
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.40, September 2025

51

Decentralizing Sequencers in Rollups using Delegated

Proof-of-Stake Consensus Mechanism

Md Zaki Muzahid
Waseda University

205, TOKYO β Narimasu 12, 6-36-4, Akatsuka, Itabashi-ku, Tokyo, 175-0092 Japan

ABSTRACT

In the Ethereum blockchain network, high transaction fees due

to limited block space and high demand necessitate scalable

solutions. Layer 2 (L2) scaling solutions, particularly rollups,

offer a promising approach by processing transactions off-

chain and posting compressed data to the main chain (Layer 1).

However, current L2 rollups rely heavily on centralized

sequencer nodes, which introduces centralization risks and

single points of failure. Thus, to address these concerns, this

paper explores the existing issues associated with centralized

sequencers exemplified by real-life incidents. Consequently,

reviews the existing decentralized sequencer models by

describing their operations. In addition, this study proposes a

novel approach of decentralizing sequencers leveraging the

Delegated Proof of Stake (DPoS) consensus mechanism

depicting its’ components and step by step procedures. Finally,

providing comparison among the novel approach and the

existing decentralized sequencer frameworks along with their

limitations.

General Terms

Cybersecurity, Decentralization, Blockchain, Consensus

Mechanism.

Keywords

Rollups, Decentralized Sequencers, Layer 2 (L2) Scaling,

Delegated Proof of Stake.

1. INTRODUCTION
The Ethereum blockchain network faces scalability issues due

to its limited block space and high demand, leading to high

transaction fees [1]. The transition to Layer 2 solutions, such as

rollups, has been pivotal in addressing these issues by

increasing transaction throughput and reducing costs. Rollups

process transactions off-chain and then submit the compressed

transaction data back to the Ethereum mainnet. However, the

reliance on a single sequencer node to order and batch

transactions poses centralization risks and potential network

vulnerabilities.

To mitigate these issues, there has been a growing interest in

decentralized sequencer models. This paper introduces a novel

approach to decentralized transaction sequencing by leveraging

the Delegated Proof of Stake (DPoS) consensus mechanism.

The proposed DPoS-Based Decentralized Sequencer model

will be compared with existing decentralized sequencing

designs, and the trade-offs will be analyzed.

The Delegated Proof of Stake (DPoS) consensus mechanism

enhances efficiency and democratic governance in blockchain

networks, providing a solid foundation for decentralizing

sequencing. In DPoS, participants stake cryptocurrency in a

pool to vote for delegates responsible for maintaining the

network. Delegates create and sign blocks, validate

transactions, and perform essential functions. Its democratic

and decentralized structure makes DPoS well-suited for

sequencing in rollup solutions.

This paper is structured as follows: Section 1 defines the

problem with centralized sequencers, while Section 2 provides

background on rollups, sequencers, and the DPoS consensus

mechanism. Section 3 reviews existing research on

decentralized sequencers, and Section 4 presents the proposed

DPoS-Based Decentralized Sequencers model. The design

features five sequencers elected via a transparent voting

process, rotating across epochs to ensure continuous and

decentralized transaction ordering. The head sequencer orders

transactions using a First-Come-First-Serve policy, while

others verify and commit them, providing secure and efficient

processing. Potential drawbacks, including Sybil attacks and

vote bribery, are also discussed. Lastly, comparative analysis

was conducted with existing research in section 5. Key criteria,

including sequencing policy, decentralization, data availability,

sequencer management, and incentive were examined, with

addition to comparison of limitations.

Problem Definition: Despite the advantages of rollups, the

sequencer’s critical role in transaction ordering and batching

means that any failure or misbehavior can adversely affect the

entire network. Real-life incidents with Polygon zkEVM and

Arbitrum illustrate these vulnerabilities, where sequencer

failures led to network downtime and transaction delays.

Having one node to perform the whole sequencing job makes

it a more centralized approach as the sequencer node holds a

significant amount of importance. This has significant potential

to result in Single Point of Failure, meaning if the sequencer

fails to perform or appear absent during their job, there will be

network downtime, and delay for users’ transaction processing.

Thus, to define the problem: The current approach of utilizing

a single sequencer node introduces significant centralization

risks. This centralized control not only undermines the

decentralized ethos of blockchain technology but also creates

a single point of failure. If the sequencer node fails to perform

its duties or becomes unavailable, the downtime occurring

from this essentially affects the entire network and delays in

transaction processing thus affecting users. While efforts to

decentralize sequencers have been made, they come with their

own style of operations and trade-offs. In essence, it is crucial

to develop a solution that negates centralization and single

points of failures associated with centralized sequencers.

Polygon zkEVM network downtime: On April 08, 2024,

Polygon zkEVM Mainnet Beta experienced a significant

network downtime due to an L1 reorganization (reorg) that led

to a state synchronization issue [2]. The incident highlighted

vulnerabilities within the network’s sequencer and

synchronizer mechanisms, necessitating immediate

recomputation of the network’s state. Specifically, due to the

sequencer failing to update the state, it caused the state to differ.

Meaning, this resulted in a discrepancy between the actual state

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.40, September 2025

52

of the blockchain (the trusted state) and the state as perceived

by the sequencer’s client (the virtual state), resulting in some

transactions not being executed or having incorrect execution.

Arbitrum network downtime: On January 9, 2022, Arbitrum,

a Layer 2 scaling solution for Ethereum, experienced a 10-hour

outage due to a hardware failure in its Sequencer node [3]. The

Sequencer, which orders transactions on the network,

encountered a problem causing the network to go offline.

During the outage, 284 transactions were accepted but logged

only after the network rebooted. No funds were lost, and the

network has since resumed normal operations. The incident

highlighted the current centralization of the Sequencer, which

Offchain Labs, the developer of Arbitrum, acknowledged and

is working towards decentralizing to minimize future

downtimes.

On December 15th, Arbitrum One faced a sequencer outage

that disrupted transaction processing and affected gas pricing

[4]. The outage was caused by a backlog in the batch poster due

to an Ethereum client issue and a high volume of small

transactions (inscriptions). This failure affected the sequencer’s

feed, disconnecting third-party nodes and the public RPC fleet,

resulting in delays and failed transactions.

2. BACKGROUND

2.1 Rollups
Rollups are a key Layer 2 (L2) scaling solution for Ethereum,

executing transactions off-chain to reduce the computational

and storage load on Layer 1 (L1) while maintaining security

and decentralization [5]. In this architecture, a Sequencer

orders and batches transactions before submitting them to the

L1 rollup smart contract, which maintains the current state.

The state consists of accounts—Externally Owned Accounts

(EOAs), controlled by private keys, and Contract Accounts,

governed by smart contract logic, each with fields for nonce,

balance, code, and storage [6]. Rollups manage these states off-

chain, storing a “state root” representing the entire state.

Transactions update the state root, but for scalability, multiple

updates are batched, and only the aggregated state root is

committed to the main chain, allowing efficient off-chain

processing while maintaining on-chain integrity. This approach

reduces the amount of data that needs to be recorded on the

main chain, improving scalability.

A batch submitted to the rollup contract includes a compressed

representation of the batch of transactions, the previous state

root (The previous state root is the cryptographic hash that

represents the state of the rollup layer at the end of the most

recent finalized batch of transactions before the current batch

is applied), and the current state root reflects the post-batch

state.

Fig 1: Rollups structure in Ethereum

The L1 rollup contract verifies that the previous state root in a

batch matches the current state root, ensuring transaction

consistency, and then updates to the new state root. To reduce

gas fees, batch transaction data is compressed and sent as a

read-only calldata parameter in Solidity. Unlike persistent

storage, calldata is transient and does not occupy blockchain

storage, making it a far cheaper option than writing data on

chain, which is computationally intensive and costly.

2.2 Sequencers: The Centralized Nodes in

Rollup Architecture
In rollup architectures, sequencers are centralized nodes that

order Layer 2 (L2) transactions and batch them for submission

to the Layer 1 (L1) rollup contract, as seen in Polygon zkEVM.

They ensure L2 state changes are accurately reflected on L1 but

cannot alter transactions, since these are signed by users’

private keys. In Optimistic rollups, altered transactions can be

detected by verifiers.

However, sequencers can censor transactions (selective

filtering) or reorder them to enable front-running attacks. In

front-running, a sequencer inserts its own transaction ahead of

a target’s. For example, in the “FairWin” gambling platform

[7], an attacker pre-empted a victim’s investment transaction

by using the same invite code with a smaller deposit,

redirecting future rewards to themselves and stealing the

victim’s intended funds. If a sequencer becomes unresponsive,

transaction ordering and batch submission halt, causing delays,

backlogs, and degraded network performance.

An illustrative example of the sequencer process can be seen in

the Polygon zkEVM rollup solution. As seen on Fig. 2, the

Sequencer employs a structured approach to manage

transaction batches using the BatchData structure (a Struct type

- user-defined data types that allow to group multiple variables

of different types under a single name, basically making it

easier to manage and organize data in the smart contracts) in

Solidity [8]. ”Batchdata” differs from ”calldata” as it is used to

organize and manage the transactions and their associated

metadata. When the rollup contract receives a batch

submission, the batch data is passed as function arguments

via ”calldata”. This means the batch information is temporarily

stored in the ”calldata” during execution of the function that

processes the batch.

Fig 2: Polygon ZkEVM Rollup Structure

This process involves two key steps illustrated in Fig. 3:

Rollup Layer (L2)

Sequencer

Previous stateRoot

Current stateRoot

Transaction Data

 Ethereum

 Mainchain (L1)
Rollup Contract

State Root

Tsc. Data

Batch of
transactions

stateRoot:

0x1435f7

Hash 0

Hash 1

Hash 0-0 Hash 0-1 Hash 1-0 Hash 1-1

Alice:

50

Bob:

100

Charlie:

150

David:

200

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.40, September 2025

53

Fig 3: Polygon ZkEVM Sequencing process

1. Serialization: Initially, the Sequencer serializes the

transactions using Recursive Length Prefix (RLP)

encoding. Serialization converts various data types

into a byte format, which is essential for the

subsequent concatenation step.

2. Concatenation: Following serialization, the

Sequencer concatenates the serialized transactions

into a single, long byte string. This byte string is then

stored in the ”transactions” variable bytes field of the

BatchData structure.

Once the transactions are serialized and concatenated, the

Sequencer calls the sequenceBatches function in the Polygon

rollup smart contract on L1. This function reads the

concatenated byte string from the BatchData structure, thereby

transferring the batched transactions (utilizing ”calldata” in the

function) to the L1 rollup contract [9].

This structured approach not only enhances the efficiency of

transaction batching but also exemplifies the meticulous

processes undertaken by Sequencers to ensure the accurate and

secure transfer of transaction data from L2 to L1.

2.3 Delegated Proof-Of-Stake
The Delegated Proof of Stake (DPoS), proposed by Daniel

Larimer [10], is a more efficient variant of Proof of Stake,

enabling stakeholders to vote for delegates who validate

blocks. Typically, 21–101 delegates are elected, with voting

power proportional to stake; smaller stakeholders may delegate

their votes. Delegates take turns producing blocks in assigned

time slots, and misconduct or poor performance results in loss

of reputation and stake. In addition to block production,

delegates govern the chain, verify fees, and maintain network

integrity [11].

As shown in Fig. 4, stakeholders may pool stakes to increase

voting influence, either voting directly or delegating votes.

Candidates submit proposals outlining qualifications and plans,

and those with the most votes become delegates. Elected

delegates create and sign blocks, validate transactions, verify

peers’ work, and share a portion of their rewards which is

typically transaction fees—with supporting voters.

Fig 4: Delegated Proof-Of-Stake Overview

3. EXISTING RESEARCH

3.1 Espresso Sequencer
The Espresso Sequencer utilizes the protocol named

”HotShot,” a Byzantine Fault Tolerant (BFT) consensus

protocol designed to decentralize participation within the

sequencer network, offering high throughput and rapid finality

[12][13].

3.2 Astria: The Shared Sequencer
Astria represents a shared sequencing network designed to

replace centralized sequencers with a decentralized alternative;

by allowing multiple rollup contracts to share a single network

of sequencers, Astria aims to provide censorship resistance, fast

block confirmations (finality), and atomic cross-rollup

composability [14][15].

3.3 Metis Decentralized Sequencer
Metis introduces a Decentralized Sequencer Pool (DSP) to

achieve decentralization in Layer 2 networks, mitigating the

risks of single-point failures associated with centralized

sequencers [16]. The DSP employs a Proof of Stake (PoS) like

mechanism for sequencer selection, wherein sequencers with

high staked tokens are gathered into a pool. Users initiate

transactions, which are then sent to the sequencer for validation

and batching into block before being submitted to the rollup

contract in Layer 1 [17]. The consensus mechanism employed

by Metis is Tendermint, a Byzantine Fault Tolerance (BFT)

protocol that allows the network to function even if up to one-

third of nodes fail, including those that act maliciously.

3.4 Fernet Sequencer
Fernet sequencer protocol developed by Aztec Labs - a

company specializing in privacy-focused technologies for

blockchain applications known for developing layer 2 solutions

such as rollups and smart contracts on public blockchains,

particularly Ethereum, is designed to ensure random sequencer

selection, enhancing decentralization and fairness in

transaction processing. In each iteration, a Verifiable Random

Function (VRF) assigns a secret score to each sequencer, used

to rank them [18].

3.5 Radius Sequencer
Radius Sequencer introduces a Shared Sequencing Layer

utilizing an encrypted mempool and Practical Verifiable Delay

Encryption alongside zkbased schemes [19]. It separates

transaction roles into ordering, executing, and proofing phases.

Users send encrypted transactions with a time-lock puzzle and

zk-proof (SNARK) to the sequencer, which validates and

orders them, providing pre-confirmation before decryption and

transmission to Layer 1 (L1) [20].

4. PROPOSED SOLUTION
Before introducing the novel approach to decentralizing

sequencer model, first the motivation behind the design and the

requirements needs to be stated.

4.1 Motivation
The motivation is: To decentralize the sequencing process in

rollup solutions to mitigate the risks associated with single

points of failure and centralization; aligning with the

decentralized ethos of blockchain technology, and to ensure

that users do not experience any delay in their processing of

transactions due to network downtime.

4.2 Requirements
The requirements that need to be met for a decentralized

sequencer design are as follows. The criteria are: Sequencing

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.40, September 2025

54

Policy, Decentralization, Data Availability, Sequencer

Management, and Incentive.

Criteria:

1. Sequencing policy: The Sequencing Policy should

be fair sequencing. It is deemed “fair” if there is no

selection of transactions according to some bias such

as having priority to select some transactions over

others, and the ordering scheme utilized in the policy

should reflect this while providing resistance to

potential censorship.

2. Decentralization: Decentralization aims to

distribute the sequencing process across multiple

nodes rather than relying on a single entity. This

requires multiple sequencers forming a network,

where a consensus mechanism allows the nodes to

collectively agree on the ordering of transactions. By

achieving agreement through consensus, the

sequencing process becomes more robust,

transparent, and resistant to centralization.

3. Data Availability: Ensuring data availability is a

critical requirement for the design of a decentralized

sequencer model, as it guarantees that all nodes

within the sequencer network have access to the

complete set of the transactions. Data availability

facilitates the consistent ordering and validation of

transactions across different sequences by ensuring

that all the nodes are able to receive the same

transaction data.

4. Sequencer Management: This requirement defines

the protocol for selecting a new head sequencer if the

current head is absent during an epoch. It also

specifies the consequences for sequencers that act

maliciously or fail to perform their duties, including

a slashing mechanism to penalize misbehavior. Such

measures discourage dishonest actions and help

maintain the integrity and reliability of the network.

5. Incentive: This requirement to provide incentive for

sequencers to perform their duties for the

contribution to the protocol, as without incentive,

there will be lack of engagement and participation.

4.3 Delegated-Proof-of-Stake based

Decentralized Sequencers
The novel design towards decentralizing sequencers introduced

in this paper is Delegated-Proof-of-Stake Decentralized

Sequencers. This design utilizes the DPoS consensus

mechanism for decentralization. In Delegated Proof of Stake

(DPoS) consensus mechanisms, nodes in the network stake

their currency in a pool to vote for as delegates. Elected

delegates are tasked with network maintenance, including

block creation, transaction validation, and related duties. Now,

using the same idea, the sequencers will be decentralized using

DPoS. By looking at the model of DPoS consensus mechanism,

it is a very suitable model for decentralizing sequencers

because in DPoS there is a set

Fig 5: DPoS Based Decentralized Sequencers Overview

number of delegates who creates the block and others verify it;

this idea seems ideal for the design in decentralizing sequencers

as a set amount of sequencer can order the transactions and

verified by other sequencers per epoch.

The flow of the design will follow this procedure illustrated in

Figure 5, where users will initiate transactions via their digital

wallets (such as MetaMask) using client software (such as

Geth). To enforce First-come-first-serve ordering, there is a

requirement to timestamp these transactions.

To accomplish this, a Decentralized Time Oracle comprising

multiple trusted independent nodes that provide tamper-proof

timestamps—is used, such as the Witnet Oracle, which offers a

“timestamp” function to record transactions in UTC format

[21]. When a transaction is received, the oracle generates a

timestamp that is attached to the transaction. The transaction is

then sent to the mempool, a distributed waiting area maintained

by each node in the network, including sequencers. Sequencers

fetch transactions from their local mempool [22] and order

them chronologically based on the assigned timestamps,

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.40, September 2025

55

ensuring a consistent and verifiable transaction sequence across

the network.

A group of five sequencers is elected each epoch, with one

sequencer rotating out in the next epoch. At the end of voting,

the top five candidates with the most votes are recorded in the

L1 rollup smart contract along with their deposits. This model

follows a “one-voter-one-vote” principle to ensure equal voting

power. The head sequencer orders transactions based on

submission timestamps using a First-Come-First-Serve policy,

committing a cryptographic hash of the transaction order to the

block header. The remaining sequencers verify the order by

recalculating the hash and reaching consensus through a peer-

to-peer protocol (e.g., libp2p). If fewer than four out of five

sequencers agree, the block is unsigned, the head sequencer’s

deposit is slashed, and the batch is reprocessed by the next

sequencers.

Network Time Protocol (NTP) synchronizes sequencers, and

verified blocks are forwarded to the L1 rollup contract.

Transaction data is stored in the cost-efficient, read-only

calldata parameter, providing accessible data availability for all

network nodes.

Furthermore, the structure of DPoS’ election process to elect

few delegates to mine blocks seems to be a very suitable design

archetype in the case of decentralizing sequencers, as

sequencers are essentially delegating the scalability in

transaction batching. So, prospective sequencers must first

declare their candidacy before becoming sequencers. In DPoS,

this process happens publicly on blockchain forums, often

involving proposals detailing qualifications, contribution plans,

and why they deserve to be delegates. This “candidacy”

proposal will follow the same process in this design where

users will be required to express their suitability for becoming

a sequencer. The candidates will be joining a candidate pool,

accessible for user voting, where these candidates will become

sequencer according to the votes they receive.

For the voting mechanism, a Layer 2 voting smart contract is

proposed. Stakeholders in the DPoS system cast votes by

calling the contract’s vote function and specifying their chosen

candidate. Each voter is allocated a single vote, and the contract

prevents repeated voting by checking if the voter has already

participated. Upon a valid vote, the candidate’s vote count is

incremented, the voter’s address is recorded, and the voting

event is logged for transparency. To ensure broad participation,

an API will be provided, enabling client applications to

securely interact with the contract and allow stakeholders to

vote via their digital wallets. This design ensures a

decentralized, transparent, and accessible voting process.

Additionally, all sequencers must deposit a certain amount of

funds in the L1 rollup smart contract, which is modified to

handle deposits, implement a slashing mechanism, and

distribute rewards. These deposits serve both as a commitment

to the network and as compensation in case of downtime or

malicious behavior, incentivizing honest participation. If a

sequencer fails to perform their duties during an epoch or is

found acting maliciously, their deposit is slashed. After

completing sequencing in each epoch, a cooldown period of

seven days is enforced, preventing the sequencer from

immediately running in the next election and allowing other

candidates a fair opportunity to participate.

In essence, this design satisfies all the key requirements. The

sequencing policy is “fair,” following a First Come First Serve

approach that avoids bias in transaction processing. The system

is decentralized, distributing sequencing across multiple nodes

and verifying their actions via the DPoS consensus mechanism.

Sequencer selection is inclusive, as any node can participate in

elections, and all voters have equal voting power. Incentives

further encourage participation: sequencers earn a portion of

transaction fees for their work, and voters supporting elected

sequencers also receive rewards at the end of each epoch. This

mechanism promotes active engagement and ensures both

fairness and efficiency in the network.

4.3.1 Drawbacks
One might argue that adding a consensus mechanism

introduces extra complexity, overhead, and potential delays in

Layer 2, which could challenge the fast finality and lightweight

nature of rollups. Implementing Delegated Proof of Stake

(DPoS) in L2 may appear counterproductive given the high

costs of L1 operations. However, while DPoS adds some

complexity, it improves scalability, security, and economic

efficiency.

Security benefits arise from reduced centralization risk in the

sequencer role, lowering the chance of malicious behavior and

single points of failure. Scalability improves as DPoS enables

higher throughput, and economic efficiency is achieved by

limiting consensus to a selected group of sequencers, reducing

network-wide computational demands. Importantly, despite the

added complexity, transaction throughput - the core property of

rollups remains high. Nonetheless, DPoS carries additional

drawbacks, including susceptibility to certain attacks:

1. Potential Sybil Attack: A Sybil attack occurs when

an adversary creates multiple identities to gain

excessive influence in the network [23]. In a DPoS

election, a user could generate many accounts and

potentially have all elected sequencers controlled by

a single individual. While this attack is costly and

requires luck, it remains possible.

2. Vote bribery: This is when the candidates offer

monetary incentives to voters to solicit votes, which

results in an unfair election. This issue can be

difficult to detect, especially if done covertly through

off-chain agreements.

A potential solution to the Sybil attack is to resize the number

of sequencers elected per epoch. In current design, the

sequencer queue space is allocated to maximum of five

sequencers, but increasing the number of sequencers will

decrease the possibility of the Sybil attack. Thus, the size of the

queue is inversely proportional to the possibility of these

attacks. As increasing the number of sequencers will make it

more expensive to create multiple accounts to perform Sybil

attacks but the trade off as that increasing the sequencer queue

size will increase the delay finality as it will increase the time

to reach the consensus among more sequencer nodes.

5. COMPARISON
This section of the paper will explore the comparison between

the existing decentralized sequencer models and DPoS-based

Decentralized Sequencers model. The criteria that will be

compared are sequencing policy, decentralization, data

availability, sequencer management and incentive illustrated

on Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.40, September 2025

56

5.1 Sequencing Policy
S The DPoS-based Decentralized Sequencers use a First Come

First Serve (FCFS) policy to ensure fair transaction ordering

without bias toward high gas fees or other priorities. Unlike

other designs that favor lucrative transactions, FCFS prioritizes

chronological order, promoting fairness. It also helps prevent

front-running, as any attempt to insert a transaction out of order

would be detected during consensus via mismatched

cryptographic hashes.

5.2 Decentralization
Regarding the decentralization aspect of the design, Espresso

uses HotShot BFT and a combinatorial lottery to distribute

sequencing among nodes. Astria employs CometBFT for a

shared node-based consensus. Metis relies on Tendermint BFT,

tolerating up to one-third faulty nodes. Fernet uses VRF-based

rotation to give many nodes sequencing opportunities. Radius

applies RAFT with an elected leader managing sequencing and

followers handling data routing [24]. The DPoS model elects

multiple sequencers to agree on transaction ordering,

maintaining distributed control.

5.3 Data Availability
For data availability, Espresso uses the Tiramisu layer with

Verifiable Information Dispersal (VID), encoding block data

into chunks so each node stores only one and can verify

availability without full data. Astria and Radius use Celestia’s

Data Availability Sampling (DAS), enabling light clients to

verify availability without downloading full blocks. Metis

relies on Ethereum, sending sorted transactions to the

“CanonicalTransactionChain” contract for public access.

Fernet uses its own DA layer, uploading full block content,

though specifications are not disclosed. The DPoS model

employs the Layer 1 rollup contract’s calldata for low-cost

storage with Layer 1 security, while alternative DA layers may

reduce costs but weaken security.

Table 1. Comparison between existing decentralized sequencers

Decentralize

d

Sequencers

Sequencing Policy Decentralization Data

Availability

Sequencer

Management

Incentive

Espresso Priority: Tx with high gas

Ordering scheme: Undefined

Hotshot – BFT Tiramisu Lottery Undefined

Astria Priority: Tx with high gas

Ordering scheme: Undefined

CometBFT+PoS Celestia Based on

staked amount

Reward mechanism

with native network

tokens

Metis Priority: Tx with high gas

Ordering scheme: Undefined

Tendermint – BFT Ethereum PoS – Based

on staked

amount

Reward mechanism

with native network

tokens (Metis tokens)

Fernet Priority: Tx with high gas

Ordering scheme: Based on

sequencer

No consensus

mechanism

Fernet’s

Dedicated DA

Layer

Random

Scoring using

VRF

Reward Mechanism

with native network

tokens

Radius Priority: Tx with high gas

Ordering scheme: Undefined

RAFT Algorithm Celestia Election Undefined

DPoS-based

Decentralized

Sequencers

Priority: Chronological

Ordering scheme: First-

Come-First-Serve (FCFS)

Delegated Proof-

of-Stake

calldata Election Reward mechanism

with gas fees and

portions shared with

voters

5.4 Sequencer Management
Transitioning to sequencer management, Espresso uses a

combinatorial lottery to randomly select sequencers, with

HotShot BFT quickly appointing a new head if the current one

is absent; misbehaving sequencers are removed from the pool.

Astria and Metis follow PoS rules, selecting the highest stakers

and replacing malicious sequencers with the next highest,

penalizing them by slashing staked funds. Fernet employs a

VRF to assign secret scores each round, rotating to the next

highest if a sequencer fails; each must stake 16 ETH on Layer

1, which can be slashed. Radius uses elections under the RAFT

algorithm, re-electing a leader if absent. The DPoS model also

uses elections, shifting leadership if a sequencer is absent and

slashing deposits; its “one person, one vote” system ensures

equal voting rights regardless of stake.

5.5 Incentive
Lastly, regarding incentive criteria among the designs,

Espresso and Radius does not specify what their incentive and

reward mechanisms are, while Astria, Metis, and Fernet

sequencers earn their respective native token as rewards for

their work although the specification about these mechanisms

are not elaborated in their respective documentations. The

reward mechanism for DPoS-based decentralized sequencers

not only compensates sequencers for their work but also

allocates a portion of fees to users who voted for the sequencer.

This will increase engagement and participation from nodes in

the network.

5.6 Comparison of Limitations
After reviewing the characteristics of each decentralized

sequencer design, their limitations are summarized in Table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.40, September 2025

57

Table 2. Comparison of drawbacks between the

decentralized sequencers designs

Espresso exhibits performance drawbacks with a fixed node

set—throughput on Hotshot and Tiramisu testnets was lower

with 10 nodes than with 100+, due to limited task distribution.

Mascarpone’s DA committee size created a bottleneck, and

latency varied with committee size. No incentive mechanism

was documented.

Astria’s multi-component architecture (shared sequencers,

rollups, Composer, Relayer, Conductor, DA layer) adds

complexity, risking synchronization and efficiency issues. Its

PoS-based network also faces the “rich get richer” problem,

allowing wealthier validators to dominate.

Metis [25] showed reward inconsistencies, with participants

losing or receiving excess rewards. Its PoS-based sequencer list

replaces malicious nodes but is also prone to the “rich get

richer” effect.

Fernet [26] has three limitations: indeterminate block

proposals, where malicious sequencers may withhold data;

prover bribery, where lower-ranked proposals may be favored;

and high overhead coordination due to VRF computations,

communication, and complex incentives, raising operational

costs.

Radius uses elections to select sequencers but lacks

transparency on the election process and incentives, risking

centralization. Meanwhile, the DPoS-based Decentralized

Sequencers face potential Sybil attacks and voter bribery.

Given these limitations, the decision to integrate a specific

decentralized sequencer into a rollup solution should be based

on a comprehensive analysis of how these factors interact with

the system’s requirements. One should consider the trade-offs,

decentralization, and the overall performance of the system

under different operational testcases.

6. CONCLUSION
This study addresses centralization risks and single points of

failure in Layer 2 (L2) rollup scaling solutions caused by

reliance on centralized sequencer nodes. Five existing

decentralized sequencer designs and their approaches to

mitigating these issues are examined, emphasizing the need for

a more distributed and resilient transaction sequencing

mechanism.

A Delegated Proof of Stake (DPoS)-based decentralized

sequencer model is proposed, that democratizes transaction

ordering through a First-Come-First-Serve policy and

incentivizes honest participation via rewards for both

sequencers and voters. The democratic election process and

sequencer rotation across epochs offer a robust framework to

overcome limitations of centralized models.

Selecting a decentralized sequencer requires weighing each

model’s strengths, weaknesses, and alignment with application

goals. The analysis aims to guide developers and stakeholders

toward solutions that reduce centralization risks. Future work

should explore practical implementation and further refinement

to ensure viability in real-world deployments. Future scope of

this research includes implementing the proposed DPoS-based

decentralized sequencer in real-world blockchain environments

to evaluate its performance in terms of scalability, latency, cost,

and security. This includes comparative analysis against

existing centralized and decentralized models and also testing

their ability to handle high transaction volumes. Ultimately,

assessing the effectiveness of its democratic election process

and voter incentives. Consequently, studies will expand to the

integration of the model with existing rollup protocols and

investigate the potential trade-offs between decentralization

and throughput while observing the long-term sustainability

and interoperability across various blockchain systems.

7. REFERENCES
[1] T. A. Alghamdi, R. Khalid and N. Javaid, ”A Survey of

Blockchain Based Systems: Scalability Issues and

Solutions, Applications and Future Challenges,” in IEEE

Access, vol. 12, pp. 79626-79651, 2024, doi:

10.1109/ACCESS.2024.3408868

[2] Polygon ZKEVM: Network Outage Report(04/08). (2024,

April 10). Polygon Community Forum.

https://forum.polygon.technology/t/polygon-zkevm-

network-outage-report-04-08/13751

[3] Fernau, O. (2022, January 10). Arbitrum goes down citing

sequencer problems. The Defiant.

https://thedefiant.io/news/defi/arbitrum-outage-2

[4] ArbitrumFoundation. (n.d.). docs/postmortems/15 Dec

2023.md at· ArbitrumFoundation/docs. GitHub.

https://github.com/ArbitrumFoundation/docs/blob/50ee8

8b406e6e5f3866b32d147d05a6adb0ab50e/postmortems/

15_Dec_2023.md

[5] Buterin, V. (2021, January 5). An incomplete guide to

rollups.

https://vitalik.eth.limo/general/2021/01/05/rollup.html

[6] Buterin, V. ”Ethereum white paper.” GitHub repository 1

(2013): 22-23. https://ethereum.org/en/whitepaper/

[7] Castonguay, P. (2021, December 12). The collapse of

FairWin’s $125m Ponzi scheme - Philippe Castonguay -

medium. Medium. https://medium.com/@PhABC/the-

collapse-of-fairwins-125mponzi-scheme-61a66b273420

Decentralized

Sequencers
Limitations

Espresso

• Performance Impact of fixed

node set

• Bottleneck in DA Layer

(Mascarpone

• Latency Variation with

Committee Size

• Lack of incentives

Astria

• Complexity (Many

interconnected components)

• PoS’s “Rich gets Richer”

problem

Metis
• Reward Inconsistency

• Rich gets Richer

Fernet

• Indeterminate Block Proposals

• Bribing the Prover Network

• Coordination Overhead

Radius

• Unspecified mention of election

method

• Lack of incentives

DPoS-based

Decentralized

Sequencers

• Potential Sybil Attack

• Vote bribery

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.40, September 2025

58

[8] Polygon Labs. (n.d.). Transaction batching - Polygon

Knowledge Layer.

https://docs.polygon.technology/zkEVM/architecture/pro

tocol/ transaction-life-cycle/transaction-

batching/?h=batchdata

[9] Polygon Labs. (n.d.-a). Sequencing batches - Polygon

Knowledge Layer.

https://docs.polygon.technology/zkEVM/architecture/pro

tocol/sequencing-batches/?h=sequen\#sending-batches-

to-l1\

[10] Larimer, Daniel. ”Delegated proof-of-stake (dpos).”

Bitshare whitepaper 81 (2014): 85.

http://107.170.30.182/security/delegated-proof-

ofstake.php

[11] Yang, Fan et al. ”Delegated Proof of Stake With

Downgrade: A Secure and Efficient Blockchain

Consensus Algorithm With Downgrade Mechanism”.

IEEE Access (2019). vol 7, pages 118541-118555

[12] EspressoSystems. (2023, September 7.).

HotShot/docs/espressosequencer-paper.pdf at main ·

EspressoSystems/HotShot. GitHub.

https://github.com/EspressoSystems/HotShot/blob/main/

docs/espresso-sequencer-paper.pdf

[13] Espresso. (2023, September 7). Sequencer Marketplace

— Espresso.

https://docs.espressosys.com/sequencer/espressoarchitect

ure/sequencer-marketplace

[14] Astria. (2023, December 11). Introduction — Astria.

Astria the Sequencing Layer.

https://docs.astria.org/overview/1-introduction

[15] Astria. (2023, December 10). Transaction Flow — Astria.

https://docs.astria.org/overview/transaction-flow

[16] Metis Foundation. (2024, March 14). Decentralized

Sequencer - MetisSmart L2.

https://www.metis.io/decentralized-sequencer

[17] Metis Foundation. (2024b, March 14). Transaction cycle

— Metis. Metis Developer Documentation.

https://docs.metis.io/dev/decentralizedsequencer/overvie

w/transaction-cycle

[18] Aztec. (2023, October 10). Fernet - A protocol for random

sequencer selection for the Aztec Network. HackMD .

https://hackmd.io/@aztec-network/fernet

[19] Radius Sequencer. (2023, November 30). Radius -

Overview. TheRadius. https://docs.theradius.xyz/deep-

dive/introduction

[20] Radius. (2023a, November 30). Encrypted Mempool —

Radius. Radius Sequencing.

https://docs.theradius.xyz/testnets/porticotestnet/encrypte

d-mempool

[21] Witnet Decentralized Oracle. (2017, November). Wallet

API Endpoints. Witnet Docs.

https://docs.witnet.io/developerreference/integrations/wal

let-api#send transaction

[22] GeeksforGeeks. (2023, March 28). What is Ethereum

Mempool? GeeksforGeeks.

https://www.geeksforgeeks.org/what-is-ethereum-

mempool/

[23] Douceur, J.R. ”The Sybil Attack”. Druschel, P.,

Kaashoek, F., Rowstron, A. (eds) Peer-to-Peer Systems.

IPTPS 2002. Lecture Notes in Computer Science, vol

2429. Springer, Berlin, Heidelberg.

[24] Radius. (2023b, November 30). Leader-based — Radius.

Radius Sequencing.

https://docs.theradius.xyz/testnets/porticotestnet/distribut

ed-sequencing/leader-based

[25] Metis Lab Foundation Security Audit Report. (n.d.).

Google Docs.

https://drive.google.com/file/d/1AHDVzVUcRh8ghmfL

R8qRfaHpgML7v9vW/view

[26] Fernet. (2023, October). Sequencer selection Fernet -

HackMD. HackMD.

https://hackmd.io/0FwyoEjKSUiHQsmowXnJPw#Introd

uction

IJCATM : www.ijcaonline.org

