International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

Survey of Presentation-Layer Architecture Patterns for
Mobile Applications

Siarhei Krupenich
Mobile Engineer, Resources Lead, Independent Researcher
‘Warsaw, Poland

ABSTRACT

This article presents an exploration of the Clean Architecture pre-
sentation layer patterns for mobile development, which includes
native and cross-platform technologies. The study delves into im-
plementation details through schemes and “pseudocode”, outlin-
ing the strengths and weaknesses of each pattern using a pros-
cons analysis. It emphasizes careful interaction with the domain
layer to ensure scalability and testability. As a result, a compara-
tive analysis matrix is provided, highlighting the compatibility of
each pattern with various technologies, Ul paradigms (imperative
versus declarative), testability, scalability, and learning complex-
ity. This work aims to offer a clear understanding of when and
where each pattern is most appropriate for mobile development.

General Terms

Movbile Software Architecture, Presentation Layer, Architecture Patterns

Keywords
MVP, Viper, MVVM, MVI, MVU, BloC, Redux

1. INTRODUCTION

Nowadays, modern mobile software development increasingly
adopts Clean Architecture [[1] to ensure that code remains testable,
scalable, and modular. Clean Architecture is typically structured
into three layers: Data, Domain, and Presentation. The Data layer
is responsible for storing and retrieving data from local or external
sources and is isolated from the other layers. The Domain layer,
which handles business logic, is aware of the Data layer and ac-
cesses it through defined interfaces. The Presentation layer depends
on the Domain layer but remains unaware of the Data layer. It re-
trieves the required data using specific entry points in the Domain
layer — commonly referred to as use-cases or interactors. Use-cases
are generally implemented following a one-intent—one-action prin-
ciple, while interactors are designed to handle specific tasks. In this
work, use-cases are employed, and a sample implementation is pro-
vided. The use-case communicates with the Data layer to return
domain-related data. There are various patterns available for im-
plementing the presentation layer in mobile software development,
generally classified into bidirectional [2] and unidirectional [3] data
flows, both of which are examined in this article. Choosing a suit-
able pattern involves evaluating both the underlying technology and
the user interface approach, typically categorized as imperative or

declarative [4]. This study presents both UI paradigms alongside di-
agrams, “pseudocode” examples, and discussions of each pattern’s
strengths and limitations. To demonstrate practical applicability,
each pattern is applied to a conceptual weather forecasting applica-
tion, chosen for its accessibility and clarity. This work employs two
primary comparison methods: a Pros and Cons list covering each
pattern, and a Comparative Analysis presented as a feature table.
The former highlights the strengths and weaknesses of each pat-
tern, considering their specific assignments and platform peculiari-
ties, while the latter illustrates additional aspects such as data flow
type, testability, learning curve, and others. Analyzing the patterns,
the following ones have been identified and examined: those with
bidirectional data flow — M VP, Viper, and MVVM (actually it could
be implemented with both ways) — and those with unidirectional
data flow — MVI, MVU, Redux, and BLoC. The main idea of MVP
and Viper is to split the data flow into three primary components:
the Model, which holds the state of the view; the View, which inter-
acts with users; and the Presenter, which facilitates the connection
between the View and the Model. MVVM is based on the Model,
View, and ViewModel, which is conceptually similar to the Presen-
ter; however, the ViewModel is more autonomous and fully main-
tains the state. MVI, abbreviated as Model-View-Intent, is closely
related to MVVM in terms of its components. At the same time, it
is structured around sending Intents as Messages from the View to
the ViewModel, while the View passively listens to the complete
State as it is updated. MVU, which is primarily derived from MVI,
uses Messages for interaction and a State that is updated through
an Update component — typically implemented as a state machine.
In the case of Redux, it consists of four main elements: Actions,
Reducer, Store, and Middleware. Its core mechanism involves in-
teraction through Actions — for both user intents and state updates.
The Store is used to register components, and Middleware enables
communication with the domain layer. BLoC is developed using
small, logical Blocks of business logic, structured through States,
Events (similar to Messages), and the so-called Blocs. Screens can
be split across multiple Blocs or encapsulated within a single Bloc,
which listens to Events and updates the State accordingly. This
work undertakes a thorough, technology-agnostic examination of
prominent architectural patterns employed within the presentation
layer of mobile applications. The objective is to elucidate their dis-
tinct characteristics, operational principles, and suitability across
diverse development paradigms-spanning imperative and declara-
tive UI models — and platform ecosystems (e.g., Android, iOS, Flut-
ter, Kotlin Multiplatform Mobile, JavaScript frameworks). Practi-
cal insights are furnished through a systematic comparative anal-

ysis, including detailed strengths and weaknesses assessments, to
aid developers, architects, and researchers in discerning the optimal
pattern for specific project constraints and platform requirements.
The presented methodologies establish a structured, balanced, and
replicable framework, intended to facilitate informed architectural
decision-making in the evolving landscape of mobile UI develop-
ment.

2. RELATED WORK

(1) D. Plakalovic, D. Simic (2010), “Applying MVC and PAC Pat-
terns in Mobile Applications”. arXiv:1001.3489 [Online]
Available: https://arxiv.org/abs/1001.3489

(2) Mario Fuksa, Sandro Speth, Steffen Becker, 2025,
“MVVM Revisited: Exploring Design Variants of the
Model-View-ViewModel Pattern”. arXiv: 2504.18191 [On-
line]

Available: https://arxiv.org/abs/2504.18191 TODO:
check it out, the links not working:

(3) Fajar Pradana, Raziqa Izza Langundi, Djoko Pramono, & Nur
Ida Iriani. (2025). Comparative Analysis of MVVM and MVP
Patterns Performance on Android Dashboard System. Jurnal
Nasional Teknik Elektro Dan Teknologi Informasi, 14(2),
87-95. https://doi.org/10.22146/jnteti.v14i2.18985 [Online]
Available: https://jurnal.ugm.ac.id/v3/JINTETI/
article/view/18985

(4) Luis Cruz, Rui Abreu (2019), “Catalog of Energy Pat-
terns for Mobile Applications”, arXiv:1901.03302 [cs.SE], (or
arXiv:1901.03302v1 [cs.SE] for this version) [Online]
Available: https://arxiv.org/abs/1901.03302

(5) Dragos Dobrean & Laura Diosan (2019), “A Comparative
Study of Software Architectures in Mobile Applications”,
DOI:10.24193/5ubbi.2019.2.04 [Online]

Available: https://www.researchgate.net/
publication/337837154_A_Comparative_Study_of_
Software_Architectures_in_Mobile_Applications

(6) Ayush Vijaywargi, Uchinta Kumar Boddapati (2024), “Archi-
tectural Patterns in Android Development: Comparing MVP,
MVVM, and MVI.”,

DOI Link: https://doi.org/10.22214/ijraset.2024.
60762 [Online]

Auvailable: https://www.researchgate.net/
publication/337837154_A_Comparative_Study_of _
Software_Architectures_in_Mobile_Applications

3. METHODOLOGY

This study employs a dual-comparison methodology, combining a
Pros and Cons List with a Feature-Based Tabular Matrix. The Pros
and Cons List allows for a qualitative assessment of the practical
benefits of each pattern, drawing from published literature, commu-
nity practices, and real-world applicability. In parallel, the Tabular
matrix provides a structured, side-by-side view across key evalua-
tion dimensions such as testability, scalability, platform integration,
and complexity of adoption. As an exploratory study, the analy-
sis is based on qualitative synthesis rather than experimental mea-
surement, ensuring both a narrative and systematic perspective for
evaluating the diverse patterns of the presentation layer in Android,
i0S, and cross-platform ecosystems.

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

3.1 Pros and Cons List

A straightforward method where the advantages and disadvantages
of each alternative are listed, facilitating a balanced view of each
option [5]. Effective for initial evaluations and discussions, espe-
cially when introducing new concepts or patterns. The Pros and
Cons List is an intuitive and widely used evaluation technique that
helps decision makers consider both the benefits and drawbacks of
each alternative in a balanced manner. It is particularly effective
during the early stages of analysis, offering a low barrier approach
to structuring thought and facilitating discussions around complex
options or unfamiliar design patterns [6]. This method does not
rely on numerical weighting or complex models, but instead en-
courages qualitative insight and reflection, making it suitable for
settings where time or data are limited [7]. When applied to mo-
bile presentation layer patterns, the pros and cons approach enables
developers and researchers to highlight key trade-offs, for exam-
ple, MV VM support for testability versus its increased architectural
complexity, in a format that is accessible to both technical and non-
technical audiences. Moreover, it serves as a foundation for deeper
analysis, acting as a precursor to more formal methods such as the
Analytic Hierarchy Process or empirical performance benchmark-
ing [8]. This method follows each pattern exploration and is used
to outline and assess the individual strengths and weaknesses of the
approach qualitatively.

3.2 Feature-Based Comparison (Tabular Matrix)

This method involves identifying key characteristics or criteria rel-
evant to the subject (for example, presentation layer patterns) and
comparing each alternative (for example, MVP, Viper, MVVM,
MVI, MVU, Bloc) against these features in a structured table [9].
Ideal for providing a clear side-by-side comparison of different pat-
terns based on specific attributes such as testability, scalability, or
ease of implementation. The feature-based comparison approach
uses a structured table to compare alternatives — such as architec-
tural patterns — across predefined evaluation criteria. It begins by
identifying key features (e.g., testability, scalability, implementa-
tion complexity) relevant to the domain and then scores each pat-
tern (e.g., MVP, VIPER, MVVM, MVI, MVU, BLoC) against these
criteria in a matrix format. The strength of this method lies in its
clarity and accessibility, enabling the reader to quickly discern rela-
tive strengths and trade-offs [10]. Such a comparison is particularly
effective for mobile presentation layer patterns: the structured lay-
out highlights differences in architectural characteristics like boil-
erplate code or life-cycle handling-in a visually intuitive way. Al-
though inherently qualitative, the feature matrix can be extended
to include numerical scores, making it suitable for mixed-method
analysis. This method appears in the conclusion section, where all
patterns are evaluated side by side across consistent criteria, allow-
ing us to highlight distinguishing features in a comparative format.

4. PATTERNS ANALYSIS

This analysis examines each pattern through detailed explanations,
diagrams, and ready-to-use pseudocode. The code provided ad-
dresses a specific task that involves a weather forecasting appli-
cation, making the discussion more relevant to real-world scenar-
ios. The application itself is simple, with only three states: current
weather, loading, and error. Additionally, the pseudocode intro-
duces a new element, the FetchWeatherUseCase interface, which
references an instance beyond the scope of this article. This use
case serves to return a model representing the current location and
acts as an entry point to the domain layer. Consequently, each pat-

https://arxiv.org/abs/1001.3489
https://arxiv.org/abs/2504.18191
https://jurnal.ugm.ac.id/v3/JNTETI/article/view/18985
https://jurnal.ugm.ac.id/v3/JNTETI/article/view/18985
https://arxiv.org/abs/1901.03302
https://www.researchgate.net/publication/337837154_A_Comparative_Study_of_Software_Architectures_in_Mobile_Applications
https://www.researchgate.net/publication/337837154_A_Comparative_Study_of_Software_Architectures_in_Mobile_Applications
https://www.researchgate.net/publication/337837154_A_Comparative_Study_of_Software_Architectures_in_Mobile_Applications
https://doi.org/10.22214/ijraset.2024.60762
https://doi.org/10.22214/ijraset.2024.60762
https://www.researchgate.net/publication/337837154_A_Comparative_Study_of_Software_Architectures_in_Mobile_Applications
https://www.researchgate.net/publication/337837154_A_Comparative_Study_of_Software_Architectures_in_Mobile_Applications
https://www.researchgate.net/publication/337837154_A_Comparative_Study_of_Software_Architectures_in_Mobile_Applications

tern is evaluated with a list of pros and cons, and its suitability is
assessed with declarative or imperative UI approaches.

4.1 MYVP or Viper

While both MVP (Model-View-Presenter) and Viper patterns are
built upon a similar conceptual foundation of separating concerns,
their typical adoption varies significantly by platform, with MVP
being prevalent in Android development and Viper being more
commonly encountered in iOS. Aside from this platform focus, the
components within each pattern are largely similar. For simplicity,
this article will refer to MVP throughout, implicitly including Viper
as well. The core concept of MVP involves the Presenter updating
the model, which in turn prompts the Presenter to update the View.
The View is aware of the Presenter and triggers actions that the Pre-
senter handles. Subsequently, the Presenter updates the model and
refreshes the view accordingly. Figure 1 illustrates the behavior:

User Model
Actions Changed
> B ———
Presenter
Update Update
ul Model
A Y

View Model

Fig. 1. MVP schema.

4.1.1 Code snippet. Drawing from the schema in Figure 1, the
pattern can be rigorously defined as follows.

// Model
CLASS WeatherModel
VARIABLE uiWeather: UiWeather
CONSTRUCTOR (uiWeather: UiWeather)
SET this.uiWeather = uiWeather

// View Contract

INTERFACE WeatherViewContract
FUNCTION showLoading()
FUNCTION showWeather(weather: WeatherModel)
FUNCTION showError(error: Exception)

// Presenter
CLASS WeatherPresenter
PRIVATE VARIABLE view: WeatherViewContract
PRIVATE VARIABLE fetchWeather:
FetchWeatherUseCase
PRIVATE VARIABLE mapper: DomainToUiMapper
CONSTRUCTOR (view: WeatherViewContract)
SET this.view = view
FUNCTION loadWeather()

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

view.showLoading()

TRY
weather = fetchWeather.call()
uiWeather = mapper.map(weather)
view.showWeather (

NEW WeatherModel (uiWeather)

)

CATCH error AS Exception
view.showError (error)

// View
CLASS WeatherView IMPLEMENTS WeatherViewContract
PRIVATE VARIABLE presenter: WeatherPresenter
FUNCTION initialize()
presenter = NEW WeatherPresenter (this)
presenter.loadWeather ()
FUNCTION showLoading()
showLoadingUI ()
FUNCTION showWeather (weather: WeatherModel)
showWeatherUI (weather)
FUNCTION showError(error: Exception)
showErrorUI()

The view implements the WeatherViewContract, which is rec-
ognized by the WeatherPresenter responsible for managing all
states. Since the presenter operates on the model to update the UI,
this pattern is particularly well suited for imperative approaches,
such as Android Views with XML or iOS UIKit.

4.1.2 Pros and Cons. Table 1 demonstrates the strengths and
weaknesses of the MVP and Viper patterns.

Table 1. Pros and Cons of the MVP and Viper patterns

Strength Weaknesses

- Separation of Concerns

- Improved Testability

- Platform-Specific Support
- Deterministic Flow

- VIPER adds scalability

- Boilerplate Code

- Tight Coupling between View and Presenter
- Overkill for Small Projects

- VIPER’s learning curve

- Cyclic Dependencies Risk

42 MVVM

MVVM (Model-View-ViewModel) consists of three main compo-
nents: View, ViewModel, and Model, where the View is responsible
for appearing UI by listening to actions from the ViewModel. The
sending of messages from the View to the ViewModel is performed
via the ViewModel input methods. At the same time, the View-
Model handles the Model to update it and responds to the View
that represents the Ul using the updated Model. As an entry to the
domain module, interactors or use-cases may be used in the View-
Model; thus, Figure 2 demonstrates the logic:

ViewModel updates
the Model

Data Binding
and Commands

ViewModel

View

Notifications Notifications

Fig.2. MVVM Schema.

4.2.1 Code snippet. Drawing from the schema in Figure 2, the
pattern can be rigorously defined as follows.

// ViewModel

CLASS WeatherViewModel
PRIVATE VARIABLE weather: UiWeather = null
PRIVATE VARIABLE error: Exception = null
PRIVATE VARIABLE isLoading: Boolean = false
PRIVATE VARIABLE fetchWeather:

FetchWeatherUseCase

PRIVATE VARIABLE mapper: DomainToUiMapper

CONSTRUCTOR (
fetchWeather: FetchWeatherUseCase,
mapper: DomainToUiMapper

SET this.fetchWeather = fetchWeather
SET this.mapper = mapper
FUNCTION getWeather() RETURNS UiWeather
RETURN weather
FUNCTION getError() RETURNS Exception
RETURN error
FUNCTION getIsLoading() RETURNS Boolean
RETURN isLoading
FUNCTION fetchWeather()
SET isLoading = true
TRY
domainWeather = fetchWeather.call()
weather = mapper.map(domainWeather)
error = null
CATCH exception AS Exception
error = exception
SET isLoading = false

// View
CLASS WeatherView
VARIABLE viewModel: WeatherViewModel
FUNCTION render()
RETURN renderWeatherState(viewModel)
FUNCTION renderWeatherState(
viewModel: WeatherViewModel
)
IF viewModel.getIsLoading() THEN
RETURN renderLoadingIndicator()
ELSE IF viewModel.getError() NOT null

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

THEN RETURN renderError(
viewModel.getError ()

)

ELSE IF viewModel.getWeather() NOT null

THEN RETURN renderWeather (
viewModel.getWeather(),
onRefresh = viewModel

.fetchWeather ()
)

The View knows about the ViewModel, which has an entry-point
to a domain layer (e.g. use-cases) and updates the Model that is
then used by the View. Since the View is updated through specific
properties of the ViewModel rather than a unified state, this pattern
is commonly adopted for imperative Ul approaches; in the mean-
time, it may be used for the Declarative UI approach as well by
splitting the ViewModel by Input/Output interfaces, incorporating
a state into the ViewModel and listening to it to represent the View.
The pattern is often considered the gold standard in Android devel-
opment and is also used in other platforms such as Xamarin, though
less frequently in Flutter, Redux, and iOS.

4.2.2 Pros and Cons. Table 2 demonstrates the strengths and
weaknesses of the MVVM pattern.

Table 2. Pros and Cons of the MVVM pattern

Strength Weaknesses
- Separation of Concerns - Steeper Learning Curve
- Improved Testability - Overhead for Simple Apps
- Two-Way Data Binding - Debugging Challenges
- Scalability - Tooling and Framework Depen-

dence
- Platform Support (Android, iOS, - Potential ViewModel Bloat

Flutter, MAUI)

4.3 Redux

Redux is a presentation layer pattern with unidirectional data flow
(UDF-based pattern) and is also a part of the TEA (The Elm Ar-
chitecture). Basically, it includes the following core components:
View, Actions, Reducer, and Store. Optionally, Middleware can be
included for interacting with the Domain layer. All communication
is conducted through Actions, both for dispatching and for consum-
ing the ready-to-use State, which is also an additional component
to render the View. Based on the state, the view is being redrawn,
while the reducer, in fact, is a state machine and is responsible for
handling all actions and updating the state. An additional compo-
nent is the Store, which is responsible for registering all the com-
ponents — Reducer, initial State, and Middleware (if it is involved).
Figure 3 illustrates the data flow:

Store

]

Reducer }7>

Dispatch Subscribe
B — View I —

Fig. 3. Redux Schema.

4.3.1 Code snippet. As depicted in the schema in Figure 3, the
formal structure of the pattern is as follows.

// Actions

CLASS FetchWeatherAction

CLASS ReloadWeatherAction

CLASS LoadingWeatherAction

CLASS WeatherLoadedAction
VARIABLE weather: UiWeather
CONSTRUCTOR (weather: UiWeather)

CLASS WeatherErrorAction
VARIABLE error: Exception
CONSTRUCTOR (error: Exception)

// State to appear UI
CLASS WeatherState
VARIABLE weather: UiWeather = null
VARIABLE isLoading: Boolean = false
VARIABLE error: Exception = null
FUNCTION initLoading()
RETURN NEW WeatherState(
isLoading = true
)
FUNCTION copyWith(
OPTIONAL weather: UiWeather,
OPTIONAL isLoading: Boolean,
OPTIONAL error: Exception
) RETURNS WeatherState
RETURN NEW WeatherState(
weather = IF weather IS SET
THEN weather
ELSE this.weather,
isLoading = IF isLoading IS SET
THEN isLoading
ELSE this.isLoading,
error = IF error IS SET
THEN error
ELSE this.error
)

// Reducer which updates the state
FUNCTION weatherReducer(
state: WeatherState,
action: Action
) RETURNS WeatherState
IF action IS LoadingWeatherAction THEN
RETURN state.copyWith(

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

isLoading = true,
weather = null,
error = null
)
ELSE IF action IS WeatherLoadedAction THEN
RETURN state.copyWith(
isLoading = false,
weather = action.weather
)
ELSE IF action IS WeatherErrorAction THEN
RETURN state.copyWith(
isLoading = false,
error = action.error
)
ELSE RETURN state

// Middleware { an optional component which is
// responsible here to call
// the fetchWeatherUseCase
FUNCTION weatherMiddleware (
store: Store<WeatherState>,
action: Action, next: Function

IF action IS FetchWeatherAction
OR action IS ReloadWeatherAction THEN
IF action IS ReloadWeatherAction THEN
store.dispatch(LoadingWeatherAction)
TRY
domainWeather = fetchWeatherUseCase
.call()
uilWeather = mapper.map(domainWeather)
store.dispatch(
WeatherLoadedAction(uiWeather)
)
CATCH e AS Exception
store.dispatch(WeatherErrorAction(e))
// Always call the next middleware/reducer,
// depending on a particular implementation
next (action)

// Store which registers and connects

// all the related components

VARIABLE store = Store(
reducer = weatherReducer,
initialState = WeatherState.initLoading(),
middleware = [weatherMiddleware]

)

// ViewModel which is not a classical ViewModel
// but only keeps the State using the Store
CLASS WeatherViewModel
VARIABLE isLoading: Boolean
VARIABLE error: Exception
VARIABLE weather: UiWeather
VARIABLE fetchWeather: Function
STATIC FUNCTION fromStore (
store: Store<WeatherState>
) RETURNS WeatherViewModel
RETURN NEW WeatherViewModel (
isLoading = store.state.isLoading,
error = store.state.error,
weather = store.state.weather,
fetchWeather = FUNCTION() {

store.dispatch(
ReloadWeatherAction
)

// View
CLASS WeatherView
FUNCTION initialize()
// No-op here
FUNCTION render ()
RETURN renderWithStoreConnector(
onInit = FUNCTION(store) {
store.dispatch(FetchWeatherAction)
}’
converter = FUNCTION(store) {
RETURN WeatherViewModel
.fromStore(store)
}’
builder = FUNCTION(viewModel) {
RETURN renderWeather(viewModel)
}
)

FUNCTION renderWeather(
viewModel: WeatherViewModel
)
IF viewModel.isLoading THEN
RETURN renderLoading()
ELSE IF viewModel.error IS NOT null THEN
RETURN renderError(viewModel.error)
ELSE IF viewModel.weather IS NOT null THEN
RETURN renderWeatherData(
viewModel.weather,
onRefresh = viewModel.fetchWeather

)

4.3.2 Pros and Cons. Table 3 demonstrates the strengths and
weaknesses of the Redux pattern.

Table 3. Pros and Cons of the Redux pattern

Strength ‘Weaknesses

- Predictable State Management

- Single Source of Truth

- Time Travel & Debugging Tools
- Decoupled Architecture

- Scalable for Large Applications
- Cross-platform Pattern

- Boilerplate Code

- Steep Learning Curve

- Verbosity for Simple Use Cases
- Indirect State Changes

- Maintenance Burden

The Redux pattern is being actively used with JS-based mobile de-
velopment frameworks; at the same time, it also tends to be applied
in i0S (SwiftUI) and rarely Flutter.

44 MVI

The MVI pattern (Model-View-Intent) is a part of The Elm Ar-
chitecture (TEA) and consists of three components and in general
refers to MVVM. The main difference is related to the commu-
nication between the View and its ViewModel, which is related
to the State-based principle involving a single parent object rep-
resenting UI states. On the other hand, View sends messages, re-
ferred to as dispatching intents, in the context of MVI. Like states,

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

Intents are also operated as one parent object containing child ob-
jects, each representing a specific Intent. Both dispatching Intents
and consuming results to handle the State are usually handled us-
ing a switch-based structure or its analogue. The following picture
fully represents the pattern:

— States —
" \

(ad(state) input(state) \
\
\
|
[
/”‘

\Qplay(state) action()
—_ _

Fig. 4. MVI Schema.

4.4.1 Code snippet. The schema in Figure 4 informs the follow-
ing formal representation of the pattern:

ABSTRACT CLASS WeatherIntent
CLASS LoadWeather EXTENDS WeatherIntent
CLASS RefreshWeather EXTENDS WeatherIntent

// State
CLASS WeatherState
VARIABLE isLoading: Boolean = false
VARIABLE uiWeather: UiWeather = null
VARIABLE error: Exception = null
CONSTRUCTOR(
OPTIONAL isLoading: Boolean,
OPTIONAL uiWeather: UiWeather,
OPTIONAL error: Exception
)
FUNCTION copyWith(
OPTIONAL isLoading: Boolean,
OPTIONAL uiWeather: UiWeather,
OPTIONAL error: Exception
) RETURNS WeatherState
RETURN NEW WeatherState(
isLoading = IF isLoading IS SET
THEN isLoading
ELSE this.isLoading,
uiWeather = IF uiWeather IS SET
THEN uiWeather
ELSE this.uiWeather,
error = error // overrides always
)
STATIC FUNCTION initial() RETURNS WeatherState
RETURN NEW WeatherState()

// ViewModel
CLASS WeatherViewModel EXTENDS Observable

PRIVATE VARIABLE state: WeatherState
= WeatherState.initial()
PRIVATE VARIABLE fetchWeather:
FetchWeatherUseCase
PRIVATE VARIABLE mapper: DomainToUiMapper
CONSTRUCTOR (
fetchWeather: FetchWeatherUseCase,
mapper: DomainToUiMapper

FUNCTION getState() RETURNS WeatherState
RETURN state
FUNCTION dispatch(intent: WeatherIntent)
SWITCH intent
CASE LoadWeather:
CASE RefreshWeather:
AWAIT loadWeather()
END
END SWITCH
PRIVATE FUNCTION loadWeather ()
updateState(state.copyWith(
isLoading = true,
error = null)

)
TRY
domainWeather = fetchWeather.call()
uiWeather = mapper.map(domainWeather)
updateState(
state.copyWith(
isLoading = false,
uiWeather = uiWeather
)
)
CATCH e AS Exception
updateState(
state.copyWith(
isLoading = false,
error = e
)
)

PRIVATE FUNCTION updateState(
newState: WeatherState
) state = newState

// View
CLASS WeatherView
FUNCTION build()
RETURN WeatherViewInternal ()
CLASS WeatherViewInternal
FUNCTION build()
state = observe(WeatherViewModel)
.getState()
RETURN renderWeatherUI(state)
FUNCTION renderWeatherUI(state: WeatherState)
IF state.isLoading THEN
RETURN renderLoading()
ELSE IF state.error IS NOT null THEN
RETURN renderError(state.error)
ELSE IF state.uiWeather IS NOT null THEN
RETURN renderWeather (
state.uiWeather,
onRefresh = FUNCTION() {
viewModel.dispatch(
RefreshWeather

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

)
)

Figure 4 illustrates that the flow between states of intent is cy-
cled and follows only one direction, in contrast to MVVM or MVP
(Viper). A user sends an intent which is being handled by the View-
Model, and consequently, the state is updated and represented by
the View (UI). Therefore, the pattern refers to a state-based Ul
flow and follows a one-direction flow (or unidirectional data flow —
UDF); it is mainly suited for the declarative UI approach. Currently,
MVI is considered a gold standard for the declarative approach in
Android (e.g., Jetpack Compose), and it can also be used in some
cross-platform technologies such as Flutter or Kotlin Multiplatform
(KMP).

4.4.2 Pros and Cons. Table 4 demonstrates the strengths and
weaknesses of the MVI pattern.

Table 4. Pros and Cons of the MVI pattern

Strength ‘Weaknesses

- Unidirectional Data Flow - Boilerplate Code

- Single Source of Truth - Verbose State Management

- Highly Testable - Steep Learning Curve

- Concurrency Safety - Performance Concerns in Large
Uls

- Tooling and Ecosystem Variability

- Reactive by Design

45 MVU

MVU (Model-View-Update) belongs to the TEA group with unidi-
rectional data flow and consists of a State which is being handled
by the UI (or View); the View, which renders the State; and Up-
date, which is, in fact, a method responsible for changing the State
to appear. The current state is used to appear in the UI (View), or
the UI dispatches an action, which is being handled in the Update
and returns a new state. Communication between View and Update
is conducted by messages and actions that are being handled by
Update. Figure 5 illustrates the behavior:

Creates updated
Model

|
| Update

Fig. 5. MVU Schema.

4.5.1 Code snippet. Based on the architectural schema in Figure
5, the formalization of the pattern is presented below:

// Messages for communicating

ABSTRACT CLASS WeatherlMsg

CLASS FetchWeather EXTENDS WeatherMsg

CLASS WeatherLoaded EXTENDS WeatherMsg
VARIABLE data: UiWeather

CONSTRUCTOR (data)

CLASS WeatherFailed EXTENDS WeatherMsg
VARIABLE error: Exception
CONSTRUCTOR (error)

// Model to appear data
CLASS WeatherModel
VARIABLE model: UiWeather = null
VARIABLE isLoading: Boolean = false
VARIABLE error: Exception = null
CONSTRUCTOR.(
OPTIONAL model: UiWeather,
OPTIONAL isLoading: Boolean,
OPTIONAL error: Exception
)
FUNCTION copyWith(
OPTIONAL isLoading: Boolean,
OPTIONAL data: UiWeather,
OPTIONAL error: Exception
) RETURNS WeatherModel
RETURN NEW WeatherModel(
model = IF data IS SET
THEN data
ELSE this.model,
isLoading = IF isLoading IS SET
THEN isLoading
ELSE this.isLoading,
error = IF error IS SET
THEN error
ELSE this.error
)

// Update to handle the messages and change
CLASS WeatherUpdate
PRIVATE VARIABLE model: WeatherModel
PRIVATE VARIABLE fetchWeather:
FetchWeatherUseCase
PRIVATE VARIABLE mapper:
DomainToUiMapper
PRIVATE VARIABLE setModel:
FUNCTION(WeatherModel)
CONSTRUCTOR(
fetchWeather, mapper, model, setModel
)
ASYNC FUNCTION update(msg: WeatherMsg)
SWITCH msg
CASE FetchWeather:
setModel (
model. copyWith(
isLoading = true,
error = null

TRY

domainData = fetchWeather
.call()

uiData = mapper.map(
domainData

)

setModel (
model.copyWith(

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

isLoading = false,
data = uiData
)
)
CATCH e AS Exception
setModel(
model. copyWith(
isLoading = false,
error = e

)
END TRY
CASE WeatherLoaded(data):
setModel(
model. copyWith(
data = data,
isLoading = false
)
)
CASE WeatherFailed(error):
setModel (
model. copyWith(
error = error,
isLoading = false

)
END SWITCH

// Notifier which dispatches messages
// to the Update
CLASS WeatherNotifier EXTENDS Observable
PRIVATE VARIABLE model: WeatherModel =
NEW WeatherModel ()
PRIVATE VARIABLE updater:
WeatherUpdate
FUNCTION getModel()
RETURN model
CONSTRUCTOR (
fetchWeather: FetchWeatherUseCase,
mapper: DomainToUiMapper

updater = NEW WeatherUpdate (
fetchWeather,
mapper,
model,
setModel
)
updater.update (FetchWeather)
FUNCTION setModel(
newModel: WeatherModel
)
model = newModel
notifyQObservers()
FUNCTION dispatch(msg: WeatherMsg)
RETURN updater.update (msg)

// View represents the State
CLASS WeatherView
FUNCTION build()
RETURN WeatherInternal()
CLASS WeatherInternal
FUNCTION build()
notifier = observe(WeatherNotifier)

RETURN renderWeather(
notifier.getModel()
)
FUNCTION renderWeather (model: WeatherModel)
IF model.isLoading THEN
RETURN showLoading()
ELSE IF model.error NOT null
THEN RETURN showError (model.error)
ELSE IF model.model NOT null
THEN RETURN showWeather (
model .model,
onRefresh = FUNCTION() {
notifier.dispatch(
FetchWeather
)

)

The MVU pattern has unidirectional data flow (UDF) and belongs
to The Elm Architecture (TEA); therefore, it is recommended to be
used with a declarative UI approach (e.g., Flutter, Jetpack Compose
(Android native), SwiftUI (10S) and React).

4.5.2 Pros and Cons. Table 5 demonstrates the strengths and
weaknesses of the MVU pattern:

Table 5. Pros and Cons of the MVU pattern

Strength Weaknesses

- Predictable State Management
- Testability

- Unidirectional Data Flow

- Consistency Across Platforms - Tooling and Ecosystem

- Encourages Separation of Con- | - Performance Overhead in Some
cerns Cases

- Inspiration for Modern Architec-
tures

- Boilerplate Code
- Steep Learning Curve
- Scalability Challenges

4.6 BLoC

BLoC (Business Logic Component), a part of The Elm Architec-
ture (TEA) with unidirectional data flow, consists of the follow-
ing main components: Event, which is used for messaging; State,
which is handled by the UI (or View, as a separate component);
and Bloc, the component responsible for processing messages and
updating the state. Typically, business logic is split across logical
units represented as individual Blocs. Figure 6 illustrates the logic
of the BLoC pattern.

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

ul Visible to User
Screen
A
\d
BLOC Presenter
A
Y
Repository Data Handler
A
y
Network .
. Data Provider
Provider

Fig. 6. BLoC Schema.

4.6.1 Code snippet. The following formal representation of the
pattern is derived from the schema presented in Figure 6.

// Events
ABSTRACT CLASS WeatherEvent
CLASS GetWeatherEvent EXTENDS WeatherEvent

// State

ABSTRACT CLASS WeatherState

CLASS WeatherInitial EXTENDS WeatherState

CLASS WeatherLoading EXTENDS WeatherState

CLASS WeatherLoaded EXTENDS WeatherState
VARIABLE weather: UiWeather
CONSTRUCTOR (weather)

CLASS WeatherError EXTENDS WeatherState
VARIABLE message: String
VARIABLE throwable: Exception
CONSTRUCTOR (message, throwable)

// Bloc
CLASS WeatherBloc EXTENDS
Bloc<WeatherEvent, WeatherState>

VARIABLE fetchWeather: FetchWeatherUseCase
VARIABLE mapper: DomainToUiMapper
CONSTRUCTOR (fetchWeather, mapper)

SET this.fetchWeather = fetchWeather

SET this.mapper = mapper

INITIALIZE WITH WeatherInitial

ON GetWeatherEvent DO (event, emit) ->
emit (WeatherLoading)
TRY
weatherDomain = fetchWeather ()
uiWeather = mapper.map (
weatherDomain
)
emit (WeatherLoaded (uiWeather))
CATCH error AS Exception

emit (

WeatherError (
error.toString(),
error

)

)

// View
CLASS WeatherView
FUNCTION build()
RETURN BlocBuilder
<WeatherBloc, WeatherState>
(
builder = (context, state) ->
buildFunction(context, state)

)

VARIABLE buildFunction: FUNCTION (
context: BuildContext,
state: WeatherState

IF state IS WeatherLoading
THEN RETURN showLoading()
ELSE IF state IS WeatherLoaded THEN
RETURN showWeather(
state.weather,
onRefresh = FUNCTION() {
context.dispatch(
GetWeatherEvent
)
B
ELSE IF state IS WeatherError THEN
RETURN showError(state.message)
ELSE
RETURN showInitial()

4.6.2 Pros and Cons. Table 6 demonstrates the strengths and
weaknesses of the BLoC pattern.

Table 6. Pros and Cons of the BLoC pattern

Strength Weaknesses
- Separation of Concerns - Boilerplate Code
- Highly Testable - Steep Learning Curve for Begin-

ners
- Verbosity Hurts Productivity

- Scalable Architecture - Debugging Can Be Tricky

- Stream-based Reactive Program- | - Tight Coupling with flutter_bloc
ming Library

- Community and Tooling Support

- Reusability

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

5. COMPARATIVE ANALYSIS

As this work is exploratory in nature, comparative analysis empha-
sizes conceptual and qualitative evaluation rather than experimental
or performance-based measurement.

Table 7 represents all the strengths, weaknesses, technology sup-
port, testability, and complexity of learning.

It consists of MVP, Viper, MVVM, MVI, MVU, Redux, and BLoC
presentation layer patterns, where each pattern is characterized by
its technology, UI approach, whether UDF is supported, Testability,
Scalability, and Learning curve. Both MVP and Viper, which are
actually representations of patterns with the same components, are
actively used in the development of both mobile platforms (MVP
- Android, Viper - i0S); are appropriate for the Imperative Ul ap-
proach, having bidirectional data flow, and allow us to test their
components separately. Since Viper may have more components
(e.g. navigation-related components), it is a bit more scalable than
MVP and, consequently, is a bit more complicated for learning pur-
poses.

MVVM, which is a gold standard not only for Android devel-
opment but also is actively used in KMP, MAUI, and Xamarin,
and can be appropriate for both Declarative and Imperative Ul ap-
proaches depending on a particular implementation and therefore,
MVVM is not a UDF-based pattern in classical understanding; at
the same time, MVVM can be modified to follow the UDF princi-
ples. MVVM is highly split by some components that are clearly
responsible for their own purposes; the pattern supports tests and is
highly scalable. Although there are some nuances to investigate, it
is not too hard to learn.

MVl is appropriate to use in Android native Software development
based on Declarative UI approach (e.g. Jetpack Compose), KMP;
additionally, it can be incorporated into other technologies (e.g.
Flutter which is not a standard in general). MVI is not preferred
for the Imperative approach, since it belongs to UDF patterns. As it
has additional components for interacting between ViewModel and
View, it has High Scalability and is strongly supported by testing;
curve learning of MVI is high due to additional components and
not obvious data flow.

MVU is a good solution to incorporate into mobile applications
using Flutter via Elm-inspired libraries, F# (Fabulous) and Elm,
which is not a mobile software development framework, but which
is important to highlight. It mainly refers to the Declarative style
approach due to its unified data flow and is not recommended for
the Imperative UI approach. The pattern allows us to strictly split a
project by a variety of components, making it highly scalable and
supported for tests. Since it has no obvious messaging structure be-
tween update components and view, it has medium-high complex-
ity of learning.

The redux pattern allows us to create good mobile solutions using
React Native, Flutter, JavaScript-based tools, and iOS native appli-
cations, which is strongly designed for the Declarative Ul approach.
Using the pattern, a solution is being split by a variety of compo-
nents which enhance Testability and make it highly supported due
to its high Scalability. At the same time, its learning curve remains
high due to the highlighted variety of the components.

BLoC is used mainly in Flutter-based solutions and involves split-
ting and representing the entire business logic as smaller blocks.
The blocks serve for the Declarative Ul approach since the pattern
has the Unidirectional data flow which makes the pattern highly
supported for testing and the scalability is High. Due to its UDF
specific aspects and components, its learning curve is medium to
high.

10

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

Table 7. Comparative analysis
Pattern Best Fit | Declarative Imperative UDF Testability Scalability Complexity Notes
Technologies | UI Ul
MVP (Model | Android Not Pre- | Supported Not Pre- | Supported Medium Medium Classical
View Presen- | (Java/Kotlin), | ferred ferred pattern; ex-
ter) i0S (with plicit View-
adaptations) Presenter
boundary
VIPER i0OS (Swift), | Not Pre- | Supported Not Pre- | Supported High High Heavy struc-
Clean i0OS | ferred ferred ture, often
architectures consid-
ered over-
engineered
MVVM Android Supported Supported Partially sup- | Supported Medium-High| Medium Common
(Model View | (Jetpack ported in Android,
ViewModel) Compose, flexible with
XML), Xam- Compose
arin, MAUI,
KMP
MVI (Model | Android Supported Not Pre- | Supported Strong High High Fully reac-
View Intent) (Jetpack ferred support tive, inspired
Compose), by UDF
Kotlin Multi- principles
platform
MVU Elm, Flutter | Supported Not Pre- | Supported Supported High Medium-High| Direct im-
(Model View | (via Elm- ferred plementation
Update) inspired of Elm
libs), F# architecture
(Fabulous)
Redux React Na- | Supported Not Pre- | Strong Strong High High Centralized
tive, Flutter ferred support support state con-
(via Redux), tainer,
JavaScript- verbose
based tools
BLoC (Busi- | Flutter Supported Not Pre- | Supported Strong High Medium-High| Flutter-
ness Logic ferred support native
Component) pattern; UDF
via Streams
or Cubit

6. CONCLUSION

In this work, the core concepts of the presentation layer in mo-
bile software development are explored, focusing on architectural
patterns commonly adopted across platforms. These patterns are
broadly categorized by the direction of data flow - either bidirec-
tional or unidirectional - and their alignment with the imperative or
declarative UI paradigms.

In order to thoroughly compare the patterns, a Pros and Cons anal-
ysis was applied and a comparative tabular study was conducted,
highlighting key aspects such as testability, scalability, platform
closeness, and compatibility with modern development approaches.
This work conducted a study of the patterns including MVP, Viper,
MVVM, MVI, MVU, and BLoC, each suitable for specific tasks,
ecosystems, and developer communities.

Diving into the concepts, strengths, and weaknesses of patterns and
recognizing their trade-offs can help make the correct decisions
to select a particular pattern for its environment carefully, which
must lead to keeping the code base cleaner, more maintainable, and
testable. The findings of this study may also serve as a foundation
for further empirical evaluation or automation of architectural de-
cisions in mobile frameworks.

As a future direction, further research will be aimed at benchmark-
ing the most widely used patterns for Android development, par-
ticularly comparing MVI and MVVM in combination with both
Views and Jetpack Compose for Ul implementation. Such empir-
ical evaluations will provide performance-based insights, comple-
menting the conceptual analysis presented here and helping practi-
tioners align architectural choices with efficiency and platform evo-
lution.

7. REFERENCES

[1] Martin, Robert C. (2017). Clean Architecture: A Craftsman’s
Guide to Software Structure and Design. Prentice Hall.

[2] Khedker, U. P, & Dhamdhere, D. M. (1993). Complexity of
bidirectional data flow analysis. In Proceedings of the Annual
ACM Symposium on Principles of Programming Languages
(pp. 397-408). ACM.

[3] Android Developers. “Architecting your Compose UI: Uni-
directional data flow.” Android Developers Documentation.
“A unidirectional data flow (UDF) is a design pattern where
state flows down and events flow up. By following UDF, you

11

(4]

(5]

(6]

(7]

(8]

(9]

decouple composables that display state in the UI from the
parts of your app that store and change state.” [Online]
Available: https://developer.android.com/develop/
ui/compose/architecture|[Accessed: 7-July-2023]
Shiprocket Engineering. (2024). “Imperative vs Declarative: a
practical example.” Shiprocket Tech Blog. [Online]

Available: https://acme.shiprocket.com/
shiprockets-declarative-ui/|[Accessed: 7-July-2023]
Cullen, C. (2023, May 4). “Using a Pros/Cons List to Help
Navigate Technical Discussions.” ChipCullen.com. [Online]
Available: https://chipcullen.com/
using-a-pros-cons-list-in-technical-discussions/
[Accessed: 7-July-2023]

Browne, M. N, & Keeley, S. M. (2011). Asking the Right
Questions: A Guide to Critical Thinking (10th ed.). Pearson
Education.

Harris, R. (2012). Introduction to Decision Making. Virtual-
Salt. [Online]

Available: http://www.virtualsalt.com/crebook5.htm
[Accessed: 7-July-2023]

Paul, R., & Elder, L. (2014). Critical Thinking: Tools for Tak-
ing Charge of Your Professional and Personal Life (2nd ed.).
FT Press.

Kouli, M., & Rasoolzadegan, A. (2022, July 21). “A
Feature-Based Method for Detecting Design Patterns in
Source Code.” Symmetry (MDPI), 14(7), 1491. [Online]
Available: https://www.mdpi.com/2073-8994/14/7/
1491 [Accessed: 7-July-2023]

[10] Nazar, N., Aleti, A., & Zheng, Y. (2020). “Feature-Based

Software Design Pattern Detection.” arXiv preprint. [Online]
Available: https://proceedings.neurips.
cc/paper_files/paper/2023/file/
82£39c7409155b74d15d73b048£06771-Paper-Datasets .
and_Benchmarks.pdf [Accessed: 7-July-2023]

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.42, September 2025

12

https://developer.android.com/develop/ui/compose/architecture
https://developer.android.com/develop/ui/compose/architecture
https://acme.shiprocket.com/shiprockets-declarative-ui/
https://acme.shiprocket.com/shiprockets-declarative-ui/
https://chipcullen.com/using-a-pros-cons-list-in-technical-discussions/
https://chipcullen.com/using-a-pros-cons-list-in-technical-discussions/
http://www.virtualsalt.com/crebook5.htm
https://www.mdpi.com/2073-8994/14/7/1491
https://www.mdpi.com/2073-8994/14/7/1491
https://proceedings.neurips.cc/paper_files/paper/2023/file/82f39c7409155b74d15d73b048f06771-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/82f39c7409155b74d15d73b048f06771-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/82f39c7409155b74d15d73b048f06771-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/82f39c7409155b74d15d73b048f06771-Paper-Datasets_and_Benchmarks.pdf

	Introduction
	Related Work
	Methodology
	 Pros and Cons List
	Feature-Based Comparison (Tabular Matrix)

	Patterns Analysis
	MVP or Viper
	Code snippet
	Pros and Cons

	MVVM
	Code snippet
	Pros and Cons

	Redux
	Code snippet
	Pros and Cons

	MVI
	Code snippet
	Pros and Cons

	MVU
	Code snippet
	Pros and Cons

	BLoC
	Code snippet
	Pros and Cons

	Comparative Analysis
	Conclusion
	References

