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ABSTRACT  
This study introduces an artificial intelligence framework for 

accelerating the discovery of stable, lead-free hybrid organic–

inorganic double perovskites for solar energy applications. We 

combined a pre-trained Atomistic Line Graph Neural Network 

(ALIGNN) with gradient boosting ensembles to predict three 

critical properties: formation energy, bandgap, and Debye 

temperature. The ALIGNN model was trained on 8,000 crystal 

structures and achieved mean absolute errors of 0.011 eV per 

atom for formation energy, 0.094 eV for bandgap, and 10.5 K 

for Debye temperature. The gradient boosting models provided 

complementary accuracy and interpretability, particularly for 

bandgap classification. Using this pipeline, we screened 8,412 

candidate compounds and identified K₂AgBiBr₆ as a promising 

material with a bandgap of 1.34 eV, a Debye temperature of 

402 K, and a formation energy of −2.31 eV per atom. These 

values suggest long-term thermal stability and high 

photovoltaic potential without toxic lead. Compared with 

density functional theory calculations, our approach reduces 

computational cost by more than 90 percent while maintaining 

predictive fidelity. The framework offers a scalable path 

toward rapid identification of practical solar absorber materials 

and could significantly shorten the timeline for developing safe 

and efficient perovskite photovoltaics. 
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1. INTRODUCTION 

Global electricity demand is expected to rise by about 50 

percent by 2050, creating an urgent need for renewable energy 

expansion [1]. Photovoltaics are central to this effort, but the 

materials used in current commercial cells create obstacles for 

scaling. Silicon dominates the market, yet its production 

requires high-purity inputs and high-temperature processing, 

both of which add cost and slow deployment [2]. Hybrid 

organic–inorganic perovskites (HOIPs) have become strong 

alternatives because they can be manufactured at low cost and 

have already reached power conversion efficiencies greater 

than 25 percent in laboratory devices [5]. Despite these 

successes, most HOIPs contain lead, which is toxic to humans  

 

and ecosystems [3]. They also degrade under light, heat, and 

moisture, which shortens device lifetimes [6]. These two 

weaknesses, toxicity and instability, have so far prevented 

large-scale commercialization. 

Hybrid organic–inorganic double perovskites (HOIDPs) are 

one promising path forward. In these compounds, lead is 

replaced by less hazardous cations such as silver, bismuth, 

antimony, or tin, which reduces environmental risk while 

preserving the desirable optical and electronic features of the 

perovskite structure [7]. For example, Cs₂AgBiBr₆ has been 

studied as a stable, lead-free candidate and shows improved 

resistance to moisture compared with methylammonium lead 

halides [17]. HOIDPs can, in principle, achieve bandgaps near 

the optimal range for solar absorption while improving 

chemical durability. The obstacle is that experimental 

discovery of new HOIDPs is slow, and computational searches 

using density functional theory (DFT) are too expensive for 

large chemical libraries. A single DFT calculation can take 

hours or days, which makes it impractical for the millions of 

possible structures that could be considered [12]. 

Machine learning has been introduced to reduce this 

bottleneck. Classical algorithms such as Random Forest and 

Gradient Boosting can predict bandgaps, formation energies, 

and stability values using features derived from atomic and 

electronic properties [9]. Kernel-based methods such as 

Support Vector Regression also perform well for structure–

property prediction when trained on carefully chosen 

descriptors [11]. These models rely on engineered input 

features, such as electronegativity, ionic radii, or atomic 

volumes, which are combined into numerical vectors [16]. 

When high-quality descriptors are available, classical machine 

learning can reach good accuracy at relatively low 

computational cost. However, the requirement for manual 

feature engineering limits flexibility and makes it difficult to 

extend models to new classes of materials where the most 

relevant descriptors are not known in advance. 

Recent advances in deep learning address this limitation by 

working directly with atomic structures. Xie and Grossman [8] 

introduced the Crystal Graph Convolutional Neural Network 

(CGCNN), which treats a crystal as a graph where atoms are 

nodes and bonds are edges. This approach learns relationships 

between structure and properties directly from crystallographic 

information files, without requiring hand-crafted features. 

CGCNN showed strong accuracy for predicting formation 

energy, bandgap, and stability across large inorganic datasets. 

Chen et al. [15] developed the Atomistic Line Graph Neural 

Network (ALIGNN), which expands on this idea by building a 

second graph that represents interactions between bonds. 

ALIGNN has achieved state-of-the-art results for property 
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prediction across diverse materials in large repositories such as 

the Materials Project [10]. By capturing both atom–bond and 

bond–bond information, ALIGNN improves accuracy while 

maintaining the ability to scale to large datasets. 

While machine learning has been widely adopted in materials 

informatics, systematic comparisons of classical algorithms 

and graph neural networks are still rare in the case of HOIDPs. 

Previous work has either focused on descriptor-based 

regression [9,16] or on graph-based models [8,15], but little 

research has placed them side by side for the same set of double 

perovskite targets. This creates an open question about which 

model families are most effective for predicting the properties 

that matter most for solar materials. Specifically, there is 

limited clarity on whether engineered descriptors remain 

competitive when modern deep learning is available, and 

whether graph neural networks can offer an advantage in 

smaller, specialized datasets such as those available for 

HOIDPs. 

This study addresses that gap by evaluating both classical 

machine learning and deep learning models on three key 

properties of HOIDPs: formation energy, bandgap, and Debye 

temperature. The classical models include Random Forest, 

Gradient Boosting, Support Vector Machines, and Multi-Layer 

Perceptrons, all trained on feature vectors built from atomic and 

electronic descriptors. The deep learning model is ALIGNN, 

which learns directly from crystallographic input files. All 

models were trained and tested on curated datasets of double 

perovskites collected from experimental reports and 

computational repositories. By comparing accuracy across 

these methods and analyzing the compounds they identify as 

promising, we establish a clear basis for selecting predictive 

tools that can accelerate the discovery of stable, non-toxic 

perovskite materials for solar energy applications. 

2. BACKGROUND AND RELATED 

WORK 
Perovskite materials have attracted sustained interest because 

their crystal structure, with the general formula ABX₃, allows a 

wide range of chemical substitutions and property tuning [18]. 

Hybrid organic–inorganic perovskites (HOIPs) in particular 

have shown remarkable performance as photovoltaic 

absorbers. Early work in the late 2000s demonstrated that 

methylammonium lead halides could be processed at low 

temperatures into thin films with strong optical absorption and 

long carrier diffusion lengths [19]. Since then, efficiencies 

above 25 percent have been achieved in laboratory devices, 

placing HOIPs among the most promising alternatives to 

silicon for solar cells [5]. Despite these advances, the continued 

reliance on lead has raised toxicity concerns, and stability 

issues under heat and moisture remain unresolved [3,6]. 

Hybrid organic–inorganic double perovskites (HOIDPs) have 

been proposed as replacements for lead halides. These 

compounds substitute the toxic B-site cation with two different 

metals, commonly silver and bismuth or antimony, which 

lowers environmental risk while retaining favorable electronic 

structures [7]. Cs₂AgBiBr₆ is one of the most studied HOIDPs 

and has demonstrated improved resistance to moisture 

compared with lead halides, although its indirect bandgap has 

limited efficiency in practice [17]. The broader HOIDP family 

includes many unexplored chemistries that could balance 

stability, non-toxicity, and optimal bandgaps. However, 

identifying promising candidates is difficult because 

experimental synthesis is slow and density functional theory 

(DFT), while accurate, is computationally costly for high-

throughput screening [12]. 

Machine learning methods have emerged to address this 

challenge. Descriptor-based models such as Random Forest, 

Gradient Boosting, and Support Vector Machines have been 

applied to predict bandgaps, formation energies, and 

thermodynamic stability across large inorganic datasets 

[9,11,16]. These methods use input features such as 

electronegativity, ionic radius, and valence electron count to 

represent crystal compositions. While effective, this approach 

requires careful feature engineering and may not extend well to 

new or unconventional chemistries. 

Graph-based deep learning methods aim to overcome this 

limitation by learning directly from atomic structures. Xie and 

Grossman [8] introduced the Crystal Graph Convolutional 

Neural Network (CGCNN), which encodes atoms and bonds as 

a graph and predicts properties from crystallographic input 

files. CGCNN achieved strong accuracy for bandgap and 

stability prediction without manual feature design. Chen et al. 

[15] later developed the Atomistic Line Graph Neural Network 

(ALIGNN), which includes a second graph to capture bond–

bond interactions and achieved state-of-the-art accuracy on 

large benchmark datasets [10]. These advances suggest that 

graph neural networks may provide scalable and accurate tools 

for predicting the properties of double perovskites. 

Despite progress in both classical and graph-based machine 

learning, direct comparisons of these approaches for HOIDPs 

remain limited. Most prior studies have focused on either 

descriptor-based regression or deep learning in isolation. A 

systematic evaluation of both, applied to the same HOIDP 

datasets, is needed to identify strengths, weaknesses, and 

practical trade-offs. This gap motivates the present study. 

3. DATASETS AND FEATURE 

ENGINEERING 

The datasets used in this study were compiled from both 

experimental reports and computational repositories. A total of 

8,412 unique hybrid organic–inorganic double perovskite 

(HOIDP) structures were collected. Of these, 2,134 were drawn 

from experimentally synthesized compounds reported in the 

Inorganic Crystal Structure Database and related publications 

[20]. The remaining 6,278 were obtained from high-throughput 

density functional theory (DFT) calculations available through 

the Materials Project and the JARVIS-DFT database [10,21]. 

Each entry included a crystallographic information file (CIF) 

together with computed or reported values for formation 

energy, bandgap, and Debye temperature where available. 

Duplicate structures were removed, and compounds with 

incomplete or inconsistent property data were excluded. The 

final dataset contained 7,984 structures with valid formation 

energies, 6,721 with reported bandgaps, and 5,663 with 

calculated Debye temperatures. 

The dataset was divided into training, validation, and test sets 

using an 80–10–10 split. To prevent information leakage, 

compounds with the same chemical formula but different 

polymorphs were assigned to the same subset. This ensured that 

models were tested on genuinely unseen chemistries rather than 

on structural variants of known compounds. For classical 

machine learning models, input features were constructed from 

compositional and structural descriptors. Elemental properties 

such as electronegativity, atomic radius, valence electron 

count, ionization energy, and atomic mass were obtained from 

standard reference tables [22]. These values were combined 

using stoichiometric weighting to create composition-based 
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descriptors. Structural descriptors included average 

coordination number, tolerance factor, octahedral factor, and 

packing density, calculated directly from the CIF files [23]. In 

total, 186 descriptors were used to represent each material in 

vector form. Missing descriptor values were imputed using the 

mean value for the element class. 

Feature scaling was applied before training. Continuous 

descriptors were standardized to zero mean and unit variance, 

while categorical variables such as element types were encoded 

as integers and included through one-hot encoding where 

appropriate. Recursive feature elimination and principal 

component analysis were applied during preliminary 

experiments, but the full descriptor set was retained for final 

models because dimensionality reduction did not improve 

accuracy. For models sensitive to correlated features, such as 

linear regression, variance inflation factors were computed to 

monitor collinearity. 

For the deep learning model (ALIGNN), no handcrafted 

features were used. Instead, CIF files were parsed to generate 

atomic graphs where nodes corresponded to atoms and edges 

to bonds within a 5 Å cutoff radius. Node features included 

atomic number, valence electron configuration, and 

electronegativity. Edge features included interatomic distances 

and bond angles. A secondary line graph was then constructed 

to represent bond–bond interactions, as described by Chen et 

al. [15]. This dual representation allowed ALIGNN to learn 

both local atomic environments and higher-order connectivity 

directly from structural data. 

4. METHODS 
4.1 Models 
Four categories of predictive models were implemented to 

capture different strengths in regression and classification 

tasks. The first category consisted of tree-based ensembles, 

represented by Random Forest (RF) and Gradient Boosting 

(GB). RF was configured with 500 decision trees, each trained 

on bootstrapped subsets of the training data with random 

feature selection at each split to reduce correlation. Maximum 

tree depth was unrestricted, and the minimum samples per leaf 

was set to 2. GB was implemented with 1,000 sequential 

estimators, maximum depth 6, learning rate 0.05, and minimum 

samples per split set to 4. Shrinkage and subsampling of both 

rows and features were applied to prevent overfitting. The 

second category consisted of kernel-based regressors. Support 

Vector Regression (SVR) was tested with a radial basis 

function kernel, and hyperparameters were optimized by grid 

search across penalty constants (C = 1, 10, 100), kernel widths 

(γ = 0.01, 0.1, 1), and insensitive loss parameters (ϵ = 0.001, 

0.01). Kernel Ridge Regression (KRR) was tested with 

polynomial kernels of degree 2, 3, and 4, with regularization 

parameters spanning 0.001 to 1. These kernel models were 

chosen because they provide nonlinear mapping capability with 

mathematically well-defined kernels. The third category was 

shallow feedforward neural networks, implemented as a 

multilayer perceptron (MLP) with two hidden layers of 256 

neurons each, rectified linear activations, He initialization, 

batch normalization, dropout rate of 0.2, and L2 regularization 

coefficient of 1 × 10⁻⁵. This architecture was selected after 

preliminary testing showed that deeper networks did not 

improve accuracy and were prone to overfitting. The fourth 

category was graph neural networks, represented by the 

Atomistic Line Graph Neural Network (ALIGNN). The 

ALIGNN architecture was implemented with three ALIGNN 

layers that updated both node and edge embeddings, followed 

by two fully connected layers of 256 neurons. Node and edge 

embeddings were set to 128 dimensions, and a dropout rate of 

0.1 was applied to all layers. Bond–bond interactions were 

represented through a line graph constructed from atomic 

graphs with a cutoff radius of 5 Å. This allowed ALIGNN to 

incorporate both local coordination environments and higher-

order connectivity, providing a direct structural basis for 

predictions. 

4.2 Training 

All models were trained on the same dataset split, with 80 

percent allocated to training, 10 percent to validation, and 10 

percent to testing. To ensure comparability, splits were 

stratified so that polymorphs of the same compound were 

assigned to the same subset. Tree-based models and kernel 

methods were trained using scikit-learn version 1.4, and 

hyperparameters were selected by minimizing validation mean 

absolute error (MAE) during five-fold cross-validation on the 

training set. For RF, no pruning or post-processing was applied, 

and the full ensemble was retained for evaluation. GB models 

were trained with learning rate decay to stabilize convergence. 

SVR and KRR models were trained with grid-searched 

parameters, and the support vectors and kernel matrices were 

stored for reproducibility. The MLP was implemented in 

PyTorch version 2.1. It was trained for a maximum of 500 

epochs with the Adam optimizer, learning rate 1 × 10⁻³, batch 

size 128, and early stopping if validation loss failed to improve 

for 20 consecutive epochs. Weight decay of 1 × 10⁻⁵ was 

applied to all parameters. ALIGNN was implemented using 

PyTorch Geometric 2.4 with the original ALIGNN library. It 

was trained for a maximum of 300 epochs with the Adam 

optimizer, initial learning rate 1 × 10⁻³, batch size 64, and 

cosine annealing learning rate scheduling. Gradient clipping 

was applied at a threshold of 5.0, and weight decay of 1 × 10⁻⁵ 

was included. Training was executed on a single NVIDIA 

A100 GPU with 40 GB memory. Each ALIGNN run required 

approximately 12 hours, while classical models trained within 

minutes. To ensure reproducibility, all experiments were 

repeated three times with independent random splits. 

4.3 Evaluation 

Model performance was assessed using metrics suitable for 

regression and classification. For regression tasks, three 

metrics were computed: mean absolute error (MAE), root mean 

squared error (RMSE), and coefficient of determination (R²). 

Formation energy was reported in eV per atom, bandgap in eV, 

and Debye temperature in kelvin. For bandgap, additional 

evaluation was performed by categorizing predictions into 

photovoltaic relevance ranges: below 1.1 eV, between 1.1 and 

1.6 eV, and above 1.6 eV. For these categories, accuracy, 

precision, recall, and F1 score were computed to provide a 

measure of classification performance. Learning curves were 

generated by training each model on progressively larger 

fractions of the training set, specifically 20, 40, 60, 80, and 100 

percent, and evaluating performance on the test set. This 

analysis identified the data requirements for each model family. 

For RF and GB, feature importance values based on 

information gain were recorded, and the top ten descriptors for 

each target property were reported. For SVR and KRR, the final 

kernel weights were examined to confirm that chemically 

meaningful descriptors contributed most strongly. For MLP, 

training and validation loss curves were logged across epochs, 

and final weights were stored. For ALIGNN, latent node and 

edge embeddings were extracted, reduced by principal 

component analysis, and compared against known chemical 

classes to confirm that the model grouped structurally similar 

materials in representation space. All outputs were logged 

using Weights and Biases for transparency and reproducibility. 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.40, September 2025 

22 

Final test scores were reported as the mean and standard 

deviation across three independent runs. 

5. RESULTS AND ANALYSIS 
5.1 Prediction of Formation Energy 
Formation energy prediction was the most consistent task 

across all models. Random Forest achieved a mean absolute 

error (MAE) of 0.082 eV per atom, root mean squared error 

(RMSE) of 0.115 eV per atom, and coefficient of determination 

(R²) of 0.94 on the test set. Gradient Boosting performed 

similarly with MAE of 0.079 eV per atom, RMSE of 0.112 eV 

per atom, and R² of 0.95. Support Vector Regression yielded 

lower accuracy, with MAE of 0.126 eV per atom and R² of 

0.87, while kernel ridge regression showed slightly better 

performance at MAE of 0.113 eV per atom and R² of 0.89. The 

multilayer perceptron achieved MAE of 0.098 eV per atom, 

RMSE of 0.134 eV per atom, and R² of 0.92, reflecting its 

ability to capture non-linear relationships but with limited 

advantage over ensemble methods. The graph-based ALIGNN 

model obtained the best overall performance with MAE of 

0.061 eV per atom, RMSE of 0.091 eV per atom, and R² of 

0.97. These results indicate that descriptor-based models, 

particularly tree ensembles, are competitive for formation 

energy prediction, but ALIGNN achieves higher accuracy by 

directly learning from structural inputs.  

Table 1. Formation energy prediction 

Model MAE RMSE R² 

Random Forest 0.082 0.115 0.94 

Gradient Boosting 0.079 0.112 0.95 

SVR 0.126 0.168 0.87 

Kernel Ridge  0.113 0.151 0.89 

Multilayer Perceptron 0.098 0.134 0.92 

ALIGNN 0.061 0.091 0.97 

Table 1. Test set performance for formation energy prediction 

(eV per atom). Tree-based ensembles achieve strong accuracy 

at low computational cost, while ALIGNN provides the best 

overall performance. 

5.2 Prediction of Bandgap 

Bandgap prediction proved more challenging than formation 

energy. Random Forest and Gradient Boosting produced MAEs 

of 0.29 eV and 0.27 eV respectively, with R² values of 0.83 and 

0.85. SVR achieved MAE of 0.35 eV and R² of 0.78, while 

KRR performed marginally better with MAE of 0.31 eV and R² 

of 0.81. The multilayer perceptron reduced MAE to 0.25 eV 

with R² of 0.87, suggesting that shallow neural networks can 

outperform kernel-based methods on this property. ALIGNN 

produced the lowest MAE of 0.18 eV, RMSE of 0.26 eV, and 

R² of 0.92. To evaluate photovoltaic relevance, predictions 

were categorized into sub-optimal (<1.1 eV), optimal (1.1–1.6 

eV), and above-optimal (>1.6 eV) ranges. Random Forest 

achieved classification accuracy of 81 percent, Gradient 

Boosting 83 percent, MLP 86 percent, and ALIGNN 91 

percent. Precision and recall values for the optimal range were 

highest for ALIGNN at 0.89 and 0.92, indicating that it more 

reliably identifies compounds with bandgaps suitable for solar 

absorption. Analysis of tree-based feature importance revealed 

that average B-site cation electronegativity and halide ionic 

radius strongly influenced predicted bandgaps, aligning with 

experimental observations that these parameters control band 

edge positions in halide perovskites. 

 

 

Table 2. Bandgap prediction performance 

Model MAE R² Acc. 

Random Forest 0.29 0.83 0.81 

Gradient Boosting 0.27 0.85 0.83 

SVR 0.35 0.78 0.77 

Kernel Ridge  0.31 0.81 0.79 

Multilayer Perceptron 0.25 0.87 0.86 

ALIGNN 0.18 0.92 0.91 

 

Table 2. Test set performance for bandgap prediction (eV). 

Regression metrics are shown alongside classification metrics 

for the photovoltaic-relevant range (1.1–1.6 eV).  

5.3 Prediction of Debye Temperature 

Debye temperature prediction showed larger differences 

between classical and graph-based models. Random Forest 

achieved MAE of 37 K and R² of 0.81, Gradient Boosting 

improved slightly with MAE of 34 K and R² of 0.84, while SVR 

and KRR performed less effectively, with MAEs of 49 K and 

45 K respectively. The multilayer perceptron achieved MAE of 

32 K and R² of 0.86. ALIGNN significantly outperformed all 

other methods, with MAE of 21 K, RMSE of 29 K, and R² of 

0.93. The advantage of ALIGNN in this task reflects the 

difficulty of encoding vibrational and elastic properties through 

fixed descriptors, since they depend on full structural 

connectivity. Graph-based representation allowed ALIGNN to 

capture bonding environments more accurately, which 

translated to better prediction of lattice dynamical properties. 

Table 3. Debye temperature prediction 

Model MAE RMSE R² 

Random Forest 37 52 0.81 

Gradient Boosting 34 48 0.84 

SVR 49 67 0.72 

Kernel Ridge  45 63 0.75 

Multilayer Perceptron 32 44 0.86 

ALIGNN 21 29 0.93 

Table 3. Test set performance for Debye temperature 

prediction (K). ALIGNN shows the lowest error, while kernel 

methods perform worst. 

5.4 Comparative Analysis 

Across all three target properties, tree-based ensemble models 

provided strong baseline performance with low computational 

cost and straightforward training. Random Forest and Gradient 

Boosting consistently outperformed kernel-based regressors, 

which struggled with scalability and limited kernel flexibility. 

The multilayer perceptron generally matched or exceeded 

ensemble performance for bandgap and Debye temperature but 

was more sensitive to hyperparameter tuning. ALIGNN 

provided the best overall accuracy across all targets, with 

improvements of 0.02–0.04 eV per atom in formation energy 

MAE, 0.07–0.11 eV in bandgap MAE, and 11–16 K in Debye 

temperature MAE compared with the best classical models. 

These improvements are meaningful given that experimental 

uncertainties in perovskite bandgap measurements often fall 

within 0.1 eV, and DFT-level errors in formation energy can be 

on the order of 0.05 eV per atom. Thus, ALIGNN achieves 

accuracy approaching or surpassing first-principles 
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calculations, but at substantially lower computational cost once 

trained. 

Figure 1. Learning Curve Comparison 

Figure 1. Test MAE versus training set fraction for Random 

Forest, Multilayer Perceptron, and ALIGNN. Ensemble models 

plateau around 60% of the dataset 

6. TRADE OFF AND MODEL 

REQUIREMENT 

Tree-based ensembles provided a reliable baseline across all 

properties. Random Forest and Gradient Boosting consistently 

achieved R² values above 0.94 for formation energy while 

requiring minimal hyperparameter tuning and training in 

minutes on a CPU. Their main drawback was that accuracy 

plateaued once moderate amounts of data were included, which 

limited their ability to improve with larger datasets. Kernel 

methods, including Support Vector Regression and kernel ridge 

regression, were less effective overall. They produced higher 

MAEs than ensembles and neural networks, and their training 

became computationally expensive as sample size increased. 

For these reasons, kernel models are not recommended for 

large-scale perovskite screening, though they may be useful for 

small, descriptor-driven studies where interpretability is a 

priority. 

Neural networks demonstrated clear advantages when dataset 

size and quality increased. The multilayer perceptron 

outperformed ensembles for bandgap and Debye temperature 

but required strong regularization to prevent overfitting. Its 

performance was also sensitive to initialization and 

hyperparameter settings, making it less stable than tree-based 

methods. In contrast, ALIGNN provided the best accuracy 

across all three properties, with MAEs of 0.061 eV per atom 

for formation energy, 0.18 eV for bandgap, and 21 K for Debye 

temperature. These results surpassed those of all classical 

models and approached the accuracy of first-principles 

calculations for bandgap and formation energy. ALIGNN’s 

ability to learn directly from crystal structures eliminated the 

need for manual descriptors, which reduced bias and captured 

complex structural effects. 

The trade-off was computational cost and data dependence. 

Training ALIGNN required high-performance GPUs and long 

runtimes, and its advantage diminished when trained on less 

than 40 percent of the dataset. This makes it less suitable for 

rapid screening of small datasets. Taken together, the results 

suggest a tiered strategy: use Random Forest or Gradient 

Boosting for fast baseline predictions and moderate datasets, 

apply multilayer perceptrons when descriptor sets are 

comprehensive, and deploy ALIGNN for large structural 

datasets where maximum predictive accuracy is required. This 

division balances efficiency and performance while exploiting 

the unique strengths of each model family. 

7. DISCUSSION 

The results confirm that model selection should be driven by 

dataset size, descriptor quality, and the type of property being 

predicted. Ensemble methods performed nearly as well as 

ALIGNN for formation energy, highlighting that simple tree-

based models can capture the main chemical rules when 

descriptors encode ionic size and electronegativity trends. 

However, for bandgap and Debye temperature, which are 

strongly influenced by detailed bonding environments and 

lattice connectivity, ensemble models and kernel regressors fell 

short. In these cases, ALIGNN’s graph-based representation 

provided a clear advantage by leveraging structural inputs 

directly rather than relying on averaged descriptors. This 

indicates that descriptor-based methods are sufficient for 

relatively simple thermodynamic quantities but are limited for 

properties that depend on fine-grained atomic interactions. 

Training efficiency emerged as a key factor in assessing model 

utility. Random Forest and Gradient Boosting required minutes 

of CPU time and produced stable results across  

independent splits, making them highly practical for initial 

screening of new perovskite datasets. By contrast, ALIGNN 

required dedicated GPU hardware and training times of more 

than ten hours, and its accuracy gains were significant only 

when large, well-curated structural datasets were available. 

This trade-off suggests that ensembles will remain the most 

useful tools for early-stage exploration or for institutions 

without high-performance computing resources. ALIGNN is 

best reserved for situations where maximum predictive 

accuracy is required, such as prioritizing candidates for costly 

synthesis campaigns. 

A further point is that no single model family is universally 

optimal. The multilayer perceptron showed that shallow neural 

networks can outperform ensembles for specific tasks, but only 

when descriptors are comprehensive and datasets are 

moderately large. Kernel methods, although weaker overall, 

remain valuable in small data settings where their mathematical 

form allows close control over model complexity. These 

distinctions argue for a tiered modeling strategy in which model 

choice is adapted to the constraints of the problem. In practice, 

ensembles can generate rapid baselines, MLPs can refine 

predictions when descriptors are strong, and ALIGNN can be 

deployed on structural datasets to deliver state-of-the-art 

accuracy. Future work should expand this comparison to other 

perovskite families and include experimental validation to test 

whether model predictions translate into real materials with 

improved photovoltaic performance. 

8. CONCLUSION 

This study compared ensemble methods, kernel regressors, 

shallow neural networks, and the Atomistic Line Graph Neural 

Network (ALIGNN) for predicting formation energy, bandgap, 

and Debye temperature in hybrid organic–inorganic double 

perovskites. Using nearly eight thousand curated structures, 

Random Forest and Gradient Boosting emerged as strong 

baselines, reaching R² values above 0.94 for formation energy 

at minimal computational cost. Multilayer perceptrons 

improved accuracy for bandgap and Debye temperature when 

descriptor sets were comprehensive, but required careful 

regularization. ALIGNN delivered the highest overall 

accuracy, with test MAEs of 0.061 eV per atom for formation 
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energy, 0.18 eV for bandgap, and 21 K for Debye temperature. 

Its advantage came from learning directly from crystal 

structures, which allowed it to capture atomic environments 

and connectivity beyond the reach of descriptor-based 

methods. 

The comparison shows that model choice should depend on 

dataset size, input quality, and computational resources. 

Ensembles are effective for small to medium datasets or rapid 

baseline screening, as they train in minutes and perform 

consistently across splits. Kernel methods are less suitable for 

large-scale use due to lower accuracy and scaling limitations. 

Multilayer perceptrons can outperform ensembles in 

descriptor-rich settings but are more sensitive to tuning. 

ALIGNN is the model of choice when large structural datasets 

are available and high confidence in predictions is required, 

despite its longer training times and GPU demand. Together, 

these results support a tiered approach in which ensembles 

provide fast initial insights, shallow neural networks refine 

descriptor-driven tasks, and graph-based models deliver 

maximum predictive power for guiding experimental synthesis 

of non-toxic perovskite photovoltaics. 
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