
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.43, September 2025

17

A Novel Signature Scheme and its application to Image

Authentication

Ken-ichi Sakina
QRTechnology LLC

1-2-3-109 Miwaｍidoriyama, Machida, Tokyo

ABSTRACT

In this paper, a novel digital signature scheme called the RS-

signature scheme is proposed, which combines Reed-Solomon

(RS) codes and the Elliptic Curve Digital Signature Algorithm

(ECDSA). In conventional signature schemes, embedding a

digital signature of the original file into the file itself changes

its hash value, and this makes it impossible to generate a

signature-embedded file in which the file itself is the target of

the signature. However, by employing the proposed scheme, it

becomes possible to generate such a signature-embedded file.

In this paper, the theory and algorithm of the proposed scheme

are first presented. Next, to demonstrate its validity, the scheme

was applied to image authentication experiments, yielding

results that show practical-level authentication speed and

reliability. The RS signature scheme can, in principle, be

applied to a wide variety of file formats. To demonstrate its

extensibility, the scheme was also applied to experiments using

HTML files, and satisfactory results were obtained.

General Terms

Authentication, Coding Theory, Digital Signature, Security,

Image, HTML

Keywords

Image authentication, Digital signature, Reed–Solomon code,

ECDSA. HTML Authentication

1. INTRODUCTION
In recent years, with the advancement of AI, methods of

forgery and tampering have also become more sophisticated,

making it an urgent priority to enhance the reliability of digital

data. As is well known, digital signature technology includes a

variety of signature schemes such as DSA, ECDSA, and RSA

[1][2], which play a crucial role in ensuring the integrity and

authenticity of digital content.

Here, we consider a signature-embedded file, which is

important from the viewpoint of usability and security, in

which the file itself is the target of a signature. Such a file

cannot be generated using conventional signature schemes,

because embedding a signature into the original file changes its

hash value and thus invalidates the signature. Therefore, they

typically require either a separate file to store the signature (i.e.

the signature file) or apply a partial signature that covers only

a specific portion of the original file. In the former case, the

separation of the original file and the signature file introduces

not only security vulnerabilities but also practical issues during

transmission or verification. For example, when both the

original file and the signature file need to be transmitted, such

as via email, they are often bundled into a ZIP archive for

convenience. However, due to security policies or system

restrictions, the recipient's system may reject ZIP file

attachments [3]. In the latter case, partial signatures may

introduce security vulnerabilities. For example, in the case of

XML documents [4] or PDF files, such partial signatures are

vulnerable to attacks such as the Wrapping Attack [5][6][7].

To address these issues, this paper proposes a novel digital

signature scheme, called the RS-signature scheme, which

combines Reed–Solomon (RS) codes [8] with digital signatures.

By using the RS-signature scheme, it becomes possible to

generate such signature-embedded files. As described in

Section 4, the RS-signature scheme, first, RS-encodes the

signer’s information (such as the signer’s name, affiliation, and

signing date), and embeds or appends the resulting RS codes

into the original file. Then, using an exclusive OR operation,

the corresponding signature for that file is embedded into the

RS-codes within the file, thereby generating a signature-

embedded file in which the file itself becomes the target of the

signature.

The RS-signature scheme is similar to previously published

code-based signature schemes [9]–[11] in that it uses error-

correcting codes; however, it differs from them in the following

respects:

- Code-based signature schemes cannot generate a signature-

embedded file in which the file itself is the target of a signature,

but the RS-signature scheme makes it possible.

- Code-based signature schemes do not utilize a public key

infrastructure (PKI), but the RS-signature scheme makes it

possible.

In principle, the RS-signature scheme can generate signature-

embedded files for virtually any type of file, including image

files, PDF documents, MS Word documents, MS Excel

spreadsheets, and XML files. Furthermore, one of the key

features of the RS-signature scheme is that the signer’s

information is displayed during signature verification. One

particularly important application of the RS-signature scheme

is image authentication. This generates a signed image file by

replacing the LSBs of the original image file with an RS-code

and embedding the file's digital signature into the RS-code

using an exclusive OR. Image authentication experiments were

conducted using this approach, and the expected results were

obtained.

The rest of this paper is organized as follows: Section 2 and 3

review ECDSA and RS-code, respectively. Section 4 presents

the proposed RS-signature scheme in detail. Section 5 provides

experiments using RS-signature scheme for image-based

certificates. Section 6 demonstrates the extensibility of RS-

signature scheme through experiments using HTML files.

Section 7 describes a security discussion of the proposed

scheme, and finally, the concluding remarks are provided in

Section 8

2. ECDSA

The ECDSA (Elliptic Curve Digital Signature Algorithm) is a

widely used digital signature algorithm based on the algebraic

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.43, September 2025

18

structure of elliptic curves over finite fields. It is a variant of

the DSA (Digital Signature Algorithm), adapted to work within

the elliptic curve cryptographic framework, offering equivalent

security with significantly smaller key sizes. The signing and

verification processes in ECDSA, which will be used in later

sections, are briefly described below.

(a) Domain parameters

Let 𝑝 be the prime number, and let 𝐹𝑝 be the finite field of

order 𝑝. An elliptic curve over 𝐹𝑝, denoted by 𝐸/𝐹𝑝, is

defined by

 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, (1)

 where 𝑎, 𝑏 ∈ 𝐹𝑝.

Let 𝐺 be the base point on 𝐸/𝐹𝑝 with prime order 𝑙, and let

the hash function be

 𝐻: {0,1}∗ → {0,1}|𝑙|−1. (2)

The domain parameters are then given by

 𝐷 = {𝑎, 𝑏, 𝑝, 𝑙, 𝐺, 𝐻}. (3)

(b) key pair

First, choose a non-zero random number 𝑋 from the set 𝑍𝑙
∗ =

{1, ⋯ . 𝑙 − 1}, and let the number 𝑋 be the private key. The

public key 𝑄 is then computed by

 𝑄 = 𝑋𝐺 (4)

where 𝑄 is the point on 𝐸/𝐹𝑝.

(c) Signature generation

The algorithm consists of the following steps:

- Let the message that a signer wants to sign be 𝑀.

- Generate non zero random number 𝑟 ∈ 𝑍𝑙
∗ and obtain 𝑥-

component 𝑐 of 𝑟𝐺, that is

 𝑐 = (𝑟𝐺)𝑥 𝑚𝑜𝑑 𝑙 (5)

- Compute the equation

 𝑠 = 𝑟−1(𝐻(𝑀) + 𝑐𝑋) 𝑚𝑜𝑑 𝑙 (6)

-The digital signature 𝜎 for 𝑀 is given by

 𝜎 = (𝑐, 𝑠). (7)

(d) Signature verification

 The verifier checks the signature σ for M as follows:

- Compute following equations (8)~(10):

 𝑢 = 𝑠−1 𝑚𝑜𝑑 𝑙 (8)

 𝑣 = 𝐻(𝑀)𝑢 𝑚𝑜𝑑 𝑙 (9)

 𝑣𝐺 + 𝑐𝑢𝑄 = (𝑥′, 𝑦′) (10)

- If 𝑥′ = 𝑐 (𝑚𝑜𝑑 𝑙), the signature 𝜎 is valid, otherwise is

invalid.

3. RS (REED-SOLOMON) CODES

RS-codes are one of the well-known error correcting codes and

provide strong error correction capabilities. This section

provides a brief overview of RS-codes, which will serve as the

basis for the subsequent discussions.

3.1 Generation of RS-codes
We first consider 𝑚-th extension field 𝐹𝑞 of the finite field

𝐹2 = {0,1}, where 𝑞 = 2𝑚. Let 𝑓(𝑥) be a minimum

polynomial of degree 𝑚 over 𝐹2, and let 𝛼 be a primitive root

of 𝑓(𝑥). The extension field 𝐹𝑞 can then be represented as

 𝐹𝑞 = {0, 1, 𝛼, ⋯ . 𝛼2𝑚−2}, (11)

where each element in 𝐹𝑞 corresponds to an 𝑚-bit unit,

commonly referred to as a symbol.

Now consider (𝑛, 𝑘)RS-codes over 𝐹𝑞, where 𝑛 is the

codelength (i𝑛 symbols) and 𝑘 is the number of information

symbols. Let 𝑡 be the symbol error-correcting capability of the

RS-codes. Any codeword 𝒘 of (𝑛, 𝑘)RS-codes can be

represented in vector form as follows.

 𝒘 = (𝑤0, 𝑤1, ⋯ , 𝑤𝑛−1) ∈ 𝐹𝑞
𝑛 , (12)

where 𝐹𝑞
𝑛 ≡ 𝐹𝑞 × 𝐹𝑞 × ⋯ × 𝐹𝑞 (taken 𝑛 times) and each

component 𝑤𝑖 ∈ 𝐹𝑞 for 𝑖 = 0,1, ⋯ , 𝑛-1. The corresponding

code polynomial 𝑤(𝑥) ∈ 𝐹𝑞[𝑥] of degree less than 𝑛 is given

by

 𝑤(𝑥) = 𝑤0 + 𝑤1𝑥 + ⋯ + 𝑤𝑛−1𝑥𝑛−1. (13)

The RS-codes are generated using a generator polynomial

𝑔(𝑥) and an information polynomial 𝑎(𝑥) as follows:

 𝑤(𝑥) = 𝑎(𝑥)𝑔(𝑥), (14)

where

 𝑔(𝑥) = ∏ (𝑥 − 𝛼𝑖)𝑛−𝑘
𝑖=1 , (15)

 𝑎(𝑥) = ∑ 𝑎𝑖𝑥𝑖𝑘−1
𝑖=0 , 𝑎𝑖 ∈ 𝐹𝑞 . (16)

Note that the set of all vectors 𝒘 = (𝑤0, 𝑤1, ⋯ , 𝑤𝑛−1)

satisfying (14) forms 𝑘-dimensional subspace of 𝐹𝑞
𝑛. In

general, (𝑛. 𝑘, 𝑑)RS-codes have a minimum Hamming

distance 𝑑 = 𝑛 − 𝑘 + 1, making it a Maximum Distance

Separable (MDS) code. The relationship among n, k, and t is

determined by the number of consecutive roots of 𝑤(𝑥), 𝑛 −
𝑘, which is expressed as 𝑘 = 𝑛 − 2𝑡.

3.2 Decoding of RS-codes
We consider (𝑛, 𝑘, 2𝑡 + 1) RS-codes with generator

polynomial 𝑔(𝑥) and information polynomial 𝑎(𝑥) as defined

in (15) and (16), respectively. The codes can correct up

toｔsymbol errors.

In practical communication systems, the received words often

differ from the transmitted codewords due to channel noise. In

this subsection, we briefly outline the Euclidean decoding

algorithm [12], which is used to recover the original codewords

from received words. Let the set of error positions in the

received word be

 𝐼 = {𝑖1, 𝑖2, ⋯ , 𝑖𝑠} , (17)

where 𝑠 ≤ 𝑡. The error polynomial 𝑒(𝑥) is then given by

 𝑒(𝑥) = 𝑒𝑖1
𝑥𝑖1 + 𝑒𝑖2

𝑥𝑖2 + ⋯ + 𝑒𝑖𝑠
𝑥𝑖𝑠 = ∑ 𝑒𝑖𝑘

𝑥𝑖𝑘𝑠
𝑘=1 (18)

Let 𝑟(𝑥) be the received polynomial. Then we have

 𝑟(𝑥) = 𝑤(𝑥) + 𝑒(𝑥). (19)

Since 𝑤(𝛼𝑖) = 0 (𝑖 = 1, ⋯ , 𝑛 − 𝑘) and 𝑛 − 𝑘 = 2𝑡, the

syndrome 𝑆𝑗 can be expressed using (18) and (19) as follows:

𝑆𝑗 = 𝑟(𝛼𝑗) = 𝑒(𝛼𝑗) = ∑ 𝑒𝑖𝑘
(𝛼𝑗)𝑖𝑘𝑠

𝑘=1 (𝑗 = 1, ⋯ ,2𝑡) . (20)

We define the syndrome polynomial 𝑆(𝑧) and the error

locator polynomial 𝜌(𝑧) as

 𝑆(𝑧) = ∑ ∑ 𝑒𝑖𝑘
(𝛼𝑗)𝑖𝑘𝑠

𝑘=1 𝑧𝑗−12𝑡
𝑗=1 (21)

and

 𝜌(𝑧) = ∏ (1 − 𝛼𝑖𝑗𝑧)𝑠
𝑗=1 . (22)

In general, the following identity holds:

𝑒𝑖𝑘

𝛼𝑖𝑘

1−𝛼𝑖𝑘𝑧
= ∑ 𝑒𝑖𝑘

(𝛼𝑖𝑘)𝑗2𝑡
𝑗=1 𝑧𝑗−1 (𝑚𝑜𝑑 𝑧2𝑡). (23)

Substituting (23) into (21), we get

 𝑆(𝑧) = ∑
𝑒𝑖𝑘

𝛼𝑖𝑘

1−𝛼𝑖𝑘𝑧
 𝑠

𝑘=1 (𝑚𝑜𝑑 𝑧2𝑡). (24)

Multiplying (22) on both sides of (24) yields

 𝜌(𝑧)𝑆(𝑧) + 𝜑(𝑧)𝑧2𝑡 = 𝜂(𝑧), (25)

where 𝜑(𝑧) is a polynomial over 𝐹𝑞, and the error evaluator

polynomial 𝜂(𝑧) is given by

 𝜂(𝑧) = ∑ 𝑒𝑖𝑘
𝛼𝑖𝑘 ∏ (1 − 𝛼𝑖𝑗𝑧)𝑠

𝑗=1,≠𝑘 𝑠
𝑘=1 , (26)

where 𝑡 ≥ 𝑑𝑒𝑔 𝜌(𝑧) > 𝑑𝑒𝑔 𝜂(𝑧),.

Here, we define the sequence of functions {ℎ𝑖(𝑧)} by the

extended Euclidean algorithm, where the initial functions are

given by ℎ0(𝑧) = 𝑧2𝑡 and ℎ1(𝑧) = 𝑆(𝑧), as follows:

 ℎ𝑖−2(𝑧) = 𝑞𝑖(𝑧)ℎ𝑖−1(𝑧) + ℎ𝑖(𝑧), 𝑖 = 2,3, ⋯ , 𝐿, (27)

 where deg ℎ𝐿(𝑧) ≤ 𝑡 − 1.

From (27), ℎ𝐿(𝑧) can be expressed in the following form:

ℎ𝐿(𝑧) = 𝐴(𝑧)ℎ0(𝑧) + 𝐵(𝑧)ℎ1(𝑧) (28)

By comparing the equation (28) with (25), we obtain

 𝜌(𝑧) = 𝛾𝐵(𝑧) , 𝜂(𝑧) = 𝛾ℎ𝐿(𝑧) . (29)

where 𝛾 is chosen such that the constant term of 𝜌(𝑧) is equal

to 1.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.43, September 2025

19

To compute the error values, we first evaluate 𝜂(𝑧) at 𝑧 =
𝛼−𝑖𝑘. From (26), we have

𝜂(𝛼−𝑖𝑘) = ∏ (1 − 𝛼𝑖𝑗𝛼−𝑖𝑘)𝑠
𝑗=1,≠𝑘 𝑒𝑖𝑘

𝛼𝑖𝑘 . (30)

Next, differentiating 𝜌(𝑧) and evaluating at 𝑧 = 𝛼−𝑖𝑘 yields

 𝜌′(𝛼−𝑖𝑘) = −𝛼𝑖𝑘 ∏ (1 − 𝛼𝑖𝑗𝛼−𝑖𝑘)𝑠
𝑗=1,≠𝑘 . (31)

Taking the ratio of (30) and (31), we obtain the error values

 𝑒𝑖𝑘
= −

𝜂(𝛼−𝑖𝑘)

𝜌′(𝛼−𝑖𝑘)
 (𝑘 = 1,2, ⋯ , 𝑠) , (32)

which is known as Forney’s formula. To determine the error

positions, we evaluate 𝜌(𝑧) at 𝑧 = 1, 𝛼, ⋯ . 𝛼2𝑚−2. The values

of 𝑧 for which 𝜌(𝑧) = 0 correspond to the inverses 𝛼−𝑖𝑘,

which reveal the error positions 𝑖𝑘.

Finally, having obtained both the error values and their

corresponding positions, we reconstruct the original codeword

𝑤(𝑥) from the received word 𝑟(𝑥) using

 𝑤(𝑥) = 𝑟(𝑥) + 𝑒(𝑥). (33)

4. RS-SIGNATURE SCHEME

In the RS-signature scheme, it is possible to generate a

signature-embedded file, in which the file itself is the target of

the signature. The RS-signature is constructed by combining

RS-codes with ECDSA. This section presents the methods for

signature generation and verification in the RS-signature

scheme, based on the foundations outlined in the preceding

sections.

4.1 Generation Algorithm

[A] Generation of RS-code embedded file 𝑴̃.
We now consider (𝑛, 𝑘, 2𝑡 + 1)RS-codes over 𝐹28. Let the

information vector 𝒂 corresponding to (16) be

 𝒂 = (𝑎0, 𝑎1, ⋯ , 𝑎𝑘−1), 𝑎𝑖 ∈ 𝐹28. (34)

Then the RS-codeword can be obtained from (14),(15) and

(16) in the vector form as

 𝒘 = (𝑤0, 𝑤1, ⋯ , 𝑤𝑛−1) ∈ 𝐹28
𝑛 . (35)

In general, a digital file 𝑀 can be expressed in the vector form

as:

 𝑴 = (𝑚0, 𝑚1, ⋯ , 𝑚𝑁−1), 𝑚𝑖 ∈ 𝐹28 (𝑖 = 0,1, ⋯ , 𝑁 − 1). (36)

An RS-code-embedded file 𝑴̃ is obtained by embedding or

appending RS-codeword 𝒘 into 𝑴. This is defined by the

following equation:

 𝑴̃ = 𝒘 ⊕𝐸 𝑴, (37)

where the symbol ⊕𝐸 denotes an embedding or appending

operator. If 𝑴 is a text file (for example, XML files), use it as

the appending operation; if 𝑴 is a binary file (for example,

image files), use it as the embedding operation.

Note that the RS-code-embedded file 𝑴̃ is the target of RS-

signature.

[B] Algorithm for generating RS-signed file 𝑴̃𝑠.
Let the RS-signature 𝒘̃ be defined as

 𝒘̃ = 𝝈𝐵 ⨁ 𝒘, (38)

where ⨁ is the exclusive OR (XOR) operator and 𝝈𝐵 is a byte

representation of digital signature 𝜎.

The algorithm for generating the RS-signed file (i.e. RS-

signature embedded file) 𝑴̃𝑠 is as follows:

- Generate the RS-codeword 𝒘 for the information vector 𝒂 =

(𝑎0, 𝑎1, ⋯ , 𝑎𝑘−1) ∈ 𝐹28
𝑘 .

- Generate 𝑴̃, and let 𝑴̃ be the target file to be signed (see

[A]).

- Compute the digital signature 𝜎 = (𝑐, 𝑠) for 𝑴̃ using

ECDSA (see Section 2. (c)).

- Compute 𝑙𝑏, which is the number of bytes obtained by

converting 𝑙 (see eq. (2)) into a byte sequence.

- Express 𝜎 = (𝑐, 𝑠) in bytes, and denote them as 𝜎𝐵𝑖 =

(𝑐𝑖 , 𝑠𝑖), 𝑐𝑖 , 𝑠𝑖 ∈ 𝐹28 (𝑖 = 1, ⋯ , 𝑙𝑏), where 𝑙𝑏 must satisfy

𝑙𝑏 ≤ 𝑡 2⁄ .

- Generate the RS-signature 𝒘̃ using (38).

- Finally, generate the RS-signed file 𝑴̃𝑠 by replacing 𝒘 in 𝑴̃

with 𝒘̃:

 𝑴̃𝑠 = 𝒘̃ ⊕𝐸 𝑴. (39)

Figure 1 shows the algorithm for generating the RS-signed

file 𝑴̃𝑠.

Figure 1: Generation Algorithm for RS-signed file 𝑴̃𝑠

4.2 Verification Algorithm
The algorithm to verify the RS-signed file 𝑴̃𝑠 are as follows:

- Decode the RS-signature 𝒘̃ in 𝑴̃𝑠 using the Euclidean

decoding algorithm (see Section 3.2). Then the digital

signature 𝝈𝐵 in (38) can be extracted as errors and the RS-

codeword 𝒘 can be obtained by 𝒘 = 𝝈𝐵 ⨁𝒘̃ . Therefore,

𝑴̃𝑠 can be separated into 𝑴̃ and 𝝈𝐵:

 𝑴̃𝑠 → {𝑴̃, 𝝈𝐵}. (40)

- Recover the digital signature string 𝜎 = (𝑐, 𝑠) from 𝝈𝐵.

- Verify 𝜎 = (𝑐, 𝑠) for 𝑴̃ (see Section 2. (d)). If the digital

signature 𝜎 is valid, the signer’s information vector 𝒂 is

displayed.

Figure 2 shows the algorithm for verifying 𝑴̃𝑠

Figure 2: Verification algorithm for RS-signed file 𝑴̃𝒔

As can be seen from (39), when 𝒘̃ in 𝑴̃𝑠 is decoded, the

target file 𝑴̃ of the signature 𝝈𝐵 is automatically obtained.

In this sense, 𝑴̃𝑠 itself can be regarded as the target file of

𝝈𝐵.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.43, September 2025

20

5. EXPERIMENT ON IMAGE

AUTHENTICATION

 The key features of the RS-signature scheme are its ability to

generate a single signed file in which the file itself serves as the

target of the signature, enable the verification of its authenticity

without relying on external data, and display the signer's

information which is a part of RS-code. As can be seen from

the algorithms in Section 4, the RS-signature scheme is

fundamentally applicable to a wide range of file formats,

including PNG, XML, PDF, DOCX, and XLSX. To

demonstrate the extensibility of the RS-signature scheme,

Section 6 briefly discusses the application of RS-signature to

HTML files. This section focuses on one of the useful

applications, namely the authentication of image files, and

presents experimental results of signing and verifying image-

based digital certificates.

5.1 Experimental Environment
• Desktop PC

 CPU: Intel Core i5-1235U (10 cores, 1.3 GHz)

 Memory: 8 GB

 OS: Windows 11 Home 64-bit

 Java Environment: JDK 17.0.9.9 (HotSpot)

• Website to check 𝑴̃𝑠

 OS: CentOS Linux 7

 Servlet Container: Apache Tomcat 9.0.84

 Java Environment: Java HotSpot™ 64-Bit Server VM

5.2 Experimental Setup
The following experiment was conducted under the setting

conditions described below:

- ECDSA Configuration:

The NIST-recommended ECDSA was used with the

secp160r1 parameter set [13], generating a 160-bit digital

signature.

- Digital signature in bytes 𝝈𝐵:

 𝝈𝑩 = (𝜎𝐵1, ⋯ , 𝜎𝐵20),

where 𝜎𝐵𝑖 = (𝑐𝑖 , 𝑠𝑖) ∈ 𝐹28 × 𝐹28 (𝑖 = 1, ⋯ ,20).

- 𝜆th RS-codeword 𝒘𝝀 (𝜆 = 1. ⋯ ,5):

Each codeword consists of parameters (𝑛, 𝑘, 2𝑡 + 1) =

(42,16,27) in bytes.

- RS-codeword set 𝑾:

 𝑾 = {𝒘1,𝒘2, ⋯ , 𝒘5}, total bytes: 210 bytes.

- RS-signature set 𝑾̃:

The digital signature 𝝈𝐵 is embedded into the

codewords via XOR operation as follows:

𝑾̃ = 𝝈𝐵⨁𝑾 = ((𝝈𝐵1, ⋯ , 𝝈𝐵4)⨁𝒘𝟏,

⋯ , (𝝈𝐵17, ⋯ , 𝝈𝐵20)⨁𝒘𝟓))

= (𝑤̃1, ⋯ , 𝒘̃𝟓).
For example:

 (𝝈𝐵1, ⋯ , 𝝈𝐵4)⨁𝒘𝟏 = (𝑐1, 𝑠1, ⋯ , 𝑐4, 𝑠4)⨁𝒘𝟏 = 𝒘̃𝟏

- Error correction capacity:

Each RS-codeword can correct up to 13 bytes errors, so

the entire set 𝑾 can correct a total of 65 bytes errors. In

the experiment, a 320-bit ECDSA digital signature (160

bits × 2) was embedded into the codeword set 𝑾.

5.3 Experimental Result
 In this experiment, the image-based digital certificate 𝑴 ,

with a resolution of 426 × 640 pixels (420KB, bit depth 32)

as shown in Figure 3, was used.

Experimental Steps
1. Generate 𝑾, consisting of five RS-codewords, based on the

following five information data fields (see Figure 4):

 ID: 00000001

 Title: Sample

 Signer: Dr. John Smith

 Issuer: QRTechnology

 Date: Auto input

2. Generate the RS-code embedded image 𝑴̃ using 𝑴̃ =
𝑾 ⊕𝐸 𝑴.

3. Generate the digital signature 𝝈𝐵 for 𝑴̃, (see Figure 5).

4. Generate the RS-signature set 𝑾̃ using 𝑾̃ = 𝝈𝐵⨁𝑾.

5. Generate the RS-signed digital certificate 𝑴̃𝒔, by replacing

𝑾 in 𝑴̃ with 𝑾̃ (see Figure 6).

6. Verify the authenticity of 𝑴̃𝒔 using the process described in

Section 4.2.

Verification Results
The desktop application was used to generate 𝑴̃𝑠, but in the

verification, either the desktop application or the web

application was used depending on the purpose. The

experimental results are as follows:

– Visual quality: The Peak Signal-to-Noise Ratio (PSNR)

between the RS-signed digital certificate 𝑴̃𝒔 and the

original certificate 𝑴 was 74.83 dB, indicating that

embedding the RS code and signature caused no perceptible

visual degradation.

– Verification speed: Verification on the desktop application

took 0.386 seconds.

– Reliability: 200,000 repeated verifications on the desktop

application produced zero authentication failures.

– Web verification: Verification output on the website is

shown in Figure 7, which demonstrates that the authenticity

judgment of 𝑴̃𝒔 is true, and the data (ID, title, signer,

issuer, date) are coincident with the input data in

Experimental Step 1 in Section 5.3.

- Validity of screenshots: Captured screenshot of 𝑴̃𝑠 was not

valid in the signature verification.

These results confirm the high reliability of the proposed

verification system. In these experiments, the SHA-256

cryptographic hash function was employed. However, since

cryptographic hash functions are highly sensitive to minor

distortions and geometric transformations in images, it is

possible to use perceptual image hash functions such as pHash,

aHash, or dHash [15][16] to mitigate these effects.

In a real-world scenario, the certificate authority (i.e., the issuer

of 𝑴̃𝒔) is only required to maintain a digital certificate

verification website. Any party possessing 𝑴̃𝒔 can verify its

authenticity and integrity by uploading it to the verification

website. Furthermore, supplementary information (e.g.,

learning history) can be embedded in the LSB bit plane of the

certificate image, which is also the targt of the RS-signature.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.43, September 2025

21

Figure 3: Original digital certificate (sample) 𝑴 (419KB)

Figure 4: The RS-signature set 𝑾={𝒘𝟏,𝒘𝟐, ⋯ , 𝒘𝟓}, with

the total size of 210 bytes

Figure 5: Digital signature 𝝈𝑩

Figure 6: RS-Signed digital certificate 𝑴̃𝒔 (424KB)

Figure 7: Verification result using the website [14].

6. EXTENSIBILITY OF RS-

SIGNATURE SCHEME
The RS-signature scheme can, in principle, be applied to a wide

variety of file formats. In this section, to demonstrate the

extensibility of the RS-signature scheme, the scheme is applied

to HTML files, and the experimental results on RS-signature

generation and verification for HTML files are briefly

presented.

The experiment was conducted using desktop applications for

signing and verification. Figure 8 shows the RS-signed HTML

file that serves as the login page. As can be seen from Figure 8,

the RS-signature set consisting of five RS-signatures is

embedded into the original HTML file. In this case, the signer

information is as follows:

Signer: DEMO

Date: 2025/08/24/16/45 (auto input)

Figure 9 shows the result of the verification experiment for the

RS-signed HTML file shown in Figure 8.

 By adding an X.509 digital certificate to the <hidden> element,

a trust chain can be established with the certification authority

as the root.

Figure 8: RS-signed HTML file 𝑴̃𝒔

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.43, September 2025

22

Figure 9: Verification Result on Desktop App

Phishing is still a serious cybersecurity threat. Attackers use

fake websites and messages to steal personal information.

Even with filters and user education, new and targeted attacks

are difficult to block. The RS-signature method, when used as

a web browser extension, can instantly verify whether a web

page is authentic. This helps protect users from phishing attacks.

7. SECURITY DISCUSSION

The digital signature algorithm used in RS-signature scheme

is ECDSA, which is widely utilized as Cryptographic

Standards and has high security [17][18]. Therefore, the

security strength in the RS-signature scheme can be regarded

as equivalent to that of ECDSA. Furthermore, it is extremely

difficult to obtain the ECDSA digital signature 𝝈𝐵from the

RS-signature set 𝑾̃. The reasons are as follows:

• 𝑾̃ and 𝝈𝐵 consist of 210 bytes and 40 bytes,

respectively (see Section 5).

• Each 𝒘̃𝒊 ∈ 𝑾̃ (𝑖 = 1, ⋯ ,5) consists of 42 bytes and

can correct up to 13 bytes. Therefore, 𝑾̃, can

correct up to 65 bytes.

• Suppose 25 bytes of dummy data are embedded into

W̃ in addition to 𝝈𝐵.

• The decoding algorithm for 𝑾̃ extracts 65 erroneous

bytes 𝐸.

The total number of permutations for selecting and

rearranging 40 bytes from 𝐸 is approximately P(65, 40) ≈ 5.3

× 1065 , which is an astronomically large number.

Consequently, obtaining a valid 𝝈𝐵 remains computationally

infeasible. Thus, the security of the RS-signature scheme

relies on both the cryptographic strength of the signature and

the difficulty of extracting it.

In addition, by embedding an X.509 digital certificate into 𝑴,

it is possible to establish a verifiable trust chain rooted in a

certification authority (CA). This enhances both the integrity

and reliability of the digital certificate system.

8. CONCLUSION
 This paper proposed the RS-signature scheme for digital file

authentication and verified its effectiveness through image and

HTML files authentication experiments. The RS-signature

scheme is, in principle, applicable to a wide range of file

formats, including PNG, XML, PDF, DOCX, and XLSX, and

it offers promising potential for future applications of RS-

signature scheme. Furthermore, as can be seen from the

security discussion, RS-signature scheme is expected as a post-

quantum signatures.

9. REFERENCES
[1] https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-

5.pdf .

[2] PKCS #1 v2.2, "RSA Cryptography Standard", RSA

Laboratories, RFC 8017 (2016),

https://datatracker.ietf.org/doc/html/rfc8017.

[3] Microsoft. (n.d.). Blocked attachments in Outlook.

Microsoft Learn. Retrieved July 29, 2025, from

https://learn.microsoft.com/en-

us/outlook/troubleshoot/security/blocked-attachments

[4] Eastlake, D., Reagle, J., Solo, D. (editors): XML-

Signature Syntax and Processing: W3C Recommendation:

12 February 2002 (See:

http://www.w3.org/TR/2002/REC-xmldsig-core-

20020212/)

[5] Azzedine Benameur, Faisal Abdul Kadir, Serge Fenet,

“XML Rewriting Attacks: Existing Solutions and their

Limitations”, arXiv:0812.4181,2008.

[6] Sebastian Gajek, Meiko Jensen, Lijun Liao, Jörg Schwenk,

"Analysis of Signature Wrapping Attacks and

Countermeasures ", Conference: IEEE International

Conference on Web Services, ICWS 2009, Los Angeles,

CA, USA, 6-10 July 2009

[7] V. Mladenov, C. Mainka, K. M. Selhausen, M. Grothe, J.

Schwenk, “Attacks bypassing the signature validation in

PDF”, Ruhr University Bochum’s Vulnerability Report,

Nov. 2018.

[8] I. S. Reed, G. Solomon, "Polynomial Codes over Certain

Finite Fields" (PDF). Journal of the Society for Industrial

and Applied Mathematics. 8 (2): 300–304, 1960.

[9] R. J. McEliece , “A public-key cryptosystem based on

algebraic coding theory”, DSN Prog. Rep., Jet Prop. Lab.,

California Inst. Technol., Pasadena, CA, pages 114–116,

January 1978.

[10] N. T. Courtois, M. Finiasz and N. Sendrier, “How to

achieve a McEliece-based digital signature scheme”, in

Proc. of the 7th Int. Conf. on the Theory and Application

of Cryptology and Information Security-Advances in

Cryptology-ASIACRYPT 2001. Gold Coast, Australia:

Springer-Verlag, Berlin, 9-13 December 2001, pp. 157–

174.

[11] Farshid Makoui, Thomas Aaron Gulliver, Mohammad

Dakhilalian,”A new code-based digital signature based on

the McEliece cryptosystem”, IET Commun. 17(10),

1199–1207, 2024

[12] Sugiyama, M Kasahara, S Hirasawa and T Namekawa, A

method for solving key equation for decoding Goppa

codes, Information and Control, Vol.27, pp. 87–99, 1975.

[13] SEC 2: Recommended Elliptic Curve Domain Parameters:

https://www.secg.org/SEC2-Ver-1.0.pdf

[14] QRTechnology LLC. GaloaImage. Available at:

https://galoaimage.com .

[15] Zauner, C. "Implementation and benchmarking of

perceptual image hash functions." Upper Austria

University of Applied Sciences, 2010.

[16] Monga, V., Evans, B. L. "Perceptual image hashing via

feature points: performance evaluation and tradeoffs."

IEEE Transactions on Image Processing, 2006.

[17] Digital Signature Standard (DSS),

https://csrc.nist.gov/pubs/fips/186-5/final.

[18] ISO/IEC 14888-3:2018,

https://www.iso.org/standard/76382.html.

IJCATM : www.ijcaonline.org

