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ABSTRACT 

This paper presents a comprehensive investigation into the 

strong scaling performance of distributed training for 

Convolutional Neural Networks (CNNs) using the 

MobileNetV2 architecture on a resource-constrained Beowulf 

cluster composed of 24 Raspberry Pi 4B nodes (8 GB RAM 

each). The training system employs the Message Passing 

Interface (MPI) via MPICH with synchronous data parallelism, 

running two processes per node across 2 to 48 total MPI 

processes. A fixed CIFAR-10 dataset was used, and all 

experiments were standardized to 10 epochs to maintain 

memory stability. 

The study jointly evaluates execution time scaling, training/test 

accuracy, and convergence loss to assess both computational 

performance and learning quality under increasing parallelism. 

Training time decreased nearly ten-fold at cluster scale, 

reaching a maximum speedup of (≈9.99×) with (≈41.6 %) 

parallel efficiency at 48 processes. Efficiency remained very 

high at small scales (≈90.9 % at np=4) and moderate at np=8 

(≈52.3 %), confirming that MPI scaling itself is effective up to 

this range. However, while single-node and small-scale runs 

(up to 4–8 MPI processes) preserved strong generalization 

ability, larger scales suffered from sharply reduced per-rank 

dataset sizes, causing gradient noise and eventual collapse of 

test accuracy to the random guess baseline (10 %). 

These results demonstrate that, although ARM-based 

Raspberry Pi clusters can support feasible small-scale 

distributed deep learning, strong scaling beyond an optimal 

process count leads to “fast-but-wrong” training in which 

wall-clock performance improves but model utility on unseen 

data is lost. This work provides the first detailed end-to-end 

evaluation of MPI-based synchronous CNN training across an 

ARM-based edge cluster, and outlines future research 

including comparative scaling with SqueezeNet and 

exploration of ultra-low-power Spiking Neural Networks 

(SNNs) for neuromorphic edge learning. 
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1. INTRODUCTION 
Deep learning has emerged as a cornerstone of modern artificial 

intelligence, with Convolutional Neural Networks (CNNs) 

demonstrating state-of-the-art performance in image 

recognition, classification, and embedded vision systems [1]. 

The training of CNN models, however, remains 

computationally intensive and is typically performed on 

centralized, high-performance GPU clusters. In contrast, recent 

developments in edge computing and distributed systems have 

prompted growing interest in enabling scalable training on low-

cost, heterogeneous platforms. 

This study focuses on the distributed training of MobileNet, a 

computationally efficient CNN architecture designed for 

mobile and embedded environments [2]. The implementation 

employs the Message Passing Interface (MPI) on a Beowulf 

cluster consisting of 24 Raspberry Pi 4B nodes, each equipped 

with an ARM-based processor and 8GB of RAM. A total of 48 

MPI processes are executed - two per node - using mpi4py to 

facilitate data-parallel training over a fixed CIFAR-10 dataset 

and to manage inter-process communication in a synchronous 

training model [3]. The objective is to evaluate strong scaling 

behavior in this resource-constrained environment by 

examining how model convergence, classification accuracy, 

and total training time are affected as the number of parallel 

processes increases. Due to hardware memory limitations, the 

number of training epochs is fixed at (10), beyond which 

execution becomes unstable. This constraint reflects the 

practical limitations faced by edge devices and embedded 

systems, where computational capacity and memory bandwidth 

are restricted [4]. The experimental results aim to provide 

insight into the scalability of deep learning workloads on ARM-

based multi-node systems. Particular attention is given to the 

impact of parallelism on training performance and 

communication overhead, offering empirical evidence relevant 

to the deployment of distributed CNN training in constrained 

environments such as fog and edge computing platforms [5] 

The Raspberry Pi 4 Model B (8GB RAM), illustrated in "Figure 

1", serves as the fundamental building block of the cluster. 

Each unit features a 64-bit quad-core ARMv8 Cortex-A72 CPU 

clocked at 1.5 GHz [6], [7]. Its affordability and accessibility 

were key factors in its selection as the base hardware for 

constructing a high-performance computing cluster, enabling a 

systematic evaluation of its capabilities in parallel processing 

and distributed computing environments. 
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Figure 1: Single Board Computer (SBC) - Raspberry Pi 4 

Model B [6], [7]. 

2. SYSTEM DESCRIPTION 

2.1 Hardware Equipment 
The computational platform used for this study consists of a 

cost-effective yet capable Beowulf-style cluster constructed 

from 24 Raspberry Pi 4B units, each equipped with 8GB of 

RAM. One device is configured as the master node, responsible 

for resource allocation and process orchestration, while the 

remaining 23 function as worker nodes participating in parallel 

execution under MPI coordination. An overview of the 

physical deployment is presented in "Figure 2". The cluster is 

physically organized into four vertical stacks, with each stack 

comprising six Raspberry Pi boards. All nodes are 

interconnected through TP-Link TL-SG1024D unmanaged 

Gigabit Ethernet switches, supporting up to 1 Gbps of 

bandwidth per device. This network architecture ensures 

consistent and low-latency inter-node communication, 

effectively simulating a high-performance computing 

environment within an ARM-based embedded framework. 

To guarantee consistent power delivery across all units, the 

system employs two industrial-grade switch-mode power 

supplies (60A, 5V), adjusted to output 5.80V. This voltage 

tuning mitigates power loss across extended cabling paths and 

ensures reliable operation under sustained parallel workloads. 

For data storage, the master node utilizes a 1TB Samsung 980 

PCIe 3.0 NVMe SSD, while each worker node is fitted with a 

256GB Patriot P300 NVMe M.2 SSD. These storage 

components provide high-throughput local I/O performance 

and enable smooth data handling during training, especially 

when working with larger input datasets and intermediate 

model states. 

 

Figure 2: Deployment of the Beowulf Cluster with (24) 

RPi-4B (8GB). 

2.2 Software Environment and Toolchain 

The software stack employed in this study was designed to 

support distributed training of deep neural networks over 

ARM-based systems. All nodes in the cluster operated under 

Raspberry Pi OS 64-bit Lite (Debian-based), running Python 

3.11.5 in a shared virtual environment mounted via NFS to 
ensure consistency across the system. Communication between 

processes was managed through MPICH v4.2.0 and 
coordinated using the mpi4py interface (v3.1.6). 

In addition to the numerical and scientific computing libraries 

used in previous benchmarking efforts - namely NumPy 

(v1.26.4), SciPy (v1.13.0), scikit-learn (v1.4.2), and psutil 

(v7.0.0) - this project introduced deep learning-specific 

dependencies, including TensorFlow (v2.15.0), PyTorch 

(2.8.0) and Keras (integrated within TensorFlow) to support 

CNN construction, training, and evaluation. 

All packages were compiled for compatibility with the ARMv8 

architecture and deployed uniformly across the cluster to 

ensure reproducibility and eliminate version-related 

inconsistencies. The Python virtual environment was shared 

across all nodes using NFS, while passwordless SSH and 

synchronized environmental variables (including 

LD_LIBRARY_PATH and UCX_TLS) facilitated seamless 

MPI-based coordination for training execution. 

All MPI executions were performed within the virtual 

environment using mpiexec, with explicit machinefile 

configuration and core binding to ensure optimal resource 

utilization per process. This containerized configuration not 

only guarantees identical behavior across all nodes, but also 

enhances the scientific reliability and reproducibility of 

experimental results. 

2.3 Design 

The physical and logical structure of the Raspberry Pi cluster 

used in this study is presented in "Figure 2" and "Figure 3" 

respectively. The system comprises 24 Raspberry Pi 4B nodes, 

each equipped with 8GB of RAM. All nodes are interconnected 

via a 24-port Gigabit Ethernet switch, enabling full-duplex 

communication with bandwidth capacities of up to 1 Gbps per 

device. Within this architecture, one node operates as the 

master (head) node, managing scheduling and coordination 

tasks, while the remaining 23 nodes function as distributed 

compute resources. Each unit is assigned a static IP address to 

facilitate deterministic routing, and all inter-node 

communication is secured using SSH. 

The master node is provisioned with a 1TB Samsung 980 PCIe 

3.0 NVMe M.2 SSD, capable of achieving up to 3500 MB/s 

read and 3000 MB/s write speeds under ideal conditions. Each 

worker node is equipped with a 256GB Patriot P300 NVMe 

M.2 SSD, offering up to 1700 MB/s read and 1100 MB/s write 

speeds. These drives are interfaced through USB 3.0 

connections, which support theoretical transfer rates up to 4.8 

Gbps (600 MB/s). This configuration represents a substantial 

performance improvement over traditional USB 2.0 or 

microSD-based systems, offering significantly faster I/O 

throughput for model data and dataset access. 

While the USB 3.0 interface does not reach the bandwidth of 

native PCIe lanes, the integration of NVMe-class SSDs 

dramatically enhances storage responsiveness and workload 

execution times. This contributes to a measurable performance 

uplift in training and testing scenarios involving large-volume 

parameter updates or frequent disk access. The ability of the 

Raspberry Pi 4B platform to boot and operate reliably from 

external SSDs further supports this design choice. 
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Figure 3: RPi-4B Beowulf cluster architecture diagram. 

- Target Platform and Feasibility Considerations 

This study focuses on evaluating the feasibility and 

performance of distributed convolutional neural network 

(CNN) training using the MobileNet architecture on a 

resource-constrained Beowulf cluster composed of 

Raspberry Pi 4B devices with 8GB of RAM per node. 

While MobileNet was originally designed for lightweight 

image classification tasks on mobile and embedded 

systems, training such models on low-power clusters 

presents unique challenges and opportunities for 

benchmarking. 

The target cluster features ARM Cortex-A72 processors, 

lacking hardware accelerators such as GPUs or vectorized 

instruction sets like AVX. Consequently, all computations 

are executed on CPUs, which naturally results in limited 

training speed compared to high-performance computing 

environments. Furthermore, inter-node communication is 

performed via Ethernet connections, introducing 

additional latency and bandwidth constraints during 

distributed training operations. 

Despite these hardware limitations, MobileNet remains an 

ideal candidate for experimentation due to its lightweight 

design based on depth wise separable convolutions and its 

moderate memory footprint. By leveraging small-scale 

datasets such as CIFAR-10, we ensure that training 

remains computationally feasible within the available 

memory (8GB per node) and processing capabilities of the 

cluster. 

The main objective of this study is not to achieve state-of-

the-art training speed or accuracy but rather to explore the 

viability, performance scaling, and communication 

overhead of distributed deep learning workloads on low-

power, cost-effective cluster architectures. This approach 

offers valuable insights for edge computing scenarios, 

where similar hardware and performance constraints are 

common. 

2.4 Theoretical Background: The 

MobileNet CNNs Clustering Algorithm  

Convolutional Neural Networks (CNNs) represent a 

fundamental class of deep learning architectures that have 

demonstrated exceptional performance in image classification 

tasks due to their ability to automatically extract hierarchical 

spatial features from data [1]. Among the many CNN variants, 

MobileNet has emerged as a prominent architecture optimized 

for mobile and embedded environments. It achieves a favorable 

balance between performance and efficiency through the use of 

depth wise separable convolutions -a factorization technique 

that decomposes standard convolutions into two simpler 

operations, substantially reducing both parameter count and 

computational cost- [2]. 

The version employed in this study is MobileNetV2, which has 

been shown to maintain competitive classification accuracy 

while dramatically lowering the number of floating-point 

operations per inference. Its compact size and low memory 

footprint make it particularly suitable for ARM-based 

embedded systems, such as the Raspberry Pi 4B platform used 

in this research [2], [8]. 

To evaluate the training behavior of MobileNet in a distributed 

setting, the model is trained on the CIFAR-10 dataset -a widely 

adopted image classification benchmark consisting of 60,000 

color images (32×32 resolution) evenly divided across 10 

classes [9]. The dataset contains 50,000 training images and 

10,000 test images and is well-suited for performance 

evaluations on constrained hardware due to its moderate size 

and manageable complexity. 

Although more challenging datasets such as CIFAR-100 exist, 

the hardware limitations of the ARM-based Raspberry Pi 

cluster pose significant barriers to their use. CIFAR-100 

increases the number of output classes tenfold, which in turn 

inflates the final dense layers of the model, resulting in higher 

memory consumption and greater computational demand 

during training. Empirical tests demonstrated that training 

MobileNet on CIFAR-100 caused memory exhaustion or 

performance degradation beyond sustainable levels -even when 

batch sizes were minimized. By contrast, MobileNet was 

successfully trained on CIFAR-10 up to 10 epochs without 

exceeding memory or thermal constraints, confirming its 

feasibility on this cluster configuration. 

Given these constraints, CIFAR-10 was selected to ensure 

training stability while still allowing analysis of learning 

performance and distributed scaling behavior. The dataset’s 

compact structure aligns well with the goal of benchmarking 

MobileNet's efficiency in parallel execution on low-power 

embedded systems. 

3. METHODOLOGY 

3.1 System Configuration and 

Experimental Context 

The experiments were conducted on a custom-built Beowulf 

cluster comprising 24 Raspberry Pi 4B nodes. Each node is 

equipped with a quad-core ARM Cortex-A72 CPU and 8GB of 

LPDDR4 RAM, and interconnected via Gigabit Ethernet to 

facilitate low-latency inter-node communication. The cluster's 

low-power architecture, limited memory footprint, and absence 

of hardware accelerators such as GPUs or AVX-capable CPUs 

present a unique set of constraints that directly influence the 

design of the training pipeline. 

To accommodate these limitations, the study leverages the 

MobileNetV2 convolutional neural network - a lightweight 

model designed for mobile and embedded devices. Its use of 

depthwise separable convolutions reduces the number of 

trainable parameters and computational load, making it 

particularly well-suited to the ARM-based environment. 

The CIFAR-10 dataset is used for all training experiments. It 

comprises 60,000 color images (32×32 resolution) across 10 

classes, with 50,000 used for training and 10,000 for testing. Its 

compact size aligns well with the available RAM and I/O 
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capacity of the cluster, enabling full dataset loading in memory 

without inducing swapping or resource contention. 

All nodes run Raspberry Pi OS 64-bit Lite with Python 3.11.5 

in a shared virtual environment mounted via NFS. The single-

node batch-size sweep uses a lightweight PyTorch 2.8.0 driver 

(with torchvision) configured to the same MobileNetV2 family, 

input preprocessing, optimizer, and synchronous MPI pattern 

(gather/average/broadcast) to accelerate parameter exploration.  

The distributed full-cluster training uses TensorFlow 2.15 

(Keras API) with the same synchronous data-parallel scheme 

via mpi4py 3.1.6 over MPICH 4.2.0. Unless otherwise stated, 

both stacks use MobileNetV2 (width multiplier 0.5), channels-

last (NHWC) tensors resized to (128×128), SGD (lr=5e-4, 

momentum=0.9, weight decay=0), and identical normalization. 

All packages are CPU-only builds compiled for ARMv8 and 

distributed uniformly across nodes. MPI processes are 

launched with mpiexec using an explicit machinefile and core 

binding for hardware-locality reproducibility. Because both 

stacks fix the same architecture (MobileNetV2, width 0.5), 

input shape/layout (128×128, NHWC), normalization, 

optimizer and hyperparameters (SGD, lr = 5e-4, momentum = 

0.9, no weight decay), and the same synchronous MPI update 

pattern (gather → average → broadcast), the PyTorch sweep 

and TensorFlow/Keras runs are directly comparable in 

compute/memory footprint and training dynamics. 

NHWC is a tensor layout that orders image data as (N: batch 

size), (H: image height), (W: image width), (C: number of 

channels), so a 32-image batch of 128×128 RGB pictures is 

shaped (32, 128, 128, 3) in NHWC. On ARM CPUs, NHWC 

can improve cache/NEON access patterns—especially for 

depthwise separable convs (like MobileNet)—so we enable it 

to squeeze a bit more throughput. 

3.2 Distributed Training Strategy 
It’s adopted data parallelism: each MPI process (rank) trains on 

a disjoint shard of the dataset and contributes to synchronous 

model updates at defined barriers. It’s run two ranks per 

Raspberry Pi 4B to balance CPU cores and 8 GB RAM per 

node. 

3.2.1 Deterministic sharding 

Let (𝑁𝑝) be the total number of ranks (processes). During each 

epoch we partition the 50,000 CIFAR-10 training samples by 

strided indexing (i.e sample (i) is assigned to 

𝑟𝑎𝑛𝑘 (𝑘) 𝑖𝑓(𝑖) 𝑚𝑜𝑑 𝑁𝑝 = 𝑘. Thus, each rank processes 

approximately (≈ 50,000/𝑁𝑝) unique samples per epoch. This 

guarantees non-overlapping, reproducible data splits and 

ensures a uniform workload across all ranks. 

𝑠ℎ𝑎𝑟𝑑𝑟 = { 𝑖 ∈ {1 … . ,50000} | 𝑖  𝑚𝑜𝑑 𝑁𝑝 = 𝑟}, 

so that each rank 𝑟 ∈ {0, … , 𝑁𝑝 − 1 } processes ≈  
50000

𝑁𝑝
 

samples per epoch 𝑒. 𝑔 25000 𝑓𝑜𝑟 𝑁𝑝 = 2; ≈ 1042 𝑓𝑜𝑟 𝑁𝑝 =

48. This guarantees non-overlapping, reproducible data splits 

and uniform load. 

3.2.2 Synchronous SGD via MPI collectives 

Within an epoch each rank performs standard 

forward/backward passes on its shard. At the epoch boundary 

we emulate synchronous SGD: all ranks send their model 

parameters (or updates) to the root using comm.gather(), the 

root averages them, and the averaged weights are broadcast 

back with comm.bcast(). (Functionally this is equivalent to an 

Allreduce on parameters; we keep the gather/broadcast pattern 

for transparency and easier logging.) The root also runs the 

final test evaluation. 

3.2.3 Per-node batch-size profiling (empirical 

sweep) 

Because batch size primarily governs local memory footprint 

and CPU utilization per rank, we selected it via a per-node 

sweep on one RPi (2 ranks/node) and spot-checked on two 

additional RPi’s to rule out hardware heterogeneity. 

- Experimental Protocol: The experiment was performed 

for each batch size b ∈ {8, 16, 24, 32} images per node 

(i.e., b/2 per rank). Logged metrics included: median 

epoch time, peak per-process RSS (via psutil), node-level 

RAM and swap usage (free -m, vmstat), CPU utilization 

(mpstat), and OOM events (dmesg). 

- Outcome: The sweep identified batch-per-node = 24 

(equivalently 12 samples per rank for 2 ranks/node) as the 

best time–stability trade-off. This setting maintained high 

CPU utilization without invoking swap and produced the 

lowest median epoch time. Larger batches (≥ 24) 

intermittently induced page-cache pressure and slower 

epoch times, while smaller batches (e.g., 8) under-utilized 

the CPU. Replication on two additional RPi nodes 

confirmed the same regime, with variation within only a 

few percent. 

3.2.4 Fixed benchmarking hyperparameters 

To ensure consistent and controlled benchmarking across all 

cluster sizes (𝑁𝑝)  the following hyperparameter values were 

used: 

- Epochs: 10 (upper bound before memory/thermal 

instability on sustained runs). 

 

- Batch size: 24 images per node (thus 12 per rank with 2 

ranks/node). 

 

- Learning rate: 0.0005. 

 

Why LR = 0.0005: The training was performed with 

synchronous SGD (Synchronous Stochastic Gradient) 

under small effective batch (12 images/rank). Small 

batches increase gradient noise; a conservative LR 

improves stability and avoids oscillations. Empirically, a  

{0.0003, 0.0005, 0.001 }, showed 0.0005 delivered the 

fastest stable validation-loss decrease without divergence 

on CPU-only nodes.  

This choice is also consistent with common practice for 

MobileNet/CIFAR-10 when training from scratch with 

small batches and SGD [10], [11]. Typical starting LRs 

fall in (10−4 −  10−3) and are adjusted downward as 

batch size decreases. 

 

3.2.5 Fixed benchmarking hyperparameters in 

one RPi (pi@rpi4B-ma-00) 
Before the main MobileNet CNN benchmarking was 

performed on the complete cluster, a dedicated series of 

experiments was carried out to fine-tune the batch size (i.e., the 

number of images 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 ∈
{8, 16, 24, 32 } processed per node in each step). By 

systematically sweeping batch sizes and analyzing metrics such 

as median epoch time, CPU and memory utilization, and 
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process stability, we established the optimal configuration. 

This enabled all subsequent distributed training runs to use the 

empirically “best” batch size identified for time–stability trade-

off and hardware efficiency. 

The observations are the following based on "Figure 4", 

"Figure 5", “Table 1” considering eventually that the (batch 

size = 24) is the right choice for the RPi 4B (8GB) RAM: 

- Empirical optimum in throughput: The sweep shows a 

clear maximum 9.67 img/sec at 24 images/node. 

Throughput rises from 8→16→24 and then drops at 32. 

 

- Memory still comfortable: Peak RSS increases as batch 

grows (≈ 638 → 640 → 718 → 806 MB per rank). With 2 

ranks/node, that’s (≈ 1.4–1.6 GB) per node—well below 

8 GB, leaving room for OS, buffers, and MPI. 

RSS: (Resident Set Size). The amount of physical RAM a 

process is using at a moment—code, data, stack, plus any 

shared pages that are actually resident in memory (not 

swap). 

- Peak RSS = the highest RSS observed during the run. 

Note: summing RSS across processes can overestimate 

total node usage because shared pages get counted in 

each process. For precise per-node memory, use cgroup 

metrics or tools like ps_mem/smem 

- Why 32 degrades on RPi (ARM Cortex-A72): At 32/node 

(16/rank) the working set of activations/gradients starts to 

exceed cache sweet spots. The A72’s L2 and DRAM 

bandwidth become the bottleneck: more cache misses and 

memory traffic → step time balloons (3.555 s vs 2.482 s), 

lowering throughput despite the larger batch. 

The justification why the batch size (24 images per node) is the 

best choice is summarized below: 

- It maximizes compute density per step enough to amortize 

Python/DataLoader overhead without tipping into 

memory-bandwidth thrash. 

 

- It keeps per-rank CPU saturated (≈ 100% Process CPU) 

and memory headroom healthy (≈ 718 MB/rank in this 

setup). 

 

- It scales cleanly to the full cluster under data parallelism 

(2 ranks/node): global batch grows linearly with nodes 

while the per-rank working set stays stable—good for 

convergence and for keeping per-step overhead low at 

scale. 

 

Figure 4: Visualization of Batch Size (8 and 16 images per 

node) Benchmarking Results “Table 1” for MPI 

MobileNetV2 on a Single RPi Node. 

Table 1. MPI MobileNetV2 CIFAR-10, batch (Images) size 

benchmarking -best option survey-. 

Batch 
/node 

Batch 
/rank 

Avg. 
epoch 
time 
(sec) 

Mean 
step  
(sec) 

Global 
through 

-put 
(img/s) 

Peak 
RSS  
(MB) 

 
Avg. 
Proc 
-ess 
CPU 
(%) 

8 4 182.45 0.912 8.77 637.7 99.7 

16 8 339.08 1.695 9.44 640.2 99.7 

24 12 496.43 2.482 9.67 717.7 99.7 

32 16 711.07 3.555 9.00 806.4 99.7 
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Figure 5: Visualization of Batch Size (24 and 32 images 

per node) Benchmarking Results “Table 1” for MPI 

MobileNetV2 on a Single RPi Node 

 

Figure 6: Benchmarking hyperparameters: Command 

Template, fixed flags. 

"Figure 6", explains briefly the fixed flags in the command used 

to run the testing: 

--batch-per-node: total images processed per step by the node 

(split evenly across ranks). 

--ranks-per-node: MPI processes per RPi (here 2). 

--max-steps 200: cap steps/epoch to speed up the sweep (we 

measure steady-state without running the full 50 k samples). 

--width-mult 0.5: half-width MobileNetV2 (lighter model 

suited to ARM). 

--input-size 128, --channels-last: resize CIFAR-10 to 128×128; 

NHWC layout—both choices help MobileNet and ARM 

memory access patterns. 

--num-workers 0: single-threaded data loading—safer on RPi 

to avoid context-switch overhead and memory spikes. 

--lr 5e-4, --seed 42, --repeats 1, --epochs 1: standard control 

knobs for learning rate, reproducibility, and sweep brevity. 

Results Meaning: 

- Avg epoch time (max across ranks): wall-clock time set by 

the slowest rank—appropriate for synchronous training. 

 

- Mean step time: Avg epoch time / (steps used). Lower is 

better. 

 

- Global throughput: effective images/second processed by 

the node. Higher is better for selecting batch size. 

 

- Peak RSS: max resident memory (per rank). We want 

ample headroom relative to 8 GB/node. 

 

- CPU%: epoch-averaged utilization; Process ≈100% 

confirms the cores running the ranks are saturated. 

Note: “Table 1”, shows Process CPU ≈ 100%, whereas 

"Figure 4", "Figure 5" show additional info such as Process 

CPU and System CPU ≈ 50%. System CPU (≈ 50%) means that 

half of the CPU time is being consumed by kernel-level work 

since 2 cores (out of 4) are involved in the training process (2 

MPI processes). 

As a conclusion, for MobileNetV2 (width 0.5, 128×128) on RPi 

4B (8 GB) with 2 ranks/node and threads=1, batch-per-node = 

24 offers the best trade-off: highest throughput, safe memory, 

and fully saturated training cores. Batch = 16 is acceptable but 

slower; batch = 32 shows clear diminishing returns and higher 

memory pressure. 

3.3 Strong Scaling Experimental Design 

The core experimental objective is to analyse the strong scaling 

performance of MobileNet training under distributed data-

parallel execution. In a strong scaling scenario, the total 

workload (i.e., the dataset and model) remains fixed while the 

number of computational processes increases. The study 

examines how overall training time, convergence behaviour, 

and parallel efficiency evolve as resources scale. 

MPI configurations tested are: 

𝑛𝑝 ∈ {2, 4, 8, 16, 24, 32, 40, 48} 

where (np) denotes the number of MPI processes, and each 

value corresponds to 𝑝 =  
𝑛𝑝

2
   Raspberry Pi nodes, given the 2-

process-per-node configuration. 

Key performance metrics include: 

- Mean Train Accuracy Across Ranks: 

 

𝑇𝑟𝑎𝑖𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑎𝑛𝑘 𝑖

𝑁−1

𝑖=0

 

 

Where: 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑘𝑠 ∈  {2, 4, 8, 16, 24, 32, 40, 48}  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑎𝑛𝑘 𝑖 

= 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑝𝑒𝑟 𝑟𝑎𝑛𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ 10 

 

- Total training time for 10 epochs across all (np) values. 

 

- Speedup S(np): 
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𝑆(𝑛𝑝) =  
𝑇𝑏𝑎𝑠𝑒

𝑇𝑛𝑝
 

 

Where (Tbase) is the runtime for the baseline case (np = 

2) 

 

- Parallel Efficiency E(np): 

𝐸(𝑛𝑝) =  
𝑆(𝑛𝑝)

𝑛𝑝
2

𝑥 100% 

Note: 

Efficiency is reported relative to a baseline of np=2 MPI 

processes. 

 

For instance, the configuration with 4 MPI processes 

achieved an efficiency of 90.92% of the ideal linear 

scaling, indicating relatively high parallel performance 

before significant communication overhead emerged 

“Table 2”, "Figure 10". 

- Convergence metrics: training and validation loss, 

accuracy per epoch. 

 

- Communication overhead, inferred from increased time 

variance or efficiency drop at high process counts (e.g., np 

≥ 32). 

All experiments were conducted in isolation to avoid network 

interference or thermal throttling, and each configuration was 

repeated for consistency. The experimental methodology 

prioritizes feasibility, reproducibility, and scientific rigor 

within the constraints of a low-power ARM-based platform. 

3.4 Strong Scaling Results and Analysis  

To evaluate the performance and learning behavior of the 

distributed MobileNet CNN training across different scales, we 

first examine the baseline configuration and its initial scaling. 

Case 1: MobileNetV2-CNN_rpi-1_mpi-2:  

The baseline experiment was conducted using 1 Raspberry Pi 

4B (8GB) and 2 MPI processes, serving as the reference point 

for evaluating strong scaling performance. The distributed 

training of the MobileNetV2 CNN model was executed over 10 

epochs, with each MPI process (rank) independently logging 

training metrics "Figure 7". 

During the first training experiment with a single Raspberry Pi 

(4B) running two MPI processes, the model exhibited a clear 

and steady learning trajectory over the course of ten epochs. 

Both training ranks began with high loss values—around (2.36) 

for Rank 1 and (2.37) for Rank 0—and reached much lower 

values by the end, dropping to approximately (1.52) and (1.61), 

respectively. Correspondingly, the training accuracy on both 

ranks improved consistently, rising from (15%) to about (45%). 

This smooth reduction in loss and increase in accuracy, free of 

plateaus or abrupt reversals, demonstrates that the learning 

process was stable and incremental; the network showed no 

signs of numerical instability or failure to adapt its weights in 

response to data "Figure 7". 

Significantly, these learning curves affirm that, even within a 

resource-constrained edge scenario like an RPi4B with 8GB 

RAM, the data-parallel, MPI-synchronized MobileNetV2 

model is capable of effective training on the CIFAR-10 dataset. 

The continual upward trend in accuracy and the downward 

movement in loss show that the model is genuinely learning 

and generalizing, rather than stagnating or overfitting through 

mere repetition. By tracking both metrics, it is clear that weight 

updates via distributed gradients are meaningful, and the 

training infrastructure is sound. This benchmark therefore sets 

an essential reference point: as the experiment later scales to 

multiple nodes, any changes in learning behavior—such as a 

loss in accuracy or a plateau in improvement—can be directly 

linked to the effects of distributed training, communication 

overheads, or computational fragmentation. 

In terms of final model performance, the evaluation performed 

by the root rank on the completely unseen CIFAR-10 test set 

— using the final, fully synchronized model weights — yielded 

a test accuracy of 48.43% after ten epochs. This test metric is 

independent of, and not directly comparable to, the mean 

training accuracy from the last epoch (43.5%), since the latter 

is averaged over the per-rank training shards seen during 

optimization. The slightly higher test accuracy is plausibly due 

to mild regularization effects and beneficial stochastic 

influences introduced by parallel training and weight 

averaging, rather than an anomaly. The final test loss (1.4732) 

closely matched the mean training loss (1.5683), indicating that 

the model achieved a balanced fit without overfitting within 

this training regime. Both the training and the test metrics 

improved steadily and in parallel across ranks, amounting to an 

overall accuracy gain of roughly 30 percentage points from 

initialization. 

In the context of the distributed MobileNetV2 training 

experiments, the values ([Root] Test acc: 0.4843 | Test loss: 

1.4732) represent the performance of the fully synchronized 

final model on the completely unseen CIFAR-10 test set, 

evaluated exclusively by the root MPI process after the last 

epoch “Table 2”, "Figure 7", “Table 3”. Unlike the mean 

training accuracy (43.50 %) and loss (1.5683), which are 

averaged across all ranks over their respective local training 

shards in the last epoch, the test metrics are computed once on 

the full 10,000-image test set using the final, globally averaged 

weights from all processes. This methodological separation 

ensures that the reported test performance is an unbiased 

measure of the model’s generalization ability rather than its 

ability to recall the training samples it has optimized on [12]. 

The fact that the final test accuracy is slightly higher than the 

mean training accuracy is explainable by beneficial 

regularization effects and the stochastic nature of distributed 

weight updates, rather than by any data leakage [13]. Moreover, 

the close correspondence between the final test loss (1.4732) 

and the mean training loss (1.5683) indicates an absence of 

overfitting in this training regime, with both training and test 

metrics improving in parallel throughout the run. As such, these 

root-rank test values provide the most reliable indicator of how 

effectively the distributed system produces a model that 

performs well on new data, and they serve here as the definitive 

benchmark for comparing learning quality across the scaling 

configurations presented in “Table 3” [14]. 

Table 3. Summary Table: Train Accuracy/loss vs [Root] 

test acc/loss 

Metric Evaluated 

Where & 

When 

 

Data 

Used 

 

Meaning 

Train 

accuracy/ 

loss 

Averaged 

across ALL 

ranks, last 

epoch of 

Local 

train data 

(per 

Model fit to 

seen data—

how well it 

learned 
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training rank) during 

training 

[Root] 

Test 

acc/loss 

Root rank 

ONLY, once 

after 

synchronization 

Entire 

test set, 

never 

seen 

during 

training 

Model’s 

generalization 

power—real 

prediction 

ability on 

novel data 

 

 

Figure 7: MobileNetV2 CNN Model Training results in 

one RPi with two MPI (Ranks) processes (np=2). 

This single-node result is especially important for interpreting 

broader cluster behavior. It establishes the baseline for “ideal” 

learning rates and convergence patterns in a minimal-

communication environment. When scaling to more nodes, 

deviations—whether in the form of flattened learning curves, 

diminished final accuracy, or increased instability—provide 

direct evidence of the points where distributed system effects, 

such as gradient staleness or insufficient data per rank, begin to 

inhibit effective learning. Conversely, if learning dynamics 

remain similarly robust while total training time drops as the 

cluster scales out, the system achieves strong scaling without 

loss of learning quality. 

Finally, the experiment confirmed robust technical 

performance on all fronts. There were no memory bottlenecks 

or CPU undersaturation issues; both MPI ranks maintained 

near-100% CPU utilization, underscoring optimal resource 

usage for the batch size in use. Epoch end times between ranks 

were nearly identical, confirming that sharding and 

synchronization were correctly implemented for balanced 

workload distribution. Each rank processed its own non-

overlapping data partition, ensuring every example contributed 

productively to model updates, which is essential for fully 

leveraging the dataset and sustaining healthy learning 

dynamics. 

Case 2: MobileNetV2-CNN_rpi-2_mpi-4:  

In this second scaling configuration, the MobileNetV2 CNN 

training was deployed on two Raspberry Pi 4B nodes, each 

equipped with 8 GB of RAM, for a total of four MPI 

processes—two per node. The batch size was fixed at 24 

images per node (12 per rank), and the model was trained for 

10 epochs using synchronous stochastic gradient descent, with 

model weight averaging performed across all ranks at the end 

of each epoch. The CIFAR-10 training set was 

deterministically partitioned so that each rank processed a 

unique shard of 12,500 samples, ensuring balanced workloads 

and reproducibility across runs. As in all experiments, the 

environment was provided by a shared NFS-mounted virtual 

environment, which guaranteed identical software versions and 

dependencies across both nodes, securing reproducibility and 

eliminating version drift "Figure 8". 

The learning trajectory across the four ranks followed a stable 

and monotonic pattern of convergence, even as the training was 

distributed across multiple nodes. Initial losses were high—

approximately (2.48 to 2.51) in the first epoch—but declined 

steadily to between (1.62 and 1.64) by the final epoch "Figure 

8". Training accuracy started in the (13–14 %) range and 

improved consistently to around (39–40 %) after ten epochs. 

The absence of plateaus, reversals, or erratic jumps in the 

curves indicates that the distributed training-maintained 

stability and that parallelization did not introduce detrimental 

instability or divergence. Moreover, the close agreement in 

final loss and accuracy values across ranks confirms that the 

data partitioning strategy and MPI synchronization scheme 

ensured uniform learning progress. 

When aggregating performance across all ranks, the mean 

training accuracy after the tenth epoch was (39.46 %) and the 

mean training loss was (1.6322) “Table 3”, "Figure 8". 

Evaluation of the fully synchronized final model, performed 

exclusively by the root rank on the held‑out CIFAR‑10 test set, 

yielded a test accuracy of (42.59 %) and a test loss of (2.5650). 

These test metrics are distinct from the training averages: while 

the training figures measure fit to the data seen during 

optimization, the test values reflect the model’s ability to 

generalize to completely unseen samples. The lowered test 

accuracy compared to the single‑node baseline (48.43 %) and 

the increase in test loss suggest that scaling to multiple nodes 

introduced additional communication overhead and smaller 

per‑rank datasets, both of which can limit convergence and 

dampen generalization performance. 
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Figure 8: MobileNet CNN Model Training results in two 

RPi’s with four MPI (Ranks) processes (np=4). 

The divergence between the training and test metrics in this 

configuration is more pronounced than in the baseline, with the 

higher test loss indicating less stable generalization. In 

distributed, CPU-bound edge clusters, this effect can stem from 

multiple factors: reduced statistical efficiency due to smaller 

data shards per rank, gradient noise introduced by more 

frequent synchronization, and the network latency inherent in 

inter-node MPI communication. Weight averaging across a 

larger number of ranks may also introduce a slight “staleness” 

effect, where updates are based on gradients computed from 

older parameter states. 

From a scaling perspective, the total global wall-clock time 

dropped to (2,332.69 sec)—down from roughly (4,242 sec) in 

the baseline—yielding a speedup of about (1.82×). While this 

falls slightly short of the theoretical (2×) ideal, it still 

corresponds to a very high efficiency of (≈ 90.9 %), indicating 

that communication and synchronization overheads remained 

minimal at this scale. The first epoch showed some variability 

in duration across ranks, likely due to initialization and caching 

effects, but subsequent epochs stabilized, confirming good 

runtime consistency. The accuracy drop observed at np = 4 

therefore reflects statistical inefficiency from smaller per-rank 

dataset shards, rather than communication bottlenecks. 

These observations highlight the central trade-off in strong 

scaling on resource-constrained hardware: while distributing 

the workload across more nodes accelerates training, it can 

impair learning quality if the per-rank dataset becomes too 

small and communication costs begin to dominate. 

Nevertheless, this two-node, four-process configuration 

demonstrates that meaningful speed improvements are 

achievable on the cluster without catastrophic degradation in 

model accuracy, providing valuable insight into the practical 

limits and sweet spots for parallel training in edge-scale deep 

learning systems. 

Case 3: MobileNetV2-CNN_ rpi-1_mpi-2 to rpi-24_mpi-48 - 

Cluster-Wide Analysis and Observed Scaling Patterns: 

In this configuration, the MobileNetV2 CNN model was trained 

in a fully distributed manner across the entire 24-node 

Raspberry Pi 4B cluster, with 48 MPI processes—two ranks per 

node. Each node processed a batch of 24 images (12 per rank), 

yielding an extremely small per-rank shard of just (~1,041–

1,042) images from the 50,000-image CIFAR-10 training set. 

The training ran for 10 epochs using synchronous SGD, with 

model weights averaged globally across all processes at each 

epoch boundary. The environment was identical to the 

smaller-node runs, using the NFS-mounted virtual environment 

to guarantee software consistency, version alignment, and 

reproducibility across all nodes. 

Note: 

 In the cluster-wide run with 48 MPI processes (across 24 

RPi’s, two ranks per node), the total CIFAR-10 training set 

of 50,000 images was evenly partitioned across all ranks. 

The data loader in your script ensures that each MPI rank is 

assigned a non-overlapping subset of the dataset by using 

strided indexing: 

𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑟𝑎𝑛𝑘 = [
50,000 𝑖𝑚𝑎𝑔𝑒𝑠

48 𝑟𝑎𝑛𝑘𝑠
] = 1,041 𝑜𝑟 1, 042  

Since 50,000 divided by 48 is approximately 1,041.67, this 

means that most ranks get 1,042 images, while a few may 

receive 1,041, maintaining a balanced split. 

This small shard size is a natural mathematical consequence 

of the strong scaling setup (fixed total data, increasing 

number of processes), and it is critically important for 

interpreting performance: when the per-rank dataset 

becomes this small, each process gets to see only a tiny 

fraction of the global data during every epoch, which 

substantially increases the variance in gradient estimates 

and undermines the model’s ability to learn robust, 

generalizable features. This is why, as shown in the results, 

strong scaling to this level reduces model performance, 

despite continued speedup in wall-time execution. 

- Learning Trajectory and Per-Rank Behavior: 

 

Across ranks, the starting losses in epoch 1 were in the 

high (2.66–2.73) range, with accuracies barely above 

random-guessing levels (9–12%). While loss values 

decreased slowly over the epochs—reaching (~1.95–2.00) 

by epoch 10—and training accuracies improved 

somewhat (to 20–25%), the overall learning curves 

were shallow compared to the baseline runs. Variability 

among ranks was minimal after the first epoch, indicating 

correct synchronization and balanced sharding, but the 

magnitude of improvement was small: most ranks saw 

accuracy gains of just (10–12) percentage points over all 

10 training epochs. These weak per-rank accuracy 

improvements reflect the severe data scarcity at this 
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scale—each rank has fewer than 1,050 training images, 

which is insufficient for stable representation learning 

given MobileNetV2’s parameter space. The synchronous 

averaging step effectively pulls weights toward a noisy 

global mean, with each rank’s updates based on tiny and 

highly variable gradient samples. 

 

- Aggregated Performance Metrics: 

 

By the end of epoch 10, the mean training accuracy 

aggregated across all ranks was (22.27 %), with a mean 

training loss of (1.9856). When the final synchronized 

model was evaluated by the root rank on the entire 

held-out CIFAR-10 test set, the accuracy collapsed 

to (10.00 %), effectively random guessing for a 10-class 

classification task, and the test loss plateaued 

at (2.3026)—very close to the loss of a uniform output 

distribution. This unmistakably signals that the 

model failed to generalize at all. 

 

- Train vs Test Metric Gap: 

 

The gap here is both large and highly significant: 

- Training metrics: averaged over small shards, reflect 

the model’s fit to the tiny slice of data each rank saw 

repeatedly. This means that each rank sees only 

~1,041–1,042 images (≈ 2 % of CIFAR-10) during 

an epoch — and it sees the exact same shard each 

time. A mean training accuracy of (22.27 %) means 

“within the tiny subset of data each process saw over 

and over, it managed to classify about 1 in 5 correctly 

by the end of training.” 

 

- Test metrics: computed on unseen data using the 

converged global weights, expose the fact that the 

learned weights contain almost no transferable class 

discrimination ability. Test accuracy is 10.00 %, 

which is exactly what you’d expect from random 

guessing in a 10-class classification task.  

 

In the largest configuration, the model’s learned weights, 

when evaluated on unseen CIFAR-10 test data, exhibit no 

discriminative power—test accuracy is 10 %, matching 

random guessing in a ten-class problem. This represents a 

gap of over 12 percentage points compared to the mean 

training accuracy of 22.27 %, and is scientifically 

significant because it exposes severe overfitting to the tiny 

per-rank shards (~1,041 images each) used in strong 

scaling at this extremity. Each rank memorizes patterns 

from its local subset that fail to generalize when 

combined, and synchronous averaging at epoch 

boundaries blends many weak, overfit parameter sets into 

a noisy global model. With so few examples per rank and 

only 10 epochs permitted by Raspberry Pi memory 

constraints, gradient estimates have high variance and the 

averaged updates cannot converge to a useful global 

solution, causing the model to lose all ability to distinguish 

between classes on real, unseen data. 

Note: 

Raspberry Pis—and similar ARM-based single-board 

computers—remain highly relevant in edge computing 

scenarios, particularly for inference with pre-trained 

models, distributed sensing, lightweight data analytics, 

and on-the-fly feature extraction. Their low cost, energy 

efficiency, and ease of deployment make them attractive 

for scalable, decentralized AI systems. The experimental 

results in this study show that in modest cluster 

sizes (approximately 1–4 nodes), Raspberry Pis can 

execute distributed deep learning training with 

reasonable accuracy and throughput, making them viable 

for certain edge learning tasks where frequent retraining 

is unnecessary and each process has access to a 

sufficiently large data shard. However, when strong 

scaling is pushed too far on a fixed, small dataset—so that 

each process receives only a very limited number of 

training examples (e.g., fewer than 2,000 images)—

learning performance collapses regardless of wall-clock 

speed gains. This limitation stems from fundamental 

principles of statistical learning and the behavior of 

distributed stochastic gradient descent in small-data, 

high-node-count regimes, rather than from any inherent 

flaw in the Raspberry Pi architecture. In realistic edge 

deployments, where models are typically trained on 

larger, more powerful infrastructure and only fine-tuned 

or retrained locally as needed, Raspberry Pi clusters can 

still serve effectively for local model adaptation, federated 

learning (with careful shard sizing), rapid prototyping, or 

as supplementary compute resources for workload 

offloading. 

 

 

- Technical and Scaling Observations: 

 

From a systems perspective, the results 

show excellent raw scaling in wall-clock time (Total 

Training Time): total runtime dropped to 

just (424.73) seconds for 10 epochs—nearly (10 ×) 

faster than the single-node baseline (4,242 s). Median 

per-epoch times fell to (~17 sec) after the first epoch, 

proving that the MPI collectives and network links were 

functioning efficiently given the small payloads. 

However, the tiny per-rank dataset size meant that 

communication became statistically dominant rather than 

compute-dominant: each rank finishes its local batches 

quickly, but the updates are too noisy to meaningfully 

improve the shared model. 

This is a textbook example of the strong scaling limit in 

distributed deep learning. Even with perfect load 

balancing and very low communication time relative to 

compute, there is a data-parallelism saturation point at 

which each worker holds so little data that the global 

model stops improving. 

 

- Implications for Cluster-Wide Training: 

 

These results make clear that while adding nodes on this 

hardware platform yields impressive throughput numbers, 

aggressive scaling past a certain point—in this case, well 

before 48 processes—leads to a total loss of effective 

learning. The speedup is therefore “empty” from an ML 

perspective: computational work is done quickly, but it is 

not productive in building a useful model. 

 

For practitioners, this run illustrates: 

 

- The importance of maintaining sufficiently large 

per-rank batch and dataset sizes in data-parallel 

training. 

 

- That on edge-class networks (Gigabit Ethernet) and 

non-GPU compute (ARM Cortex-A72), accuracy 

degradation will set in long before network 

bottlenecks do—here, purely as a function of data 
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fragmentation and gradient noise. 

 

- That evaluation methodology matters: because test 

metrics are computed only once by the root rank on 

fresh data, the collapse in generalization cannot be 

masked by high shard-level train performance. 

 

 

- Strong Scaling: Speedup and Efficiency: 

 

The baseline (1 RPi, 2 MPI processes) 

takes (4,241.69 sec) to complete 10 epochs. All other 

speedups (Sₙ) and efficiencies (Eₙ) are measured relative 

to this “Table 3”, "Figure 9", "Figure 10". 

Speedup trend: 

𝑆(𝑛𝑝) =  
𝑇𝑏𝑎𝑠𝑒

𝑇𝑛𝑝
 

- Scaling to 2 RPis (np=4) almost halves runtime, 

reaching (Sₙ) ≈ 1.82. 

- At 4 RPis (np=8) speedup is (≈ 2.09) — still 

improving but already below the ideal (4×). 

- As we go to 8, 12, 16, 20, and 24 nodes, runtime 

keeps dropping, peaking at (S₂₄ ≈ 9.99). This is (≈
 10 ×) faster than baseline training, with less than 

half the ideal linear scaling (ideal would-be S₂₄ = 24). 

Efficiency trend:  

𝐸(𝑛𝑝) =  
𝑆(𝑛𝑝)

𝑛𝑝
2

𝑥 100% 

 

- Efficiency starts at 100% by definition for the 

baseline (np = 2), remains very high at np = 4 (≈ 90.9 

%), and then decreases to ≈ 52.3 % at np = 8. Beyond 

this point, efficiency stabilizes in the 40–50 % range 

(≈ 51.4 % at np = 16 and ≈ 41.6 % at np = 24). This 

indicates that scaling is highly effective up to 

moderate process counts, but after ~8 nodes, each 

additional node contributes diminishing returns. The 

observed plateau reflects not only communication 

overhead but also the statistical inefficiency of very 

small per-rank datasets, which increasingly limit 

convergence quality despite sustained runtime 

improvements. 

Interpretation: 

Τhe speedup curve shows that the system scales in wall-

clock time effectively up to medium process counts, with 

diminishing returns beyond that point. Efficiency remains 

very high through np = 4 (≈ 90.9 %) and still moderate at 

np = 8 (≈ 52.3 %), indicating strong scalability at small-

to-moderate scales. Beyond 8 nodes, efficiency stabilizes 

in the 40–50 % range, as the fixed workload becomes 

increasingly fragmented per rank. This plateau reflects the 

combined effect of smaller per-rank datasets (statistical 

bottleneck) and growing communication overhead, which 

together limit further gains in global throughput. 

- Learning Quality: Accuracy and Loss: 

 

While runtime improves with scale, model learning 

quality degrades severely beyond small configurations 

“Table 3”, "Figure 11", "Figure 13": 

- Baseline (1 RPi) — Healthy learning: Test Accuracy 

= (48.43 %), Train Acc = (43.51 %), Train/Test 

losses are close → strong generalization. 

- 2 RPi’s — Slight drop: Test Acc = (42.59 %), some 

loss increases but still reasonable learning. 

- 4 RPi’s — Substantial collapse: Test Acc 

= (13.06 %), Train Acc drops to (30.77 %). 

- ≥8 RPi’s — Catastrophic failure: Test Acc fixed 

at 10 % (random guess for CIFAR-10), Train Acc 

(≈ 19–25 %). Test losses (≈ 2.302–2.304) (close to 

untrained SoftMax baseline). 

Interpretation: 

Once per-rank data shards get too small (e.g., ≈ 6,250 images 

at 8 RPi’s, (≈ 1,040) images at 24 RPis), gradient updates 

become statistically noisy and insufficient for effective 

learning. Even with near-ideal MPI synchronization efficiency, 

the system simply propagates poor-quality updates, leading to 

convergence collapse. This behavior is consistent with prior 

findings on the limits of data parallelism [15] and the 

detrimental effects of excessively small batch sizes on gradient 

stability [16]. 

- Joint Analysis: Speed vs Learning: 

Up to 2 RPi’s → Both speed and accuracy are acceptable: 

efficiency remains near-ideal and learning quality is only 

modestly reduced. 

At 4 RPi’s → Runtime improves substantially and efficiency 

remains high (≈90.9 %), but learning quality already shows a 

marked decline due to smaller per-rank shards. 

At 4 RPi’s onward → Speed continues to improve, but 

accuracy collapses sharply. 

The “speed-only” metric would suggest success, but the actual 

model usefulness is nearly zero from 8 RPi’s upward. 

From 8 RPi’s upward → Speed continues to improve, but 

accuracy collapses to chance-level (≈ 10 %). The “speed-only” 

metric would suggest success, but the actual model usefulness 

is nearly zero once shard sizes fall below (≈ 6k) images per 

process. 

This represents a statistical strong-scaling break point for the 

workload and hardware: between 4–8 RPi’s the system crosses 

the line where adding resources no longer produces a 

scientifically valuable model. 

- Train Accuracy (%) vs MPI Processes (np): 

The training accuracy curve as a function of MPI process count 

reveals a steadily declining trend with increased parallelism 

“Table 3”, "Figure 11": 

- np = 2 (1 RPi) — (43.5 %) mean train accuracy: 

strong, stable learning. 

- np = 4 — moderate drop to (39.46 %), still within a 

usable range but already reflecting reduced shard 

sizes. 

- np = 8 — Falls sharply to (≈ 30.8 %), marking the 

onset of the strong-scaling break point where per-

rank shards (≈ 6.2k images) are too small for robust 

gradient estimation. 

- np ≥ 16 — Stabilizes in a low band between (≈ 19–

25 %), indicating that most processes are overfitting 

to their tiny shard and contributing little to the global 

model. 

This train-accuracy degradation mirrors the collapse in 

test accuracy beyond (np ≈ 8) and confirms that 

the bottleneck is statistical, not computational: as shard 
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size falls below a few thousand images, additional ranks 

do not improve learning, a phenomenon consistent with 

the statistical inefficiency of data parallelism reported in 

[15]. 

 

- Final Evaluation: 

The results clearly indicate that, in this experimental setting, 

the scaling limit is not determined primarily by network or MPI 

communication overhead but by the shrinking per-rank dataset 

size as the number of MPI processes increases. In other words, 

statistical inefficiency from very small shards—not message 

latency—kills learning performance first. For MobileNetV2 

trained on CIFAR-10 with ARM-based Raspberry Pi 4B nodes, 

the optimal operating point that balances training time 

reduction with preservation of generalization quality lies 

between two and four RPi’s (4–8 MPI processes). In this range, 

parallel efficiency remains high (≈90 % at np=4 and ≈52 % at 

np=8), confirming that MPI scaling itself is not the limiting 

factor. Beyond this point, further parallelism produces 

progressively smaller training subsets per rank, increasing 

gradient variance and overfitting to shard-specific features. 

This regime reflects the well-documented statistical bottleneck 

of data parallelism [15] and the detrimental effect of 

excessively small batches on gradient stability [18]. In practical 

terms, the system is essentially performing fast but wrong 

training: models converge quickly in wall-clock time but 

contain almost no useful information for classifying unseen 

data. 

Table 3. MobileNetV2 CNN Model Training results: Strong Scaling Methodology 

RPi’s 
 
  

MPI  
Processes 

(np) 
  

Epoch 
 
 
  

Test acc 
(final) 

(%) 
 
  

Test loss 
(final) 

 
  

Mean 
Train Loss  
(unitless)  

(≈)  

Mean 
Train 

Accuracy 
(%) 

Total (wall)  
Training Time 
(slowest rank) 
(Mean) (sec) 

Speedup  
(Sₙ) 

 
  

Efficiency 
 (Eₙ) (%) 

 
  

1 2 10 48.43% 1.4732 1.5683 43.51% 4241.69 1  

2 4 10 42.59% 2.565 1.6322 39.46% 2332.69 1.81836849 90.92% 

4 8 10 13.06% 2.3264 1.824 30.77% 2025.94 2.09368984 52.34% 

8 16 10 10.00% 2.3046 1.9196 25.79% 1142.99 3.71104734 46.39% 

12 24 10 10.00% 2.3026 1.9347 24.96% 723.47 5.86297980 48.86% 

16 32 10 10.00% 2.3026 2.0212 20.53% 515.97 8.22080741 51.38% 

20 40 10 10.00% 2.3026 2.1292 18.95% 511.21 8.29735333 41.49% 

24 48 10 10.00% 2.3026 1.9856 22.27% 424.73 9.98679160 41.61% 

 

Figure 9: Scalability of MobileNetV2 Training: Speedup (Sₙ) vs MPI Processes 
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Figure 10: Parallel Efficiency (Eₙ) of MobileNetV2 Training vs MPI Process Count 

 
Figure 11: Training Accuracy (%) of MobileNetV2 CNN vs Number of MPI Processes (np) 
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Figure 13: Mean Training Loss of MobileNetV2 CNN vs Number of MPI Processes 

4. FUTURE WORK 
Building on the insights gained from the MobileNetV2 

experiments, a promising direction for future research is to 

extend the strong scaling study to alternative lightweight 

convolutional neural networks, such as SqueezeNet. Given 

SqueezeNet's even smaller parameter footprint and memory 

requirements compared to MobileNetV2, it is an ideal candidate 

for distributed training on resource-constrained clusters like 

Raspberry Pi. Investigating how SqueezeNet's architecture 

interacts with varying shard sizes, synchronization frequency, 

and different levels of parallelism could yield further 

understanding of the trade-offs between speed, efficiency, and 

learning quality in edge-class hardware. In particular, this line 

of study may help reveal whether models with lower 

representational capacity can better tolerate small per-rank 

datasets or if they exhibit different failure points in 

generalization under aggressive strong scaling.  

Future experiments should also consider the impact of data 

augmentation, adaptive batch sizing, and mixed-precision 

computation to further optimize learning performance within 

hardware and memory limitations. Ultimately, such 

comparative studies will provide deeper guidance for designing 

efficient, scalable, and practically useful distributed learning 

systems in realistic edge computing environments. 

5. CONCLUSION 
This work has presented a detailed strong-scaling study of 

synchronous, data-parallel MobileNetV2 CNN training on a 

24-node Raspberry Pi 4B cluster interconnected over Gigabit 

Ethernet, with configurations ranging from a single node 

(np = 2) to the full cluster (np = 48). By jointly analyzing 

wall-clock performance metrics (speedup, efficiency) and 

machine learning outcomes (final training/test accuracy and 

loss), it have identified the practical boundaries of distributed 

training effectiveness on resource-constrained ARM-based 

hardware. 

The results show that while wall-time (Total Training Time) 

per training run can be reduced by nearly an order of magnitude 

through strong scaling, communication overhead is not the 

primary limiting factor at this scale. Instead, the dominant 

constraint is the shrinking per-rank dataset size: beyond 4–8 

MPI processes, each worker receives too few examples per 

epoch, causing gradient estimates to become noisy and the 

averaged model to lose generalization ability. This statistical 

bottleneck manifests as a sharp drop in test accuracy — from 

(48.43 %) on a single node to the random-guessing baseline of 

(10 %) at high process counts — even though MPI 

synchronization remains efficient (≈ 40–50% at scale) and 

system throughput continues to rise. This observation is 

consistent with prior reports of statistical inefficiency in data-

parallel training [15] and the destabilizing effects of 

excessively small batches on gradient quality [16]. 

From a practical standpoint, the optimal configuration for this 

MobileNetV2 + CIFAR-10 workload on 8 GB Raspberry Pi 4B 

nodes lies between two and four RPi’s (4–8 MPI processes), 

where time-to-train and generalization quality are both 

acceptable. Scaling beyond this range produces “fast but wrong 

training”: models converge quickly in wall time but acquire 

almost no discriminative power on unseen data. Nevertheless, 

small-to-moderate RPi clusters remain viable for edge AI 

scenarios such as local model adaptation, federated learning 

with careful shard sizing, rapid prototyping, and 

inference-focused deployments. 

Finally, the methodology and insights from this study provide 

a reproducible framework for evaluating the interaction 

between parallelism, statistical efficiency, and hardware 

constraints. Future work will extend this analysis to alternative 

lightweight architectures such as SqueezeNet, explore adaptive 

batching and augmentation strategies, and investigate hybrid 

edge/cloud training pipelines to maximize both throughput and 

model quality in realistic edge computing environments. 
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