a survey. ACM SIGSOFT

Software Engineering Notes, 38(4), 1-13.

[32] Rocha, M., Simão, A., & Sousa, T. (2021). Model-based

test case generation from UML sequence diagrams using

extended finite state machines. Software Quality Journal,

29(3), 597-627.

[33] Conallen, J. (2003). Building Web applications with

UML. Addison-Wesley Professional.

[34] Torre, D. (2016, October). Verifying the consistency of

UML models. In 2016 IEEE International Symposium on

Software Reliability Engineering Workshops (ISSREW)

(pp. 53-54). IEEE.

[35] Kos, T., Mernik, M., & Kosar, T. (2019). A tool support

for model-driven development: An industrial case study

from a measurement domain. Applied Sciences, 9(21),

4553.

[36] Jafer, S., Durak, U., Aydemir, H., Ruff, R., & Pawletta, T.

(2018). Advances in Software Engineering and

Aeronautics. In Advances in Aeronautical Informatics

(pp. 87-102). Springer, Cham.

[37] Rapolu, R. K. (2018). Selection of UML models for test

case generation: A discussion on techniques to generate

test cases.

[38] Minhas, N. M., Masood, S., Petersen, K., & Nadeem, A.

(2020). A systematic mapping of test case generation

techniques using UML interaction diagrams. Journal of

Software: Evolution and Process, 32(6), e2235.

[39] Makedonski, P., Adamis, G., Käärik, M., Kristoffersen, F.,

Carignani, M., Ulrich, A., & Grabowski, J. (2019). Test

descriptions with ETSI TDL. Software Quality Journal,

27(2), 885-917.

[40] Boghdady, P. N., Badr, N. L., Hashem, M., & Tolba, M.

F. (2011). A proposed test case generation technique

based on activity diagrams. International Journal of

Engineering & Technology IJET-IJENS, 11(03), 1-21.

[41] Felderer, M., & Herrmann, A. (2015). Manual test case

derivation from UML activity diagrams and state

machines: A controlled experiment. Information and

Software Technology, 61, 1-15.

[42] Lafi, M., Alrawashed, T., & Hammad, A. M. (2021, July).

Automated Test Cases Generation from Requirements

Specification. In 2021 International Conference on

Information Technology (ICIT) (pp. 852-857). IEEE.

[43] Wang, X., Guo, L., & Miao, H. (2008, December). An

Approach to transforming UML model to FSM model for

automatic testing. In 2008 International Conference on

Computer Science and Software Engineering (Vol. 2, pp.

251-254). IEEE.

[44] Tiwari, R. G., Srivastava, A. P., Bhardwaj, G., & Kumar,

V. (2021, April). Exploiting UML diagrams for test case

generation: a review. In 2021 2nd international conference

on intelligent engineering and management (ICIEM) (pp.

457-460). IEEE.

[45] Yu, B., Ma, L., & Zhang, C. (2015, November).

Incremental web application testing using page object. In

2015 Third IEEE Workshop on Hot Topics in Web

Systems and Technologies (HotWeb) (pp. 1-6). IEEE.

[46] Ricca, F., & Tonella, P. (2001, May). Analysis and testing

of web applications. In Proceedings of the 23rd

International Conference on Software Engineering. ICSE

2001 (pp. 25-34). IEEE.

[47] Cho, Y., Lee, W., & Chong, K. (2005, May). The

technique of test case design based on the UML sequence

diagram for the development of web applications. In

International Conference on Computational Science and

Its Applications (pp. 1-10). Springer, Berlin, Heidelberg.

[48] Huang, C. H., & Chen, H. Y. (2006, October). A tool to

support automated testing for web application scenario. In

2006 IEEE International Conference on Systems, Man and

Cybernetics (Vol. 3, pp. 2179-2184). IEEE.

[49] Li, L., Miao, H., & Qian, Z. (2008, December). A UML-

based approach to testing web applications. In 2008

International Symposium on Computer Science and

Computational Technology (Vol. 2, pp. 397-401). IEEE.

[50] Fujiwara, S., Munakata, K., Maeda, Y., Katayama, A., &

Uehara, T. (2011). Test data generation for web

application using a UML class diagram with OCL

constraints. Innovations in Systems and Software

Engineering, 7(4), 275-282.

[51] García, B., & Dueñas, J. C. (2011). Automated Functional

Testing based on the Navigation of Web Applications.

Workshop on Automated Specification and Verification

of Web Systems (WWV 2011), pp. 49-65, 2011.

[52] Nabuco, M., & Paiva, A. C. (2014, June). Model-based

test case generation for web applications. In International

Conference on Computational Science and Its

Applications (pp. 248-262). Springer, Cham.

IJCATM : www.ijcaonline.org

