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ABSTRACT 
Deepfake boom has emerged as greatest multimedia 

information authenticity threats. In this paper, in anticipation of 

this issue, we propose an end-to-end detection synergistically 

merged Residual Networks (ResNet) for spatial feature 

learning and a combination of Long Short- Term Memory 

(LSTM) and Convolutional Neural Network (CNN) for 

temporal sequence modeling. ResNet module effectively 

outputs rich facial and contextual data from one frame, and 

Long Short-Term Memory- Convolutional Neural Networks 

(LSTM-CNN) module tracks temporal dynamics to capture 

unusual facial movements and expressions between two 

frames. For enhancing the model's ability to generalize, we 

utilize transfer learning practices such as large dataset pre- 

training and fine-tuning on deepfake-specialized datasets. 

Experimental tests conducted on certain deepfake datasets 

validate the enhanced performance of the introduced 

framework based on accuracy, precision, and recall in 

comparison to other dominant state-of-the-art methods. The 

result validates the robustness of the framework and its 

applicability in real scenarios, which largely contributes to 

multimedia forensics as well as the fight against false digital 

propaganda. 
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1. INTRODUCTION 
The rapid advancement of artificial intelligence (AI) has made 

it possible to produce realistic synthetic media, or deepfakes. 

These AI-based images and videos create a multitude of 

challenges to the integrity and authenticity of online media, and 

problems arise in fields as diverse as media, politics, and cyber 

security. Conventional detection tools are usually not able to 

detect such advanced manipulations, more powerful and 

adaptable mechanisms need to be designed. In an attempt to 

counter this emerging menace, researchers have examined 

hybrid deep neural network structures that merge the modalities 

of Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) towards more robust deepfake 

identification. A specific model of CNN such as ResNet, is 

effective at learning fine-grained spatial features from isolated 

images and detecting small changes introduced during the 

process of developing deepfakes. Conversely, LSTM networks 

are more effective in comprehension of temporal dependencies, 

enabling the analysis of sequential frame data to detect 

inconsistencies in motion and facial expressions over time. The 

combination of the above architectures enables end-to-end 

space and time attribute processing, enhancing detection and 

reliability of deepfake detection systems. Additionally, transfer 

learning techniques—i.e., pre-training models in large datasets 

and then fine-tuning them with deepfake-specific data—have 

proven effective in enhancing detection model generalizability. 

This paradigm allows models to counter disparate deepfake 

generation methods and databases, focusing on the adaptive 

needs of synthetic media assaults. This paper introduces a 

hybrid-based deepfake detecting system model with ResNet as 

the spatial feature extractor and LSTM network as the temporal 

analyzer. By integrating the above components and utilizing 

transfer learning techniques, the proposed model is expected to 

attain high accuracy and reliability in deepfake detection on 

different applications. Performance of the framework is tested 

on benchmarking datasets to prove the capability of the 

framework as a legitimate tool in pursuing the ongoing quest to 

preserve the integrity of digital content. 

2. LITERATURE SURVEY 
In [1], the authors introduce an Adaptive Manipulation Traces 

Extraction Network (AMTEN) capable of efficiently 

identifying manipulations traces in face images by trace 

extraction through manipulations. The model is constructed to 

adaptively highlight the discriminative traces produced by 

different manipulation processes, which are extremely small 

and hard to identify with traditional techniques. 

Zhiqing Guo et.al., [2] discuss limitations of existing 

techniques in detecting deepfakes. They highlight the fact that 

existing techniques fail under adversarial conditions because of 

their dependence on static features. This dependency is 

exploited by the attackers through transferability techniques 

(black-box; in which attackers lack access to the model) or 

through iterative optimization (white-box; in which attackers 

have complete access to the model). The study highlights that 

even small, carefully crafted perturbations to deepfake images 

can lead to significant drops in detection accuracy. The paper 

emphasizes the importance of building more robust detection 

algorithms that can withstand adversarial manipulation. The 

author notes that current deepfake detectors may not be 

sufficiently reliable, especially in scenarios where adversaries 

actively attempt to bypass them. 

Deepfake images generated by neural networks often exhibit 

artifacts in their frequency domain, specifically in the high- 

frequency components. These artifacts are less noticeable in the 

spatial domain but become more apparent when analysed 

through Fourier transforms and other frequency-based 

techniques. The study in [3] highlights how deepfake 

generation procedures that introduce unnatural frequency 

patterns can serve as distinguishing features for detection. 

Frank et.al., [4], demonstrated that the images generated by 

CNNs contain unique artifacts which are simple to identify 

through basic methods, including pixel-level inconsistencies 

and patterns. The authors deduce that although present CNN- 

generated images are quite simple to identify, the fast 

advancement of generative models would culminate in 

producing increasingly better fakes that are unidentifiable. This 
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study is a warning and a benchmark, which calls for relentless 

change in detection technologies in a bid to stay one step ahead 

of new deepfake technology. 

Sheng-Yu Wang’s [5] study on deepfake detection presents a 

wide array of methodologies and innovations aimed at 

identifying synthetic media. Key contributions in this domain 

include the utilization of saturation-based indicators to identify 

images generated by Generative Adversarial Networks (GAN), 

as well as the utilization of transfer learning with CNN models 

to enhance detection models adaptability. 

A study published [6] in 2024 explored a hybrid model 

combining CNN, LSTM, and Transformer architectures for 

video deepfake detection. Evaluated on datasets like 

VoxCeleb2, DFD, Celeb-DF, and FF++, the model achieved an 

AUC of 90.82% with a single LSTM layer, indicating the 

importance of balancing model complexity to prevent 

overfitting. 

A comparative study by Pu et.al., [7] performed in 2024 

compared some of the best existing deepfake detection 

algorithms and identified one that utilizes ResNeXt-50 and the 

LSTM layers. Several deepfake detection models have shown 

strong performance in recent studies. XceptionNet achieved 

95% accuracy on the FaceForensics++ dataset, while MesoNet 

reported 84% on Deepfake TIMIT. Capsule-based networks 

reached up to 96.6% accuracy by capturing spatial 

inconsistencies. Attention-based models, like multi-attention 

networks, achieved 92.1% on Celeb-DF v2. A method 

combining EfficientNet-B4 with LSTM reported 93.8% on 

DFDC. In 2024, Pu et al. found that a hybrid ResNeXt-50 with 

LSTM model achieved 94.3% on Celeb-DF v2, showing the 

value of combining spatial and temporal features. This model 

gave a precision of nearly 83% on the DFDC dataset and 

outperformed many competing models in the test. 

Saikia et al. [8] presented a hybrid CNN-LSTM model that 

leverages optical flow features to capture motion 

inconsistencies in videos. The approach achieved accuracies of 

91.21% on FF++, 79.49% on Celeb-DF, and 66.26% on DFDC 

datasets, highlighting the effectiveness of incorporating 

temporal motion features. Shrivathsa et.al., [9] introduced a 

deepfake detection framework utilizing XResNet, an 

optimized version of ResNet, alongside LSTM networks. The 

model focused on extracting 128 facial landmarks to capture 

intricate spatial details, with an 83.3% accuracy on the DFDC 

dataset. 

A number of studies [14], [15] provide probabilistic models to 

explain performance metrics like precision, recall, and F- score. 

Advanced models like very deep convolutional neural networks 

and Inception-v4 have been applied effectively for facial 

recognition tasks. Recent advancements have introduced 

techniques such as Neural Radiance Fields (NeRFs), 

GANverse3D, and pose-guided image generation, which 

enable the realistic rendering of human subjects in varying 

poses and perspectives. These methods are further utilized to 

construct detailed neural avatars by integrating 3D geometry, 

texture synthesis, and deep generative models. Research also 

highlights specialized applications, including the animation of 

static images using First Order Motion Models and the 

translation of hand gestures via Gesture GAN. A number of 

systematic reviews compile these developments, offering an in-

depth analysis of the latest techniques and the ongoing 

challenges in the deepfake detection landscape. 

3. METHODOLOGY 
The proposed system utilizes a hybrid deepfake detection 

model that integrates Residual Networks (ResNet) for spatial 

feature extraction with a combined Long Short-Term Memory 

and Convolutional Neural Network (LSTM-CNN) structure 

for temporal analysis. The ResNet module processes individual 

video frames to learn detailed facial features and contextual 

patterns. To capture motion-related anomalies across frame 

sequences, the LSTM-CNN module analyzes temporal 

relationships, allowing the detection of unnatural changes in 

facial expressions and movements. To improve the model’s 

adaptability across varied data, transfer learning techniques are 

applied—starting with pre-training on large- scale datasets, 

followed by fine-tuning using datasets specifically designed for 

deepfake detection. This method ensures the model captures 

both static visual cues and temporal inconsistencies essential 

for accurate classification. 

To mitigate model bias, we trained our PyTorch based deepfake 

detection system using a balanced dataset comprising equal 

numbers of authentic(real) and manipulated(fake) videos. The 

architecture of the system is depicted in the accompanying 

figure. During this phase, we curated and pre-processed the 

dataset, focusing on extracting and utilizing face- cropped 

video segments for training. 
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Fig 1. System Architecture 

3.1 For creating deepfake videos 
To effectively detect deepfake videos, it is crucial to 

comprehend the methodologies employed in their creation. 

Techniques such as autoencoders and Generative Adversarial 

Networks (GANs) are mainly used, where a target video and 

source image are provided as inputs. These procedures have the 

video divided into frames, locate the face region, and substitute 

the target face with the source face for each frame. The 

modified frames are then reassembled using various pre-trained 

models, which also enhance video quality by eliminating 

residual artifacts introduced during the deepfake generation 

process. 

In our approach to deepfake detection, we adopt a similar 

methodology. Despite the high realism of deepfakes produced 

by pre-trained neural network models—making them nearly 

indistinguishable to the human eye—these synthetic videos 

often contain subtle artifacts or inconsistencies not easily 

perceptible without specialized analysis. The objective of this 

study is to identify these Imperceptible traces and 

distinguishable artifacts to accurately classify videos as either 

deepfake or authentic.  

 
Fig 2. Deepfake Generation 

3.2 Dataset Gathering 
To optimize the model for real-time deepfake detection, a 

comprehensive dataset was assembled by integrating samples 

from various publicly available sources. This dataset was 

balanced, comprising equal numbers of authentic and 

manipulated videos, to mitigate potential training biases. 

Recognizing that certain datasets included videos with altered 

audio—elements beyond the scope of this study—a 

preprocessing step was implemented to exclude such instances, 

focusing solely on visual manipulations. The final curated 

dataset consisted of 6,000 videos, evenly split between real and 

deepfake content, thereby enhancing its capacity for 

generalization across diverse situations. 

3.3 Pre – processing 
To enhance the model's efficiency for real-time deepfake 
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detection, a comprehensive preprocessing pipeline was 

implemented. Initially, each video was decomposed into 

individual frames. Subsequently, facial regions were identified 

within these frames, and only the pertinent facial areas were 

retained, with extraneous content and noise being eliminated. 

Frames lacking detectable facial features were excluded from 

further processing. The extracted facial regions from each 

frame were then reassembled to form new video sequences, 

resulting in a curated dataset comprising face-centric videos. 

In order to maintain consistency across the dataset and allow 

for the limitation of computational resources, a cutoff point 

was determined for frames per video. Based on these mean 

number of frames and limitations of available GPU resources, 

the first 150 frames from every video were taken. This method, 

as well as normalizing the input data, allows for proper 

utilization of Long Short-Term Memory (LSTM) networks by 

maintaining the temporal order of the frames. All videos were 

normalized to the frame rate of 30 frames per second and 

resolution of 112×112 pixels.

 

Fig 3. Pre – processing of video sample 

3.4 Data - set splitting 
To maintain appropriate training and testing of the deepfake 

detector model, the information was divided into test and train 

sets in 70:30 proportion. This type of splitting gave rise to 4,200 

videos for training and 1,800 for testing. Both sets were kept 

balanced in a manner that both included equal proportions of 

real and manipulated videos and each set included 50% real and 

50% deepfake content. Such balanced splitting is meant to 

avoid class imbalance issues and enhance the model's ability to 

generalize across other types of video content. 

3.5 Model Architecture 
The proposed deepfake detection architecture blends a 

Recurrent Neural Network (RNN) and a Convolutional Neural 

Network (CNN) to address both spatial and temporal elements 

found within video sequences. Specifically, it leverages a pre-

trained ResNeXt- 50_32x4d model to perform detailed, frame-

wise feature extraction, capitalizing on its deep residual 

structure, which is optimized for advanced image processing 

tasks. Each video frame is passed through this ResNeXt 

backbone, resulting in the generation of a 2,048- dimensional 

feature vector derived from the final pooling stage. After 

obtaining these vectors for each frame, the sequence is 

organized and then input into a LSTM (Long 

Short-Term Memory) network, which can simulate the 

dynamics and sequential dependencies present in video data. In 

particular, a pre-trained ResNeXt-50_32x4d model is utilized 

for frame-level feature extraction, taking advantage of its 

residual architecture optimized for deep learning tasks. Each 

video frame is processed through ResNet, yielding a 2048-

dimensional feature vector from the final pooling layer. These 

features vectors sorted are then passed into an effective 

network for learning temporal dependencies is the Long Short- 

Term Memory (LSTM) network between frames. 

The LSTM block consists of a single 2048 hidden unit layer 
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with dropout 0.4 to avoid overfitting. It makes use of an 

activation function Leaky ReLU, or Leaky Rectified Linear 

Unit for enabling non-linear transformation. This is followed 

by the fully connected linear layer that converts 2048-

dimensional LSTM outputs into a two-dimensional space to 

enable binary classification task. A single 1×1 adaptive 

averaging pooling is applied for feature map normalization, and 

a SoftMax in the last layer is used to provide class probabilities. 

Model training is performed with a batch size of 4 to reduce 

computational resources. 

It well captures spatial complexities and temporal dynamics in 

video segments and hence enables the model to better 

differentiate between real and fake material. 

3.6 Model Details 
Residual Network (ResNet) - In our approach, we utilize the 

ResNeXt-50_32x4d model, a pre-trained residual 

convolutional neural network comprising 50 layers and 

characterized by a cardinality of 32 with a bottleneck width of 

4. This architecture facilitates efficient feature extraction, 

serving as a foundational component in our deepfake detection 

framework. 

 
Fig 4. ResNet working 

Sequential Layer - The Sequential model serves as a linear 

stack of layers, facilitating the orderly arrangement of modules. 

This configuration enables the systematic passage of feature 

vectors extracted by the ResNeXt model into the LSTM layer, 

thereby preserving the temporal dependencies inherent in the 

sequential data. 

LSTM Layer - In our current architecture, a Long Short- Term 

Memory (LSTM) network compresses sequences of frames 

from videos and learns temporal dependencies and time 

variations in the process. Frames are considered as 2048- 

dimensional feature vectors, which are derived from the above 

said previous convolutional neural network, and are input into 

the LSTM layer one at a time. The LSTM structure is a single-

layer network of 2048 units in the hidden layer and includes the 

inclusion to prevent overfitting, with a dropout rate of 0.4. 

 
Fig 5. Internal LSTM Architecture 

The configuration supports the capture of temporal behavior by 

comparing the current frame at time step t against previous 

frames at time steps t–n, where n is the number of past frames 

up to t. This kind of structure enables the network to learn and 

recognize temporal patterns in the video sequence well. 

Rectified Linear Unit (ReLU) – The ReLU activation function 

is given by f(x)=max (0, z), producing zero for negative inputs 

and a linear identity for positive inputs. This non-linear 

function introduces sparsity in neural networks by activating 

only a subset of neurons, thereby enhancing computational 

efficiency and mitigating the vanishing gradient problem 

commonly associated with sigmoid functions. ReLU's 

simplicity and computational efficiency make it particularly 

advantageous for training deep neural networks, as it 

accelerates convergence during backpropagation without the 

need for complex exponential calculations. These properties 

have led to its widespread adoption in various deep learning 

applications, including computer vision and natural language 

processing. 
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Fig 6. ReLU Activation Function 

Dropout Layer - In the proposed neural network architecture, a 

dropout layer of 0.4 dropout rate is added to avoid overfitting 

and enhance the model's generalization ability. In training, this 

method randomly shuts down some of the neurons by 

effectively setting their output to zero. This stochastic 

deactivation avoids over- reliance by neurons on certain 

features and limits complex co- adaptation among neurons, but 

encourages learning more stable and generalized features. 

This incorporation of dropout also affects the process of 

backpropagation. By randomly dropping out some neurons 

during training, the network imposes an effect of noise that 

forces spreading of weight updates among the active neurons. 

This generalizes and balances the learning process, as the 

model cannot rely on any specific neuron and has to spread the 

learning across various paths. 

In summary, the use of the 0.4 operating rate dropout layer at a 

rate of 0.4 is a good and efficient regularization technique 

method that helps the model generalize to unseen data and with 

well-trained dynamics. 

 
Fig 7. ResNet Architecture 

Adaptive Average Pooling Layer - The adaptive avera ge 

pooling layer is added to the model in order to normalize the 

output dimension in order to save computational complexity 

and suppress variance between feature maps. That is, a two-

dimensional adaptive average pooling is used, which splits the 

input into sub-regions and then calculates the average along 

each of the sub-regions, so that discriminative low-level 

features can be extracted from localized neighborhoods. 

Model Training Details - The database was split into the test 

and training sets in the proportion of 70:30, comprised 4,200 

and 1,800 videos, respectively. There was an equal proportion 

of fake and real videos in each subset for proper representation. 

A data loader was used to facilitate the loading of video data 

and their respective labels with an optimal batch size of four. It 

is trained for 20 epochs with a learning rate of 1e-5 and a weight 

decay parameter of 1e-3 with the Adam algorithm optimized. 



52 

International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.42, September 2025 

 

Adaptive learning rate has been utilized by utilizing an adam 

optimizer feature to improve convergence in training. 

For purposes of task classification, cross-entropy loss function 

was utilized to establish the difference between labelled data 

and estimated probabilities. The last layer of the network also 

had a SoftMax activation function that would transform raw 

output scores into normalized probabilities over the two 

classes—real and fake—producing a measure of confidence in 

all predictions. As an estimate of model precision, a confusion 

matrix was used to count true positives, false positives, true 

negatives, and false negatives. The matrix is a source of 

information regarding the model's precision for predictions 

and the type of any errors, thereby indicating possible areas 

for improvement. The classification task, the cross-entropy loss 

function was are used in a way that calculates the difference 

between the predicted and actual labels. The last layer utilized 

a SoftMax activation function, converting raw output scores 

into normalized probabilities across the two classes—real and 

fake—thus providing a measure of confidence for each 

prediction. 

 

Fig 9. Softmax Layer 

4. RESULTS 
The figure 9, 10, 11, 12 shows the procedures to be chosen in 

depicting whether the video is a real or a fake. 

The proposed deepfake detection framework delivered high 

performance across key metrics, including accuracy, precision, 

and recall, confirming its capability to reliably detect 

manipulated video content. Due to its strong generalization and 

detection capabilities, the model is well-suited for practical use 

in areas such as monitoring online media platforms, supporting 

forensic analysis, validating video-based legal evidence, 

securing identity verification processes, and countering the 

spread of misleading digital content. 

 
Fig. 9 Choose the video which needs to depict a video is a 

real or a fake 

 

 
Fig.10 The analysed video will be giving an analysis result 

from the video analysed 

 

Fig. 11 The analysis result will be analyzed such as frames 

analyzed, processing time, and a model confidence 

 

Fig. 12 The video will be anlayzed as the frames shown 

From the above figure we can conclude that the obtained video 

detection using ResNet and LSTM approach has been 

employed with a confidence result of real detection by 

providing a 99.93%. The frame analysis that is of 8 frames has 

been analyzed with a processing time mentioned of 8.85 

seconds and with the model confidence of 99.93%. 

5. CONCLUSION AND FUTURE WORK 
The study proposed a deepfake detection framework using 

ResNet and LSTM networks. The ResNet block is better suited 

for the extraction of fine-grained spatial information from one 

frame, and the LSTM layer preserves temporal relationships 

between the frames of the video. Evaluation on standard 

benchmark datasets indicates that the proposed architecture 
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significantly improves detection accuracy and robustness when 

compared to conventional CNN-based approaches. The 

inclusion of spatial and temporal data allows the model to 

detect subtle manipulations and inconsistencies typical of 

deepfake material. 

Although the proposed method exhibits promising 

performance, multiple potential directions for future research 

remain open for exploration. Firstly, the model can be scaled 

up to bigger and more heterogeneous sets of authentic social 

media posts of different resolutions and different compression 

rates. Secondly, optimization methods like pruning, 

quantization, and distillation of knowledge may be employed 

to facilitate deployment onto resource- constrained devices. 

Thirdly, integration of Explainable AI (XAI) methods may 

introduce interpretability into the detection process, thus 

enhancing transparency and trust in the system. In addition, the 

model's adversarial robustness would have to be tested to 

improve its reliability in adversarial situations. Lastly, multi-

modal techniques integrating visual, auditory, and behavioural 

information might be explored to enhance detection accuracy 

in more challenging situations. 
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