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ABSTRACT 

In the Ethereum blockchain network, high transaction fees due 

to limited block space and high demand necessitate scalable 

solutions. Layer 2 (L2) scaling solutions, particularly rollups, 

offer a promising approach by processing transactions off-

chain and posting compressed data to the main chain (Layer 1). 

However, current L2 rollups rely heavily on centralized 

sequencer nodes, which introduces centralization risks and 

single points of failure. Thus, to address these concerns, this 

paper explores the existing issues associated with centralized 

sequencers exemplified by real-life incidents. Consequently, 

reviews the existing decentralized sequencer models by 

describing their operations. In addition, this study proposes a 

novel approach of decentralizing sequencers leveraging the 

Delegated Proof of Stake (DPoS) consensus mechanism 

depicting its’ components and step by step procedures. Finally, 

providing comparison among the novel approach and the 

existing decentralized sequencer frameworks along with their 

limitations.   

General Terms 

Cybersecurity, Decentralization, Blockchain, Consensus 

Mechanism. 

Keywords 
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1. INTRODUCTION 
The Ethereum blockchain network faces scalability issues due 

to its limited block space and high demand, leading to high 

transaction fees [1]. The transition to Layer 2 solutions, such as 

rollups, has been pivotal in addressing these issues by 

increasing transaction throughput and reducing costs. Rollups 

process transactions off-chain and then submit the compressed 

transaction data back to the Ethereum mainnet. However, the 

reliance on a single sequencer node to order and batch 

transactions poses centralization risks and potential network 

vulnerabilities. 

To mitigate these issues, there has been a growing interest in 

decentralized sequencer models. This paper introduces a novel 

approach to decentralized transaction sequencing by leveraging 

the Delegated Proof of Stake (DPoS) consensus mechanism. 

The proposed DPoS-Based Decentralized Sequencer model 

will be compared with existing decentralized sequencing 

designs, and the trade-offs will be analyzed. 

The Delegated Proof of Stake (DPoS) consensus mechanism 

enhances efficiency and democratic governance in blockchain 

networks, providing a solid foundation for decentralizing 

sequencing. In DPoS, participants stake cryptocurrency in a 

pool to vote for delegates responsible for maintaining the 

network. Delegates create and sign blocks, validate 

transactions, and perform essential functions. Its democratic 

and decentralized structure makes DPoS well-suited for 

sequencing in rollup solutions. 

This paper is structured as follows: Section 1 defines the 

problem with centralized sequencers, while Section 2 provides 

background on rollups, sequencers, and the DPoS consensus 

mechanism. Section 3 reviews existing research on 

decentralized sequencers, and Section 4 presents the proposed 

DPoS-Based Decentralized Sequencers model. The design 

features five sequencers elected via a transparent voting 

process, rotating across epochs to ensure continuous and 

decentralized transaction ordering. The head sequencer orders 

transactions using a First-Come-First-Serve policy, while 

others verify and commit them, providing secure and efficient 

processing. Potential drawbacks, including Sybil attacks and 

vote bribery, are also discussed. Lastly, comparative analysis 

was conducted with existing research in section 5. Key criteria, 

including sequencing policy, decentralization, data availability, 

sequencer management, and incentive were examined, with 

addition to comparison of limitations. 

Problem Definition: Despite the advantages of rollups, the 

sequencer’s critical role in transaction ordering and batching 

means that any failure or misbehavior can adversely affect the 

entire network. Real-life incidents with Polygon zkEVM and 

Arbitrum illustrate these vulnerabilities, where sequencer 

failures led to network downtime and transaction delays. 

Having one node to perform the whole sequencing job makes 

it a more centralized approach as the sequencer node holds a 

significant amount of importance. This has significant potential 

to result in Single Point of Failure, meaning if the sequencer 

fails to perform or appear absent during their job, there will be 

network downtime, and delay for users’ transaction processing. 

Thus, to define the problem: The current approach of utilizing 

a single sequencer node introduces significant centralization 

risks. This centralized control not only undermines the 

decentralized ethos of blockchain technology but also creates 

a single point of failure. If the sequencer node fails to perform 

its duties or becomes unavailable, the downtime occurring 

from this essentially affects the entire network and delays in 

transaction processing thus affecting users. While efforts to 

decentralize sequencers have been made, they come with their 

own style of operations and trade-offs. In essence, it is crucial 

to develop a solution that negates centralization and single 

points of failures associated with centralized sequencers. 

Polygon zkEVM network downtime: On April 08, 2024, 

Polygon zkEVM Mainnet Beta experienced a significant 

network downtime due to an L1 reorganization (reorg) that led 

to a state synchronization issue [2]. The incident highlighted 

vulnerabilities within the network’s sequencer and 

synchronizer mechanisms, necessitating immediate 

recomputation of the network’s state. Specifically, due to the 

sequencer failing to update the state, it caused the state to differ. 

Meaning, this resulted in a discrepancy between the actual state 
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of the blockchain (the trusted state) and the state as perceived 

by the sequencer’s client (the virtual state), resulting in some 

transactions not being executed or having incorrect execution. 

Arbitrum network downtime: On January 9, 2022, Arbitrum, 

a Layer 2 scaling solution for Ethereum, experienced a 10-hour 

outage due to a hardware failure in its Sequencer node [3]. The 

Sequencer, which orders transactions on the network, 

encountered a problem causing the network to go offline. 

During the outage, 284 transactions were accepted but logged 

only after the network rebooted. No funds were lost, and the 

network has since resumed normal operations. The incident 

highlighted the current centralization of the Sequencer, which 

Offchain Labs, the developer of Arbitrum, acknowledged and 

is working towards decentralizing to minimize future 

downtimes. 

On December 15th, Arbitrum One faced a sequencer outage 

that disrupted transaction processing and affected gas pricing 

[4]. The outage was caused by a backlog in the batch poster due 

to an Ethereum client issue and a high volume of small 

transactions (inscriptions). This failure affected the sequencer’s 

feed, disconnecting third-party nodes and the public RPC fleet, 

resulting in delays and failed transactions. 

2. BACKGROUND 

2.1 Rollups 
Rollups are a key Layer 2 (L2) scaling solution for Ethereum, 

executing transactions off-chain to reduce the computational 

and storage load on Layer 1 (L1) while maintaining security 

and decentralization [5]. In this architecture, a Sequencer 

orders and batches transactions before submitting them to the 

L1 rollup smart contract, which maintains the current state. 

The state consists of accounts—Externally Owned Accounts 

(EOAs), controlled by private keys, and Contract Accounts, 

governed by smart contract logic, each with fields for nonce, 

balance, code, and storage [6]. Rollups manage these states off-

chain, storing a “state root” representing the entire state. 

Transactions update the state root, but for scalability, multiple 

updates are batched, and only the aggregated state root is 

committed to the main chain, allowing efficient off-chain 

processing while maintaining on-chain integrity. This approach 

reduces the amount of data that needs to be recorded on the 

main chain, improving scalability. 

A batch submitted to the rollup contract includes a compressed 

representation of the batch of transactions, the previous state 

root (The previous state root is the cryptographic hash that 

represents the state of the rollup layer at the end of the most 

recent finalized batch of transactions before the current batch 

is applied), and the current state root reflects the post-batch 

state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Rollups structure in Ethereum 

The L1 rollup contract verifies that the previous state root in a 

batch matches the current state root, ensuring transaction 

consistency, and then updates to the new state root. To reduce 

gas fees, batch transaction data is compressed and sent as a 

read-only calldata parameter in Solidity. Unlike persistent 

storage, calldata is transient and does not occupy blockchain 

storage, making it a far cheaper option than writing data on 

chain, which is computationally intensive and costly. 

2.2 Sequencers: The Centralized Nodes in 

Rollup Architecture 
In rollup architectures, sequencers are centralized nodes that 

order Layer 2 (L2) transactions and batch them for submission 

to the Layer 1 (L1) rollup contract, as seen in Polygon zkEVM. 

They ensure L2 state changes are accurately reflected on L1 but 

cannot alter transactions, since these are signed by users’ 

private keys. In Optimistic rollups, altered transactions can be 

detected by verifiers. 

However, sequencers can censor transactions (selective 

filtering) or reorder them to enable front-running attacks. In 

front-running, a sequencer inserts its own transaction ahead of 

a target’s. For example, in the “FairWin” gambling platform 

[7], an attacker pre-empted a victim’s investment transaction 

by using the same invite code with a smaller deposit, 

redirecting future rewards to themselves and stealing the 

victim’s intended funds. If a sequencer becomes unresponsive, 

transaction ordering and batch submission halt, causing delays, 

backlogs, and degraded network performance.  

An illustrative example of the sequencer process can be seen in 

the Polygon zkEVM rollup solution. As seen on Fig. 2, the 

Sequencer employs a structured approach to manage 

transaction batches using the BatchData structure (a Struct type 

- user-defined data types that allow to group multiple variables 

of different types under a single name, basically making it 

easier to manage and organize data in the smart contracts) in 

Solidity [8]. ”Batchdata” differs from ”calldata” as it is used to 

organize and manage the transactions and their associated 

metadata. When the rollup contract receives a batch 

submission, the batch data is passed as function arguments 

via ”calldata”. This means the batch information is temporarily 

stored in the ”calldata” during execution of the function that 

processes the batch. 

 
Fig 2: Polygon ZkEVM Rollup Structure 

This process involves two key steps illustrated in Fig. 3: 
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Fig 3: Polygon ZkEVM Sequencing process 

1. Serialization: Initially, the Sequencer serializes the 

transactions using Recursive Length Prefix (RLP) 

encoding. Serialization converts various data types 

into a byte format, which is essential for the 

subsequent concatenation step. 

2. Concatenation: Following serialization, the 

Sequencer concatenates the serialized transactions 

into a single, long byte string. This byte string is then 

stored in the ”transactions” variable bytes field of the 

BatchData structure. 

Once the transactions are serialized and concatenated, the 

Sequencer calls the sequenceBatches function in the Polygon 

rollup smart contract on L1. This function reads the 

concatenated byte string from the BatchData structure, thereby 

transferring the batched transactions (utilizing ”calldata” in the 

function) to the L1 rollup contract [9]. 

This structured approach not only enhances the efficiency of 

transaction batching but also exemplifies the meticulous 

processes undertaken by Sequencers to ensure the accurate and 

secure transfer of transaction data from L2 to L1. 

2.3 Delegated Proof-Of-Stake 
The Delegated Proof of Stake (DPoS), proposed by Daniel 

Larimer [10], is a more efficient variant of Proof of Stake, 

enabling stakeholders to vote for delegates who validate 

blocks. Typically, 21–101 delegates are elected, with voting 

power proportional to stake; smaller stakeholders may delegate 

their votes. Delegates take turns producing blocks in assigned 

time slots, and misconduct or poor performance results in loss 

of reputation and stake. In addition to block production, 

delegates govern the chain, verify fees, and maintain network 

integrity [11]. 

As shown in Fig. 4, stakeholders may pool stakes to increase 

voting influence, either voting directly or delegating votes. 

Candidates submit proposals outlining qualifications and plans, 

and those with the most votes become delegates. Elected 

delegates create and sign blocks, validate transactions, verify 

peers’ work, and share a portion of their rewards which is 

typically transaction fees—with supporting voters.  

 

Fig 4: Delegated Proof-Of-Stake Overview 

3. EXISTING RESEARCH 

3.1 Espresso Sequencer 
The Espresso Sequencer utilizes the protocol named 

”HotShot,” a Byzantine Fault Tolerant (BFT) consensus 

protocol designed to decentralize participation within the 

sequencer network, offering high throughput and rapid finality 

[12][13]. 

3.2 Astria: The Shared Sequencer 
Astria represents a shared sequencing network designed to 

replace centralized sequencers with a decentralized alternative; 

by allowing multiple rollup contracts to share a single network 

of sequencers, Astria aims to provide censorship resistance, fast 

block confirmations (finality), and atomic cross-rollup 

composability [14][15].  

3.3 Metis Decentralized Sequencer 
Metis introduces a Decentralized Sequencer Pool (DSP) to 

achieve decentralization in Layer 2 networks, mitigating the 

risks of single-point failures associated with centralized 

sequencers [16]. The DSP employs a Proof of Stake (PoS) like 

mechanism for sequencer selection, wherein sequencers with 

high staked tokens are gathered into a pool. Users initiate 

transactions, which are then sent to the sequencer for validation 

and batching into block before being submitted to the rollup 

contract in Layer 1 [17]. The consensus mechanism employed 

by Metis is Tendermint, a Byzantine Fault Tolerance (BFT) 

protocol that allows the network to function even if up to one-

third of nodes fail, including those that act maliciously.  

3.4 Fernet Sequencer 
Fernet sequencer protocol developed by Aztec Labs - a 

company specializing in privacy-focused technologies for 

blockchain applications known for developing layer 2 solutions 

such as rollups and smart contracts on public blockchains, 

particularly Ethereum, is designed to ensure random sequencer 

selection, enhancing decentralization and fairness in 

transaction processing. In each iteration, a Verifiable Random 

Function (VRF) assigns a secret score to each sequencer, used 

to rank them [18].  

3.5 Radius Sequencer 
Radius Sequencer introduces a Shared Sequencing Layer 

utilizing an encrypted mempool and Practical Verifiable Delay 

Encryption alongside zkbased schemes [19]. It separates 

transaction roles into ordering, executing, and proofing phases. 

Users send encrypted transactions with a time-lock puzzle and 

zk-proof (SNARK) to the sequencer, which validates and 

orders them, providing pre-confirmation before decryption and 

transmission to Layer 1 (L1) [20]. 

4. PROPOSED SOLUTION 
Before introducing the novel approach to decentralizing 

sequencer model, first the motivation behind the design and the 

requirements needs to be stated. 

4.1  Motivation 
The motivation is: To decentralize the sequencing process in 

rollup solutions to mitigate the risks associated with single 

points of failure and centralization; aligning with the 

decentralized ethos of blockchain technology, and to ensure 

that users do not experience any delay in their processing of 

transactions due to network downtime. 

4.2 Requirements 
The requirements that need to be met for a decentralized 

sequencer design are as follows. The criteria are: Sequencing 
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Policy, Decentralization, Data Availability, Sequencer 

Management, and Incentive. 

 

Criteria: 

1. Sequencing policy: The Sequencing Policy should 

be fair sequencing. It is deemed “fair” if there is no 

selection of transactions according to some bias such 

as having priority to select some transactions over 

others, and the ordering scheme utilized in the policy 

should reflect this while providing resistance to 

potential censorship. 

2. Decentralization: Decentralization aims to 

distribute the sequencing process across multiple 

nodes rather than relying on a single entity. This 

requires multiple sequencers forming a network, 

where a consensus mechanism allows the nodes to 

collectively agree on the ordering of transactions. By 

achieving agreement through consensus, the 

sequencing process becomes more robust, 

transparent, and resistant to centralization. 

3. Data Availability: Ensuring data availability is a 

critical requirement for the design of a decentralized 

sequencer model, as it guarantees that all nodes 

within the sequencer network have access to the 

complete set of the transactions. Data availability 

facilitates the consistent ordering and validation of 

transactions across different sequences by ensuring 

that all the nodes are able to receive the same 

transaction data. 

4. Sequencer Management: This requirement defines 

the protocol for selecting a new head sequencer if the 

current head is absent during an epoch. It also 

specifies the consequences for sequencers that act 

maliciously or fail to perform their duties, including 

a slashing mechanism to penalize misbehavior. Such 

measures discourage dishonest actions and help 

maintain the integrity and reliability of the network. 

5. Incentive: This requirement to provide incentive for 

sequencers to perform their duties for the 

contribution to the protocol, as without incentive, 

there will be lack of engagement and participation. 

4.3 Delegated-Proof-of-Stake based 

Decentralized Sequencers 
The novel design towards decentralizing sequencers introduced 

in this paper is Delegated-Proof-of-Stake Decentralized 

Sequencers. This design utilizes the DPoS consensus 

mechanism for decentralization. In Delegated Proof of Stake 

(DPoS) consensus mechanisms, nodes in the network stake 

their currency in a pool to vote for as delegates. Elected 

delegates are tasked with network maintenance, including 

block creation, transaction validation, and related duties. Now, 

using the same idea, the sequencers will be decentralized using 

DPoS. By looking at the model of DPoS consensus mechanism, 

it is a very suitable model for decentralizing sequencers 

because in DPoS there is a set  

Fig 5: DPoS Based Decentralized Sequencers Overview 

number of delegates who creates the block and others verify it; 

this idea seems ideal for the design in decentralizing sequencers 

as a set amount of sequencer can order the transactions and 

verified by other sequencers per epoch. 

The flow of the design will follow this procedure illustrated in 

Figure 5, where users will initiate transactions via their digital 

wallets (such as MetaMask) using client software (such as 

Geth). To enforce First-come-first-serve ordering, there is a 

requirement to timestamp these transactions.  

To accomplish this, a Decentralized Time Oracle comprising 

multiple trusted independent nodes that provide tamper-proof 

timestamps—is used, such as the Witnet Oracle, which offers a 

“timestamp” function to record transactions in UTC format 

[21]. When a transaction is received, the oracle generates a 

timestamp that is attached to the transaction. The transaction is 

then sent to the mempool, a distributed waiting area maintained 

by each node in the network, including sequencers. Sequencers 

fetch transactions from their local mempool [22] and order 

them chronologically based on the assigned timestamps, 
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ensuring a consistent and verifiable transaction sequence across 

the network. 

A group of five sequencers is elected each epoch, with one 

sequencer rotating out in the next epoch. At the end of voting, 

the top five candidates with the most votes are recorded in the 

L1 rollup smart contract along with their deposits. This model 

follows a “one-voter-one-vote” principle to ensure equal voting 

power. The head sequencer orders transactions based on 

submission timestamps using a First-Come-First-Serve policy, 

committing a cryptographic hash of the transaction order to the 

block header. The remaining sequencers verify the order by 

recalculating the hash and reaching consensus through a peer-

to-peer protocol (e.g., libp2p). If fewer than four out of five 

sequencers agree, the block is unsigned, the head sequencer’s 

deposit is slashed, and the batch is reprocessed by the next 

sequencers. 

Network Time Protocol (NTP) synchronizes sequencers, and 

verified blocks are forwarded to the L1 rollup contract. 

Transaction data is stored in the cost-efficient, read-only 

calldata parameter, providing accessible data availability for all 

network nodes. 

Furthermore, the structure of DPoS’ election process to elect 

few delegates to mine blocks seems to be a very suitable design 

archetype in the case of decentralizing sequencers, as 

sequencers are essentially delegating the scalability in 

transaction batching. So, prospective sequencers must first 

declare their candidacy before becoming sequencers. In DPoS, 

this process happens publicly on blockchain forums, often 

involving proposals detailing qualifications, contribution plans, 

and why they deserve to be delegates. This “candidacy” 

proposal will follow the same process in this design where 

users will be required to express their suitability for becoming 

a sequencer. The candidates will be joining a candidate pool, 

accessible for user voting, where these candidates will become 

sequencer according to the votes they receive. 

For the voting mechanism, a Layer 2 voting smart contract is 

proposed. Stakeholders in the DPoS system cast votes by 

calling the contract’s vote function and specifying their chosen 

candidate. Each voter is allocated a single vote, and the contract 

prevents repeated voting by checking if the voter has already 

participated. Upon a valid vote, the candidate’s vote count is 

incremented, the voter’s address is recorded, and the voting 

event is logged for transparency. To ensure broad participation, 

an API will be provided, enabling client applications to 

securely interact with the contract and allow stakeholders to 

vote via their digital wallets. This design ensures a 

decentralized, transparent, and accessible voting process. 

Additionally, all sequencers must deposit a certain amount of 

funds in the L1 rollup smart contract, which is modified to 

handle deposits, implement a slashing mechanism, and 

distribute rewards. These deposits serve both as a commitment 

to the network and as compensation in case of downtime or 

malicious behavior, incentivizing honest participation. If a 

sequencer fails to perform their duties during an epoch or is 

found acting maliciously, their deposit is slashed. After 

completing sequencing in each epoch, a cooldown period of 

seven days is enforced, preventing the sequencer from 

immediately running in the next election and allowing other 

candidates a fair opportunity to participate. 

In essence, this design satisfies all the key requirements. The 

sequencing policy is “fair,” following a First Come First Serve 

approach that avoids bias in transaction processing. The system 

is decentralized, distributing sequencing across multiple nodes 

and verifying their actions via the DPoS consensus mechanism. 

Sequencer selection is inclusive, as any node can participate in 

elections, and all voters have equal voting power. Incentives 

further encourage participation: sequencers earn a portion of 

transaction fees for their work, and voters supporting elected 

sequencers also receive rewards at the end of each epoch. This 

mechanism promotes active engagement and ensures both 

fairness and efficiency in the network. 

4.3.1 Drawbacks 
One might argue that adding a consensus mechanism 

introduces extra complexity, overhead, and potential delays in 

Layer 2, which could challenge the fast finality and lightweight 

nature of rollups. Implementing Delegated Proof of Stake 

(DPoS) in L2 may appear counterproductive given the high 

costs of L1 operations. However, while DPoS adds some 

complexity, it improves scalability, security, and economic 

efficiency. 

 

Security benefits arise from reduced centralization risk in the 

sequencer role, lowering the chance of malicious behavior and 

single points of failure. Scalability improves as DPoS enables 

higher throughput, and economic efficiency is achieved by 

limiting consensus to a selected group of sequencers, reducing 

network-wide computational demands. Importantly, despite the 

added complexity, transaction throughput - the core property of 

rollups remains high. Nonetheless, DPoS carries additional 

drawbacks, including susceptibility to certain attacks: 

1. Potential Sybil Attack: A Sybil attack occurs when 

an adversary creates multiple identities to gain 

excessive influence in the network [23]. In a DPoS 

election, a user could generate many accounts and 

potentially have all elected sequencers controlled by 

a single individual. While this attack is costly and 

requires luck, it remains possible. 

2. Vote bribery: This is when the candidates offer 

monetary incentives to voters to solicit votes, which 

results in an unfair election. This issue can be 

difficult to detect, especially if done covertly through 

off-chain agreements. 

A potential solution to the Sybil attack is to resize the number 

of sequencers elected per epoch. In current design, the 

sequencer queue space is allocated to maximum of five 

sequencers, but increasing the number of sequencers will 

decrease the possibility of the Sybil attack. Thus, the size of the 

queue is inversely proportional to the possibility of these 

attacks. As increasing the number of sequencers will make it 

more expensive to create multiple accounts to perform Sybil 

attacks but the trade off as that increasing the sequencer queue 

size will increase the delay finality as it will increase the time 

to reach the consensus among more sequencer nodes. 

5. COMPARISON 
This section of the paper will explore the comparison between 

the existing decentralized sequencer models and DPoS-based 

Decentralized Sequencers model. The criteria that will be 

compared are sequencing policy, decentralization, data 

availability, sequencer management and incentive illustrated 

on Table 1. 
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5.1 Sequencing Policy 
S The DPoS-based Decentralized Sequencers use a First Come 

First Serve (FCFS) policy to ensure fair transaction ordering 

without bias toward high gas fees or other priorities. Unlike 

other designs that favor lucrative transactions, FCFS prioritizes 

chronological order, promoting fairness. It also helps prevent 

front-running, as any attempt to insert a transaction out of order 

would be detected during consensus via mismatched 

cryptographic hashes. 

5.2 Decentralization 
Regarding the decentralization aspect of the design, Espresso 

uses HotShot BFT and a combinatorial lottery to distribute 

sequencing among nodes. Astria employs CometBFT for a 

shared node-based consensus. Metis relies on Tendermint BFT, 

tolerating up to one-third faulty nodes. Fernet uses VRF-based 

rotation to give many nodes sequencing opportunities. Radius 

applies RAFT with an elected leader managing sequencing and 

followers handling data routing [24]. The DPoS model elects 

multiple sequencers to agree on transaction ordering, 

maintaining distributed control. 

5.3 Data Availability 
For data availability, Espresso uses the Tiramisu layer with 

Verifiable Information Dispersal (VID), encoding block data 

into chunks so each node stores only one and can verify 

availability without full data. Astria and Radius use Celestia’s 

Data Availability Sampling (DAS), enabling light clients to 

verify availability without downloading full blocks. Metis 

relies on Ethereum, sending sorted transactions to the 

“CanonicalTransactionChain” contract for public access. 

Fernet uses its own DA layer, uploading full block content, 

though specifications are not disclosed. The DPoS model 

employs the Layer 1 rollup contract’s calldata for low-cost 

storage with Layer 1 security, while alternative DA layers may 

reduce costs but weaken security.

Table 1. Comparison between existing decentralized sequencers 

Decentralize

d 

Sequencers 

Sequencing Policy Decentralization Data 

Availability 

Sequencer 

Management 

Incentive 

Espresso Priority: Tx with high gas 

Ordering scheme: Undefined 

Hotshot – BFT Tiramisu Lottery Undefined 

Astria Priority: Tx with high gas  

Ordering scheme: Undefined 

CometBFT+PoS Celestia Based on 

staked amount 

Reward mechanism 

with native network 

tokens 

Metis Priority: Tx with high gas  

Ordering scheme: Undefined 

Tendermint – BFT Ethereum PoS – Based 

on staked 

amount 

Reward mechanism 

with native network 

tokens (Metis tokens) 

Fernet Priority: Tx with high gas  

Ordering scheme: Based on 

sequencer 

No consensus 

mechanism 

Fernet’s 

Dedicated DA 

Layer 

Random 

Scoring using 

VRF 

Reward Mechanism 

with native network 

tokens 

Radius Priority: Tx with high gas  

Ordering scheme: Undefined 

RAFT Algorithm Celestia Election Undefined 

DPoS-based 

Decentralized 

Sequencers 

Priority: Chronological 

Ordering scheme: First-

Come-First-Serve (FCFS) 

Delegated Proof-

of-Stake 

calldata Election Reward mechanism 

with gas fees and 

portions shared with 

voters 

 

5.4 Sequencer Management 
Transitioning to sequencer management, Espresso uses a 

combinatorial lottery to randomly select sequencers, with 

HotShot BFT quickly appointing a new head if the current one 

is absent; misbehaving sequencers are removed from the pool. 

Astria and Metis follow PoS rules, selecting the highest stakers 

and replacing malicious sequencers with the next highest, 

penalizing them by slashing staked funds. Fernet employs a 

VRF to assign secret scores each round, rotating to the next 

highest if a sequencer fails; each must stake 16 ETH on Layer 

1, which can be slashed. Radius uses elections under the RAFT 

algorithm, re-electing a leader if absent. The DPoS model also 

uses elections, shifting leadership if a sequencer is absent and 

slashing deposits; its “one person, one vote” system ensures 

equal voting rights regardless of stake. 

5.5 Incentive 
Lastly, regarding incentive criteria among the designs, 

Espresso and Radius does not specify what their incentive and 

reward mechanisms are, while Astria, Metis, and Fernet 

sequencers earn their respective native token as rewards for 

their work although the specification about these mechanisms 

are not elaborated in their respective documentations. The 

reward mechanism for DPoS-based decentralized sequencers 

not only compensates sequencers for their work but also 

allocates a portion of fees to users who voted for the sequencer. 

This will increase engagement and participation from nodes in 

the network. 

5.6 Comparison of Limitations 
After reviewing the characteristics of each decentralized 

sequencer design, their limitations are summarized in Table 2. 
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Table 2. Comparison of drawbacks between the 

decentralized sequencers designs 

 

Espresso exhibits performance drawbacks with a fixed node 

set—throughput on Hotshot and Tiramisu testnets was lower 

with 10 nodes than with 100+, due to limited task distribution. 

Mascarpone’s DA committee size created a bottleneck, and 

latency varied with committee size. No incentive mechanism 

was documented. 

Astria’s multi-component architecture (shared sequencers, 

rollups, Composer, Relayer, Conductor, DA layer) adds 

complexity, risking synchronization and efficiency issues. Its 

PoS-based network also faces the “rich get richer” problem, 

allowing wealthier validators to dominate. 

Metis [25] showed reward inconsistencies, with participants 

losing or receiving excess rewards. Its PoS-based sequencer list 

replaces malicious nodes but is also prone to the “rich get 

richer” effect. 

Fernet [26] has three limitations: indeterminate block 

proposals, where malicious sequencers may withhold data; 

prover bribery, where lower-ranked proposals may be favored; 

and high overhead coordination due to VRF computations, 

communication, and complex incentives, raising operational 

costs. 

Radius uses elections to select sequencers but lacks 

transparency on the election process and incentives, risking 

centralization. Meanwhile, the DPoS-based Decentralized 

Sequencers face potential Sybil attacks and voter bribery. 

Given these limitations, the decision to integrate a specific 

decentralized sequencer into a rollup solution should be based 

on a comprehensive analysis of how these factors interact with 

the system’s requirements. One should consider the trade-offs, 

decentralization, and the overall performance of the system 

under different operational testcases. 

6. CONCLUSION 
This study addresses centralization risks and single points of 

failure in Layer 2 (L2) rollup scaling solutions caused by 

reliance on centralized sequencer nodes. Five existing 

decentralized sequencer designs and their approaches to 

mitigating these issues are examined, emphasizing the need for 

a more distributed and resilient transaction sequencing 

mechanism. 

A Delegated Proof of Stake (DPoS)-based decentralized 

sequencer model is proposed, that democratizes transaction 

ordering through a First-Come-First-Serve policy and 

incentivizes honest participation via rewards for both 

sequencers and voters. The democratic election process and 

sequencer rotation across epochs offer a robust framework to 

overcome limitations of centralized models. 

Selecting a decentralized sequencer requires weighing each 

model’s strengths, weaknesses, and alignment with application 

goals. The analysis aims to guide developers and stakeholders 

toward solutions that reduce centralization risks. Future work 

should explore practical implementation and further refinement 

to ensure viability in real-world deployments. Future scope of 

this research includes implementing the proposed DPoS-based 

decentralized sequencer in real-world blockchain environments 

to evaluate its performance in terms of scalability, latency, cost, 

and security. This includes comparative analysis against 

existing centralized and decentralized models and also testing 

their ability to handle high transaction volumes. Ultimately, 

assessing the effectiveness of its democratic election process 

and voter incentives. Consequently, studies will expand to the 

integration of the model with existing rollup protocols and 

investigate the potential trade-offs between decentralization 

and throughput while observing the long-term sustainability 

and interoperability across various blockchain systems.  
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