
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

43

Deep Learning for Edge AI: MobileNetV2 CNN Training

over ARM-based Clusters

Dimitrios Papakyriakou
PhD Candidate

Department of Electronic Engineering
Hellenic Mediterranean University

Crete, Greece

Ioannis S. Barbounakis
Assistant Professor

Department of Electronic
Engineering

Hellenic Mediterranean University
Crete, Greece

ABSTRACT

This paper presents a comprehensive investigation into the

strong scaling performance of distributed training for

Convolutional Neural Networks (CNNs) using the

MobileNetV2 architecture on a resource-constrained Beowulf

cluster composed of 24 Raspberry Pi 4B nodes (8 GB RAM

each). The training system employs the Message Passing

Interface (MPI) via MPICH with synchronous data parallelism,

running two processes per node across 2 to 48 total MPI

processes. A fixed CIFAR-10 dataset was used, and all

experiments were standardized to 10 epochs to maintain

memory stability.

The study jointly evaluates execution time scaling, training/test

accuracy, and convergence loss to assess both computational

performance and learning quality under increasing parallelism.

Training time decreased nearly ten-fold at cluster scale,

reaching a maximum speedup of (≈9.99×) with (≈41.6 %)

parallel efficiency at 48 processes. Efficiency remained very

high at small scales (≈90.9 % at np=4) and moderate at np=8

(≈52.3 %), confirming that MPI scaling itself is effective up to

this range. However, while single-node and small-scale runs

(up to 4–8 MPI processes) preserved strong generalization

ability, larger scales suffered from sharply reduced per-rank

dataset sizes, causing gradient noise and eventual collapse of

test accuracy to the random guess baseline (10 %).

These results demonstrate that, although ARM-based

Raspberry Pi clusters can support feasible small-scale

distributed deep learning, strong scaling beyond an optimal

process count leads to “fast-but-wrong” training in which

wall-clock performance improves but model utility on unseen

data is lost. This work provides the first detailed end-to-end

evaluation of MPI-based synchronous CNN training across an

ARM-based edge cluster, and outlines future research

including comparative scaling with SqueezeNet and

exploration of ultra-low-power Spiking Neural Networks

(SNNs) for neuromorphic edge learning.

Keywords

Convolutional Neural Networks (CNNs), Distributed Deep

Learning, Beowulf Cluster, ARM Architecture, Raspberry Pi

Cluster, Parallel Computing, Message Passing Interface (MPI),

MPICH, Low-Cost Clusters, Distributed Systems, HPC,

MobileNet, Edge Computing, Parallel Efficiency, Edge Deep

Learning.

1. INTRODUCTION
Deep learning has emerged as a cornerstone of modern artificial

intelligence, with Convolutional Neural Networks (CNNs)

demonstrating state-of-the-art performance in image

recognition, classification, and embedded vision systems [1].

The training of CNN models, however, remains

computationally intensive and is typically performed on

centralized, high-performance GPU clusters. In contrast, recent

developments in edge computing and distributed systems have

prompted growing interest in enabling scalable training on low-

cost, heterogeneous platforms.

This study focuses on the distributed training of MobileNet, a

computationally efficient CNN architecture designed for

mobile and embedded environments [2]. The implementation

employs the Message Passing Interface (MPI) on a Beowulf

cluster consisting of 24 Raspberry Pi 4B nodes, each equipped

with an ARM-based processor and 8GB of RAM. A total of 48

MPI processes are executed - two per node - using mpi4py to

facilitate data-parallel training over a fixed CIFAR-10 dataset

and to manage inter-process communication in a synchronous

training model [3]. The objective is to evaluate strong scaling

behavior in this resource-constrained environment by

examining how model convergence, classification accuracy,

and total training time are affected as the number of parallel

processes increases. Due to hardware memory limitations, the

number of training epochs is fixed at (10), beyond which

execution becomes unstable. This constraint reflects the

practical limitations faced by edge devices and embedded

systems, where computational capacity and memory bandwidth

are restricted [4]. The experimental results aim to provide

insight into the scalability of deep learning workloads on ARM-

based multi-node systems. Particular attention is given to the

impact of parallelism on training performance and

communication overhead, offering empirical evidence relevant

to the deployment of distributed CNN training in constrained

environments such as fog and edge computing platforms [5]

The Raspberry Pi 4 Model B (8GB RAM), illustrated in "Figure

1", serves as the fundamental building block of the cluster.

Each unit features a 64-bit quad-core ARMv8 Cortex-A72 CPU

clocked at 1.5 GHz [6], [7]. Its affordability and accessibility

were key factors in its selection as the base hardware for

constructing a high-performance computing cluster, enabling a

systematic evaluation of its capabilities in parallel processing

and distributed computing environments.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

44

Figure 1: Single Board Computer (SBC) - Raspberry Pi 4

Model B [6], [7].

2. SYSTEM DESCRIPTION

2.1 Hardware Equipment
The computational platform used for this study consists of a

cost-effective yet capable Beowulf-style cluster constructed

from 24 Raspberry Pi 4B units, each equipped with 8GB of

RAM. One device is configured as the master node, responsible

for resource allocation and process orchestration, while the

remaining 23 function as worker nodes participating in parallel

execution under MPI coordination. An overview of the

physical deployment is presented in "Figure 2". The cluster is

physically organized into four vertical stacks, with each stack

comprising six Raspberry Pi boards. All nodes are

interconnected through TP-Link TL-SG1024D unmanaged

Gigabit Ethernet switches, supporting up to 1 Gbps of

bandwidth per device. This network architecture ensures

consistent and low-latency inter-node communication,

effectively simulating a high-performance computing

environment within an ARM-based embedded framework.

To guarantee consistent power delivery across all units, the

system employs two industrial-grade switch-mode power

supplies (60A, 5V), adjusted to output 5.80V. This voltage

tuning mitigates power loss across extended cabling paths and

ensures reliable operation under sustained parallel workloads.

For data storage, the master node utilizes a 1TB Samsung 980

PCIe 3.0 NVMe SSD, while each worker node is fitted with a

256GB Patriot P300 NVMe M.2 SSD. These storage

components provide high-throughput local I/O performance

and enable smooth data handling during training, especially

when working with larger input datasets and intermediate

model states.

Figure 2: Deployment of the Beowulf Cluster with (24)

RPi-4B (8GB).

2.2 Software Environment and Toolchain

The software stack employed in this study was designed to

support distributed training of deep neural networks over

ARM-based systems. All nodes in the cluster operated under

Raspberry Pi OS 64-bit Lite (Debian-based), running Python

3.11.5 in a shared virtual environment mounted via NFS to
ensure consistency across the system. Communication between

processes was managed through MPICH v4.2.0 and
coordinated using the mpi4py interface (v3.1.6).

In addition to the numerical and scientific computing libraries

used in previous benchmarking efforts - namely NumPy

(v1.26.4), SciPy (v1.13.0), scikit-learn (v1.4.2), and psutil

(v7.0.0) - this project introduced deep learning-specific

dependencies, including TensorFlow (v2.15.0), PyTorch

(2.8.0) and Keras (integrated within TensorFlow) to support

CNN construction, training, and evaluation.

All packages were compiled for compatibility with the ARMv8

architecture and deployed uniformly across the cluster to

ensure reproducibility and eliminate version-related

inconsistencies. The Python virtual environment was shared

across all nodes using NFS, while passwordless SSH and

synchronized environmental variables (including

LD_LIBRARY_PATH and UCX_TLS) facilitated seamless

MPI-based coordination for training execution.

All MPI executions were performed within the virtual

environment using mpiexec, with explicit machinefile

configuration and core binding to ensure optimal resource

utilization per process. This containerized configuration not

only guarantees identical behavior across all nodes, but also

enhances the scientific reliability and reproducibility of

experimental results.

2.3 Design

The physical and logical structure of the Raspberry Pi cluster

used in this study is presented in "Figure 2" and "Figure 3"

respectively. The system comprises 24 Raspberry Pi 4B nodes,

each equipped with 8GB of RAM. All nodes are interconnected

via a 24-port Gigabit Ethernet switch, enabling full-duplex

communication with bandwidth capacities of up to 1 Gbps per

device. Within this architecture, one node operates as the

master (head) node, managing scheduling and coordination

tasks, while the remaining 23 nodes function as distributed

compute resources. Each unit is assigned a static IP address to

facilitate deterministic routing, and all inter-node

communication is secured using SSH.

The master node is provisioned with a 1TB Samsung 980 PCIe

3.0 NVMe M.2 SSD, capable of achieving up to 3500 MB/s

read and 3000 MB/s write speeds under ideal conditions. Each

worker node is equipped with a 256GB Patriot P300 NVMe

M.2 SSD, offering up to 1700 MB/s read and 1100 MB/s write

speeds. These drives are interfaced through USB 3.0

connections, which support theoretical transfer rates up to 4.8

Gbps (600 MB/s). This configuration represents a substantial

performance improvement over traditional USB 2.0 or

microSD-based systems, offering significantly faster I/O

throughput for model data and dataset access.

While the USB 3.0 interface does not reach the bandwidth of

native PCIe lanes, the integration of NVMe-class SSDs

dramatically enhances storage responsiveness and workload

execution times. This contributes to a measurable performance

uplift in training and testing scenarios involving large-volume

parameter updates or frequent disk access. The ability of the

Raspberry Pi 4B platform to boot and operate reliably from

external SSDs further supports this design choice.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

45

Figure 3: RPi-4B Beowulf cluster architecture diagram.

- Target Platform and Feasibility Considerations

This study focuses on evaluating the feasibility and

performance of distributed convolutional neural network

(CNN) training using the MobileNet architecture on a

resource-constrained Beowulf cluster composed of

Raspberry Pi 4B devices with 8GB of RAM per node.

While MobileNet was originally designed for lightweight

image classification tasks on mobile and embedded

systems, training such models on low-power clusters

presents unique challenges and opportunities for

benchmarking.

The target cluster features ARM Cortex-A72 processors,

lacking hardware accelerators such as GPUs or vectorized

instruction sets like AVX. Consequently, all computations

are executed on CPUs, which naturally results in limited

training speed compared to high-performance computing

environments. Furthermore, inter-node communication is

performed via Ethernet connections, introducing

additional latency and bandwidth constraints during

distributed training operations.

Despite these hardware limitations, MobileNet remains an

ideal candidate for experimentation due to its lightweight

design based on depth wise separable convolutions and its

moderate memory footprint. By leveraging small-scale

datasets such as CIFAR-10, we ensure that training

remains computationally feasible within the available

memory (8GB per node) and processing capabilities of the

cluster.

The main objective of this study is not to achieve state-of-

the-art training speed or accuracy but rather to explore the

viability, performance scaling, and communication

overhead of distributed deep learning workloads on low-

power, cost-effective cluster architectures. This approach

offers valuable insights for edge computing scenarios,

where similar hardware and performance constraints are

common.

2.4 Theoretical Background: The

MobileNet CNNs Clustering Algorithm

Convolutional Neural Networks (CNNs) represent a

fundamental class of deep learning architectures that have

demonstrated exceptional performance in image classification

tasks due to their ability to automatically extract hierarchical

spatial features from data [1]. Among the many CNN variants,

MobileNet has emerged as a prominent architecture optimized

for mobile and embedded environments. It achieves a favorable

balance between performance and efficiency through the use of

depth wise separable convolutions -a factorization technique

that decomposes standard convolutions into two simpler

operations, substantially reducing both parameter count and

computational cost- [2].

The version employed in this study is MobileNetV2, which has

been shown to maintain competitive classification accuracy

while dramatically lowering the number of floating-point

operations per inference. Its compact size and low memory

footprint make it particularly suitable for ARM-based

embedded systems, such as the Raspberry Pi 4B platform used

in this research [2], [8].

To evaluate the training behavior of MobileNet in a distributed

setting, the model is trained on the CIFAR-10 dataset -a widely

adopted image classification benchmark consisting of 60,000

color images (32×32 resolution) evenly divided across 10

classes [9]. The dataset contains 50,000 training images and

10,000 test images and is well-suited for performance

evaluations on constrained hardware due to its moderate size

and manageable complexity.

Although more challenging datasets such as CIFAR-100 exist,

the hardware limitations of the ARM-based Raspberry Pi

cluster pose significant barriers to their use. CIFAR-100

increases the number of output classes tenfold, which in turn

inflates the final dense layers of the model, resulting in higher

memory consumption and greater computational demand

during training. Empirical tests demonstrated that training

MobileNet on CIFAR-100 caused memory exhaustion or

performance degradation beyond sustainable levels -even when

batch sizes were minimized. By contrast, MobileNet was

successfully trained on CIFAR-10 up to 10 epochs without

exceeding memory or thermal constraints, confirming its

feasibility on this cluster configuration.

Given these constraints, CIFAR-10 was selected to ensure

training stability while still allowing analysis of learning

performance and distributed scaling behavior. The dataset’s

compact structure aligns well with the goal of benchmarking

MobileNet's efficiency in parallel execution on low-power

embedded systems.

3. METHODOLOGY

3.1 System Configuration and

Experimental Context

The experiments were conducted on a custom-built Beowulf

cluster comprising 24 Raspberry Pi 4B nodes. Each node is

equipped with a quad-core ARM Cortex-A72 CPU and 8GB of

LPDDR4 RAM, and interconnected via Gigabit Ethernet to

facilitate low-latency inter-node communication. The cluster's

low-power architecture, limited memory footprint, and absence

of hardware accelerators such as GPUs or AVX-capable CPUs

present a unique set of constraints that directly influence the

design of the training pipeline.

To accommodate these limitations, the study leverages the

MobileNetV2 convolutional neural network - a lightweight

model designed for mobile and embedded devices. Its use of

depthwise separable convolutions reduces the number of

trainable parameters and computational load, making it

particularly well-suited to the ARM-based environment.

The CIFAR-10 dataset is used for all training experiments. It

comprises 60,000 color images (32×32 resolution) across 10

classes, with 50,000 used for training and 10,000 for testing. Its

compact size aligns well with the available RAM and I/O

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

46

capacity of the cluster, enabling full dataset loading in memory

without inducing swapping or resource contention.

All nodes run Raspberry Pi OS 64-bit Lite with Python 3.11.5

in a shared virtual environment mounted via NFS. The single-

node batch-size sweep uses a lightweight PyTorch 2.8.0 driver

(with torchvision) configured to the same MobileNetV2 family,

input preprocessing, optimizer, and synchronous MPI pattern

(gather/average/broadcast) to accelerate parameter exploration.

The distributed full-cluster training uses TensorFlow 2.15

(Keras API) with the same synchronous data-parallel scheme

via mpi4py 3.1.6 over MPICH 4.2.0. Unless otherwise stated,

both stacks use MobileNetV2 (width multiplier 0.5), channels-

last (NHWC) tensors resized to (128×128), SGD (lr=5e-4,

momentum=0.9, weight decay=0), and identical normalization.

All packages are CPU-only builds compiled for ARMv8 and

distributed uniformly across nodes. MPI processes are

launched with mpiexec using an explicit machinefile and core

binding for hardware-locality reproducibility. Because both

stacks fix the same architecture (MobileNetV2, width 0.5),

input shape/layout (128×128, NHWC), normalization,

optimizer and hyperparameters (SGD, lr = 5e-4, momentum =

0.9, no weight decay), and the same synchronous MPI update

pattern (gather → average → broadcast), the PyTorch sweep

and TensorFlow/Keras runs are directly comparable in

compute/memory footprint and training dynamics.

NHWC is a tensor layout that orders image data as (N: batch

size), (H: image height), (W: image width), (C: number of

channels), so a 32-image batch of 128×128 RGB pictures is

shaped (32, 128, 128, 3) in NHWC. On ARM CPUs, NHWC

can improve cache/NEON access patterns—especially for

depthwise separable convs (like MobileNet)—so we enable it

to squeeze a bit more throughput.

3.2 Distributed Training Strategy
It’s adopted data parallelism: each MPI process (rank) trains on

a disjoint shard of the dataset and contributes to synchronous

model updates at defined barriers. It’s run two ranks per

Raspberry Pi 4B to balance CPU cores and 8 GB RAM per

node.

3.2.1 Deterministic sharding

Let (𝑁𝑝) be the total number of ranks (processes). During each

epoch we partition the 50,000 CIFAR-10 training samples by

strided indexing (i.e sample (i) is assigned to

𝑟𝑎𝑛𝑘 (𝑘) 𝑖𝑓(𝑖) 𝑚𝑜𝑑 𝑁𝑝 = 𝑘. Thus, each rank processes

approximately (≈ 50,000/𝑁𝑝) unique samples per epoch. This

guarantees non-overlapping, reproducible data splits and

ensures a uniform workload across all ranks.

𝑠ℎ𝑎𝑟𝑑𝑟 = { 𝑖 ∈ {1 … . ,50000} | 𝑖 𝑚𝑜𝑑 𝑁𝑝 = 𝑟},

so that each rank 𝑟 ∈ {0, … , 𝑁𝑝 − 1 } processes ≈
50000

𝑁𝑝

samples per epoch 𝑒. 𝑔 25000 𝑓𝑜𝑟 𝑁𝑝 = 2; ≈ 1042 𝑓𝑜𝑟 𝑁𝑝 =

48. This guarantees non-overlapping, reproducible data splits

and uniform load.

3.2.2 Synchronous SGD via MPI collectives

Within an epoch each rank performs standard

forward/backward passes on its shard. At the epoch boundary

we emulate synchronous SGD: all ranks send their model

parameters (or updates) to the root using comm.gather(), the

root averages them, and the averaged weights are broadcast

back with comm.bcast(). (Functionally this is equivalent to an

Allreduce on parameters; we keep the gather/broadcast pattern

for transparency and easier logging.) The root also runs the

final test evaluation.

3.2.3 Per-node batch-size profiling (empirical

sweep)

Because batch size primarily governs local memory footprint

and CPU utilization per rank, we selected it via a per-node

sweep on one RPi (2 ranks/node) and spot-checked on two

additional RPi’s to rule out hardware heterogeneity.

- Experimental Protocol: The experiment was performed

for each batch size b ∈ {8, 16, 24, 32} images per node

(i.e., b/2 per rank). Logged metrics included: median

epoch time, peak per-process RSS (via psutil), node-level

RAM and swap usage (free -m, vmstat), CPU utilization

(mpstat), and OOM events (dmesg).

- Outcome: The sweep identified batch-per-node = 24

(equivalently 12 samples per rank for 2 ranks/node) as the

best time–stability trade-off. This setting maintained high

CPU utilization without invoking swap and produced the

lowest median epoch time. Larger batches (≥ 24)

intermittently induced page-cache pressure and slower

epoch times, while smaller batches (e.g., 8) under-utilized

the CPU. Replication on two additional RPi nodes

confirmed the same regime, with variation within only a

few percent.

3.2.4 Fixed benchmarking hyperparameters

To ensure consistent and controlled benchmarking across all

cluster sizes (𝑁𝑝) the following hyperparameter values were

used:

- Epochs: 10 (upper bound before memory/thermal

instability on sustained runs).

- Batch size: 24 images per node (thus 12 per rank with 2

ranks/node).

- Learning rate: 0.0005.

Why LR = 0.0005: The training was performed with

synchronous SGD (Synchronous Stochastic Gradient)

under small effective batch (12 images/rank). Small

batches increase gradient noise; a conservative LR

improves stability and avoids oscillations. Empirically, a

{0.0003, 0.0005, 0.001 }, showed 0.0005 delivered the

fastest stable validation-loss decrease without divergence

on CPU-only nodes.

This choice is also consistent with common practice for

MobileNet/CIFAR-10 when training from scratch with

small batches and SGD [10], [11]. Typical starting LRs

fall in (10−4 − 10−3) and are adjusted downward as

batch size decreases.

3.2.5 Fixed benchmarking hyperparameters in

one RPi (pi@rpi4B-ma-00)
Before the main MobileNet CNN benchmarking was

performed on the complete cluster, a dedicated series of

experiments was carried out to fine-tune the batch size (i.e., the

number of images 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 ∈
{8, 16, 24, 32 } processed per node in each step). By

systematically sweeping batch sizes and analyzing metrics such

as median epoch time, CPU and memory utilization, and

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

47

process stability, we established the optimal configuration.

This enabled all subsequent distributed training runs to use the

empirically “best” batch size identified for time–stability trade-

off and hardware efficiency.

The observations are the following based on "Figure 4",

"Figure 5", “Table 1” considering eventually that the (batch

size = 24) is the right choice for the RPi 4B (8GB) RAM:

- Empirical optimum in throughput: The sweep shows a

clear maximum 9.67 img/sec at 24 images/node.

Throughput rises from 8→16→24 and then drops at 32.

- Memory still comfortable: Peak RSS increases as batch

grows (≈ 638 → 640 → 718 → 806 MB per rank). With 2

ranks/node, that’s (≈ 1.4–1.6 GB) per node—well below

8 GB, leaving room for OS, buffers, and MPI.

RSS: (Resident Set Size). The amount of physical RAM a

process is using at a moment—code, data, stack, plus any

shared pages that are actually resident in memory (not

swap).

- Peak RSS = the highest RSS observed during the run.

Note: summing RSS across processes can overestimate

total node usage because shared pages get counted in

each process. For precise per-node memory, use cgroup

metrics or tools like ps_mem/smem

- Why 32 degrades on RPi (ARM Cortex-A72): At 32/node

(16/rank) the working set of activations/gradients starts to

exceed cache sweet spots. The A72’s L2 and DRAM

bandwidth become the bottleneck: more cache misses and

memory traffic → step time balloons (3.555 s vs 2.482 s),

lowering throughput despite the larger batch.

The justification why the batch size (24 images per node) is the

best choice is summarized below:

- It maximizes compute density per step enough to amortize

Python/DataLoader overhead without tipping into

memory-bandwidth thrash.

- It keeps per-rank CPU saturated (≈ 100% Process CPU)

and memory headroom healthy (≈ 718 MB/rank in this

setup).

- It scales cleanly to the full cluster under data parallelism

(2 ranks/node): global batch grows linearly with nodes

while the per-rank working set stays stable—good for

convergence and for keeping per-step overhead low at

scale.

Figure 4: Visualization of Batch Size (8 and 16 images per

node) Benchmarking Results “Table 1” for MPI

MobileNetV2 on a Single RPi Node.

Table 1. MPI MobileNetV2 CIFAR-10, batch (Images) size

benchmarking -best option survey-.

Batch
/node

Batch
/rank

Avg.
epoch
time
(sec)

Mean
step
(sec)

Global
through

-put
(img/s)

Peak
RSS
(MB)

Avg.
Proc
-ess
CPU
(%)

8 4 182.45 0.912 8.77 637.7 99.7

16 8 339.08 1.695 9.44 640.2 99.7

24 12 496.43 2.482 9.67 717.7 99.7

32 16 711.07 3.555 9.00 806.4 99.7

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

48

Figure 5: Visualization of Batch Size (24 and 32 images

per node) Benchmarking Results “Table 1” for MPI

MobileNetV2 on a Single RPi Node

Figure 6: Benchmarking hyperparameters: Command

Template, fixed flags.

"Figure 6", explains briefly the fixed flags in the command used

to run the testing:

--batch-per-node: total images processed per step by the node

(split evenly across ranks).

--ranks-per-node: MPI processes per RPi (here 2).

--max-steps 200: cap steps/epoch to speed up the sweep (we

measure steady-state without running the full 50 k samples).

--width-mult 0.5: half-width MobileNetV2 (lighter model

suited to ARM).

--input-size 128, --channels-last: resize CIFAR-10 to 128×128;

NHWC layout—both choices help MobileNet and ARM

memory access patterns.

--num-workers 0: single-threaded data loading—safer on RPi

to avoid context-switch overhead and memory spikes.

--lr 5e-4, --seed 42, --repeats 1, --epochs 1: standard control

knobs for learning rate, reproducibility, and sweep brevity.

Results Meaning:

- Avg epoch time (max across ranks): wall-clock time set by

the slowest rank—appropriate for synchronous training.

- Mean step time: Avg epoch time / (steps used). Lower is

better.

- Global throughput: effective images/second processed by

the node. Higher is better for selecting batch size.

- Peak RSS: max resident memory (per rank). We want

ample headroom relative to 8 GB/node.

- CPU%: epoch-averaged utilization; Process ≈100%

confirms the cores running the ranks are saturated.

Note: “Table 1”, shows Process CPU ≈ 100%, whereas

"Figure 4", "Figure 5" show additional info such as Process

CPU and System CPU ≈ 50%. System CPU (≈ 50%) means that

half of the CPU time is being consumed by kernel-level work

since 2 cores (out of 4) are involved in the training process (2

MPI processes).

As a conclusion, for MobileNetV2 (width 0.5, 128×128) on RPi

4B (8 GB) with 2 ranks/node and threads=1, batch-per-node =

24 offers the best trade-off: highest throughput, safe memory,

and fully saturated training cores. Batch = 16 is acceptable but

slower; batch = 32 shows clear diminishing returns and higher

memory pressure.

3.3 Strong Scaling Experimental Design

The core experimental objective is to analyse the strong scaling

performance of MobileNet training under distributed data-

parallel execution. In a strong scaling scenario, the total

workload (i.e., the dataset and model) remains fixed while the

number of computational processes increases. The study

examines how overall training time, convergence behaviour,

and parallel efficiency evolve as resources scale.

MPI configurations tested are:

𝑛𝑝 ∈ {2, 4, 8, 16, 24, 32, 40, 48}

where (np) denotes the number of MPI processes, and each

value corresponds to 𝑝 =
𝑛𝑝

2
 Raspberry Pi nodes, given the 2-

process-per-node configuration.

Key performance metrics include:

- Mean Train Accuracy Across Ranks:

𝑇𝑟𝑎𝑖𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑎𝑛𝑘 𝑖

𝑁−1

𝑖=0

Where:

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑘𝑠 ∈ {2, 4, 8, 16, 24, 32, 40, 48}

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑎𝑛𝑘 𝑖

= 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑝𝑒𝑟 𝑟𝑎𝑛𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ 10

- Total training time for 10 epochs across all (np) values.

- Speedup S(np):

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

49

𝑆(𝑛𝑝) =
𝑇𝑏𝑎𝑠𝑒

𝑇𝑛𝑝

Where (Tbase) is the runtime for the baseline case (np =

2)

- Parallel Efficiency E(np):

𝐸(𝑛𝑝) =
𝑆(𝑛𝑝)

𝑛𝑝
2

𝑥 100%

Note:

Efficiency is reported relative to a baseline of np=2 MPI

processes.

For instance, the configuration with 4 MPI processes

achieved an efficiency of 90.92% of the ideal linear

scaling, indicating relatively high parallel performance

before significant communication overhead emerged

“Table 2”, "Figure 10".

- Convergence metrics: training and validation loss,

accuracy per epoch.

- Communication overhead, inferred from increased time

variance or efficiency drop at high process counts (e.g., np

≥ 32).

All experiments were conducted in isolation to avoid network

interference or thermal throttling, and each configuration was

repeated for consistency. The experimental methodology

prioritizes feasibility, reproducibility, and scientific rigor

within the constraints of a low-power ARM-based platform.

3.4 Strong Scaling Results and Analysis

To evaluate the performance and learning behavior of the

distributed MobileNet CNN training across different scales, we

first examine the baseline configuration and its initial scaling.

Case 1: MobileNetV2-CNN_rpi-1_mpi-2:

The baseline experiment was conducted using 1 Raspberry Pi

4B (8GB) and 2 MPI processes, serving as the reference point

for evaluating strong scaling performance. The distributed

training of the MobileNetV2 CNN model was executed over 10

epochs, with each MPI process (rank) independently logging

training metrics "Figure 7".

During the first training experiment with a single Raspberry Pi

(4B) running two MPI processes, the model exhibited a clear

and steady learning trajectory over the course of ten epochs.

Both training ranks began with high loss values—around (2.36)

for Rank 1 and (2.37) for Rank 0—and reached much lower

values by the end, dropping to approximately (1.52) and (1.61),

respectively. Correspondingly, the training accuracy on both

ranks improved consistently, rising from (15%) to about (45%).

This smooth reduction in loss and increase in accuracy, free of

plateaus or abrupt reversals, demonstrates that the learning

process was stable and incremental; the network showed no

signs of numerical instability or failure to adapt its weights in

response to data "Figure 7".

Significantly, these learning curves affirm that, even within a

resource-constrained edge scenario like an RPi4B with 8GB

RAM, the data-parallel, MPI-synchronized MobileNetV2

model is capable of effective training on the CIFAR-10 dataset.

The continual upward trend in accuracy and the downward

movement in loss show that the model is genuinely learning

and generalizing, rather than stagnating or overfitting through

mere repetition. By tracking both metrics, it is clear that weight

updates via distributed gradients are meaningful, and the

training infrastructure is sound. This benchmark therefore sets

an essential reference point: as the experiment later scales to

multiple nodes, any changes in learning behavior—such as a

loss in accuracy or a plateau in improvement—can be directly

linked to the effects of distributed training, communication

overheads, or computational fragmentation.

In terms of final model performance, the evaluation performed

by the root rank on the completely unseen CIFAR-10 test set

— using the final, fully synchronized model weights — yielded

a test accuracy of 48.43% after ten epochs. This test metric is

independent of, and not directly comparable to, the mean

training accuracy from the last epoch (43.5%), since the latter

is averaged over the per-rank training shards seen during

optimization. The slightly higher test accuracy is plausibly due

to mild regularization effects and beneficial stochastic

influences introduced by parallel training and weight

averaging, rather than an anomaly. The final test loss (1.4732)

closely matched the mean training loss (1.5683), indicating that

the model achieved a balanced fit without overfitting within

this training regime. Both the training and the test metrics

improved steadily and in parallel across ranks, amounting to an

overall accuracy gain of roughly 30 percentage points from

initialization.

In the context of the distributed MobileNetV2 training

experiments, the values ([Root] Test acc: 0.4843 | Test loss:

1.4732) represent the performance of the fully synchronized

final model on the completely unseen CIFAR-10 test set,

evaluated exclusively by the root MPI process after the last

epoch “Table 2”, "Figure 7", “Table 3”. Unlike the mean

training accuracy (43.50 %) and loss (1.5683), which are

averaged across all ranks over their respective local training

shards in the last epoch, the test metrics are computed once on

the full 10,000-image test set using the final, globally averaged

weights from all processes. This methodological separation

ensures that the reported test performance is an unbiased

measure of the model’s generalization ability rather than its

ability to recall the training samples it has optimized on [12].

The fact that the final test accuracy is slightly higher than the

mean training accuracy is explainable by beneficial

regularization effects and the stochastic nature of distributed

weight updates, rather than by any data leakage [13]. Moreover,

the close correspondence between the final test loss (1.4732)

and the mean training loss (1.5683) indicates an absence of

overfitting in this training regime, with both training and test

metrics improving in parallel throughout the run. As such, these

root-rank test values provide the most reliable indicator of how

effectively the distributed system produces a model that

performs well on new data, and they serve here as the definitive

benchmark for comparing learning quality across the scaling

configurations presented in “Table 3” [14].

Table 3. Summary Table: Train Accuracy/loss vs [Root]

test acc/loss

Metric Evaluated

Where &

When

Data

Used

Meaning

Train

accuracy/

loss

Averaged

across ALL

ranks, last

epoch of

Local

train data

(per

Model fit to

seen data—

how well it

learned

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

50

training rank) during

training

[Root]

Test

acc/loss

Root rank

ONLY, once

after

synchronization

Entire

test set,

never

seen

during

training

Model’s

generalization

power—real

prediction

ability on

novel data

Figure 7: MobileNetV2 CNN Model Training results in

one RPi with two MPI (Ranks) processes (np=2).

This single-node result is especially important for interpreting

broader cluster behavior. It establishes the baseline for “ideal”

learning rates and convergence patterns in a minimal-

communication environment. When scaling to more nodes,

deviations—whether in the form of flattened learning curves,

diminished final accuracy, or increased instability—provide

direct evidence of the points where distributed system effects,

such as gradient staleness or insufficient data per rank, begin to

inhibit effective learning. Conversely, if learning dynamics

remain similarly robust while total training time drops as the

cluster scales out, the system achieves strong scaling without

loss of learning quality.

Finally, the experiment confirmed robust technical

performance on all fronts. There were no memory bottlenecks

or CPU undersaturation issues; both MPI ranks maintained

near-100% CPU utilization, underscoring optimal resource

usage for the batch size in use. Epoch end times between ranks

were nearly identical, confirming that sharding and

synchronization were correctly implemented for balanced

workload distribution. Each rank processed its own non-

overlapping data partition, ensuring every example contributed

productively to model updates, which is essential for fully

leveraging the dataset and sustaining healthy learning

dynamics.

Case 2: MobileNetV2-CNN_rpi-2_mpi-4:

In this second scaling configuration, the MobileNetV2 CNN

training was deployed on two Raspberry Pi 4B nodes, each

equipped with 8 GB of RAM, for a total of four MPI

processes—two per node. The batch size was fixed at 24

images per node (12 per rank), and the model was trained for

10 epochs using synchronous stochastic gradient descent, with

model weight averaging performed across all ranks at the end

of each epoch. The CIFAR-10 training set was

deterministically partitioned so that each rank processed a

unique shard of 12,500 samples, ensuring balanced workloads

and reproducibility across runs. As in all experiments, the

environment was provided by a shared NFS-mounted virtual

environment, which guaranteed identical software versions and

dependencies across both nodes, securing reproducibility and

eliminating version drift "Figure 8".

The learning trajectory across the four ranks followed a stable

and monotonic pattern of convergence, even as the training was

distributed across multiple nodes. Initial losses were high—

approximately (2.48 to 2.51) in the first epoch—but declined

steadily to between (1.62 and 1.64) by the final epoch "Figure

8". Training accuracy started in the (13–14 %) range and

improved consistently to around (39–40 %) after ten epochs.

The absence of plateaus, reversals, or erratic jumps in the

curves indicates that the distributed training-maintained

stability and that parallelization did not introduce detrimental

instability or divergence. Moreover, the close agreement in

final loss and accuracy values across ranks confirms that the

data partitioning strategy and MPI synchronization scheme

ensured uniform learning progress.

When aggregating performance across all ranks, the mean

training accuracy after the tenth epoch was (39.46 %) and the

mean training loss was (1.6322) “Table 3”, "Figure 8".

Evaluation of the fully synchronized final model, performed

exclusively by the root rank on the held‑out CIFAR‑10 test set,

yielded a test accuracy of (42.59 %) and a test loss of (2.5650).

These test metrics are distinct from the training averages: while

the training figures measure fit to the data seen during

optimization, the test values reflect the model’s ability to

generalize to completely unseen samples. The lowered test

accuracy compared to the single‑node baseline (48.43 %) and

the increase in test loss suggest that scaling to multiple nodes

introduced additional communication overhead and smaller

per‑rank datasets, both of which can limit convergence and

dampen generalization performance.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

51

Figure 8: MobileNet CNN Model Training results in two

RPi’s with four MPI (Ranks) processes (np=4).

The divergence between the training and test metrics in this

configuration is more pronounced than in the baseline, with the

higher test loss indicating less stable generalization. In

distributed, CPU-bound edge clusters, this effect can stem from

multiple factors: reduced statistical efficiency due to smaller

data shards per rank, gradient noise introduced by more

frequent synchronization, and the network latency inherent in

inter-node MPI communication. Weight averaging across a

larger number of ranks may also introduce a slight “staleness”

effect, where updates are based on gradients computed from

older parameter states.

From a scaling perspective, the total global wall-clock time

dropped to (2,332.69 sec)—down from roughly (4,242 sec) in

the baseline—yielding a speedup of about (1.82×). While this

falls slightly short of the theoretical (2×) ideal, it still

corresponds to a very high efficiency of (≈ 90.9 %), indicating

that communication and synchronization overheads remained

minimal at this scale. The first epoch showed some variability

in duration across ranks, likely due to initialization and caching

effects, but subsequent epochs stabilized, confirming good

runtime consistency. The accuracy drop observed at np = 4

therefore reflects statistical inefficiency from smaller per-rank

dataset shards, rather than communication bottlenecks.

These observations highlight the central trade-off in strong

scaling on resource-constrained hardware: while distributing

the workload across more nodes accelerates training, it can

impair learning quality if the per-rank dataset becomes too

small and communication costs begin to dominate.

Nevertheless, this two-node, four-process configuration

demonstrates that meaningful speed improvements are

achievable on the cluster without catastrophic degradation in

model accuracy, providing valuable insight into the practical

limits and sweet spots for parallel training in edge-scale deep

learning systems.

Case 3: MobileNetV2-CNN_ rpi-1_mpi-2 to rpi-24_mpi-48 -

Cluster-Wide Analysis and Observed Scaling Patterns:

In this configuration, the MobileNetV2 CNN model was trained

in a fully distributed manner across the entire 24-node

Raspberry Pi 4B cluster, with 48 MPI processes—two ranks per

node. Each node processed a batch of 24 images (12 per rank),

yielding an extremely small per-rank shard of just (~1,041–

1,042) images from the 50,000-image CIFAR-10 training set.

The training ran for 10 epochs using synchronous SGD, with

model weights averaged globally across all processes at each

epoch boundary. The environment was identical to the

smaller-node runs, using the NFS-mounted virtual environment

to guarantee software consistency, version alignment, and

reproducibility across all nodes.

Note:

 In the cluster-wide run with 48 MPI processes (across 24

RPi’s, two ranks per node), the total CIFAR-10 training set

of 50,000 images was evenly partitioned across all ranks.

The data loader in your script ensures that each MPI rank is

assigned a non-overlapping subset of the dataset by using

strided indexing:

𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑟𝑎𝑛𝑘 = [
50,000 𝑖𝑚𝑎𝑔𝑒𝑠

48 𝑟𝑎𝑛𝑘𝑠
] = 1,041 𝑜𝑟 1, 042

Since 50,000 divided by 48 is approximately 1,041.67, this

means that most ranks get 1,042 images, while a few may

receive 1,041, maintaining a balanced split.

This small shard size is a natural mathematical consequence

of the strong scaling setup (fixed total data, increasing

number of processes), and it is critically important for

interpreting performance: when the per-rank dataset

becomes this small, each process gets to see only a tiny

fraction of the global data during every epoch, which

substantially increases the variance in gradient estimates

and undermines the model’s ability to learn robust,

generalizable features. This is why, as shown in the results,

strong scaling to this level reduces model performance,

despite continued speedup in wall-time execution.

- Learning Trajectory and Per-Rank Behavior:

Across ranks, the starting losses in epoch 1 were in the

high (2.66–2.73) range, with accuracies barely above

random-guessing levels (9–12%). While loss values

decreased slowly over the epochs—reaching (~1.95–2.00)

by epoch 10—and training accuracies improved

somewhat (to 20–25%), the overall learning curves

were shallow compared to the baseline runs. Variability

among ranks was minimal after the first epoch, indicating

correct synchronization and balanced sharding, but the

magnitude of improvement was small: most ranks saw

accuracy gains of just (10–12) percentage points over all

10 training epochs. These weak per-rank accuracy

improvements reflect the severe data scarcity at this

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

52

scale—each rank has fewer than 1,050 training images,

which is insufficient for stable representation learning

given MobileNetV2’s parameter space. The synchronous

averaging step effectively pulls weights toward a noisy

global mean, with each rank’s updates based on tiny and

highly variable gradient samples.

- Aggregated Performance Metrics:

By the end of epoch 10, the mean training accuracy

aggregated across all ranks was (22.27 %), with a mean

training loss of (1.9856). When the final synchronized

model was evaluated by the root rank on the entire

held-out CIFAR-10 test set, the accuracy collapsed

to (10.00 %), effectively random guessing for a 10-class

classification task, and the test loss plateaued

at (2.3026)—very close to the loss of a uniform output

distribution. This unmistakably signals that the

model failed to generalize at all.

- Train vs Test Metric Gap:

The gap here is both large and highly significant:

- Training metrics: averaged over small shards, reflect

the model’s fit to the tiny slice of data each rank saw

repeatedly. This means that each rank sees only

~1,041–1,042 images (≈ 2 % of CIFAR-10) during

an epoch — and it sees the exact same shard each

time. A mean training accuracy of (22.27 %) means

“within the tiny subset of data each process saw over

and over, it managed to classify about 1 in 5 correctly

by the end of training.”

- Test metrics: computed on unseen data using the

converged global weights, expose the fact that the

learned weights contain almost no transferable class

discrimination ability. Test accuracy is 10.00 %,

which is exactly what you’d expect from random

guessing in a 10-class classification task.

In the largest configuration, the model’s learned weights,

when evaluated on unseen CIFAR-10 test data, exhibit no

discriminative power—test accuracy is 10 %, matching

random guessing in a ten-class problem. This represents a

gap of over 12 percentage points compared to the mean

training accuracy of 22.27 %, and is scientifically

significant because it exposes severe overfitting to the tiny

per-rank shards (~1,041 images each) used in strong

scaling at this extremity. Each rank memorizes patterns

from its local subset that fail to generalize when

combined, and synchronous averaging at epoch

boundaries blends many weak, overfit parameter sets into

a noisy global model. With so few examples per rank and

only 10 epochs permitted by Raspberry Pi memory

constraints, gradient estimates have high variance and the

averaged updates cannot converge to a useful global

solution, causing the model to lose all ability to distinguish

between classes on real, unseen data.

Note:

Raspberry Pis—and similar ARM-based single-board

computers—remain highly relevant in edge computing

scenarios, particularly for inference with pre-trained

models, distributed sensing, lightweight data analytics,

and on-the-fly feature extraction. Their low cost, energy

efficiency, and ease of deployment make them attractive

for scalable, decentralized AI systems. The experimental

results in this study show that in modest cluster

sizes (approximately 1–4 nodes), Raspberry Pis can

execute distributed deep learning training with

reasonable accuracy and throughput, making them viable

for certain edge learning tasks where frequent retraining

is unnecessary and each process has access to a

sufficiently large data shard. However, when strong

scaling is pushed too far on a fixed, small dataset—so that

each process receives only a very limited number of

training examples (e.g., fewer than 2,000 images)—

learning performance collapses regardless of wall-clock

speed gains. This limitation stems from fundamental

principles of statistical learning and the behavior of

distributed stochastic gradient descent in small-data,

high-node-count regimes, rather than from any inherent

flaw in the Raspberry Pi architecture. In realistic edge

deployments, where models are typically trained on

larger, more powerful infrastructure and only fine-tuned

or retrained locally as needed, Raspberry Pi clusters can

still serve effectively for local model adaptation, federated

learning (with careful shard sizing), rapid prototyping, or

as supplementary compute resources for workload

offloading.

- Technical and Scaling Observations:

From a systems perspective, the results

show excellent raw scaling in wall-clock time (Total

Training Time): total runtime dropped to

just (424.73) seconds for 10 epochs—nearly (10 ×)

faster than the single-node baseline (4,242 s). Median

per-epoch times fell to (~17 sec) after the first epoch,

proving that the MPI collectives and network links were

functioning efficiently given the small payloads.

However, the tiny per-rank dataset size meant that

communication became statistically dominant rather than

compute-dominant: each rank finishes its local batches

quickly, but the updates are too noisy to meaningfully

improve the shared model.

This is a textbook example of the strong scaling limit in

distributed deep learning. Even with perfect load

balancing and very low communication time relative to

compute, there is a data-parallelism saturation point at

which each worker holds so little data that the global

model stops improving.

- Implications for Cluster-Wide Training:

These results make clear that while adding nodes on this

hardware platform yields impressive throughput numbers,

aggressive scaling past a certain point—in this case, well

before 48 processes—leads to a total loss of effective

learning. The speedup is therefore “empty” from an ML

perspective: computational work is done quickly, but it is

not productive in building a useful model.

For practitioners, this run illustrates:

- The importance of maintaining sufficiently large

per-rank batch and dataset sizes in data-parallel

training.

- That on edge-class networks (Gigabit Ethernet) and

non-GPU compute (ARM Cortex-A72), accuracy

degradation will set in long before network

bottlenecks do—here, purely as a function of data

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

53

fragmentation and gradient noise.

- That evaluation methodology matters: because test

metrics are computed only once by the root rank on

fresh data, the collapse in generalization cannot be

masked by high shard-level train performance.

- Strong Scaling: Speedup and Efficiency:

The baseline (1 RPi, 2 MPI processes)

takes (4,241.69 sec) to complete 10 epochs. All other

speedups (Sₙ) and efficiencies (Eₙ) are measured relative

to this “Table 3”, "Figure 9", "Figure 10".

Speedup trend:

𝑆(𝑛𝑝) =
𝑇𝑏𝑎𝑠𝑒

𝑇𝑛𝑝

- Scaling to 2 RPis (np=4) almost halves runtime,

reaching (Sₙ) ≈ 1.82.

- At 4 RPis (np=8) speedup is (≈ 2.09) — still

improving but already below the ideal (4×).

- As we go to 8, 12, 16, 20, and 24 nodes, runtime

keeps dropping, peaking at (S₂₄ ≈ 9.99). This is (≈
 10 ×) faster than baseline training, with less than

half the ideal linear scaling (ideal would-be S₂₄ = 24).

Efficiency trend:

𝐸(𝑛𝑝) =
𝑆(𝑛𝑝)

𝑛𝑝
2

𝑥 100%

- Efficiency starts at 100% by definition for the

baseline (np = 2), remains very high at np = 4 (≈ 90.9

%), and then decreases to ≈ 52.3 % at np = 8. Beyond

this point, efficiency stabilizes in the 40–50 % range

(≈ 51.4 % at np = 16 and ≈ 41.6 % at np = 24). This

indicates that scaling is highly effective up to

moderate process counts, but after ~8 nodes, each

additional node contributes diminishing returns. The

observed plateau reflects not only communication

overhead but also the statistical inefficiency of very

small per-rank datasets, which increasingly limit

convergence quality despite sustained runtime

improvements.

Interpretation:

Τhe speedup curve shows that the system scales in wall-

clock time effectively up to medium process counts, with

diminishing returns beyond that point. Efficiency remains

very high through np = 4 (≈ 90.9 %) and still moderate at

np = 8 (≈ 52.3 %), indicating strong scalability at small-

to-moderate scales. Beyond 8 nodes, efficiency stabilizes

in the 40–50 % range, as the fixed workload becomes

increasingly fragmented per rank. This plateau reflects the

combined effect of smaller per-rank datasets (statistical

bottleneck) and growing communication overhead, which

together limit further gains in global throughput.

- Learning Quality: Accuracy and Loss:

While runtime improves with scale, model learning

quality degrades severely beyond small configurations

“Table 3”, "Figure 11", "Figure 13":

- Baseline (1 RPi) — Healthy learning: Test Accuracy

= (48.43 %), Train Acc = (43.51 %), Train/Test

losses are close → strong generalization.

- 2 RPi’s — Slight drop: Test Acc = (42.59 %), some

loss increases but still reasonable learning.

- 4 RPi’s — Substantial collapse: Test Acc

= (13.06 %), Train Acc drops to (30.77 %).

- ≥8 RPi’s — Catastrophic failure: Test Acc fixed

at 10 % (random guess for CIFAR-10), Train Acc

(≈ 19–25 %). Test losses (≈ 2.302–2.304) (close to

untrained SoftMax baseline).

Interpretation:

Once per-rank data shards get too small (e.g., ≈ 6,250 images

at 8 RPi’s, (≈ 1,040) images at 24 RPis), gradient updates

become statistically noisy and insufficient for effective

learning. Even with near-ideal MPI synchronization efficiency,

the system simply propagates poor-quality updates, leading to

convergence collapse. This behavior is consistent with prior

findings on the limits of data parallelism [15] and the

detrimental effects of excessively small batch sizes on gradient

stability [16].

- Joint Analysis: Speed vs Learning:

Up to 2 RPi’s → Both speed and accuracy are acceptable:

efficiency remains near-ideal and learning quality is only

modestly reduced.

At 4 RPi’s → Runtime improves substantially and efficiency

remains high (≈90.9 %), but learning quality already shows a

marked decline due to smaller per-rank shards.

At 4 RPi’s onward → Speed continues to improve, but

accuracy collapses sharply.

The “speed-only” metric would suggest success, but the actual

model usefulness is nearly zero from 8 RPi’s upward.

From 8 RPi’s upward → Speed continues to improve, but

accuracy collapses to chance-level (≈ 10 %). The “speed-only”

metric would suggest success, but the actual model usefulness

is nearly zero once shard sizes fall below (≈ 6k) images per

process.

This represents a statistical strong-scaling break point for the

workload and hardware: between 4–8 RPi’s the system crosses

the line where adding resources no longer produces a

scientifically valuable model.

- Train Accuracy (%) vs MPI Processes (np):

The training accuracy curve as a function of MPI process count

reveals a steadily declining trend with increased parallelism

“Table 3”, "Figure 11":

- np = 2 (1 RPi) — (43.5 %) mean train accuracy:

strong, stable learning.

- np = 4 — moderate drop to (39.46 %), still within a

usable range but already reflecting reduced shard

sizes.

- np = 8 — Falls sharply to (≈ 30.8 %), marking the

onset of the strong-scaling break point where per-

rank shards (≈ 6.2k images) are too small for robust

gradient estimation.

- np ≥ 16 — Stabilizes in a low band between (≈ 19–

25 %), indicating that most processes are overfitting

to their tiny shard and contributing little to the global

model.

This train-accuracy degradation mirrors the collapse in

test accuracy beyond (np ≈ 8) and confirms that

the bottleneck is statistical, not computational: as shard

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

54

size falls below a few thousand images, additional ranks

do not improve learning, a phenomenon consistent with

the statistical inefficiency of data parallelism reported in

[15].

- Final Evaluation:

The results clearly indicate that, in this experimental setting,

the scaling limit is not determined primarily by network or MPI

communication overhead but by the shrinking per-rank dataset

size as the number of MPI processes increases. In other words,

statistical inefficiency from very small shards—not message

latency—kills learning performance first. For MobileNetV2

trained on CIFAR-10 with ARM-based Raspberry Pi 4B nodes,

the optimal operating point that balances training time

reduction with preservation of generalization quality lies

between two and four RPi’s (4–8 MPI processes). In this range,

parallel efficiency remains high (≈90 % at np=4 and ≈52 % at

np=8), confirming that MPI scaling itself is not the limiting

factor. Beyond this point, further parallelism produces

progressively smaller training subsets per rank, increasing

gradient variance and overfitting to shard-specific features.

This regime reflects the well-documented statistical bottleneck

of data parallelism [15] and the detrimental effect of

excessively small batches on gradient stability [18]. In practical

terms, the system is essentially performing fast but wrong

training: models converge quickly in wall-clock time but

contain almost no useful information for classifying unseen

data.

Table 3. MobileNetV2 CNN Model Training results: Strong Scaling Methodology

RPi’s

MPI
Processes

(np)

Epoch

Test acc
(final)

(%)

Test loss
(final)

Mean
Train Loss
(unitless)

(≈)

Mean
Train

Accuracy
(%)

Total (wall)
Training Time
(slowest rank)
(Mean) (sec)

Speedup
(Sₙ)

Efficiency
 (Eₙ) (%)

1 2 10 48.43% 1.4732 1.5683 43.51% 4241.69 1

2 4 10 42.59% 2.565 1.6322 39.46% 2332.69 1.81836849 90.92%

4 8 10 13.06% 2.3264 1.824 30.77% 2025.94 2.09368984 52.34%

8 16 10 10.00% 2.3046 1.9196 25.79% 1142.99 3.71104734 46.39%

12 24 10 10.00% 2.3026 1.9347 24.96% 723.47 5.86297980 48.86%

16 32 10 10.00% 2.3026 2.0212 20.53% 515.97 8.22080741 51.38%

20 40 10 10.00% 2.3026 2.1292 18.95% 511.21 8.29735333 41.49%

24 48 10 10.00% 2.3026 1.9856 22.27% 424.73 9.98679160 41.61%

Figure 9: Scalability of MobileNetV2 Training: Speedup (Sₙ) vs MPI Processes

1
1.818368493

2.093689843 3.711047341

5.862979806

8.220807411 8.297353338

9.986791609

0

2

4

6

8

10

12

0 10 20 30 40 50

Sp
ee

d
u

p
 (

Sₙ
)

MPI Processes (np)

MobileNetV2 CNN Model Training
Speedup (Sₙ) vs MPI Processes (np)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

55

Figure 10: Parallel Efficiency (Eₙ) of MobileNetV2 Training vs MPI Process Count

Figure 11: Training Accuracy (%) of MobileNetV2 CNN vs Number of MPI Processes (np)

Figure 12: Τotal Training Time (sec) of MobileNetV2 CNN vs Number of MPI Processes (n)

90.92%

52.34%
46.39% 48.86% 51.38%

41.49% 41.61%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 10 20 30 40 50

Ef
fi

ci
en

cy
 (

Eₙ
)

(%
)

MPI Processes (np)

MobileNetV2 CNN Model Training
Efficiency (Eₙ) vs MPI Processes (np)

43.51%
39.46%

30.77%
25.79% 24.96%

20.53% 18.95%
22.27%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 10 20 30 40 50

Tr
ai

n
 A

cc
u

ra
cy

 (
%

)

MPI Processes (np)

MobileNetV2 CNN Model Training
Train Accuracy (%) vs MPI Processes (np)

4241.69

2332.69

2025.94

1142.99
723.47

515.97 511.21 424.73

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50

To
ta

l T
ra

in
in

g
Ti

m
e

(s
ec

)

MPI Processes (np)

MobileNetV2 CNN Model Training
Total Training Time (sec) vs MPI Processes (n)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

56

Figure 13: Mean Training Loss of MobileNetV2 CNN vs Number of MPI Processes

4. FUTURE WORK
Building on the insights gained from the MobileNetV2

experiments, a promising direction for future research is to

extend the strong scaling study to alternative lightweight

convolutional neural networks, such as SqueezeNet. Given

SqueezeNet's even smaller parameter footprint and memory

requirements compared to MobileNetV2, it is an ideal candidate

for distributed training on resource-constrained clusters like

Raspberry Pi. Investigating how SqueezeNet's architecture

interacts with varying shard sizes, synchronization frequency,

and different levels of parallelism could yield further

understanding of the trade-offs between speed, efficiency, and

learning quality in edge-class hardware. In particular, this line

of study may help reveal whether models with lower

representational capacity can better tolerate small per-rank

datasets or if they exhibit different failure points in

generalization under aggressive strong scaling.

Future experiments should also consider the impact of data

augmentation, adaptive batch sizing, and mixed-precision

computation to further optimize learning performance within

hardware and memory limitations. Ultimately, such

comparative studies will provide deeper guidance for designing

efficient, scalable, and practically useful distributed learning

systems in realistic edge computing environments.

5. CONCLUSION
This work has presented a detailed strong-scaling study of

synchronous, data-parallel MobileNetV2 CNN training on a

24-node Raspberry Pi 4B cluster interconnected over Gigabit

Ethernet, with configurations ranging from a single node

(np = 2) to the full cluster (np = 48). By jointly analyzing

wall-clock performance metrics (speedup, efficiency) and

machine learning outcomes (final training/test accuracy and

loss), it have identified the practical boundaries of distributed

training effectiveness on resource-constrained ARM-based

hardware.

The results show that while wall-time (Total Training Time)

per training run can be reduced by nearly an order of magnitude

through strong scaling, communication overhead is not the

primary limiting factor at this scale. Instead, the dominant

constraint is the shrinking per-rank dataset size: beyond 4–8

MPI processes, each worker receives too few examples per

epoch, causing gradient estimates to become noisy and the

averaged model to lose generalization ability. This statistical

bottleneck manifests as a sharp drop in test accuracy — from

(48.43 %) on a single node to the random-guessing baseline of

(10 %) at high process counts — even though MPI

synchronization remains efficient (≈ 40–50% at scale) and

system throughput continues to rise. This observation is

consistent with prior reports of statistical inefficiency in data-

parallel training [15] and the destabilizing effects of

excessively small batches on gradient quality [16].

From a practical standpoint, the optimal configuration for this

MobileNetV2 + CIFAR-10 workload on 8 GB Raspberry Pi 4B

nodes lies between two and four RPi’s (4–8 MPI processes),

where time-to-train and generalization quality are both

acceptable. Scaling beyond this range produces “fast but wrong

training”: models converge quickly in wall time but acquire

almost no discriminative power on unseen data. Nevertheless,

small-to-moderate RPi clusters remain viable for edge AI

scenarios such as local model adaptation, federated learning

with careful shard sizing, rapid prototyping, and

inference-focused deployments.

Finally, the methodology and insights from this study provide

a reproducible framework for evaluating the interaction

between parallelism, statistical efficiency, and hardware

constraints. Future work will extend this analysis to alternative

lightweight architectures such as SqueezeNet, explore adaptive

batching and augmentation strategies, and investigate hybrid

edge/cloud training pipelines to maximize both throughput and

model quality in realistic edge computing environments.

6. ACKNOWLEDGMENTS
My sincere gratitude to Assistant Professor Ioannis S.

Barbounakis for his precious guidelines, knowledge and

contribution for the completion of this study.

7. REFERENCES
[1] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep

learning. Nature, 521(7553), 436–444.

[2] Howard, A. G., et al. (2017). MobileNets: Efficient

convolutional neural networks for mobile vision

applications. arXiv:1704.04861.

[3] Sergeev, A., & Del Balso, M. (2018). Horovod: fast and

1.5683

1.6322

1.824

1.9196 1.9347
2.0212

2.1292

1.9856

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

0 10 20 30 40 50

Lo
ss

 (
M

ea
n

)
 (

%
)

MPI Processes (np)

MobileNetV2 CNN Model Training
Loss (Mean) vs MPI Processes

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.41, September 2025

57

easy distributed deep learning in TensorFlow.

arXiv:1802.05799.

[4] Lane, N. D., Bhattacharya, S., et al. (2016). DeepX: A

software accelerator for low-power deep learning

inference on mobile devices. In IPSN '16.

[5] Dastjerdi, A. V., & Buyya, R. (2016). Fog computing:

Helping the Internet of Things realize its potential.

Computer, 49(8), 112–116.

[6] Raspberry Pi 4 Model B. [Online]. Available:

raspberrypi.com/products/raspberry-pi-4-model-b/.

[7] Raspberry Pi 4 Model B specifications. [Online].

Available:

https://magpi.raspberrypi.com/articles/raspberry-pi-4-

specs-benchmarks

[8] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., &

Chen, L. C. (2018). MobileNetV2: Inverted residuals and

linear bottlenecks. CVPR, pp. 4510–4520

[9] Krizhevsky, A. (2009). Learning multiple layers of

features from tiny images. Technical Report, University of

Toronto.

[10] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep

learning. MIT Press.

[11] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,

Wang, W., Weyand, T., Andreetto, M., & Adam, H.

(2017). MobileNets: Efficient convolutional neural

networks for mobile vision applications. arXiv preprint

arXiv:1704.04861.

[12] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep

learning. MIT Press.

[13] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,

Le, Q. V., … & Ng, A. Y. (2012). Large scale distributed

deep networks. Advances in Neural Information

Processing Systems, 25, 1–11.

[14] Gropp, W., Lusk, E., & Skjellum, A. (2014). Using MPI:

Portable parallel programming with the message-passing

interface (3rd ed.). MIT Press.

[15] Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,

Frostig, R., & Dahl, G. E. (2019). Measuring the effects

of data parallelism on neural network training. Journal of

Machine Learning Research, 20(112), 1–49.

http://jmlr.org/papers/v20/18-789.html

[16] Masters, D., & Luschi, C. (2018). Revisiting small batch

training for deep neural networks. arXiv preprint

arXiv:1804.07612. https://arxiv.org/abs/1804.07612

IJCATM : www.ijcaonline.org

http://jmlr.org/papers/v20/18-789.html
https://arxiv.org/abs/1804.07612

