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ABSTRACT 

Generative artificial intelligence (AI) is revolutionizing 

chemistry by designing novel molecules,predicting reactions, 

and accelerating discovery. Advanced models-ranging from 

SMILES-based VAEs and transformers to graph neural 

networks and diffusion frameworks-learn from massive 

databases (e.g. PubChem, ChEMBL) to navigate chemical 

space (~1033 molecules), generate valid structures with 

tailored properties, and enforce chemical constraints (valency, 

stereochemistry). These approaches outperform traditional 

methods in tasks like retrosynthesis planning and molecular 

optimization, with experimental validation such as Al-designed 

inorganic crystals synthesized in the lab. Importantly, this work 

emphasizes sustainable molecular and materials design. 

Generative pipelines are being adapted to minimize 

environmental impact via green-by-design objectives such as 

reducing process mass intensity (PMI), selecting biodegradable 

or non-toxic alternatives, and optimizing the atom economy. 

Al-guided materials like ZIF-8 frameworks and MOFs have 

been discovered via electrochemical synthesis with 

significantly lower energy use and waste, demonstrating eco-

efficient design. Models are also used to design solvents and 

catalysts with improved environmental profiles. Such 

sustainability-aware Al tools support greener drug and 

materials development by integrating life-cycle thinking 

directly into molecular generative workflows   
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1. INTRODUCTION 
Consider a chemist attempting to discover a new material or 

drug among infinite possibilities in excess of 10^33 small 

molecules, so numerous it's as if looking for a needle in a 

cosmic haystack. Conventional practices, such as manual 

design and rule-based systems, grapple with this complexity, 

resulting in a protracted and arduous process of discovery. This 

issue has generated a demand for new ways to explore this vast 

chemical kingdom efficiently.Generative artificial intelligence 

(GenAI) is revolutionizing the game as a wise assistant that 

learns from known compounds to propose new molecules, 

predict their responses and stimulate scientific knowledge 

developments. This paper discusses how GenAl, through 

models such as variational autoencoders (V AEs), graph neural 

processes, diffusion processes, and networks, is revolutionizing 

chemistry. It's all about making the impossible feasible, ranging 

from drug research to designing sophisticated materials, by 

simplifying and accelerating the research process. Current 

generative models cover a broad spectrum of architectures—

ranging from SMILES-based RNNs and VAEs to graph neural 

networks, normalizing flows, and Transformer-based language 

models. New paradigms such as diffusion models and 

generative flow networks introduce greater capability to design 

molecules with accurate three-dimensional and chemical 

properties. Pretrained chemical language models such as 

ChemBERTa and MolFormer also enable bridging generation 

and property prediction by having a unified understanding of 

chemical syntax and latent space. Together, these advances 

speed up hit identification and lead optimization in pharma, and 

creation of new materials such as catalysts and semiconductors. 

However, there are significant barriers before GenAl attains 

can be placed reliably in actual chemistry. Public datasets like 

USPTO response records and bioassay annotations-are noisy, 

incomplete, or annotated inconsistently, making model training 

and evaluation. In addition, symbolic representations like 

SMILES may fail to capture crucial chemical properties. like 

stereochemistry, while graphical presentations- although more 

expressive-introduce their respective validation issues. Most 

importantly, generative models have to implement chemical 

realism (proper key bond orders and atomic valences), 

coordinate multiple objectives simultaneously (toxicity, 

solubility, potency), and evaluate synthetic accessibility—

completely found within a system that facilitates multi-step 

retrosynthesis planning. In addition to accelerating discovery, 

generative AI enables greener chemistry by designing 

compounds and materials with inherently lower environmental 

impact, via objectives such as reduced energy input, minimal 
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toxic reagents, and higher atom economy. This addresses 

sustainability imperatives across pharmaceuticals, materials, 

and energy domains. 

2. LITERATURE SURVEY 
Lavecchia (2024) explored the profound influence of 

generative Al in exploring the enormous chemical space 

involved in drug discovery. By leveraging architectures e.g., V 

AEs, GANs, and Transformers trained on known The research 

yielded compound libraries. The potential of such models to 

generate new drug-like molecules efficiently. The work 

highlighted how deep generative models can speed up lead 

identification and enable property-based molecule design, 

which enables them crucial in modern-day pharmaceutical 

development processes [1].  

Schwaller et al. (2020) suggested the Molecular Transformer, a 

sequence-to-sequence template-free retrosynthesis model and 

reaction prediction model. The model outdid traditional rule-

based systems by obtaining chemical syntax from information 

directly and demonstrated significant effectiveness in response 

prediction results. Their approach showed significant deviation 

from personalized templates to neural network-based 

generalization, becoming a basis for accuracy, scalable 

synthetic route planning [2]. 

Zeni et al. (2025) proposed a generative model specific for 

inorganic material design, for solving poses challenges beyond 

small molecules. Their model added domain-specific 

constraints to generate long-lasting, working materials like 

catalysts and Semiconductors. The research showed that GenAI 

can be used outside drug chemistry to fields like materials 

science, to show its broader applicability [3].  

Amabilino et al. (2022) have performed a comprehensive 

comparison of deep generative models used in inverse 

molecular design. They have compared different architectures 

(e.g., RNNs, flows, and GFlowNets) and evaluated their 

performance on generating new, valid, and drug-like molecular 

structures. The study highlighted the requirement to merge 

advancements in the model with credible chemical datasets and 

metrics to guarantee success in drug and material discovery [4]. 

Wang et al. (2025) took a survey of the application of diffusion 

models for molecular generation compared to flow-based and 

score-based approaches. It proved in their paper how diffusion 

models learn to denoise noisy molecular representations and 

achieve state-of-the-art quality in molecule design. Diffusion-

based architectures were found to have promise for targeted 

molecule generation from property targets [5]. 

Guo et al. (2023) proposed RetroExplainer, an interpretable 

retrosynthesis model that reflects chemical reactions as a 

process of assembling molecules with a multi-sense, multi-

scale Graph Transformer with contrastive learning. tested on 12 

large-scale datasets, that were ~86.9% accurate for single-step 

retrosynthetic exercises in accordance with published literature 

pathways, simultaneously offering unique interpretability 

through its molecular structure[6] 

Zhong et al. (2023) introduced Graph2Edits, an end-to-end 

graph neural network model that predicts atom- and bond-level 

edits to transform products into reactants in a single pass. 

Inspired by arrow-pushing chemistry, Graph2Edits 

outperformed semi-template methods on USPTO-50k (top-1 

accuracy 55.1%) and improved interpretability by explicitly 

modeling mechanistic steps [7]. 

Masood et al. (2025) proposed integrating pretrained BERT 

embeddings with Bayesian active learning to prioritize 

molecules in property prediction, such as toxicity screening on 

Tox21 and ClinTox datasets. Their method achieved equivalent 

compound classification using 50 % fewer rounds than 

conventional approaches, highlighting the benefit of domain-

specific representations in low-data scenarios [8]. 

Wang, Cui & Kaski (2024) developed a deep Bayesian 

experimental design framework leveraging pretrained SMILES 

transformers for active learning in drug discovery. Their 

comparative analysis showed that acquisition functions like 

EPIG paired with pretrained models outperform random 

sampling in identifying positive compounds earlier, 

demonstrating improved calibration and sample efficiency [9]. 

Zhang et al. (2023) introduced G‑MATT, a retrosynthesis 

model that leverages hierarchical SMILES grammar 

representations and a tree-structured Transformer. This 

chemistry-aware architecture achieved a top-1 accuracy of 

~51% (top-10: 79.1%) on USPTO-50k, with a low invalid rate 

(1.5%), showcasing the impact of linguistic-inspired molecular 

encoding [10]. 

Wan et al. (2022) developed Retroformer, an end-to-end 

Transformer-based retrosynthesis model using local attention 

heads to encode reactive center contexts and global molecular 

structure. It set new performance benchmarks for template-free 

retrosynthesis, with high reaction validity and an interpretable 

generation process which increases the control on reaction 

products [11]. 

Polykovskiy et al. (2020) suggested MOSES, a full-scale 

benchmarking system developed to standardize molecular 

generative model measurement. It offers a big dataset (~1.6 M 

molecules), strict preprocessing tools, and a set of measures—

validity, novelty, uniqueness—to ensure fair comparison 

between various architectures. MOSES is now a central ref in 

generative chemistry research, guiding model building and 

assessment procedures in both academia and industry [12]. 

Szymański et al. (2023) conducted an extensive evaluation of 

several synthetic accessibility measures— such asSAscore, 

SCScore, RAscore, and SYBA— assess their ability to predict 

feasibility through retrosynthesis programs such as 

AiZynthFinder. They discover that such scores tend to 

differentiate synthesizable molecules, which were not ideal, 

and hybrid is preferred by automated retrosynthesis planning 

and human-informed scoring systems. Their work provides 

important suggestions on the accessibility measures optimal 

support for molecule formation and synthesis planning [13]. 

Krenn et al. (2022) presented SELFIES, a next-generation 

molecular string representation that guarantees 100 % 

robustness—every SELFIES string maps to a valid molecule. 

SELFIES overcomes common SMILES issues as invalid  oken 

combinations, enabling more reliable deep learning pipelines. 

The perspective also outlines future directions, including 

fragment-based SELFIES and explainability, underscoring its 

potential to underpin robust AI-driven molecule generation 

[14]. 

Chithrananda et al. (2020) developed ChemBERTa, a 

transformer-based model pretrained on 77 million SMILES 

strings. By applying self-supervised learning to chemical 

strings and evaluating on MoleculeNet tasks, ChemBERTa 

demonstrated competitive performance in molecular prediction 

and offered interpretable attention mechanisms for chemical 

features— transformer efficacy in cheminformatics [15]. 

Ross et al. (2022) introduced MolFormer, a billion-parameter 

SMILES-based transformer that enhances molecular 
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representation learning using geometry-aware pretraining. 

Trained on over 1.1 billion SMILES, MolFormer achieved 

state-of-the-art results on quantum and biochemical property 

prediction, showing strong generalization across diverse 

molecular tasks and highlighting the benefits of scale in 

chemical language models [16]. 

Wang et al. (2025) surveyed diffusion models for molecular 

design, describing how these methods corrupt molecular graphs 

or 3D coordinates with noise. Their review underscores 

diffusion models’ remarkable performance in generating 

diverse, high-quality molecules and highlights conditional 

variants that can tailor outputs desired properties. This work 

positions diffusion as a rapidly emerging methodology in 

generative chemistry [17].  

Pollice et al. (2023) introduced RScore, a synthetic 

accessibility score derived from full retrosynthetic analyses 

performed by Spaya (Iktos). Unlike heuristic scores, RScore 

leverages complete retrosynthesis trees to assess 

synthesizability more accurately. Their experiments 

demonstrate its superior performance in filtering and guiding 

molecule generation, promoting more realistic and practically 

usable chemical designs [18]. 

3. METHODOLOGICAL FRAMEWORK 

3.1 Data Sources 
The foundation of any generative chemistry pipeline lies in 

access to diverse, high-quality chemical data. Public 

repositories like PubChem, which hosts over 100 million 

unique structures and hundreds of millions of bioactivity 

assays, provide the broad chemical diversity needed for 

pretraining large models Complementing this, ChEMBL offers 

meticulously curated bioactivity annotations for ~2.4 million 

compounds, enabling accurate supervised learning for property 

prediction Meanwhile, ZINC delivers a vast trove of 

purchasable, drug-like molecules—over 20–37 billion entries 

with 3D conformers—ideal for downstream screening and lead 

optimization Reaction modeling requires datasets like the 

USPTO patent database, containing hundreds of thousands of 

reaction sequences, while proprietary high-throughput 

screening (HTS) records ensure domain-specific fine-tuning in 

specialized chemical classes. Together, this blend of public and 

private databases balances scale, annotation, and relevance to 

support robust generative and predictive modeling, as 

summarized in Table I  

Table 1. Data Sources and Scale 

 

3.2 Model Architectures 
This section explores diverse generative modeling paradigms 

tailored to molecular representations. SMILES‑based 

models—such as RNNs, V AEs, and Transformers like 

ChemBERTa and MolFormer—process chemical structures as 

text, effectively capturing syntax but sometimes struggling 

with structural validity Graph‑based models, including GNNs 

and Graphormer architectures, naturally encode 2D 

connectivity and atom-level relationships, often yielding more 

chemically faithful molecules. Emerging architectures like 

diffusion and normalizing flow models operate either on graphs 

or 3D coordinate spaces, offering powerful conditional 

generation capabilities. Lastly, hybrid sequence–graph models, 

such as MolTS, bridge different representations to enable tasks 

like text-to-molecule translation. To clarify these relationships, 

include, see Figure I 

 

Fig 1. Model Architecture Overview 

3.3 Generation and Prediction Pipelines 
We implement a modular, multi‑stage pipeline that mirrors 

real-world discovery workflows (Figure II). Scaffold sampling 

first generates coarse molecular frameworks, which conditional 

generative models then refine—adhering to constraints like 

valency and stereochemistry. Post-generation, molecules 

undergo domain-specific filtering for toxicophores and are 

screened for retrosynthetic accessibility using models like 

AiZynthFinder. Property predictors (e.g., logP, bioactivity, 

toxicity) score candidate molecules, and an optimization loop 

combining Bayesian optimization, active learning, or 

reinforcement learning iteratively refines generations toward 

high-value targets. Successful candidates are flagged for 

potential synthesis. 

 

Fig 2. Generative Chemistry Workflow 

3.4 Evaluation Metrics 
Rigorous evaluation of generative chemistry models requires a 

comprehensive set of metrics that cover structural validity, 

synthetic feasibility, chemical diversity, and predictive 

performance. These metrics allow researchers to assess not 

only whether generated molecules are chemically plausible, but 

also whether they offer novel insights and practical usability in 

downstream applications, refer Table II. 

Table 2. Evaluation metrics and Definitions  

 

4. CASE STUDY & EXPERIMENTAL 

RESULTS. 

4.1 Simulation Setup 
Our evaluation employs widely recognized benchmark datasets 

to measure generative model performance across different 

chemical domains. For molecular generation, we use the QM9 

dataset—containing ~133 k small organic molecules—

alongside the MOSES and GuacaMol benchmarks, which 

consist of drug-like subsets from ZINC and ChEMBL to assess 
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real-world applicability. Reaction modeling utilizes the filtered 

USPTO patent dataset and select academic reaction corpora. 

We implement models using RDKit for validity validation and 

property computations (Figure III). Each experiment follows 

strict protocols, applying held-out test sets or k-fold cross-

validation to assess robustness and generalizability. 

 

Fig 3. Benchmark Data Overview 

4.2     Baseline Comparisons 
To quantify GenAI improvements over traditional methods, we 

compare our models against three baseline classes. For 

molecular generation, we include fragment-based replacement, 

genetic-algorithm models, and rule-based heuristics. Ablation 

studies isolate the effects of model design choices—such as 

attention mechanisms or SMILES  randomization. In 

retrosynthesis, we benchmark against established planners like 

Chematica/Synthia and LHASA-style systems. For property 

prediction, we compare transformer and GNN models with 

classical QSAR techniques (e.g., random forests using 

molecular fingerprints). This comprehensive comparison 

provides context for recent advances in top-1 accuracy, 

diversity, and synthetic feasibility. 

4.3     Results 
Molecular Generation 

Graph-based models using GANs and V AEs 

demonstrate high validity rates; for 

instance, MolGAN achieves ≈100 % validity on 

QM9 after fine-tuning.Recent Transformer 

and diffusion-based models further enhance 

performance, yielding greater novelty and 

diversity than earlier methods . MolFormer’s 

embeddings consistently support strong 

property predictions, confirming that 

generated molecules are chemically coherent  

Retrosynthesis Prediction 

Sequence-to-sequence models, particularly the Molecular 

Transformer, deliver robust single-step retrosynthesis 

accuracy—typically above 90 % on USPTO-derived test sets. 

Systems like RetroExplainer further boost multi-step planning 

success and interpretability, outperforming earlier graph-based 

planners on route coverage and pathway optimality. 

Experimental Validation 

Inorganic crystals generated by diffusion models (e.g., 

MatterGen) have been synthesized in the lab, with target 

bandgap measures within ~20% of predicted values . 

Meanwhile, LLM-based agents like ChemCrow have 

successfully guided robotic platforms to create new catalysts 

and insect repellent molecules, demonstrating real-world 

feasibility (Figure IV). In sustainability‑focused studies, AI 

pipelines have been used to design ZIF‑8 and other MOFs via 

sustainable electrochemical synthesis, achieving high purity 

and yield while minimizing energy use, carbon emissions (~27 

kg CO2/kg product), and E‑factor (~11 kg waste/kg product) 

[5]. MatterGen likewise generates inorganic crystals with lower 

supply‑chain risk and potential for low‑impact synthesis. These 

examples demonstrate that generative AI can facilitate 

eco‑efficient materials design in practice [6] [21]. . 

 

Fig 4. Summary of Experimental Validation 

5. ETHICAL, SECURITY & 

SCIENTIFIC GOVERNANCE 

CONSIDERATIONS 

5.1 Dual-Use Risks 
The tremendous potential held within generative chemistry 

systems also pose serious dual-use issues. In one remarkable 

demonstration, scientists reprogrammed a drug-discovery 

model for addressing toxicity instead of safety, with over 

40,000 compounds— including VX-like nerve agents—in 

under six hours. This sobering anecdote illustrated how quickly 

open-source generative tools can be exploited. To mitigate such 

risks, the discipline must embrace accountability. use 

guidelines and restricted access or licensing of models with 

high-risk compounds. 

5.2 Intellectual Property and 

Reproducibility 
AI-designed molecules introduce new intellectual- property 

questions: Who is the inventor—the model, the developer, or 

the user? Models trained on proprietary information may 

unintentionally generate candidates which violate third-party 

patents. Furthermore, a lack of shared code, data, and model 

weights diminish reproducibility and trust. Due to these issues, 

the community must promote open science values— releasing 

data such as USPTO response sets, sharing pre-trained 

checkpoints and requiring standardization reproducibility 

standards.   

5.3 Human-in-the-Loop Verification 
Despite AI’s strengths, expert oversight remains essential. 

Synthetic and medicinal chemists need to study AI-suggested 

frameworks, confirming reagent availability, feasibility of 

reaction route, and avoiding unsafe byproducts. Human-in-the-

loop systems, such as ChemCrow—where chemists construct 

and test AI outputs—have shown improved safety and practical 

usefulness. Incorporating professional comments into model 
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workflows instills confidence and avoids unworkable or 

hazardous proposals from advancing. 

5.4 Open Science and Responsible 

Deployment 
The tremendous potential held within generative chemistry 

Science and transparency working together underlie 

responsible innovation. Grassroots initiatives such as 

MoleculeNet, MOSES, and NCATS AIathons demonstrate 

how common standards and open data drive improvement. No 

less crucial is the routine dissemination of negative results and 

well-documented datasets—including reaction yields and 

failure results syntheses. Responsible deployment demands 

transparency not only in safety but also in environmental 

impact. Researchers should publish sustainability assessments 

(e.g., PMI, lifecycle carbon footprint) alongside molecular or 

reaction proposals. Open benchmarks and shared datasets 

annotated with environmental attributes will support 

reproducible green AI chemistry [19] [20]. Funding bodies and 

journals should promote this culture. At the same time, policies 

for ethical deployment—such as hazard screening of AI-

generated designs before synthesis—must be implemented to 

safeguard against misuse. 

6. CONCLUSION 
Generative AI has fundamentally reshaped the landscape of 

chemical discovery, enabling rapid in-silico creation of novel 

molecules, robust prediction of synthetic pathways, and 

efficient optimization of properties. Our comprehensive survey 

of state-of-the-art methods—including SMILES-based V AEs, 

graph neural networks, diffusion models, language models, 

Transformer- and graph-based retrosynthesis frameworks, and 

Bayesian/active learning strategies—highlights their 

demonstrated strengths across computational benchmarks 

(MOSES, QM9, USPTO) and, crucially, in real-world 

experimental settings. For example, diffusion-designed 

inorganic crystals achieved laboratory synthesis with bandgaps 

closely matching predictions , and LLM agents facilitated 

synthesis of functional organocatalysts via AI-guided 

workflows . Despite persistent challenges—from data quality 

and interpretability to ensuring synthetic accessibility—these 

successes underscore GenAI's capacity to accelerate scientific 

discovery significantly. With continued innovation and 

responsible stewardship, generative chemistry promises to 

become an indispensable component of molecular design and 

materials science. 
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