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ABSTRACT
Parkinson’s Disease (PD) is a neuro degenerative disorder affect-
ing millions of patients globally, causing motor impairments like
tremors & stiffness, impacting on daily activities and quality of
life. Parkinson’s disease arises when dopamine producing neurons
in the substantia nigra, a region of the midbrain, disrupting the
normal functioning of the basal ganglia. This neuronal loss leads
to difficulties in speech, writing, walking and performing every-
day tasks. As the condition progresses, symptoms worsen and non-
motor issues such as cognitive decline, mood disorders and sleep
disturbances often emerge. The frameworks investigates the poten-
tial of Machine Learning (ML) algorithms in predicting PD. Ma-
chine learning algorithms like Naive Bayes (NB) Classifier, Graph
Neural Network (GNN) and Gradient Boosting Machine (GBM)
Protocols are applied to patient’s data like demographics, clinical
evaluations and potential biomarkers etc. Naive Bayes classifier is
a simple but effective probabilistic model that performs well with
categorical data and assumes feature independence. Graph Neural
Network is a flexible algorithm capable of modeling complex non-
linear relationships in data. Gradient Boosting is powerful ensem-
ble method that iteratively improve predictions by combining weak
learners, optimizing for accuracy and minimizing errors. Simula-
tion results shows the performance of the proposed ML algorithms,
which significantly enhances prediction of PD in terms of accuracy
upto 96.4%, sensitivity of 97.1%, selectivity ranging upto 94.3%,
positive and negative predictive values, and F1-score etc.
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1. INTRODUCTION
Parkinson’s disease is a neuro-degenerative movement disorder that
primarily affects brain cells in the substantia nigra, which produce
the neuro-transmitter dopamine. Dopamine is crucial for transmit-
ting signals that enable smooth and coordinated muscle move-
ments. Symptoms of Parkinson’s disease manifest when approxi-
mately 80% of dopamine producing cells are lost, though the exact
cause of this cell death remains unknown [1], [2].
Although there is no cure for Parkinson’s disease, various therapies
effectively manage symptoms and improve patient’s quality of life.
The most commonly prescribed medication, levodopa/carbidopa,
boosts dopamine levels in the brain, while other drugs, such as
anti-cholinergics, help control involuntary muscle movements. Ad-
vanced cases may benefit from deep brain stimulation and similar
therapies, which reduce tremors and decrease reliance on medica-
tion. Additionally, rehabilitation plays a crucial role in managing
PD, incorporating strength training, gait & balance exercises, yoga,
meditation, and hydrotherapy to enhance physical & mental health,
ultimately improving the overall quality of life for individuals with
PD [3]–[5].
According to World Health Organization (WHO) and National In-
stitutes of Neurological Disorders and Stroke (NINDS), in 2019
over 8.5 million individuals worldwide were living with PD, a
prevalence that has doubled over the past 25 years. This trend is ex-
pected to persist, with the global burden of PD projected to surpass
more than 20 million cases by 2040. PD accounted for 5.8 million
Disability Adjusted Life Years (DALYs), an 81% increase since
2000, and caused 3,29,000 deaths, reflecting a rise of over 100%
in next few years. According to the study, more than 7 million el-
ders in India are affected by PD. with an estimated 60,000 new di-
agnoses annually equivalent to one person every fifteen minutes.
Parkinson’s disease impacts men and women equally (but more
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found in men), while the average onset age is more than 55 years
[6], [7].
proposed algorithms aims to predict PD with improved accuracy by
using machine learning algorithms such as Naive Bayes Classifier,
Graph Neural Network and Gradient Boosting Protocols. Proposed
ML frameworks are trained on a range of risk factors associated
with PD, including attributes such as age, gender, genetic informa-
tion, neuroimaging data, motor and non-motor symptoms, family
and medical history, cognitive assessments, and lifestyle factors.

1.1 Objectives
The primary objective of utilizing machine learning for Parkin-
son’s disease prediction is to develop and validate robust model that
can accurately identify early signs of Parkinson’s disease, enabling
timely diagnosis and intervention. The objectives are as follows:

—The main objective is to create an efficient model for early diag-
nosis of Parkinson’s disease using Naive Bayes Classifier, Graph
Neural Network and Gradient Boosting Machines.

—To combine various data sources, including patient health histo-
ries, voice recordings, movement analysis, neuro-imaging, and
clinical records to optimize feature selection and improve diag-
nostic accuracy.

—To compare the diagnostic efficacy, scalability, and reliability
of Naive Bayes Classifier, Graph Neural Network and Gradient
Boosting Machines for Parkinson’s disease prediction and pro-
gression analysis.

The rest of the paper is organized as follows: A comprehensive
literature survey on Parkinson’s disease prediction using machine
learning is presented in Section 2. The implementation of machine
learning algorithms, like Naive Bayes Classifier, Graph Neural Net-
work and Gradient Boosting Machines, is discussed in Section 3.
Section 4 provides a detailed description of the dataset, simulation
setup, and performance analysis. Finally, the conclusion and future
research directions are discussed in Section 5.

2. RELATED WORK
A new system using computers and machine learning algorithms
like Boosted Linear Regression & Multilayer Perception are used to
analyse sleep patterns, smell loss, and brain scans of the PD patients
is done in [8]. The results are better than other methods in finding
Parkinson’s disease early, with an accuracy rate of almost 95%. The
results are also compared with exiting ML algorithms like Decision
Tree (DT) with accuracy of 92.87%, Logistic Regression (LR) with
accuracy of 89%, K-Nearest Neighbors (KNN) with accuracy of
87.17%.
A Deep Learning (DL) model for early detection of PD using a
genetic algorithm and KNN technique, achieving over 94% accu-
racy and 95% precision is discussed in [9]. The model optimizes
feature selection, reducing complexity and enhancing performance
compared to other methods. The hybrid algorithm utilizes transfer
learning with models like ResNet50, VGG19, and Inception-V3 for
feature extraction from handwritten records.
The key symptoms of PD include tremor, bradykinesia, and rigid-
ity. Similar symptoms are observed in related disorders, such as
dementia with Lewy bodies and multiple system atrophy, though
these conditions are less responsive to therapy. Feature selection is
carried out using rough set theory, while dimensionality reduction
is performed through Principal Component Analysis (PCA). The
model’s performance is evaluated using classifiers such as Deep

Neural Networks (DNN), Random Forests (RF), and Support Vec-
tor Machines (SVM). Efficiency is measured using metrics like the
confusion matrix, accuracy, precision, and recall is discussed in
[10], [11].
Dysphonia, affecting nearly 90% of PD patients, making early de-
tection crucial. Speech signals from 252 subjects are applied to
machine learning algorithms to classify PD based on language
features. By integrating multiple classifiers, a diagnostic accu-
racy up to 94% is achieved [12]. In [13], Artificial Neural Net-
work (ANN) is applied to predict Parkinson from acoustic datasets.
Cross-validation and hyper parameter tuning ensured accurate re-
sults. The classifiers achieved accuracies of 93.41% and 92.35%,
with improved sensitivity, specificity, precision, and AUC.
Machine learning and Deep learning techniques, such as KNN and
Feed forward Neural Network (FNN) models, are employed to dif-
ferentiate between PD patients and healthy individuals based on
voice signals [14]. The study uses the UCI dataset, consisting of
195 recordings from 31 patients. The FNN model achieved an ac-
curacy of 94.11%, while the KSVM model reached 93.89%, high-
lighting the potential of ML and DL for early PD diagnosis.
Machine learning enhances Parkinson’s disease prediction by an-
alyzing speech, motor, and cognitive biomarkers. Classifiers like
Random Forest, KNN, and XGBoost process voice and move-
ment data for early detection. Techniques like SMOTE ensure bal-
anced training, while normalization improves precision. Perfor-
mance metrics, including accuracy and F1-score, evaluate mod-
els, with XGBoost and Random Forest showing superior results.
AI driven diagnostics enable early, cost effective detection, aiding
timely intervention and treatment planning [15], [16].
Artificial Intelligence and Machine Learning (AIML) driven mod-
els have significantly improved PD detection by analyzing neuro-
imaging, sensor data and motor biomarkers. Techniques such as
CNNs, XGBoost, and deep learning models like VGG19 and
ResNet-50 enhance diagnostic precision using MRI, EEG, gait and
voice data. VGG19-INC achieves 93.45% accuracy in PD classifi-
cation, while LIME enhances explainability by highlighting critical
image features [17], [18].
Table 1 provides an overview of several databases employed in
the machine learning based diagnosis of PD. These datasets con-
tain diverse types of data, such as voice recordings, clinical eval-
uations, and movement related information, all of which are es-
sential for accurate PD diagnosis and monitoring its progression.
Among the datasets are prominent sources like the UCI Parkin-
son’s Disease Dataset (PDD) and the Parkinson’s Telemonitoring
Dataset (PDT), along with others like the mPower Dataset and the
Parkinson’s Progression Markers Initiative (PPMI). Furthermore,
additional datasets such as NewHandPD, the Hungarian Statlog
Database (HSD), and IEEE Dataport expand the range of available
data for PD research.
Table 2 offers a detailed summary of different supervised, unsu-
pervised, and reinforcement learning algorithms, along with their
associated performance metrics, applied to the analysis of Parkin-
son’s disease. It highlights key metrics such as accuracy, sensitivity,
specificity, F1 score, precision, and recall, which are used to assess
the effectiveness of these models in diagnosing PD.
Algorithms such as SVM, LR, and DT may struggle with noise and
are susceptible to overfitting. While RF and Multi Layer Perceptron
(MLP) are effective, they are challenging to interpret. XGB and
AdaBoost tend to be computationally heavy and sensitive to out-
liers. Markov Models and Bayesian Networks rely on assumptions
that could limit their accuracy, and deep learning models like CNN,
RNN, and DNN demand large datasets and substantial computa-
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Table 1. : Various Database for Parkinson’s Disease

Database Description Link
UCI Parkinson’s Disease Dataset
(UCI Repository)

Includes acoustic features from voice recordings of 80 sub-
jects (40 with PD, 40 without).

https://archive.ics.uci.edu

Parkinson’s Telemonitoring Dataset
(UCI Repository)

Contains 5,875 instances, used for classifying PD based on
speech features.

https://archive.ics.uci.edu

Parkinson Speech Dataset (Kaggle) Voice data from patients with and without PD, with disease
severity scores.

https://www.kaggle.com

mPower Dataset (PhysioNet) Data collected via a mobile app, including voice recordings
and motor assessments.

https://physionet.org

Parkinson’s Progression Markers
Initiative (PPMI)

Comprehensive data from clinical, imaging, and biological
sources for PD research.

https://www.ppmi-info.org

PubMed Database of medical research articles that often includes
studies on Parkinson’s Disease and diagnostic techniques.

https://pubmed.ncbi.nlm.nih.gov

NewHandPD Dataset of hand movement data from PD patients, used for
research on movement related symptoms and diagnostics.

https://newhandpd.org

Hungarian Statlog Database (UCI
Repository)

Contains data for classifying patients with PD using clini-
cal data.

https://archive.ics.uci.edu

Di-Scri Database Data from clinical tests and physical assessments used to
predict PD severity and progression.

https://www.di-scri.org

IEEE Dataport A comprehensive resource for various datasets, including
those focused on PD diagnosis and monitoring.

https://ieee-dataport.org

Table 2. : Machine Learning Algorithms and Performance Metrics Analysis

Machine Learning Algorithms Performance Metric Accuracy (%)
SVM, LR, DT, KNN, RF, MLP Accuracy, Sensitivity, Specificity, F1 Score 91.4
XGBoost, AdaBoost Accuracy, Sensitivity, Error Rate 92.3
Bayesian Networks, Markov Models Accuracy, Precision, Recall 89.6
CNN, RNN, ANN, DNN, RL Accuracy, Sensitivity, Specificity, AUC 94.1
Randomized Search CV, FNN Accuracy, Precision, F1-Score 94.11

tional resources. Choosing the optimal model involves balancing
data availability, computational complexity, and interpretability.
Naive Bayes Classifier offers probabilistic modeling based on fea-
ture independence, making it computationally efficient for large
datasets. Graph Neural Network will help to capture complex, non-
linear relationships between input features and disease progression.
Gradient Boosting will improve prediction accuracy by combin-
ing weak learners to iteratively correct errors made by previous
models. By integrating these supervised and semi supervised ML
algorithms, the proposed models to enhance early diagnosis, pre-
dict disease progression, and enable personalized treatment recom-
mendations for PD patients, thus improving clinical outcomes and
healthcare management.

3. PROPOSED MACHINE LEARNING
FRAMEWORKS

This section explores three machine learning models Naive Bayes
(NB) Classifier, Graph Neural Network (GNN) and Gradient
Boosting Machine (GBM) for predicting the presence or absence
of Parkinson’s disease. Figure 1 depicts the proposed framework
for PD diagnosis. These models are trained using a comprehen-
sive dataset containing diverse patient information, as outlined in
Table 1. The dataset undergoes data preprocessing, which includes
cleaning, normalization, and feature selection. After preprocessing,
the data is divided into training (70%) and testing (30%) sets. The
training data is used to build predictive models that identify pat-
terns related to PD. The models are evaluated on the testing dataset

using performance metrics such as accuracy, sensitivity, specificity,
and F1-score. To enhance model reliability, K-fold cross validation
is applied, splitting the dataset into 10 subsets, with each subset
serving as the testing set once. The average performance across
these iterations provides a robust estimate of the model’s accuracy,
ensuring reliable PD diagnosis outcomes.

3.1 Naive Bayes (NB)
Naive Bayes is a probabilistic classifier based on Bayes’ Theorem,
commonly used for predicting the presence or absence of PD. It op-
erates under the conditional independence assumption, where it as-
sumes that the features (e.g., clinical measurements, patient demo-
graphics) are conditionally independent given the class label (PD
or no PD). This simplifies the calculation of the posterior proba-
bility of a class by decomposing the joint likelihood of the fea-
tures into individual feature likelihoods. The strengths of the Naive
Bayes algorithm for predicting the presence or absence of PD lie
in its simplicity, computational speed, and effectiveness with high
dimensional clinical data. However, it may face challenges when
the conditional independence assumption is strongly violated or
when handling continuous data without proper preprocessing, such
as transforming it into discrete values or applying Gaussian Naive
Bayes for continuous features [19]-[21].
The figure (2) illustrates the workflow of a Naive Bayes based clas-
sification model for PD detection. It begins with a set of train-
ing documents (D) used to compute prior probabilities P (C),
word probabilities P (Xi|C), and weight parameters Xi. A test
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Fig. 1: Machine Learning Frameworks for Parkinson’s Disease Diagnosis

document (d) is then processed, where conditional probabilities
P (Xi|Xi, C) are computed, and the model predicts whether the
document corresponds to a PD or healthy case. The classification
is based on Bayesian probability theory, ensuring efficient and in-
terpretable PD detection.
The NB classifier is based on Bayes’ theorem, which is expressed
in equation (1).

P (C|X) =
P (X|C)P (C)

P (X)
(1)

where,

—P (C|X) is the posterior probability of class C (PD or No PD)
given features X .

—P (X|C) is the likelihood of the observed data given class C.
—P (C) is the prior probability of class C.
—P (X) is the marginal probability of the observed data.

Since NB algorithm assumes that features X1,X2, ...,Xn are con-
ditionally independent given C, the likelihood can be decomposed.
Equation (2) represents the NB assumption, where the likelihood
P (X|C) is factorized as the product of individual feature probabil-
ities, assuming conditional independence given class C.

P (X|C) =

n∏
i=1

P (Xi|C) (2)

Substituting equation (2) into equation (1), we obtain equation (3).
Equation (3) shows the posterior probability P (C|X), which is
proportional to the product of the prior probability P (C) and the
likelihood P (Xi|C).

P (C|X) ∝ P (C)

n∏
i=1

P (Xi|C) (3)

where, ∝ denotes proportionality since P (X) is a constant for all
classes.

Ĉ = argmax
C

[
P (C)

n∏
i=1

P (Xi|C)

]
(4)

The classification decision is based on selecting the class C that
maximizes the probability as shown in equation (4).

P (C = PD|X) =
P (C = PD)

∏n

i=1
P (Xi|C = PD)

P (X)
(5)

Naive Bayes based Parkinson’s disease diagnosis is shown in equa-
tion (5).

P (C = NoPD|X) =
P (C = NoPD)

∏n

i=1
P (Xi|C = NoPD)

P (X)
(6)

Similarly, for a healthy individual it shown in equation (6), using
Bayes’ theorem with likelihood decomposition.

P (C = PD|X) > P (C = NoPD|X)⇒ PDDiagnosed (7)

The final classification decision is made based on equation (7). Oth-
erwise, the patient is classified as healthy (No PD).
The following steps outline the process of applying the Naive Bayes
Algorithm for predicting the presence or absence of Parkinson’s
Disease (PD). Each step describes a key operation from calculating
probabilities to evaluating the model’s performance.

—Prior Probabilities: Calculate P (c) for each class c by deter-
mining the frequency of each class in the dataset, i.e., P (c) =
countofinstancesinc
totalinstancesinS

.
—Conditional Probabilities: Compute P (a = v|c) for each at-

tribute a and its value v given each class c, by calculating the
relative frequency of each value v for attribute a in class c.

—Classification: For a new instance, calculate the posterior proba-
bility for each class c using Bayes’ Theorem and select the class
with the highest posterior probability.
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Fig. 2: Naive Bayes Framework for Parkinson’s Disease Diagnosis

—Model Evaluation: Evaluate the Naive Bayes model using per-
formance metrics such as accuracy, precision, recall, and F1-
score on the testing dataset.

Algorithm (1) describes the steps of the Naive Bayes classifier,
where prior and conditional probabilities for each class and fea-
ture are calculated. These probabilities are then used to construct
the classification model, enabling predictions based on the learned
relationships between features and classes.

Algorithm 1 Naive Bayes Algorithm

Require: Training dataset S
Ensure: Naive Bayes Model

1: Calculate prior probabilities for each class c:
2: for each class c in target attribute do
3: P (c) = countofinstancesinc

totalinstancesinS
4: end for
5: Calculate conditional probabilities for each attribute a given

the class c:
6: for each attribute a in attributes do
7: for each value v of attribute a do
8: for each class c in target attribute do
9: P (a = v|c) =

countofinstanceswherea=vandclass=c
countofinstancesinc

10: end for
11: end for
12: end for
13: Return Naive Bayes Model with calculated probabilities P (c)

and P (a = v|c)

3.2 Graph Neural Networks (GNN)
Graph Neural Networks offers an innovative method for diagnosing
Parkinson’s disease, utilizing semi supervised learning to enhance
prediction accuracy. In this approach, patients’ data is modelled

as a graph, where each node represents a patient, and edges de-
note relationships or similarities between patients. This graph based
structure enables GNNs to capture intricate patterns and interac-
tions within the data. The GNN architecture employs multiple lay-
ers that aggregate information from both nodes and edges, allowing
the model to generate rich representations of patients. By leverag-
ing both labelled and unlabelled data in a semi supervised learning
framework, GNNs improve model performance by minimizing a
loss function that incorporates both supervised and unsupervised
components. This combination of graph based learning and semi
supervised methods provides a powerful tool for doctors, enabling
more accurate PD diagnoses and better informed treatment deci-
sions [22]-[25].
The figure (3) represents the workflow of a GNN for PD predic-
tion. It starts with input graphs, where nodes represent entities
(e.g., brain regions or biomarkers) and edges define relationships.
These graphs pass through GNN layers, which learn node repre-
sentations by aggregating information from neighbours. The node
embeddings capture structural and feature based relationships. A
readout layer condenses node embeddings into a graph embedding,
representing the entire graphs feature space. Finally, classification
layers process the graph embedding to predict PD or a healthy con-
dition, enabling an interpretable deep learning based diagnosis.
In GNN a graph is represented as G = (V,E), where:

—V is the set of N nodes (patients or feature representations).
—E is the set of edges (relationships between nodes).
—X ∈ RN×d is the input feature matrix.
—A ∈ RN×N is the adjacency matrix.
—D is the degree matrix, where Dii =

∑
j
Aij .

To ensure numerical stability, a normalized adjacency matrix is
shown in equation (8) & (9).

Ã = A+ I (8)

D̃ii =
∑
j

Ãij (9)
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Fig. 3: Graph Neural Networks Framework for Parkinson’s Disease Diagnosis

where, I is the identity matrix.
The feature transformation in a Graph Convolutional Layer (GCN)
is given by equation (10).

H(l) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l−1)W(l)

)
(10)

where:

—H(l) is the feature representation at layer l.
—W(l) is the learnable weight matrix for layer l.
—σ is an activation function (e.g., ReLU).

Equation (11) & (12) shows the input layer and hidden layer oper-
ation of GNN.

H(0) = X (11)

H(l) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l−1)W(l)

)
(12)

Each node aggregates information from its neighbours with feature
update rule as shown in equation (13).

h
(l)
i = σ

 ∑
j∈N (i)

1√
didj

W(l)h
(l−1)
j

 (13)

where:

—h
(l)
i is the updated feature vector for node i.

—N (i) represents the neighbors of node i.
—di, dj are node degrees.

After multiple GCN layer operations, the final graph level represen-
tation is computed and readout function that aggregates the node
representations from the last GCN layer is shown in equation (14).

zG = READOUT ({h(L)
i |i ∈ V }) (14)

where, L is the last GCN layer. Equation (15) express the Use mean
pooling computing and averaging the node embeddings from the
final GCN layer.

zG =
1

|V |

∑
i∈V

h
(L)
i (15)

A softmax classifier predicts the probability of PD presence based
on the learned graph representation as shown in equation (16).

P (y|G) = softmax(WozG + b) (16)

where:

—Wo and b are learnable classification parameters.
—P (y|G) is the probability of PD presence.

The classification loss function (cross entropy loss) measures how
well the predicted probabilities align with the actual labels are
shown in equation (17).

L = −
N∑
i=1

yi logP (yi|Gi) (17)

where yi is the true label (PD or No PD).
The following key steps outline the process of training a Graph
Neural Network for predicting Parkinson’s disease using graph
structured patient data. These steps enable the model to capture
complex relationships and improve diagnostic accuracy.

—Initialization: Randomly initialize the weights Wl for each layer
l using the graph data (node features X and adjacency matrix A)
to transform the node features.

—Forward Pass: For each layer l, aggregate the neighbour-
ing node features using the adjacency matrix A, and com-
pute the aggregated features by considering the neighbours
of each node i, i.e., neighbors = get neighbors(i, A) and
aggregated features[i] =

∑
j∈neighbors

Xj .
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—Feature Update: Apply the learned weights Wl to the ag-
gregated features and pass them through an activation func-
tion activation(·) to update the node features, i.e., X ←
activation(aggregated features×Wl).

—Output: After iterating through all layers, use the updated node
features X to make predictions, such as predicting the presence
or absence of PD.

Algorithm 2 Graph Neural Network (GNN)

Require: Graph data (node features X , adjacency matrix A)
Ensure: GNN Model

1: Initialize weights for each layer:
2: for layer l from 0 to L− 1 do
3: Wl ← random initialization(num features)
4: end for
5: Forward pass through the GNN:
6: for layer l from 0 to L− 1 do
7: aggregated features← []
8: for node i in range(num nodes) do
9: neighbours← get neighbours(i, A)

10: neighbour features← [X[j]forjinneighbours]
11: aggregated feature← neighbour features
12: aggregated features.append(aggregated feature)
13: end for
14: X ← activation(aggregated features×Wl)
15: end for
16: return updated node features X as GNN output

Algorithm (2) outlines the training process of a GNN to predict the
presence or absence of PD. Where, each patient is represented as
a node, and relationships between patients are modeled as edges
in the graph. The input includes node features (X), which represent
patient data (e.g., clinical symptoms), and the adjacency matrix (A),
which captures the relationships between nodes.

3.3 Gradient Boosting Machines (GBM)
Gradient Boosting Machines predict the presence or absence of
Parkinson’s disease by iteratively combining decision trees, where
each tree corrects the residual errors of previous trees using gradi-
ent descent. The model is trained on a labelled dataset with features
such as clinical symptoms and test results. Through successive it-
erations, GBMs learn complex patterns and refine predictions. The
final prediction is made by aggregating the outputs of all trees, typ-
ically through a weighted sum or majority vote. Key hyper param-
eters like learning rate, number of trees, and tree depth must be
carefully tuned to optimize performance and prevent over fitting
[26]-[28].
The figure (4) illustrates the working mechanism of a GBM for
PD prediction. It sequentially trains multiple decision trees, where
each tree learns from the errors of the previous one. The first tree
is trained on the initial dataset, and subsequent trees correct the
misclassification by assigning higher weights to incorrectly pre-
dicted samples. The final prediction is obtained by aggregating the
weighted outputs (X1,X2, ...,Xn) of all trees. Correct and in-
correct predictions are marked, highlighting the models iterative
refinement process, which enhances accuracy and robustness for
disease classification.
Given a dataset in GBM with N samples, where each sample has
feature set Xi and corresponding label yi, the dataset is represented
in equation (18).

D = {(Xi, yi)|i = 1, 2, . . . ,N} (18)

The initial prediction model F0(X) is chosen as the constant value
that minimizes the loss function is expressed in equation (19).

F0(X) = argmin
c

N∑
i=1

L(yi, c) (19)

where, L(yi, c) is the loss function (e.g., Mean Squared Error for
regression or Log Loss for classification).
For each boosting iteration m = 1, 2, . . . ,M , the model is refined
in equations (20)-(24).
The residuals represent the negative gradient of the loss function
with respect to the previous models prediction is presented in equa-
tion (20).

r
(m)
i = −∂L(yi, F (Xi))

∂F (Xi)
(20)

A new decision tree that fits a weak learner decision tree hm(X) is
trained to approximate is discussed in equation (21)with residuals.

hm(X) ≈ r
(m)
i (21)

The optimal step size γm is determined by minimizing the loss
function in equation (22).

γm = argmin
γ

N∑
i=1

L(yi, Fm−1(Xi) + γhm(Xi)) (22)

The model is updated by incorporating the weak learners contribu-
tion in equation (23).

Fm(X) = Fm−1(X) + γmhm(X) (23)

After M iterations, the final prediction function for PD diagnosis
is presented in equation (24).

ŷ = σ(FM (X)) (24)

where σ(·) is the sigmoid activation function used for binary clas-
sification to output the probability of Parkinson’s disease presence.
The following key steps outline the process of using Gradient
Boosting Machines, which iteratively minimize the loss function,
compute pseudo residuals, and update the model to capture com-
plex patterns, optimizing performance and preventing over fitting.

—Training Data: The dataset X contains feature data (e.g., clini-
cal symptoms and medical history), while y contains correspond-
ing labels (PD or no PD).

—Initialization: The algorithm initializes with an initial model
F0(x), often a constant value such as the mean of the target vari-
able y.

—Iteration: In each iteration m, compute the pseudo residuals
ri = yi−Fm−1(xi) for each instance i, and train a weak learner
(e.g., a decision tree) to predict these residuals.

—Model Update: Update the model by adding the predictions of
the weak learner hm(x), scaled by the learning rate ν and an op-
timal multiplier γm to adjust the contribution of the weak learner.
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Fig. 4: Gradient Boosting Machines Framework for Parkinson’s Disease Diagnosis

—Final Model: After M iterations, the final model FM (x) ag-
gregates all weak learners’ predictions and is used to predict
whether a patient has Parkinson’s Disease based on the features
X .

Algorithm (3) details the process of training a Gradient Boosting
Machine (GBM), where weak learners are iteratively fit to pseudo
residuals, and the model is updated using gradient descent. This ap-
proach refines predictions by minimizing the loss function, effec-
tively capturing complex data patterns while preventing over fitting
through careful control of model complexity and hyper parameters.

Algorithm 3 Gradient Boosting Machines (GBM)

Require: Training data (X, y), Number of iterations (M), Learn-
ing rate (ν)

Ensure: Gradient Boosted Model
1: Initialize F0(x) // Initial model
2: for m = 1 to M do
3: Compute pseudo residuals ri = yi − Fm−1(xi) for each

instance i
4: Fit weak learner hm(x) to ri
5: Compute optimal multiplier γm
6: Update model: Fm(x)← Fm−1(x) + ν · γm · hm(x)
7: end for
8: return Final model FM (x)

Table 3 compares three machine learning models NB, GNN, and
GBM highlighting their respective strengths, weaknesses, and most
suitable applications in the prediction of PD. The table outlines the
ML models capabilities in capturing complex relationships, han-
dling structured data, and managing feature independence, along
with their specific use cases in PD disease diagnosis, such as per-
sonalized medicine, gene disease interactions, and disease progres-
sion monitoring.

4. DATASET, SIMULATION & PERFORMANCE
ANALYSIS

In this section, we discuss the dataset, the tools used to simulate
the proposed models, and the methods employed to evaluate the
performance of NB, GNN & GBM ML Model for predicting the
presence or absence of PD. The performance of these algorithms is
assessed to determine their effectiveness in PD prediction [29].

4.1 Dataset
The proposed diagnosis of PD is simulated using the dataset
sourced from Kaggle containing voice recordings of patients, de-
mographic information, clinical symptoms, and Unified Parkin-
son’s Disease Rating Scale (UPDRS) scores as shown in table 4
and 5.
The dataset includes various voice features such as base frequency
variations, wave variations, jitter, shimmer, and noise ratio, which
are commonly used in speech analysis for PD diagnosis. Each fea-
ture represents a specific aspect of vocal characteristics, with mul-
tiple generated values for each attribute. These features play a cru-
cial role in understanding speech patterns that are indicative of PD.
The dataset are suitable for NB and GBM for predicting PD, espe-
cially since these algorithms perform well with structured and tab-
ular data. While simulating GNNs the data had been transformed
into a graph structure model which develops the relationships be-
tween features or samples.

4.2 Simulation
The proposed models for Naive Bayes, Graph Neural Networks
and Gradient Boosting Machines are simulated using PyCharm, a
powerful Integrated Development Environment (IDE) tailored for
Python. PyCharm provides a comprehensive suite of tools, includ-
ing efficient code editing, debugging, version control, and code
completion, which makes it particularly suitable for developing and
testing machine learning algorithms. Table 6 summarizes the inputs
used for simulating these models in PyCharm, leveraging its robust
features to ensure seamless workflow and model evaluation. Key
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Table 3. : Comparison of NB, GNN & GBM ML Models

ML Model Benefits Limitations
NB Fast, simple, handles missing data Assumes feature independence, less accurate

for complex data
GNN Captures complex relationships, good for

multi modal data
Computationally expensive, needs large
datasets

GBM High accuracy, good with structured data Slow training, risk of overfitting

Table 4. : Parkinson Disease Dataset

Feature/Attributes Description
MDVP:Fo (Hz) Mean of the base frequency of vowels
MDVP:Fhi (Hz) Maximum base frequency of vowels
MDVP:Flo (Hz) Minimum base frequency of vowels
MDVP:Jitter (%) Basic frequency variations
MDVP:Jitter (Abs) Basic frequency variations
MDVP:RAP Basic frequency variations
MDVP:PPQ Basic frequency variations
Jitter:DDP Basic frequency variations
MDVP:Shimmer Basic frequency variations
MDVP:Shimmer (dB) Wave variations
Shimmer:APQ3 Wave variations
Shimmer:APQ5 Wave variations
MDVP:APQ Wave variations
Shimmer:DDA Wave variations
NHR Noise ratio for tonal components in sound

Table 5. : Sample Dataset

Feature/Attributes Generated Values
MDVP:Fo (Hz) 106.34, 127.64, 120.47, 112.48, 129.81
MDVP:Fhi (Hz) 132.67, 148.18, 170.13, 171.60, 153.78
MDVP:Flo (Hz) 81.54, 99.09, 87.82, 93.58, 98.57
MDVP:Jitter (%) 0.60, 0.50, 0.54, 0.65, 0.63
MDVP:Jitter (Abs) 0.01, 0.01, 0.01, 0.01, 0.01
MDVP:RAP 0.50, 0.48, 0.45, 0.55, 0.52
MDVP:PPQ 0.40, 0.42, 0.38, 0.43, 0.41
Jitter:DDP 0.50, 0.45, 0.55, 0.48, 0.50
MDVP:Shimmer 0.45, 0.42, 0.46, 0.48, 0.44
MDVP:Shimmer (dB) 30.10, 28.65, 32.57, 29.80, 31.23
Shimmer:APQ3 0.28, 0.24, 0.23, 0.29, 0.23
Shimmer:APQ5 0.35, 0.33, 0.38, 0.32, 0.37
MDVP:APQ 0.40, 0.42, 0.43, 0.41, 0.45
Shimmer:DDA 0.56, 0.58, 0.60, 0.57, 0.61
NHR 0.17, 0.14, 0.15, 0.15, 0.14

parameters such as number of layers, learning rate, and cross vali-
dation folds (set to 10) are specified for each model. These inputs
are essential for tuning the models to optimize their prediction ac-
curacy.

4.3 Performance Parameters
In this section, key metrics used to evaluate the performance of
Naive Bayes, Graph Neural Networks and Gradient Boosting Ma-
chines for predicting the presence or absence of Parkinson’s disease
are discussed.

—Accuracy: Measures overall correctness of predictions in
Parkinson’s disease detection by evaluating both positive (PD)
and negative (healthy) classifications as shown in equation (25).
It provides an overall measure of model performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

Where,
—TP = True Positives (correctly predicted PD cases)
—TN = True Negatives (correctly predicted healthy cases)
—FP = False Positives (incorrectly predicted PD cases)
—FN = False Negatives (incorrectly predicted healthy cases)
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Table 6. : Simulation Inputs for Parkinson’s Disease Prediction

Algorithm Simulation Inputs
NB Smoothing Parameter: 0.01-1.0 (Prevents zero probability issues by smoothing prob-

abilities)
Cross Validation Folds: 10 (Used to evaluate the model’s generalization ability)

GNN Number of Layers: up to 5 (Controls the depth of the network)
Learning Rate: 0.01-0.1 (Determines how much the model weights are updated)
Cross Validation Folds: 10 (Number of data splits used for model validation)

GBM Number of Trees: up to 100 (Number of boosting iterations or trees)
Learning Rate: 0.01-0.1 (Controls the contribution of each tree to the final model)
Max Depth: up to 10 (Limits the depth of the trees to prevent overfitting)
Cross Validation Folds: 10 (Validates the model’s performance across different sub-
sets of the data)

—Precision: Indicates the proportion of correctly identified PD
cases among all predicted PD cases, helping to minimize false
positives in early PD detection represented in equation (26).

Precision =
TP

TP + FP
(26)

—F1-Score: The F1-Score is the harmonic mean of Precision and
Recall expressed in equation (27). Balances precision and recall,
ensuring effective handling of false negatives and false positives,
especially in imbalanced PD datasets.

F1− Score = 2× Precision×Recall

Precision+Recall
(27)

—Sensitivity (Recall): Sensitivity, also known as Recall or True
Positive Rate (TPR), measures how well the model detects actual
PD cases, which is critical for early diagnosis and minimizing
missed PD patients as shown in equation (28).

Sensitivity(Recall) =
TP

TP + FN
(28)

—Selectivity (Specificity): Specificity, also known as Selectivity
or True Negative Rate (TNR), evaluates how effectively a model
distinguishes healthy individuals, reducing the chances of mis-
classifying non PD cases as PD shown in equation (29).

Selectivity(Specificity) =
TN

TN + FP
(29)

—ROC-AUC (Receiver Operating Characteristic - Area Under
the Curve): ROC-AUC is a measure of the model’s ability to
distinguish between Parkinson’s disease and healthy cases by in-
tegrating sensitivity and specificity. A higher AUC indicates bet-
ter classification performance across varying thresholds as ex-
pressed in equation (30).
ROC-AUC measures a model’s ability to distinguish between

AUC =

∫ 1

0

Sensitivity d(1− Specificity) (30)

Table 7 summarizes the relevance of performance parameters for
evaluating machine learning models in predicting Parkinson’s Dis-
ease (PD). It includes key metrics like Accuracy, Precision, F1-
Score, Sensitivity (Recall), Selectivity (Specificity), and ROC-
AUC, each serving to assess different aspects of model perfor-
mance, such as identifying true PD cases, minimizing false posi-
tives, and ensuring robust model distinction between PD and non

PD. These metrics are essential for comparing models like GNN,
NB, and GBM in the context of PD diagnosis.

4.4 Performance Analysis
Table 8 and fig. (5) presents the performance evaluation of three
machine learning models Naive Bayes, Graph Neural Networks,
and Gradient Boosting Machines for predicting the presence or ab-
sence of Parkinson’s Disease (PD).
The table includes key performance metrics such as Accuracy, Pre-
cision, F1-Score, Sensitivity (Recall), Selectivity (Specificity), and
ROC-AUC, which are used to assess how well each model per-
forms in distinguishing between patients with Parkinson’s Disease
and healthy individuals. The statistical parameters such as Q1, Q3,
IQR, and error (±1.5 × IQR) further reinforce the consistency of
GBM, emphasizing its effectiveness in delivering reliable predic-
tions across varied data subsets.

4.5 Computational Delay Analysis
In this section time delay for simulation of models forPD prediction
is discussed. When comparing the time delay for simulating ma-
chine learning models like Naive Bayes, Graph Neural Networks,
and Gradient Boosting Machines in predicting PD, the computa-
tional time varies significantly based on the models architecture
and complexity.

—Naive Bayes (NB):
—Time Complexity: O(n ·m), where n is the number of sam-

ples and m is the number of features.
—Simulation Time: Naive Bayes is a simple, probabilistic algo-

rithm that assumes feature independence and computes prob-
abilities based on the frequency of features and classes. This
makes Naive Bayes the fastest model for simulation, requiring
the least computational time compared to the other models.

—Graph Neural Networks (GNN):
—Time Complexity: O(L · N ·D), where L is the number of

layers, N is the number of nodes (data samples), and D is the
dimensionality of the node features.

—Simulation Time: GNNs are the most computationally ex-
pensive model. They involve graph based computations, such
as message passing and adjacency matrix operations, and re-
quire substantial training time, particularly with deep mod-
els and large datasets. The complexity of graph based learn-
ing and the optimization of model parameters make GNN the
slowest among the three models.

—Gradient Boosting Machines (GBM):
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Table 7. : Relevance of Performance Parameters for Parkinson’s Disease Prediction

Performance Metric Relevance for PD Prediction
Accuracy Provides a general measure of performance but may not fully reflect model effec-

tiveness in imbalanced datasets, which are common in medical prediction tasks.
Precision Important when false positives (predicting a patient has PD when they do not)

must be minimized, avoiding unnecessary treatments or stress in clinical settings.
F1-Score Offers a balanced evaluation between Precision and Sensitivity, especially valu-

able when both false positives and false negatives are critical, as in PD diagnosis.
Sensitivity (Recall) Crucial in medical contexts where missing actual PD cases can have serious

consequences. High Sensitivity ensures true PD patients are detected.
Specificity (Selectivity) Helps minimize false positives, ensuring healthy individuals are not incorrectly

diagnosed with Parkinson’s Disease.
ROC-AUC Useful for assessing model performance across thresholds. A high AUC means

the model effectively distinguishes between PD and non-PD cases.

Table 8. : Statistical Summary of Model Performance for Parkinson’s Disease Prediction

Performance Metric ML Algorithm Mean Median Q1 25% Q3 75% IQR Error (±1.5*IQR)
Accuracy NB 89.67 89.5 87.0 91.0 4.0 ±6.0

GNN 94.12 94.0 92.0 96.0 4.0 ±6.0
GBM 96.41 96.5 95.0 98.0 3.0 ±4.5

Recall (Sensitivity) NB 85.30 85.0 83.0 87.0 4.0 ±6.0
GNN 95.45 95.5 94.0 97.0 3.0 ±4.5
GBM 97.12 97.0 96.0 98.0 2.0 ±3.0

Precision NB 87.34 87.0 85.0 89.0 4.0 ±6.0
GNN 93.65 94.0 92.0 95.0 3.0 ±4.5
GBM 95.78 96.0 94.5 97.0 2.5 ±3.75

F1-Score NB 88.50 88.5 86.0 90.0 4.0 ±6.0
GNN 93.89 94.0 92.0 96.0 4.0 ±6.0
GBM 96.15 96.0 95.0 97.0 2.0 ±3.0

Specificity NB 92.15 92.0 90.0 94.0 4.0 ±6.0
GNN 92.98 93.0 91.5 94.5 3.0 ±4.5
GBM 94.35 94.5 93.0 96.0 3.0 ±4.5

ROC-AUC NB 88.70 88.5 87.0 90.0 3.0 ±4.5
GNN 95.80 95.5 94.0 97.5 3.5 ±5.25
GBM 97.50 97.0 96.0 99.0 3.0 ±4.5

—Time Complexity: O(M ·N · log(N)), where M is the num-
ber of boosting rounds (trees) and N is the number of samples.

—Simulation Time: GBM is an ensemble method that builds
multiple decision trees, which are iteratively improved. While
it offers high predictive accuracy, it is computationally more
expensive than Naive Bayes due to the training of multiple
trees and the need for hyperparameter optimization. The train-
ing time increases with the number of trees and depth of the
trees.

The fig (6) shows the computational delay (in seconds) vs. num-
ber of iterations for NB, GNN and GBM in predicting PD as
the number of iterations increases during simulation, NB exhibits
the lowest computational delay due to its simple probabilistic ap-
proach, making it efficient for real-time predictions. In contrast,
GNN experiences a highest delay as it captures complex relation-
ships in graph structured data, requiring more computational re-
sources. GBM shows the higher delay, as it involves fitting mul-
tiple decision trees in an ensemble, making it computationally in-
tensive but highly accurate. The graph highlights the trade-off be-
tween computational efficiency and predictive accuracy, with NB
being faster, while GNN and GBM offer more complex models at
the cost of higher computational demands.

5. CONCLUSION
The prediction of Parkinson’s Disease (PD) using Naive Bayes
(NB), Graph Neural Networks (GNN), and Gradient Boosting
Machines (GBM) highlights the strengths and trade-offs of each
model. GNN is effective in capturing complex relationships in
graph based data, though it is computationally expensive. NB is
fast and efficient, performing well with conditionally independent
features but may not capture complex feature interactions. GBM
offers high accuracy and is effective for large datasets, though it
requires significant computational resources and careful tuning to
prevent overfitting. The choice of algorithm should depend on the
specific requirements of Parkinson’s disease prediction, such as the
desired accuracy, interpretability, and computational efficiency.
Future research should focus on data privacy, model interpretabil-
ity, and real-world applicability to effectively integrate these al-
gorithms into clinical practice for Parkinson’s disease diagnosis.
Improving model interpretability will make it easier for clinicians
to understand and trust the predictions. Additionally, ensuring the
real-world applicability of these models by validating them on di-
verse, large scale datasets will help integrate them into clinical set-
tings, ultimately improving early diagnosis, optimizing treatment
plans, and enhancing patient outcomes in Parkinson’s disease care.
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Fig. 5: Performance Parameter (%) of NB, GNN, & GBM in Predicting PD
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