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ABSTRACT 

The security and integrity of remote healthcare systems are 

raised as an urgent issue of fighting deepfake technologies, 

voice cloning, and synthetic data. Since telemedicine platforms 

are increasingly relying on audiovisual communication and 

electronic health records (EHR), they actively become 

appealing victim targets in high-level impersonation attacks. 

An exhaustive architecture to curb threats postulated through 

deepfakes, through a combination of multimodal biometric 

(face, voice, gesture) authentication, real-time deepfake 

detection, and provenance tracking using blockchain is 

proposed in this research. We can show that the proposed 

system can achieve higher than 95 per cent detection accuracy 

and can eliminate session compromise within two seconds 

using simulated attack scenarios on well publicised data sets 

including DFDC, VoxCeleb and MIMIC-III. Our results verify 

that multi-layered defenses have the potential of securing 

clinical integrity and patient privacy without much impairment 

of user experience. The paper establishes the working principle 

of scalable, resilient, adaptive, and secure telehealth 

ecosystems against changing threats in synthetic media 

settings. 
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1. INTRODUCTION 
The extraordinary and long-lasting growth of remote 

healthcare, often referred to as telehealth or telemedicine, has 

become one of the most iconic developments in contemporary 

medicine, particularly following the COVID-19 pandemic. 

This change was not a reactionary measure; instead, it marked 

a structural shift in the provision of healthcare services. Before 

2020, remote consultations were primarily episodic and were 

typically restricted to underserved communities in rural areas. 

Nevertheless, increasing demands to limit viral transmission, 

maintain clinical capacity, and ensure patient access 

accelerated the speed at which these measures were 

implemented in both outpatient and inpatient care. Among 

OECD member states, a notable trend was observed, with the 

proportion of doctor-patient interactions being remotely carried 

out decreasing from a high of 21 percent in 2020, during the 

peak of the pandemic, to less than 1 percent in 2019 [1]. 

Outpatient telehealth visits increased by 154 percent in a single 

week in the United States in March 2020, and the number of 

appointments rose 15-fold, according to early numbers from 

the Cleveland Clinic [2]. Several healthcare systems 

experienced a 22 percent increase in all outpatient visits taking 

place virtually in the post-pandemic world compared to non-

pandemic times. The introduction of policies in the form of 

insurer coverage, changes in legislation, and technological 

advancements, including internet coverage through broadband 

and the unification of video-health resources, have only 

entrenched this new normal further [3]. 

The dividends of these seismic shifts are quite substantial: 

increased access to geographically distant and mobility-limited 

patients, a reduction in the burden on healthcare infrastructure, 

and assurance of continuity of care, most significantly in 

mental healthcare and for patients with chronic conditions. For 

example, behavioral health services currently have more than 

60 percent of consultations conducted virtually, resulting in 

increased patient adherence and reduced no-shows [2] Home-

based management of chronic diseases can be achieved with 

the help of remote monitoring of wearable devices and Internet 

of Things (IoT) systems, minimizing the chances of hospital 

readmission and making the entire process more cost-efficient. 

Even in the UK, NHS England has already piloted virtual 

hospital wards to alleviate the problem of hospital bed 

shortages and to continue providing high-acuity care in people's 

home environments [4]. Therefore, telemedicine has not only 

become a short-term solution but also a tactical part of 

innovative healthcare systems. But with this revolution in care 

delivery, new vulnerabilities appear. Of primary concern are 

those related to identity spoofer and data swindler, which are 

facilitated by the AI-accompanied production of content, 

especially deeply fabricated content. The constantly growing 

complexity of generative adversarial networks (GANs), voice 

cloning models (e.g., Tacotron2 or SV2TTS), and synthetic 

data pipelines allows impersonation of providers or patients to 

a worrying extent. During virtual consultations, malicious 

actors may use audiovisual deception to convincingly pose as 

clinicians or patients and alter electronic health records to 

modify medical history, prescriptions, test results, or imaging 

records. A recent report highlights how AI-generated deep fake 

content is currently being used in phishing, fraud, and even the 

synthesis of clinician voices or faces to approve a false 

prescription, falsify documentation, or alter patient treatment 

[5]. 

The malicious influence of this kind of attack is extensive. In 

the case of decisions being made based on falsified images or 

interviews, the risk of getting misdiagnosed is a very probable 
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possibility. Financial and patient-safety risks are associated 

with fraudulent behavior (including phony claims, insurance 

fraud, and prescription forgery). Additionally, there is 

confusion regarding legal liability in light of the actual harms 

caused by deepfake attacks. Telehealth-based institutions can 

be legally sued, fined by regulatory authorities, and have their 

trustworthiness publicly questioned, thereby eroding trust in 

them. Meanwhile, the impersonation of either the providers or 

patients can lead to psychological trauma and loss of privacy 

when it comes to unpermitted access or even misuse of their 

identity or medical information by an impersonator. The effects 

are indeed of a technological, clinical, legal, and ethical nature. 

Technologically, in terms of technology, authentication 

systems that were initially designed to handle face-to-face 

access, such as ID checks and biometrics, may not function 

effectively on synthetic content. Between the clinics, the lack 

of physical examination makes them even more dependent on 

digital signals that attackers can fake. Currently, the framework 

of medical liability may not explicitly cover situations where 

deepfakes can be used to facilitate fraud or other malicious 

activities. Ethically, patients are at risk of losing autonomy and 

the value of consent, as well as the nature of confidentiality, 

due to breaches that occur because of artificial content, 

particularly when parties to the consultation are not reliably 

distinguishable. 

Moreover, the critical part of remote healthcare digital 

infrastructure vulnerabilities is versatile. Cloud-based breaches 

are likely not the only problem for telehealth platforms, where 

there is also a risk of manipulated streamed media. 

Alternatively, counterfeit audiovisuals can be incorporated into 

consultations to misinform clinicians, misuse credentials, or 

contaminate medical records. Even metadata, such as 

timestamps, geolocation, and provenance, can be altered to 

conceal the tracks or enable even further fraudulent activity. As 

an indication of this, as one cybersecurity summary aptly puts 

it, deepfakes and social engineering converge to pose 

unprecedented risks, potentially exacerbating fraud, 

misdiagnosis, and data theft, and necessitating timely responses 

[6]. These issues are addressed in this paper by promoting a 

methodological investigation of the prospects of using AI-

generated content delivery as a vulnerability in remote 

healthcare systems. With the focus on the following research 

objectives: 

1. Critically review the current literature on deepfake 

generation, telehealth vulnerabilities, and synthetic-data 

misuse. 

2. Model the threat through the composition of deepfake and 

synthetic-data attack models on virtual consultation and 

EHR infrastructure; 

3. Analyze defense and mitigant methods such as 

multimodal biometric authentication, provenance 

tracking, and AI-based validation of contents; 

4. Account for the clinical, ethical, and regulatory 

implications of applying these protections in real-world 

telehealth contexts. 

2. LITERATURE REVIEW  

2.1 Deepfake Technology (GANs, Voice 

Cloning) 

The backbone of modern deepfakes is the GAN framework 

proposed by Goodfellow et al. [7]. A GAN pits a generator—

which transforms random noise into synthetic media against a 

discriminator trained to spot forgeries. Through iterative 

feedback, the generator steadily refines its outputs until the 

discriminator can no longer tell them from authentic samples 

[8]. Successive innovations including DCGAN [8], Progressive 

GAN [9], and the StyleGAN family [10] have reduced blur, 

mode-collapse, and texture artefacts while introducing explicit 

control over latent attributes such as pose and illumination. 

Figure 1 depicts this adversarial loop, highlighting how sample 

quality improves across training epochs. By coupling GANs 

with autoencoder pipelines, developers can execute frame-level 

face-swaps and lip-sync reenactments that preserve temporal 

coherence. In a systematic benchmark, Pei et al. [9] showed that 

these progressive swaps (illustrated in Figure 2) remain 

visually convincing even under detailed scrutiny, although 

frame-based detectors can still uncover residual 

inconsistencies. The practical upshot is that any user with 

commodity GPUs or inexpensive cloud credits can now 

generate high-fidelity face replacements—eroding the barrier 

between amateur and professional manipulation. 

 
Figure 1: GAN architecture for image and video generation 
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Figure 2: Progressive face-swapping in video frames 

Parallel progress in neural text-to-speech (TTS) has enabled 

near-perfect vocal forgeries. WaveNet, Tacotron 2, and 

Transformer-TTS convert text into natural-sounding speech 

while conditioning on a learned speaker embedding [11]. 

Current toolkits require only minutes or in zero-shot mode, 

seconds of reference audio to reproduce timbre, intonation, and 

accent (see Figure 3). Commercial platforms such as 

ElevenLabs or Descript offer subscription-priced cloning with 

minimal technical expertise, while open-source stacks (e.g., 

SV2TTS) democratise access further [12]. The convergence of 

photorealistic video and zero-shot voice synthesis has birthed 

combined deepfakes synchronised talking heads that bypass 

unimodal defences [13]. Recent reports demonstrate that such 

attacks can deceive both humans and baseline automated 

detectors, underscoring the need for layered counter-measures 

in domains where trust is paramount, such as telehealth. 

 

 

 

 
Figure 3: Voice cloning pipeline: from sample to spectrogram to synthetic audio 

Telemedicine relies on video, audio, and electronic records as 

primary channels for diagnosis and care coordination. The 

sophistication of GAN-driven face-swaps and spectrogram-

based voice clones means that malicious actors could 

impersonate clinicians, falsify consent, or inject fabricated 

clinical advice. As StyleGAN3 and other temporally consistent 

generators mature, artefact-based detection will grow less 

reliable. Consequently, robust protection must integrate cross-

modal biometrics, live-gesture challenges, and provenance 

logging to maintain patient safety and data integrity. Overall, 

deepfake technology has evolved from a research curiosity into 

an accessible, highly realistic forgery toolset. GAN refinements 

now yield photorealistic imagery (Figure 1), frame-consistent 

face-swaps (Figure 2), and effortless voice clones (Figure 3). 

This technological trajectory calls for proactive, multi-layered 

defences especially in healthcare settings where the cost of 

deception is measured not just in dollars but in patient 

wellbeing. 

2.2 Deepfakes in Politics, Finance, Identity 

Theft, and Security 
Deepfakes have developed into an effective method of 

deception, endangering the inviolability of systems within the 

political, financial, and personal security dimensions. Attackers 

can misuse the trust of the population by synthetically 

manipulating video and voices, biometrics etc. to make 

authentication systems more and more vulnerable. 

Political Disinformation 

In the political arena, deepfakes are starting to be used as a 

weapon that fragments the definition of truth damages 

democratic credibility and is used to control elections. 

Synthetic media has been used to produce fake endorsements, 

made-up gaffes or incendiary statements on the part of political 

leaders. As Chesney and Citron have observed, such 

manipulations actually pose a direct danger to democratic 

institutions by fake-speech and move-imitation in a near-

perfect manner. It is not only true that trust in real 

communications will dermine due to a low-intensity face swap 

or audio manipulation studies with face swapping and audio 

manipulation confirm that as true [14]. Such a loss of credibility 

can be extremely dangerous because it occurs in times of 

crucial election periods. As a particular example, the midterms 

of 2022 in the United States saw researchers discover that even 

half-baked deepfakes in which merely the gestures or tone of 
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voice were altered were enough to create doubt in the minds of 

the voter whether the candidate in the video was real or not 

[15]. Such a case as the fake video of Mark Zuckerberg can be 

mentioned when he was depicted sharing the discussion on 

unethical data practices, creating a groundless panic and 

spreading misinformation [16]. Sequential robustness can be 

tested even in the strongest systems as super intelligent 

machines appear to be human-like. This is even increased by 

the use of social bots that imitate real grassroot movements or 

endorsements that complicate the distinction between real and 

fake political rhetoric [17]. 

Financial Fraud 

Deepfakes can be used in finance to carry out powerful social 

engineering and corporate fraud. On the one hand, Attackers 

apply cloned voices or altered video calls to impersonate the 

executives, bypass verification methods, and give approval to 

illegal transactions. Another example was observed in an 

English energy company in which a worker fell to a deepfake 

voice of the company CEO to wire 220,000 Euros to a fake 

account [18]. In another incident, a Hong-Kong company lost 

25 million dollars when a deepfake impersonation took place 

through FaceTime [19]. According to what is written by 

Deloitte, deepfake-associated attacks are not a fringe activity 

anymore: 92% of large firms surveyed experienced deepfake-

related fraud in some form, and global losses were estimated at 

more than $40 billion by 2027 [12]. Moreover, research 

findings indicate that targeted voice deepfake concludes in an 

approximate 20 percent success rate, particularly in 

conjunction with spoofed video or email spoofing [20]. 

Theft of and Exploitation of Identity 

The danger goes to personal identity and privacy. Deepfakes 

enable hackers to create fake documents, edit ID pictures, or 

impersonate video calls and steal the digital identity of a 

person. Attackers who succeed in such impersonations can use 

the biometric data in harmful ways or make their victims suffer 

the transaction of their identities to criminal activities. It is 

interesting to note that deepfake-based romance scams have 

swindled its victims over $46 million and fake crisis calls and 

ransom demands take advantage of emotional vulnerabilities 

[20]. Although the legal solutions such as the ELVIS Act 

passed in Tennessee criminalize non-consensual voice cloning, 

the scholars emphasize the importance of including integrated 

technical measures to complement the legal ones [17]. 

Multimodal Threats and Trust Erosion 

The threat becomes even more serious when it comes to 

multimodal deepfakes when visual, vocal, and behavioral 

mimicry is used to create an illusion of the complete digital 

appearance of a person. Such attacks are especially 

conspicuous in telemedicines or virtual banks where the 

verification of faces and voice recognition can be the only ways 

to certify identities. Early detection does not work so well 

because attackers have good chances to compromise sessions. 

Zhang et al. have demonstrated that deepfake bots may be able 

to imitate real-time cadence, expressions, and gestures of real 

people with compelling realism [21]. These impersonations are 

becoming so realistic that controlled by machines as well as 

social trust is discouraged. Since generation tools of deepfakes 

become user-friendly and more accessible, even the entry-level 

scammers may execute successful fraudulent campaigns. This 

fact exponentially increases risks in remote healthcare, virtual 

working domain, and digital finance, which requires immediate 

multi-level protection. 

 

2.3 Synthetic Data in Healthcare (Use Cases 

and Ethical Concerns) 
Although deepfakes pose critical threats, synthetic data offers 

meaningful benefits in healthcare, especially in AI-driven 

research where privacy and data scarcity are key concerns. 

Unlike manipulated content, synthetic data is artificially 

generated to reflect real-world statistical patterns without 

disclosing any individual’s identity. It includes formats like 

electronic health records (EHRs), medical images, and time-

series data, often produced using generative adversarial 

networks (GANs) or variational autoencoders (VAEs) [22]. Its 

primary advantage lies in enabling research and model training 

under stringent privacy frameworks such as HIPAA and 

GDPR. Institutions can publish synthetic datasets for algorithm 

development and cross-institutional collaboration without 

risking patient confidentiality [24]. Additionally, synthetic data 

addresses data imbalance by simulating rare disease cases, thus 

enhancing model robustness [25]. In imaging, synthetic CT, 

MRI, and X-ray data have demonstrated clinical value. For 

instance, GAN-based synthetic liver CTs improved lesion 

detection rates in neural networks by 4–7% [25]. During 

COVID-19, synthetic chest X-rays supported rapid model 

deployment [24]. Figure 4 visually compares original and 

synthetic CT images, highlighting the high fidelity achieved 

through GAN augmentation. 

 
Figure 4: Synthetic CT image created via GAN for data 

augmentation 

Possible uses of synthetic healthcare data are: 

• Privacy-Protecting Data Sharing: Enabling scientists to 

study demographics and disease patterns without 

jeopardizing patient privacy. Derived information is de-

identified in design, thereby reducing the scope of re-

identification risk [22]. 

• Algorithm Development: Using the machine-learning 

models with synthetic records of rare pathologies or an 

imbalanced class training, and increasing generalizability. 

An example is the use of synthetic ECG data or imaging data 

to detect anomalies when working with limited real data. 

• Data Augmentation: Boosting the strength of the existing 

datasets by augmenting them with plausible variations of 

clinical information (e.g., varying ages of patients, the 
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existence of comorbidities) to increase the robustness of 

predictive models. 

However, despite the promise, synthetic data raises ethical and 

technical concerns, and challenges abound. This includes:  

Bias amplification: The opponents argue that synthetic data 

can falsely represent bias or the manifestations of the 

generative procedure. If the training data on the model were 

biased or insufficient, the generated (synthetic) output may 

have only reinforced those biases in medical decision-making. 

For example, rare skin conditions and abnormal physiologies 

may be excluded in synthetic scans [26]. 

Statistical validity: The test data should demonstrate a real 

clinical correlation. Otherwise, AI trained on synthetic data will 

fail in real-life situations [25]. There is another possibility that 

the synthetic records may not have minor clinical associations 

that are significant for diagnosis. High-fidelity generation is 

challenging: GANs may generate images or signals that are 

visually believable but medically unlikely after inspection.  

Risk of re-identification: Re-identification is a possibility if 

the synthetic data cannot be thoroughly vetted and verified. 

Concerns have been raised regarding the quality of data and 

potential bias generated, suggesting that synthetic health data 

should be statistically substantiated to make it more useful [18]. 

Unless addressed, GAN memorization can disclose personal 

information. There is a possibility of determining whether a 

patient record was trained on through membership inference 

attacks [27]. 

Regulatory preparedness: Existing privacy regulations do not 

account for synthetic data. Legal analysts demand legal 

clarifications, particularly in the context of insurance risk 

scoring, where the use of such examples is especially 

susceptible. Patients and some clinicians are not confident in 

the decisions taken by AI models that have been trained using 

synthetic data instead of real data. Researchers note that these 

synthetic datasets, unless sufficiently well-protected (e.g., 

through differential privacy or data lineage monitoring), may 

inadvertently reveal personal information or distort analysis 

[18]. 

2.4 Detection and Mitigation Techniques 

(Frame Inconsistency, Frequency Analysis, 

Audio-Visual Correlation) 
With advanced deepfakes, many deepfake detection methods 

have developed to counter the challenge of deepfakes, and in 

highly sensitive areas like the field of telehealth. The strategies 

take advantage of inconsistencies that emerge along synthesis 

process artifacts, which are frequently invisible to the naked 

eye. These are the abnormal eye blinking behaviors, unusual 

facial expressions, unnatural lighting variations, and 

discontinuities across space and time which mostly occurs in 

the manipulated video materials [28]. Detection methods have 

been classified by researchers into three main areas including 

frame-level spatial and temporal analysis, frequency-domain 

inspection and audio-visual correlation. These methods 

frequently use convolutional neural networks (CNNs) or 

multimodal learning designs in order to explicate unnoticeable 

residues of these generative models, like GANs [29]. 

Frame-Level (Spatial/Temporal) Analysis 

Frame-level analysis concentrates on the discontinuities that 

occur within frames or between frames within a video. As an 

illustration, GAN images are prone to high-frequency noise or 

checkerboard, and these artifacts do not coincide with the 

statistical properties of genuine camera images [30]. CNN-

based detectors are able to detect the mismatch of these 

discrepancies with a high accuracy. Inappropriate rates of 

blinking in terms of frequency Abnormal blinking frequency is 

a classic example, early studies revealed that synthetic faces 

blink at a significantly lower, and unnatural rate [13]. Other 

visual abnormalities encompass uneven skin profiles as well as 

facial twists. Such malfunctions can be visually represented as 

it was shown in Figure 5 that presents the difference in 

blinking, skin texture in both real and synthetic video. 

 
Figure 5: Frame-level artifacts in deepfake videos 

(blinking and skin texture anomalies) 

In telemedicine applications, these artifacts may indicate 

tampering during live sessions. Irregular head motions or 

abrupt lip-sync transitions may further raise red flags, 

especially in interactions involving patient consent or identity 

verification [31]. 

Frequency-Domain Analysis 

In contrast to pixel-based methods, frequency-domain analysis 

processes transformed representations, e.g. Fourier or wavelet 

representations. The generative models, in particular those that 

use upsampling, often include artifacts of periodic frequency 

spiking artefacts that do not occur in real-world data [32]. 

Lalvaria et al. revealed that the high-frequency spectrum of the 

GAN-generated pictures possess special characteristics, 

compared to real ones. Based on this observation Tan et al. 

proposed FreqNet a neural architecture that concentrates on 

high frequency heat patterns averaged over thousands of 

samples [33]. Such artifacts are removed with the help of such 

tools as Fast Fourier Transform (FFT) and processed through 

frequency-sensitive CNNs [34]. But generalizability is the 

problem of frequency-domain approaches. As an example, 

overcompression or re-encoding (as with video streaming) can 

introduce ambiguous details and so models are subject to false 

negatives [35]. This notwithstanding, frequency-domain tools 

still prove vital, especially when they are trained using varied 

datasets. 

Audio-Visual Correlation 

Audio-visual correlation methods allow confirming that the 

audio and the video streams of a video are matched as they 

should. In natural speech, there is almost perfect 

synchronization of lip motion and speech waveform in natural 

speech. A time mismatch, like impeded replies or off-beat 

expressions, may be a show of manipulation [36]. 
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Contemporary systems separate audio streams and video 

streams and compare features of these streams. The advanced 

detectors use either multimodal deep learning models (i.e., AV-

HuBERT) or multimodal transformers with the aim of 

detecting minor inconsistencies [37]. Besides, Mel-frequency 

cepstral coefficients (MFCCs) are often applied to assess the 

intensity of voice impressions in case they may be synthesized 

[38,39]. Munir et al. verify that CNNs and RNNs on 

spectrograms are able to attain a high accuracy in spotting geo-

speech with a particular effectiveness when coupled to visual 

temporal verifications [40]. 

Multimodal and Ensemble Strategies 

To enhance detection robustness, many frameworks integrate 

spatial, frequency, and audio modalities. Multibranch models 

process each stream independently before fusing results for 

final classification. For instance, a CNN may evaluate facial 

consistency while a parallel RNN verifies voice continuity. 

Lip-sync checks further validate the correlation between mouth 

movements and spoken words. Telehealth systems often 

implement these as layered safeguards. Recent systems also 

incorporate content origin verification, such as blockchain-

based metadata tracking. While these methods are promising, 

they are not immune to limitations. Models trained on specific 

GANs may fail against novel architectures [33], and low-

resolution input (e.g., standard webcams) continues to pose 

challenges. Nevertheless, recent advances in self-supervised 

and explainable AI offer renewed hope. As researchers like 

Zhang et al. and Khan et al. advocate, a comprehensive suite of 

detection strategies fusing both temporal and spectral cues 

offers the best defense against deepfakes in high-stakes 

environments like healthcare [41]. 

3. METHODOLOGY 
This section outlines the comprehensive methodology designed 

to evaluate defenses against deepfakes and synthetic data 

within remote healthcare systems. It comprises four main 

components: the attack simulation setup, dataset construction, 

defense framework design, and evaluation metrics, along with 

an experimental protocol. 

3.1 Attack Simulation Setup 
To examine vulnerabilities in telemedicine workflows, three 

attack vectors were simulated: video deepfakes, voice cloning, 

and fabricated EHRs. 

3.1.1 Video Deepfakes with DeepFaceLab and 

FaceSwap 

The deep-learning library DeepFaceLab, which features an 

encoder-decoder autoencoder architecture optimized for face 

swaps, was utilized. Subsequently, 10,000 pairs of source-

target frames were selected using dlib-based face alignment. 

The model was trained for nearly 50,000 iterations, which 

allowed us to blend perfectly and achieve a consistent lighting 

effect. To benchmark the tool against other tools, FaceSwap 

was also used, and the results are similar in quality, with slight 

color artifacts and differences in alignment. 

 
Figure 6: DeepFaceLab face-swap pipeline 

By generating realistic facial impersonations in telemedicine-

call contexts, these samples formed a critical component of the 

evaluation suite. 

3.1.2 Voice Cloning via Tacotron 2 and SV2TTS 

The voice deepfakes are based on a dual-model pipeline that 

consists of Tacotron 2 [10] and SV2TTS [42]. The training data 

consisted of unedited 5-minute audio recordings of clinicians, 

which were offered at times. Mel-spectrograms and speaker 

embeddings were then extracted, and Tacotron 2 was trained 

on using the alignment and generator modules for 200k steps. 

Spectrograms were converted to waveforms using a WaveNet-

style vocoder, enabling exceptionally realistic speech. Text 

prompts mimicked A/B medical questions (e.g. How do you 

feel today?). The created speech was convincing in its timbre, 

emotion, and sentence-level variation, thus imitating the 

everyday communication in telehealth. 
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Figure 7: Voice cloning workflow using Tacotron 2 and SV2TTS 

3.1.3 Synthetic EHR Generation with MedGAN 

To mimic data integrity in EHR systems, MedGAN was 

utilized. Using the discrete events and lab results as 

binary/count vectors using the de-identified MIMIC-III dataset. 

In this case, the GAN was trained for 150 epochs, stabilized 

through the use of batch normalization and minibatch 

discrimination. The artificial data maintained the statistical 

trends (distribution by age and combination of diagnoses), but 

not the actual patient data. These created EHRs were used to 

generate simulated medical records for measuring the 

provenance detection framework. 

 
Figure 8: MedGAN architecture for synthetic EHR 

generation 

By synthesizing deepfake videos, cloned audio, and fabricated 

EHRs, the methodology frames a challenging evaluation 

environment for remote healthcare defenses. 

3.2 Dataset Descriptions 
5,000 clips of a manually labeled Deepfake Detection 

Challenge (DFDC) dataset were used to train and benchmark 

the visual detection models, as the dataset contains more than 

100,000 high-quality videos. To supplement it, we now created 

a Custom Telehealth Video Dataset by remotely scripting 100 

sessions (50 real and 50 manipulated) with DeepFaceLab and 

FaceSwap and simulating the same 720p and 1080p resolution 

default of the telehealth systems. As part of voice 

impersonation, we used the VoxCeleb1 and VoxCeleb2 data to 

create speaker embeddings and take cloned speech through 

Tacotron 2, simulating an audio-based identity spoof in 200 

cases. We conditioned MedGAN to learn real world 

distributions in MIMIC III to produce 50 K synthetic patient 

profiles to emulate Electronic Health Record (EHR) threats. 

Fidelity was checked through KolmogorovSmirnov tests and 

principal component analysis using a 10 000-record validation 

subset.   

3.3 Defense Framework Design 
There are biometric bi-validation, authenticity scoring by 

classifier and data provenance with blockchain in our 

architecture. Through FaceNet, a face validation through 

cosine similarity thresholds (0.8 and above) was conducted. 

Fine-tuned speaker models enabled voice verification, and a 

gesture recognition was managed through OpenPose. All these 

three modalities were supposed to meet and re-authenticate in 

case a deviation was noted. Inspecting visual deepfakes was 

performed via ResNet-50 and MesoNet, whereas voice 

deepfakes were analyzed with the help of the spectrogram 

classifier built on CNN. Inconsistency in lip-synchronization 

was detected with the help of SyncNet and the final decision 

reached through Bayesian fusion model. The EHR access was 

controlled through Hyperledger Fabric: the hash of each record 

was kept on-chain and checked on access. Any mismatch was 

rejected so that clinical decisions were not grounded in altered 

data. 

4. RESULTS 
This chapter presents the results of the deepfake and synthetic 

data defense system. The results on: (1) deepfake detection 

performance; (2) biometrics cross-validation performance; (3) 

blockchain provenance performance; and (4) a case study of a 

prevalence tissue based on a simulated telehealth consultation. 

Figures and tables present documentation of vital statistics 

based on crowd-sourced data (DFDC, VoxCeleb, MIMIC-III). 
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4.1 Performance of Deepfake Detection 
The performance of our deepfake detector tested on a DFDC-

style dataset (real and fake balanced, 10,000 videos) has shown 

a good discrimination performance displaying 95.3 accuracy 

and an AUC-ROC value of 0.984 as illustrated in Figure 1. True 

positive and negative rates were above 90% which amounted 

to better performance compared to the previous CNN-based 

approaches (≈89.2%) [56] and attention hybrids (AUC ≈ 75) 

[43]. The estimates of evaluating metrics such as precision, 

recall, and F1 0.96 are provided in Table 1 [44]. 

Table 1. Performance on the DFDC-style test set 

Metric Value 

Accuracy 95.3% 

Precision 97.8% 

Recall 94.6% 

F1-Score 96.2% 

AUC-ROC 0.984 

False Positive Rate 2.5% 

False Negative Rate 5.4% 

Table 1 illustrates that the detector achieves accuracy greater 

than 95 percent, with low false-positive and false-negative 

rates, making it perform reliably on high-quality face-swap 

deepfakes. As an example of performance statistics, the Journal 

has provided Table 1, which reveals statistics on the test split. 

The confusion matrix was well-balanced, with both false 

positives and false negatives at a low rate (approximately 2.5-

5 percent).  

 

Figure 9: ROC curve for deepfake detector 

ROC curve presented in Figure 9 demonstrates that the detector 

indicates its high results, 0.66 threshold produces a 97.8 

precision, 94.6 recall, and an F1-score of 96.2, in line with the 

results by Kroissen and Reschke [44]. based on ResNet-50. 

Compression reduced accuracy (95.3% → 92.7% → 89.4%), 

which was in line with the previous DFDC-scale findings of a 

lack of detail in low resolutions [45] (see Figure 10). 

 

Figure 10: Impact of video resolution on detection accuracy 

On an NVIDIA Tesla V100 GPU, the deepfake detection 

module operated at an average latency of 85 milliseconds per 

frame (≈11.8 fps), ensuring real-time performance with less 

than 500 ms overhead during five-second authenticity checks. 

This efficiency supports seamless teleconsultations while 

maintaining robust accuracy (≈95%) and AUC (≈0.98), even 

under compressed video formats such as 480p and 360p, as 

illustrated in Figure 10. These results establish a solid baseline 

for integrating biometric verification as a complementary 

safeguard. 

4.2 Outcomes of Biometric Cross-Validation 
The biometric cross-validation subsystem consolidates face, 

voice, and gesture-based authentication to combat multimodal 

deepfake intrusions in telehealth. Through 1,000 simulated 

sessions split equally between legitimate and adversarial 

attempts each modality was evaluated independently and in 

combination. Face recognition achieved top-tier performance 

with 99.1% TAR and TRR, with FAR/FRR ≤0.9%, consistent 

with prior benchmarks [59]. Voice verification, based on 

VoxCeleb embeddings, showed TAR of 95.5% and TRR of 

94.3%, but was more vulnerable to spoofing (FAR: 5.7%) [59]. 

Gesture recognition via OpenPose yielded 93.2% TAR and 

92.8% TRR. The fused Bayesian model outperformed all 

individual methods, attaining 98.6% accuracy. Confusion 

matrix results (Figure 1) further validate this multimodal 

robustness with only 7 misclassifications across all sessions. 

4.2.1 Summary of Biometric Performance 

Table 1: Biometric Cross-Validation Performance 

Modality True 

Accept 

Rate 

True 

Reject 

Rate 

False 

Accept 

Rate 

False 

Reject 

Rate 

Face ID 99.1% 99.1% 0.9% 0.9% 

Voice ID 95.5% 94.3% 5.7% 4.5% 

Gesture 

Check 

93.2% 92.8% 7.2% 6.8% 

Combined 

Fusion 

98.6% 98.6% 1.4% 1.4% 

Table 1 shows that the fused biometric system significantly 

reduces misclassification rates, enhancing the robustness of 

remote authentication. 

Such results can be strongly sensed about the critical 

importance of multimodal verification. In many of the 

impersonation simulation attempts, even a single biometric 

would have been fooled; for instance, in 23 out of 500 imposter 

trials, the face recognition system would have been deceived 

by a deepfake, yet the voice verification system would have 

detected the inconsistency. In the same way, 15 of those 

verifications were done correctly in both face and voice. Still, 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.41, September 2025 

35 

they did not pass when it came to the gesture prompt (the 

attacker was required to nod their head automatically), as they 

were unable to do so correctly when accepted by the synthetic 

agent. 

4.2.2 Visualizing Biometric Performance 

 
Figure 11: Confusion Matrix for Fused Biometric Cross-

Validation System 

As shown in Figure 11, the system yielded low false acceptance 

and false rejection rates, with only seven misclassifications out 

of 1,000 total sessions. This demonstrates a near-perfect 

balance between security and accessibility, minimizing both 

user inconvenience and the risk of impersonation. 

 
Figure 12: Comparison of ROC Curves Across Biometric 

Modalities 

Figure 12 shows the comparison of ROC curves by the 

modalities of biometrics. Face ID on its own produced the best 

AUC (0.996) as compared to Voice ID (0.972) and Gesture 

(0.961). But the combination of all three substantially improved 

the robustness of detection as the AUC increased to 0.992 in 

this case, which verified the worth of layered verification [Fig. 

12]. 

4.2.3 System Latency 

The biometric subsystem demonstrated real-time suitability 

with 150 ms for single-modality and ≤500 ms for multimodal 

checks. Clinicians (N = 20) rated usability 4.3/5, praising its 

seamlessness. Multimodal fusion significantly reduced 

deepfake attack success probabilities, ensuring robust 

impersonation defense even when one modality is 

compromised. 

4.3 Blockchain Provenance Impact 
This study was able to incorporate blockchain provenance 

mechanisms into the  remote healthcare defense framework, 

which resulted in a tamper-evident, provable addition of a layer 

of session and data integrity, adding security to the  system 

without new (prohibitive) computational workloads. This 

section presents an analysis of blockchain-backed auditing 

performance in scenarios involving an attack and control, based 

on simulated data from telehealth sessions and synthetic 

electronic health records (EHRs), as the methodology is 

elaborated upon. 

4.3.1 Blockchain commit and verification latency. 

Regarding system performance, the blockchain layer presented 

minimal overhead cost per transaction. Precisely, it took, on 

average, 20 milliseconds of operation per transaction for each 

blockchain commit to hash the video frames, audio streams, 

and identity claims, as well as time-stamp such contents into a 

local permissioned Hyperledger ledger. On the same note, 

blockchain confirmation procedures took an average of 15 

milliseconds per transaction. 

Table 3. Blockchain Provenance Performance Metrics 

Metric Simulated Value 

Tamper Detection Rate 100% 

Blockchain Commit Latency (per tx) 20 ms 

Verification Latency (per tx) 15 ms 

CPU Overhead (per session) +5% 

Storage Overhead (per session) +2 MB 

Table 3 demonstrates that the blockchain implementation 

provides real-time tamper detection with negligible impact on 

system resources, making it practical for live telehealth 

consultations. 

 
Figure 13: Blockchain Commit and Verification Latency 

Comparison 

The processing latency utilized by blockchain operations, as 

observed in Figure 13, is relatively insignificant compared to 

system throughput. There was a 5 percent rise in CPU usage 

per telehealth session, and there were even fewer additions to 

storage devices, at approximately 2 megabytes per telehealth 

session, a price that is acceptable given the current capacity of 

a telehealth server. 

4.3.2 Detection of Rogue Insertions: Establishing a 

Preventive Measure 

Rogue Insertion Detection: Putting a Watch Dog on Rogue 
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Factor Insertions: Rogue Insertion Detection Setup: The need 

to put a watch dog on Rogue Factor Insertions is demonstrated 

by an incident where two of these Rogue Insertion attacks were 

detected. 

Security validation proved the efficiency of the tamper-evident 

architecture of the blockchain to the detection of unauthorised 

synthetic EHR intrusion and deepfake session impersonations. 

In the process of simulation, 0.2 percent of 10,000 synthetic 

data records were specially issued without actual blockchain 

signatures. This system had a 100 percent and achieved a zero 

false positive, thus proving its reliability. This result 

corresponds with what has already been found out in literature 

of successful breach detection rates of over 99.8 percent in 

health data environments which were enforced through block 

chain [46]. Moreover, the deep fake video and audio insertions 

with manipulated hashes were immediately detected by the 

blockchain audit trail, which may confirm that the system is 

reliable in live media streams. On-chain records cannot be 

altered, and that is why they are completely trackable. When 

frames, audio and biometric checkpoints are recorded to the 

ledger, it will be impossible to retroactively tamper with them 

without leaving a trace of traceable evidence behind that can be 

detected and traced to its source- creating forensic transparent 

data to this fact to both clinicians and patients. The results can 

be compared with those obtained by Ghosh et al., who found 

the breach ranges between 0.2 percent and 0.2 percent in an AI-

aided blockchain [46]. 

4.3.3 Operational scalability and system Cost 

The results of resource profiling on resource name have shown 

little blockchain-induced latency or throughput depreciation on 

simulated hospital-scale loads. No bottlenecks were created in 

tests. In accordance with the estimation of Ghosh et al. 

regarding the 2030 rate of up to 30 percent in the area of 

reducing costs through the optimal use of blockchain, the 

system demonstrated stable work, confirming its scalability and 

the cost-efficiency of remote healthcare processes [46]. 

 
Figure 14: Blockchain System Overhead Summary 

Figure 14 illustrates that blockchain integration utilises only a 

tiny fraction of system capacity, indicating that the solution 

remains scalable for real-time healthcare operations. 

Although the blockchain system was feasible within the 

experimental design limitations, it is essential to note that ultra-

high-speed streaming services would be bottlenecked beyond 

optimization. Blockchain can be restrictive when sub-

millisecond latency is required; however, this limitation did not 

apply to any of the simulated telehealth scenarios investigated 

in this study. 

4.4 Case Study of Simulated Consultation 
For realistic-world implementation, an end-to-end telemedicine 

simulation involving a remote consultation between a 

physician and a 65-year-old patient (database from MIMIC-III) 

was conducted. At some point during the consultation, an 

attacker created an end-to-end multimodal deepfake: a video 

feed from DeepFaceLab and the speaker's voice cloned using 

Tacotron 2. The presented defense system responded 

accordingly: 

1. Frame-level detection: At 1 second into streamed video, the 

deepfake detector produced a fake likelihood of 92%, which 

surpassed the 80% threshold for alerts. 

2. Validation of voice: There was only 81% similarity 

(threshold 90%) between the speaker verification and the 

attack voice, which necessitated an additional authentication 

step. 

3. Gesture check: There was no proper head-nod response on 

prompting, which justified foul play. 

4. Blockchain logging: Real-time hashing of all voice samples 

and frames was performed; an anomaly 30-second window 

was stamped against the immutable ledger for analysis after 

an incident. 

 

Table 4. Case study timeline & outcomes 

Step Time 

(s) 

Result Action 

Session start 0 Clean 

video+audio 

— 

Attack 

initiation 

30 Deepfake 

stream 

Detector 

running 

Detector alert 31 Fake 

prob=92% 

UI alert + 

pause video 

Voice check 32 Sim 

sim=81% 

Prompt second 

auth 

Gesture 

prompt 

34 No response Session hold 

Blockchain 

anomaly 

logged 

35 Tamper 

flagged 

Record time-

stamp 

Full session 

blocked 

36 — Reschedule / 

manual verify 

 

Table 4 traces the incident timeline: the framework detected the 

attack within 2 seconds and automatically halted the session. 

No false alarms occurred in 20 legitimate test sessions, 

confirming low false-positive tendencies. User feedback 

indicated trust in the system’s automated safeguards, with 

clinicians expressing confidence in the rapid detection and 

clear alerts. The case study highlights that the multi-layered 

approach can quickly detect complex deepfake attacks, 

preserve patient privacy, and maintain system usability. 

4.4 Consultation Case Study 
In order to test the strength of the suggested defense framework 

in a telehealth setting, a high-fidelity simulation was carried 

out. The scenario arose with a de-identified male 65-year old 

patient with pneumonia and hypertension which were 

simulated (in the process) through the MIMIC-III ICU dataset 

[47]. This patient began an online visit through his smartphone 

with a distant physician. Halfway during the session, an 

impersonator created a multimodal attack, showing a Face-

swapped video with DeepFaceLab [48], using cloned speech 
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produced with Tacotron 2 and SV2TTS [49]. Such a 

sophisticated hack was in the interest of avoiding traditional 

means of single-mode authentication. 

The real-time defense modules in the framework were quite 

fast. After one second of the attack launch, the deepfake 

detection engine identified the incoming video with a score of 

92 of artificiality, higher than the 80 percent alarming level. At 

the same time, the voice biometric system captured 81% 

speaker similarity, and less than the necessary 90% match was 

recorded followed by automatic pause and request of re-

authentication. Another verification layer in the form of a 

gesture was unable to find a valid clinician head-nod response. 

Audiovisual frames were hashed into immutable log on a 

blockchain. Forensic traceability was noted as 30-second 

anomaly window. The audit of the incident after the fact made 

it clear that tampered content could not correspond to any 

legitimate profiles, which proves the effectiveness of the 

framework in the isolation and detection of deepfake attacks in 

real-time. 

Table 4: Timeline and Outcomes of the Simulated 

Consultation Attack 

Step Time 

(s) 

Result System Action 

Session Start 0 Clean video 

+ audio 

— 

Attack 

Initiation 

30 Deepfake 

stream 

begins 

Detector actively 

scanning 

Deepfake 

Detector 

Alert 

31 Fake 

probability 

= 92% 

Session paused + 

UI alert 

Voice 

Biometric 

Validation 

32 Speaker 

similarity = 

81% 

Second 

authentication 

prompt 

Gesture 

Prompt 

34 No response 

detected 

Session on hold 

Blockchain 

Anomaly 

Logged 

35 Tampering 

flagged 

Immutable log 

updated 

Session 

Termination 

36 Security 

breach 

confirmed 

Session blocked, 

manual re-

verification 

Table 4 clearly illustrates the swift response timeline: the 

system identified and contained the deepfake attack within six 

seconds of the intrusion attempt, preventing further session 

progression. 

Real-time interception of the system prevented the infiltration 

of deepfakes in real-time, as well as, through blockchain 

logging, maintained a secure and unaltered chain of custody to 

supplement forensic traceability. The cross-validation layer of 

biometrics efficiently detected the inconsistencies of voice and 

failures of gesture proving the robustness of multimodal fusion 

over composite attack. False alarms were not encountered in 

any of the 20 genuine clinician patient interactions; the 

deepfake likelihoods were not above the minimum value, and 

the voice biometrics attained a match success rate of more often 

than not over 95 percent. In all of the cases, the auto-gesture 

prompts were identified correctly. A false positive rate of only 

0.1 was confirmed with the analysis of confusion matrix (1,000 

frames). Also, metadata of all EHR sessions and data were 

hashed and logged without any difference between interactions 

in real-time and blockchain registers. Important events that 

occurred during the sessions such as intrusion attempts and 

mitigation attempts had timestamps to be audited. The results 

of the post-trial feedback demonstrated that clinicians felt 

confident in the automation of the system and the design of 

alerts, which is consistent with the usability metrics before the 

trial, demonstrating the satisfaction rate of 4.3/5. 

6. DISCUSSION AND 

RECOMMENDATIONS 

6.1 Interpretation of Detection Challenges 
The results of the simulated analysis confirm the high detection 

performance of the suggested schema to counter the deepfake-

induced impersonation within the contexts of remote 

healthcare. However, regardless of its high-performance rate in 

detecting it, there are some outstanding challenges that need to 

be examined. Advanced generative architectures which 

generate highly believable and realistic synthetic audio-visual 

media are becoming a point of attack by modern malefactors; 

and said filters can often be defeated by such mediums. The 

effectiveness of deepfake detection is especially weak in the 

conditions of real-life use, where the quality of the input data is 

irregular. One of the greatest limitations is video compression 

and resolution limits that telehealth platforms are usually noted 

to present. Simulation indicated a decrease in the accuracy of 

detection for low resolutions (360p) by 4.4 percent as compared 

to the high resolution (1080p) which was detected with 

accuracy of 95.3 percent. Such a tendency follows the past 

studies that point at decreased detectability of generative 

artifacts in lower quality images, thereby worsening the 

deepfake detection mechanisms based on pixel-level 

discrepancies [48]. Typically, on telemedicine systems running 

on a low bandwidth result in lossy compression that degrades 

the fidelity of the detector visual input, and thereby results in a 

perceivable reduction in confidence of detection. 

Moreover, detection systems based on temporal anomalies are 

less useful when it comes to more recent GANs, such as 

StyleGAN3, as those have been specifically designed to avoid 

temporal detection mechanisms that would present 

inconsistencies between frames [50]. These developments 

comprise a new strategic direction in hostile methods, in which 

the generators of deepfakes are customized to avoid 

specifically the types of evidence against which detectors are 

optimized. 

Besides, another but no less significant challenge is working 

with audio detection. In an optimal setting configuration, our 

voice verification module was able to display a 95.5 percent 

genuine acceptance level. But with background or network 

compression noise that is characteristic of telehealth set-ups, 

performance may instead decline substantially. Previous 

studies attest to the fact that voice cloning attacks, particularly 

those sent over lossy channels, are capable of provoking 

misleading outcomes, even in speaker verification models that 

are robust in nature [49]. Thus, while the model excels under 

clean conditions, its reliability under real-world telehealth 

audio quality remains a key vulnerability. 

6.2 Multi-Modal Authentication Trade-Offs 
The combination of face recognition, voice verification, and 

gesture response into a system of united authentication 

enhanced security strength. The simulations showed the overall 

accuracy of 98.6 but close to 0 percent of false acceptance and 

false rejection. It has however got remarkable trade-offs with 

which it has been associated especially when it is applied 

practically in telemedicine settings. First of these is complexity 
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of user interaction. Telemedicine is all about convenience and 

familiarity to the clinicians as well as the patients. Including 

extra steps, e.g. gesture-based prompts, or second 

authentication, automatically raises the interaction load. 

Although clinicians participating in the simulation evaluated 

the usability of the system at 4.3 out of 5, when scaled up to 

represent a less specific demographic with users on different 

stages of technological fluency, particularly those in the older 

generations, increased satisfaction may not be observed [8]. 

Moreover, every form of biometric has its own susceptibilities. 

Even when facial recognition is most accurate, deepfakes can 

fool it, in low-res or low-light video especially. Although voice 

authentication is formidable when used in ideal settings, it is 

vulnerable to high fidelity cloning attacks (especially where the 

target has been cloned in terms of individual phonetic 

attributes) [49]. Gesture sensing is necessary to perform a 

liveness check, but can break because of the positioning of the 

camera, lighting, or misunderstanding of the user. Taken 

together, these weaknesses add up in what is a classic trade-off: 

the greater the number of modalities, the greater the chances of 

not only security but also of friction and failure. 

Technically, quality hardware and steady network connections 

are the preconditions of taking quality reliable biometric data. 

This infrastructure cannot be assured in rural or resource-poor 

environments, where most of the benefit of telemedicine may 

arguably lie. This drawback brings an equity problem, which 

might limit secure telehealth availability to more privileged 

users unless one ventures into other mechanisms [51]. 

Lastly, multimodal authentication means an increase in the 

computational overhead. Although what was simulated based 

on one-minute sessions showed latencies that reached sub-one-

second, the scaling of the solution to scale to support many 

sessions in parallel or adding a new layer (e.g. behavior 

analysis) might make the system approach unrealistic real-time 

limits. 

6.3 Implementation Considerations 

(Latency, UX, False Alarms) 
There are pertinent design factors of transitioning simulation to 

a real deployment such as how latency, user experience (UX), 

and the level of false alarms are handled. This limit is tenuous 

as our framework captured less than one second overall delay 

in authentication even though we could not go below it. It has 

been shown that teleconsults need to have a latency of less than 

1.5 seconds to uphold the rhythm of natural conversations, 

particularly in the vital areas of high stakes clinical 

environments [36]. Should other modules, like blockchain 

verification, or the behavioral analysis, be added in their 

unoptimized format, the overall latency would exceed the 

acceptable margin, which would hurt the user confidence 

regarding platform responsiveness. 

The user experience, in its turn, depends on the introduction of 

authentication prompts. Even though the new security 

measures increased the number of verification checks, it can 

bring certain frustration or fatigue due to excessive checks. 

This is particularly worrying in high-volume clinics or in a 

clientele exposed to vulnerability. As indicated by Cameron et 

al., the complexities level of sessions are found to be inversely 

proportional to user satisfaction in older and digital novice 

users [51]. 

Trust is undermined with even a small number of false-positive. 

False alarm rate Our system had a low false alarm rate 0.05 % 

(1 out of 2,000 image frames). This however equates to 

relatively regular disruption to active systems receiving 

thousands of frames a day. According to Brunner et al., user 

compliance declines exponentially beyond 2% biometric false 

positive and this percentage is much lower than ours but should 

be cautionary in implementing the biometrics towards 

operation [52]. 

This problem is partially solved by dynamic thresholding, 

which is sensitive to the conditions of the session: audio quality 

and resolution. This would enable the system to flag anomalies 

and also support the human override options to clinicians that 

would not disrupt the continuity in care delivery services. 

6.4 Strategy Recommendations 
Considering the results of the simulated analysis and the real-

life complications inherent to the implementation of deepfake 

defense, which have been identified during this research, a 

range of strategic recommendations can be made regarding the 

secure and scalable implementation of the presented deepfake 

defense frameworks in remote healthcare networks. 

First, the integration of the platform should be given 

importance. The multi-layered authentication method 

suggested cannot be introduced as a separate and/or segregated 

layer of security, but as an intrinsic component of current 

telemedicine systems. Easy solutions would integrate biometric 

validation, blockchain record-keeping, and session verification 

into the intuitive scenario of a clinical meeting, thereby limiting 

interference for patients and medical staff. Interoperability 

would occur smoothly with the use of application programming 

interfaces (APIs) and software development kits (SDKs) 

specifically designed for telehealth systems, thereby 

maintaining the system's real-time performance. 

Second, it is essential to adopt standards for metadata signing, 

which can enhance the system's resilience against data 

tampering. The metadata used to cryptographically sign each 

video frame, audio segment, and session event should be 

verifiable independently of one another. By providing digital 

signatures at the data capture stage and monitoring them 

throughout the session lifecycle, the system can block 

undetectable replacements or injections of deepfake content. 

Greater uniformity throughout the industry regarding such 

metadata protocols, which may be based on the Coalition for 

Content Provenance and Authenticity (C2PA) standards, would 

reinforce the integrity of telehealth records and facilitate the 

movement of records with interoperability between providers. 

Moreover, it is necessary to collaborate with the state to make 

such solutions scalable and sustainable. The concept of 

deepfake detection technologies, blockchain frameworks and 

biometric verification systems should not develop in their 

dumb silos. Instead, governments, academic researchers, 

telehealth vendors, and cybersecurity firms should collaborate 

to exchange threat intelligence, establish best practices, and 

develop training data sets that capture emerging attack vectors. 

An upstream shared investment in open-source detection tools 

and provenance infrastructure would provide wide access to 

robust security measures, especially for smaller healthcare 

providers that lack technical expertise. 

7. CONCLUSION 
Surging threats of deepfake, voice-cloning and synthetic data 

have become one of the major threats to the remote healthcare 

systems, especially in times where telemedicine is getting more 

and more popular. The trend towards the digitalization of 

healthcare systems in order to meet the demands imposed by 

the international health challenges makes the risk of the 

malicious user exploit such platforms all the more palpable. 
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This has been addressed in this research by creation of fake 

attack events and introduction of a strong multi-layer defence 

structure that can detect and stop synthetic media attacks. 

Telehealth platforms inherently involve many streams of data: 

video and voice calls, and health records of patients. These 

streams turn into the possible sources of impersonation through 

artificial audiovisual records or forged patient records. The 

results of such attacks may include breaking confidentiality of 

patients, manipulate medical history, and undermine the 

trustworthiness of the virtual healthcare. Also, injection of 

synthetic and malicious data to EHRs may compromise the 

clinical decision-making exposing the patient to danger and 

distrust. 

To deal with these threats, a large number of simulated attacks 

has been used in this study. DeepFaceLab and Tacotron 2 were 

some of the tools used to create hyper-realistic video and audio 

deepfakes, respectively. They were evaluated against well-

known data sets, such as DFDC, VoxCeleb and MIMIC-III, 

offering realistic and heterogeneous settings to test them. With 

the help of such data, the paper tested the state-of-the-art 

detection algorithms in instances of simulated real-world traffic 

situations. The defense system formed is a combination of a 

deepfake detection, biometric cross-validation (including facial 

recognition, analyses of voices, and confirmation of gestures), 

and blockchain-based provenance mechanisms of data. The 

combination of the modalities enables high though detection 

accuracy and ability to withstand any multimodal attempts of 

spoofing. In a test, biometric fusion authentication has reported 

authentication efficiency of 98.6 percent, low false positive and 

false negative rates, which has balanced security profile. 

The performance outcomes demonstrated resilience of the 

detection system whereby the accuracy remained greater than 

95% under the conditions of low-resolution video frames (e.g., 

360p). Additional layers of detection were further improved by 

introducing real time user prompts (e.g. gesture checkings) 

when a simple visual or audio prompt was too weak to 

successfully detect a variety of user gestures. The blockchain 

component played a major role in data integrity and 

transparency of the system. It hashed the real-time updates of 

all session media and the updates of EHR, which is highly 

latent (20 ms to commit and 15 ms to verify). This follows the 

reported performance metrics in the setting of recent medical 

blockchain systems installation. The low computing overhead 

and the effectiveness of the system confirm its use in telehealth 

in real-time. The potential of the framework to be ready to be 

applied to the actual world was put to test with the application 

of a case study involving a 65-year-old patient with synthetic 

EHR data. An imaged deepfake assault was recognized in less 

than two seconds, causing an immediate suspension of the 

session and a blockchain based chronicle of the action. This 

quick action is a good demonstration of the functionality of the 

system in real-time consultation particularly when handling 

high stakes scenarios where there is exchange of sensitive 

medical information. 

However, there came some problems. Although multimodal 

authentication is promising, it can cause some minor delays in 

consultation and necessitate high quality input data, which are 

only provided in high-bandwidth environments. Besides, even 

the further development of technologies of generative synthesis 

deepfakes like StyleGAN3 poses a threat to overpower current 

identification tools, which requires investing in their 

continuous update and research. The greater implication 

involves a host environment, which requires the convergence 

of expert groups in the cybersecurity world, telehealth 

providers, as well as the regulatory agencies to develop 

standards that are enacted. Another major suggestion to be 

made would include the signing of all session elements by 

using cryptographic metadata signing- a possibility that would 

prevent the injection of undetectable synthetic data. The 

collaboration involves both the public and private sector to 

offer anti-deepfake technologies that are scalable and cost 

effective, especially in acquisition of anti-deepfake tools by 

underserved small scale and rural healthcare facilities. 

Additionally, it has been suggested that adaptive thresholds 

relative to session conditions and human-in-the-loop 

confirmation of alerts are useful in matching security and user 

experience, especially in clinicians. 

Such findings make the immediate need of proactive security 

integration to telehealth. The online character of tele 

consultation invalidates the physical boundaries of 

identification security and makes systems prone to identity 

theft, medical misinformation, and lack of privacy. As a result, 

resilience to synthetic media attack is bound to be used in the 

very core of the telemedicine infrastructure. All in all, this 

study would be a meaningful addition to the scarce body of 

works on deepfake mitigation in healthcare and a potentially 

scalable solution to this problem, including multimodal 

verification, real-time response, and unforgeable data tracking. 

It is necessary to conduct further studies and explore the aspects 

of user experience of this kind of framework that should not put 

too many burdens on healthcare providers or their patients due 

to the increased security measures. It will have to be expanded 

to cover the emerging sources of consultations, such as AI-

powered or VR-based care, in order to remain relevant. To sum 

up, the combination of layers of security: biometric 

verification, deepfake recognition, and blockchain provenance 

exposes an impressive path to guarding telehealth systems 

against the multi-faceted and changing issue of synthetic media 

impersonation. This paper has shown that not only is such 

protection technically possible but that any hope of maintaining 

trust, privacy, and efficacy due to the remote nature of medical 

care necessitates such protection. 
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