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ABSTRACT 

The classification of plant leaf diseases is critical for ensuring 

agricultural productivity and sustainability. Recent 

improvements in deep learning algorithms have shown a lot of 

promise for correctly identifying and diagnosing plant diseases 

by looking at images of leaves. To address the challenge of 

plant leaf disease classification using deep learning algorithms 

is critical for minimizing agricultural losses. The primary 

objective of this comparative analysis is to evaluate the 

effectiveness of various deep learning algorithms in classifying 

plant leaf diseases. To contribute to the development of a user-

friendly classification tool that can be utilized by farmers and 

agricultural professionals, thus promoting early disease 

detection and intervention. The primary goal is to identify the 

most accurate and robust algorithm for classifying plant leaf 

diseases using images. To evaluate several prominent deep 

learning models, including Convolutional Neural Networks 

(CNNs), Median-Modified Wiener Filter (MMWF) reduces 

noise and enhances image quality, improving feature 

preservation for plant leaf classification. Hybrid Deep 

Segmentation Convolutional Neural Network (Hybrid-

DSCNN) enhances feature extraction and segmentation, 

improving disease detection accuracy in plant leaves. It enables 

robust comparative analysis against other deep learning 

models, optimizing classification performance. Southern Leaf 

Blight (SLB) serves as a critical case study in deep learning for 

plant disease classification, highlighting model accuracy, 

feature extraction, and real-time diagnosis in agricultural 

applications. The test results show that the suggested method 

works better than current ones, and it got an F1-score of 92%, 

an accuracy of 95%, a precision of 92%, a recall of 90%, and a 

recall of 90%. The programming language Python was used to 

create the model. Future research in plant leaf disease 

classification using deep learning could explore hybrid models 

that combine multiple algorithms for improved accuracy. 

Keywords 

 Plant Leaf Diseases, Median-Modified Wiener Filter, Hybrid 

Deep Segmentation Convolutional Neural Network, Southern 

Leaf Blight, Agricultural Technology, Processing Efficiency. 

1. INTRODUCTION 
In the realm of agriculture, plant health is paramount to 

ensuring food security and sustainability. Among the various 

factors that threaten plant health, diseases pose significant 

challenges that can lead to lower food yields and big losses for 

the economy [1,2]. For disease management and intervention 

methods to work, these diseases must be correctly and on time 

identified. 
. With the advent of technology, deep learning algorithms have 

emerged as powerful tools for automating the classification of 

plant diseases [3-4]. This study aims to conduct a comparative 

analysis of various deep learning algorithms to enhance the 

accuracy and efficiency of plant leaf disease classification. 

Despite advancements in agricultural technology, traditional 

methods of diagnosing plant diseases often rely on expert 

knowledge and manual inspection, which may be time-taking 

and prone to errors [5-6]. Moreover, the sheer diversity of plant 

species and the multitude of diseases affecting them complicate 

the classification process. These challenges underscore the 

need for automated systems that can analyse large datasets of 

plant images and accurately identify diseases. The lack of a 

standardized approach for leveraging deep learning in plant 

disease classification further exacerbates this issue, leading to 

inconsistent results across different studies [7-8]. This research 

addresses these challenges by evaluating various deep learning 

algorithms, including Convolutional Neural Networks (CNNs), 

Transfer Learning models, and hybrid approaches. By 

comparing their performance on standardized datasets, this 

study objective is  to identify the most effective methodologies 

for plant leaf disease classification, ultimately providing a 

framework that can be adopted by farmers, agricultural 

specialists, and researchers.  

The expected outcomes of this study include a comprehensive 

comparison of multiple deep learning algorithms concerning 

their accuracy, precision, recall, and overall classification 

performance [9-10]. By identifying the most effective deep 

learning models, the study will contribute valuable insights into 

the development of user-friendly applications for disease 

detection, which can empower farmers to take better decisions 

regarding disease management [11-12]. Moreover, this 

research aims to generate a set of best practices for 

implementing deep learning in plant disease classification, 

offering guidelines that can be adopted across various 

agricultural contexts. By making these findings publicly 

available, the study hopes to foster collaboration among 

researchers and practitioners, ultimately leading to improved 

agricultural productivity and sustainability [13-14]. Effective 

disease management plays a critical role in increasing crop 

resilience and productivity [15-16]. Additionally, the rise of 

digital agriculture presents an opportunity to harness 

technological advancements for practical solutions in the field. 

By utilizing deep learning algorithms, this study main aim is to 

bridge the gap between technology and agriculture, providing 

a data-driven approach to plant disease classification. The 

potential to improve early detection methods not only benefits 

farmers but also contributes to environmental sustainability by 

reducing the need for chemical interventions and promoting 

more efficient resource management. Here, we are trying to 

analyse of various deep learning algorithms, including 

Convolutional Neural Networks (CNNs), Transfer Learning 

models, and hybrid approaches, to evaluate their effectiveness 

in classifying plant leaf diseases [17-18]. This involves 

establishing a comprehensive set of performance metrics, such 

as accuracy, precision, recall, and F1-score, to assess the 

classification performance of each algorithm systematically. 

Additionally, the research aims to identify best practices for 

implementing these deep learning algorithms within the 
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context of plant disease classification, providing practical 

guidelines that farmers and agricultural specialists can utilize 

[19-20]. Ultimately, this study seeks to contribute to the 

existing body of knowledge in agricultural technology, offering 

actionable insights that can inform future research and 

applications in the field. In conclusion, this study aims to 

advance the field of plant disease classification by leveraging 

deep learning algorithms, ultimately supporting agricultural 

practices that can enhance productivity, sustainability, and food 

security. By addressing the challenges of disease identification 

and management, this research aspires to make a meaningful 

impact on the agricultural landscape. This study presents a 

novel comparative analysis of various deep-learning algorithms 

for plant leaf disease classification. By evaluating performance 

metrics like accuracy, precision, and recall across multiple 

datasets, it identifies the most effective models. The findings 

aim to enhance disease detection, ultimately supporting better 

crop management and food security. The structure of the paper 

is as follows: In Section 2, the relevant literature is reviewed. 

In Section 3, the suggested method is explained. In Section 4, 

the experimental results are shown and talked about. And in 

Section 5, the conclusion is given. 

2. LITERATURE SURVEY 
This review of the literature examines the latest developments 

in deep learning methods for plant leaf disease classification, 

emphasizing a comparative assessment of their precision, 

effectiveness, and applicability for actual agricultural 

applications. The potential of deep learning models to address 

the critical problem of recognizing Black Gram plant leaf 

diseases was demonstrated by Yasin et al. [21]. Future studies 

and real-world uses of automated disease detection systems in 

agriculture are made possible by their discoveries. These 

devices could offer accurate and rapid diagnostics, enabling 

farmers to reduce crop loss, enhance disease control, and 

promote global food security. In their research, Balaji et al. [22] 

employed deep learning algorithms to identify and classify 

illnesses in tomato and apple leaves. This makes it possible to 

use cutting-edge technologies like smartphones, drone 

photography, and ubiquitous internet connection to facilitate 

early intervention. Their research revealed that MobileNet 

performed well, outperforming several other methods with an 

accuracy of over 97% on both datasets. A comparison 

investigation using transfer learning (TL) techniques, a subset 

of deep learning networks, was carried out by Daphal et al. 

[23]. According to their investigation, a combined model 

obtained 86.53% accuracy with fewer training epochs and 

acceptable complexity, whereas MobileNet-V2 reached almost 

84% accuracy with minimal parameters. A new, effective, and 

lightweight DL-based architecture called Deep Plant Net was 

presented by Ullah et al. [24] for the purpose of predicting and 

classifying plant leaf diseases. With average accuracies of 

99.62% for three-class classification tasks and 97.89% for 

eight-class classification tasks, their model exceeded 

conventional techniques. Ahad et al. [25] focused on assessing 

how well different methods work for identifying and locating 

illnesses in rice plants. The findings showed that using transfer 

learning improved the model's performance by 17% when 

compared to the SE-ResNext101 baseline, and an ensemble 

method reached a peak accuracy of 98%. A method that starts 

with picture pre-processing to improve the accuracy of 

subsequent steps was created by Aslan et al. [26]. During the 

classification phase, the K-Nearest Neighbors (KNN) 

algorithm achieved the greatest accuracy of 98.09% using four 

distinct machine learning models. For deep learning-based 

analysis, they also used sophisticated CNN architectures such 

as ResNet18, ResNet50, MobileNet, GoogleNet, and 

DenseNet. The transition from conventional image processing 

techniques to deep learning in plant disease identification was 

detailed by Kotwal et al. [27]. In order to increase classification 

accuracy and more precisely localize diseases on the leaf 

surface, their study highlighted the significance of big, varied 

datasets, data augmentation, and CNN activation maps. A 

novel method was presented by Mahum et al. [28] with the 

express purpose of recognizing and classifying four different 

kinds of potato leaf diseases. Their mechanism demonstrated a 

noteworthy accuracy of 97.2% when evaluated. The 

algorithm's consistency and enhanced disease detection 

performance over earlier models were validated by repeated 

testing. In order to identify sunflower illnesses, Gulzar et al. 

[29] examined a number of deep learning models. According to 

their analysis, every model that was tested did well. With the 

highest results on every evaluation criteria, EfficientNetB3 was 

the best performer among them. Finally, in order to increase 

productivity of crops, Aggarwal et al. [30] discussed the 

necessity of effectively identifying rice leaf diseases. They 

used pre-trained EfficientNet models (B3, B6, V2S, V2B3) in 

conjunction with Extra Tree and Histogram-based Gradient 

Boosting (HGB) classifiers to test their method on both raw and 

segmented picture datasets. The accuracy of the suggested 

model was 94% on segmented images and 91% on 

conventional ones. 

3. PROPOSED METHODOLOGY 

The proposed methodology compares various deep-learning 

algorithms for effective plant leaf disease classification. It will 

begin with the collection of diverse datasets containing images 

of plant leaves with varying diseases from publicly available 

repositories and agricultural sources. These images will 

undergo pre processing to ensure uniformity in size and quality, 

with data augmentation applied to enhance variability. A range 

of deep learning architectures will be selected, including 

traditional convolutional neural networks (CNNs), and Hybrid 

Deep Segmentation Convolutional Networks (Hybrid-

DSCNN). The model will be trained using standardized 

protocols, incorporating cross-validation to ensure robust 

validation of performance. To provide valuable insights into 

the most effective algorithms, supporting improved disease 

management strategies and contributing to advancements in 

agricultural technology. 

 

 

Fig 1: Block diagram of the proposed work 

Fig 1 shows the plant leaf disease classification using deep 

learning algorithms. It begins with the data collection process, 

where images of crop diseases, such as Southern Leaf Blight 

(SLB), are gathered. These images then undergo pre-

processing using a Median-Modified Wiener Filter (MMWF), 

which helps reduce noise and enhance image quality for better 

analysis. This improved image quality plays a critical role in 
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improving disease detection accuracy in plant leaves. The pre-

processed data is fed into various deep-learning approaches 

designed to classify plant leaf diseases more effectively. 

Among these approaches, the Hybrid Deep Segmentation 

Convolutional Neural Network (Hybrid-DSCNN) is 

highlighted for its ability to segment and detect diseases in 

plant leaves more accurately. The entire process ultimately 

leads to the classification of plant leaf diseases like Southern 

Leaf Blight, providing a systematic and automated method for 

diagnosing plant health issues using advanced deep learning 

techniques. This workflow ensures accurate detection, which 

can aid in better crop management and disease control. 

(a) Data Collection 
The Crop Disease Dataset includes labelled images of healthy 

and diseased crops, supporting research and development of 

disease detection algorithms. Common leaf diseases include 

powdery mildew, characterized by white powdery spots and 

changes in leaf colour and texture; downy mildew, which 

presents yellow or brown spots on the upper surface and 

greyish fungal growth underneath; and leaf blight, marked by 

brown or black lesions along the leaf edges. Other diseases, 

such as fungal rust and bacterial spot, exhibit distinct symptoms 

like rust-coloured pustules and water-soaked lesions, 

respectively.  

Table 1. Crop Disease Parameters 

Parameter Description 
Example 

Values 

Common 

Diseases 
    

1. Powdery 

Mildew 

White powdery 

spots, colour and 

texture changes 

Symptoms: 

White spots 

2. Downy Mildew 

Yellow/brown 

spots on the 

upper surface, 

greyish fungal 

growth 

underneath 

Symptoms: 

Yellow spots 

3. Leaf Blight 

Brown/black 

lesions along leaf 

edges 

Symptoms: 

Brown 

lesions 

4. Fungal Rust 

Rust-coloured 

pustules on 

leaves 

Symptoms: 

Rust pustules 

5. Bacterial Spot 
Water-soaked 

lesions 

Symptoms: 

Water-soaked 

spots 

Data Collection Parameters 

1. Image Quality 
Resolution, 

focus, lighting 

e.g., 1080p, 

well-lit 

2. Leaf 

Characteristics 

Size, shape, 

colour, texture 

e.g., Medium, 

green, smooth 

3. Environmental 

Context 

Weather 

conditions, 

geographical 

location 

e.g., Sunny, 

Tropical 

Region 

4. Disease Stage 

Early, mid, or 

late infection 

stage 

e.g., Early 

5. Specific Crop 

Types 

Type of crop 

affected 

e.g., Tomato, 

Potato 

Table 1 shows that Crop Disease is essential for deep learning 

classification tasks, containing labelled images of both healthy 

and diseased leaves from various crops. Key common diseases 

included in the dataset are Powdery Mildew, characterized by 

white powdery spots and changes in colour and texture; Downy 

Mildew, presenting yellow or brown spots on the upper surface 

with greyish fungal growth beneath; Leaf Blight, marked by 

brown or black lesions along the leaf edges; Fungal Rust, which 

shows rust-coloured pustules; and Bacterial Spot, exhibiting 

water-soaked lesions. To ensure effective data gathering, 

several critical parameters must be considered, including image 

quality (such as resolution, focus, and lighting), leaf 

characteristics (including size, shape, colour, and texture), and 

environmental context (covering weather conditions and 

geographical location). Furthermore, documenting the stage of 

disease infection—whether early, mid, or late—and specifying 

the types of crops affected, such as tomatoes or potatoes, 

enhances the dataset's utility for accurate disease classification. 

(b) Pre-processing 
Image pre-processing is vital for enhancing data quality in the 

analysis of common leaf diseases. It begins with high-

resolution image acquisition (at least 300 DPI) to ensure clear 

images through proper focus and consistent lighting. 

Enhancing images via contrast adjustment and colour 

correction highlights disease symptoms, while noise reduction 

techniques, like Gaussian filters, maintain detail and eliminate 

background noise. Segmentation isolates the leaf from its 

background and defines a region of interest for targeted 

analysis. Feature extraction emphasizes critical characteristics 

such as colour, texture, and shape, essential for accurately 

identifying disease states. Normalizing measurements ensures 

comparability across images, enhancing reliability. Data 

augmentation techniques further strengthen machine learning 

[31-32] models by generating diverse training data, reducing 

the risk of overfitting. Finally, documenting metadata such as 

disease stage, crop type, weather conditions, and geographical 

location provides context for model performance. This 

comprehensive framework significantly improves data analysis 

and model training, aiding the effective identification and 

management of leaf diseases. Median-Modified Wiener Filter 

(MMWF) reduces noise and enhances image quality, 

improving feature preservation for plant leaf classification. It 

aids in pre-processing, leading to better accuracy and 

performance in deep learning algorithms. 

  

 

Fig 2: Median Filtering Images 

Fig 2 shows the side-by-side comparison of original crop 

images and their corresponding median filtered images.  The 

original Crop Images left panel displays the raw images of 

various crops, showcasing their natural appearance along with 

any noise or artefacts that may affect feature extraction and 

classification. Median Filtering Images The right panel 

illustrates the same images after applying median filtering, a 

technique that reduces noise while preserving edges. This 

filtering process replaces each pixel value with the median of 
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the values in its neighborhood, effectively smoothing the image 

and enhancing the clarity of significant features. The 

comparison highlights the impact of median filtering in 

preparing images for further analysis, demonstrating improved 

feature visibility that can lead to more accurate plant disease 

classification. This pre-processing step is crucial for enhancing 

the performance of deep learning models by ensuring that they 

focus on relevant details rather than noise. 

(c) Deep Learning Approaches for Plant 

Leaf Disease Classification 
Deep learning approaches leverage neural networks, 

particularly convolutional neural networks (CNNs), to 

accurately identify and classify plant leaf diseases by analysing 

image features, enhancing agricultural productivity and disease 

management. Hybrid Deep Segmentation Convolutional 

Neural Network (Hybrid-DSCNN) enhances feature extraction 

and segmentation, improving disease detection accuracy in 

plant leaves. It enables robust comparative analysis against 

other deep learning models, optimizing classification 

performance. Southern Leaf Blight (SLB) is a fungal disease 

affecting corn, characterized by leaf lesions and reduced yield. 

It's significant for deep-learning classification studies in plant 

disease detection and management. Southern Leaf Blight 

(SLB) serves as a critical case study in deep learning for plant 

disease classification, highlighting model accuracy, feature 

extraction, and real-time diagnosis in agricultural applications. 

The integration of Hybrid-DSCNN in agricultural technology 

not only enhances disease detection but also supports precision 

agriculture initiatives. The adaptability of Hybrid-DSCNN 

means it can be trained on diverse datasets from various 

regions, allowing for localized solutions tailored to specific 

environmental conditions and plant varieties. The use of mobile 

applications powered by Hybrid-DSCNN can empower 

farmers, enabling them to scan crops in real-time and receive 

instant feedback on plant health. As the agricultural sector faces 

increasing pressures from climate change and population 

growth, the scalability and efficiency of Hybrid-DSCNN offer 

a promising pathway to sustainable practices that bolster food 

security while promoting ecological balance. 

(i) Hybrid Deep Segmentation Convolutional Neural Network      

Hybrid-DSCNN typically combines several neural network 

architectures to optimize feature extraction and segmentation. 

It may integrate traditional convolutional layers with advanced 

techniques such as dilated convolutions, attention mechanisms, 

or recurrent layers. The convolutional layer is the core 

component for feature extraction in CNNs. It applies a set of  

filters (kernels) to the input image, performing convolution 

operations that highlight specific features like edges and 

textures. This process transforms the input data into feature 

maps, enabling subsequent layers to learn complex patterns, 

represented mathematically as: 

𝑦(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝐾(𝑚, 𝑛)𝑛𝑚            (1) 

 Where y is the output feature map, x is the input 

image, k is the convolution kernel, i,j  are the spatial 

coordinates. 

The activation function, commonly ReLU (Rectified Linear 

Unit), is applied after the convolutional layer to introduce non-

linearity into the model. ReLU replaces negative values with 

zero while keeping positive values unchanged, allowing the 

network to learn complex patterns and relationships present in 

the data. This nonlinearity is essential for effective feature 

representation. After convolution, an activation function ReLU 

is applied: 

                   𝐴(𝑋) = max⁡(0, 𝑋)                               (2) 

The pooling layer, typically using max pooling, reduces the 

dimensionality of feature maps by summarizing the most 

significant information within a region. It retains the highest 

value from each segment of the feature map, which decreases 

the computational load and mitigates overfitting while 

preserving essential features for subsequent processing. To 

reduce dimensionality, pooling (often max pooling) is applied: 

𝑝(𝑖, 𝑗) = max
(𝑚,𝑛)∈𝑅

𝑌(𝑖 + 𝑚, 𝑗 + 𝑛)                                          (3) 

where R defines the pooling region. Dilated convolutions 

expand the receptive field by inserting gaps between kernel 

elements, enabling the model to capture broader contextual 

information. This technique enhances feature extraction in 

tasks requiring multi-scale information, making it particularly 

effective for image segmentation and dense prediction tasks. 

These allow for a larger receptive field. 

⁡⁡⁡⁡𝑦(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑖 + 𝑟, 𝑗 + 𝑟) ∙ 𝐾(𝑚, 𝑛)𝑛𝑚                         (4) 

where r is the dilation rate (hyperparameter used). The attention 

mechanism enhances the model's ability to focus on important 

features by assigning different weights to various parts of the 

input. It allows the neural network to prioritize valuable 

information while ignoring less critical data, improving 

performance in image classification and segmentation by 

ensuring that significant features are emphasized during 

processing. Attention can be integrated to focus on critical 

features: 

      𝐴𝑖,𝑗 =
𝑒
𝑓(𝑥𝑖,𝑗)

∑ 𝑒
𝑓(𝑥𝑖,𝑗)

𝑘,𝑙

                  (5) 

where f(X) is a function generating attention weights. In 

segmentation, a pixel-wise classification approach assigns a 

label to the pixel in the image. This technique involves 

analyzing the image at the granular level, allowing the model 

to determine the specific category of each pixel, such as healthy 

or diseased. By doing so, it creates detailed segmentation maps 

that delineate regions of interest, providing precise insights into 

the spatial distribution of features within the image. This 

method is essential for applications like medical imaging and 

agricultural diagnostics, where understanding the exact 

location of features is crucial for effective analysis and 

decision-making. For segmentation, we often use a pixel-wise 

classification approach, where each pixel 𝑝 is assigned a class 

label C: 

𝐶(𝑝) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓(𝑌(𝑝)))                (6) 

where, f is the final classification function, often implemented 

as a soft max layer. The final classification function is typically 

implemented as a softmax layer, which converts the output 

scores into probabilities for each class label. By minimizing  

loss during training of data, the model used adjusts its 

parameters to improve accuracy, ensuring that the predicted 

class distributions. This optimization process is crucial for 

achieving effective segmentation results, enabling precise 

identification and classification of features within the image. 

To optimize the model, a loss function such as cross-entropy is 

used:      

 𝐿 = −∑ [𝑦(𝑝) log(𝑦̃(𝑝)) + (1 − 𝑦(𝑝)) log(1 −𝑃

𝑦̃(𝑝))]                      (7) 

where, y(p) is the true label and y ̃(p) Is the predicted 

probability. The Hybrid-DSCNN effectively combines 
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different strategies to enhance feature extraction and 

segmentation capabilities, leading to improved accuracy in 

detecting diseases on plant leaves. The integration of dilated 

convolutions, attention mechanisms, and robust loss functions 

plays a crucial role in its effectiveness. 

 

Fig 3: Convolution Neural Networks 

Fig 3 shows the proposed convolutional neural network (CNN) 

architecture is structured to optimize the classification of plant 

leaf diseases using a series of computational layers that are all 

connected. It begins with an input layer that accepts pre-

processed leaf images. These layers provide probabilities for 

each disease class, facilitating effective multi-class 

classification. The structured approach allows the CNN to learn 

complex patterns, improving accuracy in diagnosing plant leaf 

diseases. 

(ii) Southern Leaf Blight (SLB) 

Southern Leaf Blight (SLB), caused by the fungus Bipolaris 

maydis, poses significant challenges to maize production. 

Effective management of SLB can be enhanced through deep 

learning techniques, which provide powerful tools for disease 

classification and monitoring. Here’s a detailed exploration of 

how deep learning contributes to understanding and managing 

SLB in agriculture. 

4. EXPERIMENTATION AND RESULT 

DISCUSSION 
This paper, compares and examines a number of deep learning-

based approaches, algorithms to classify plant leaf diseases 

effectively. Utilizing a diverse dataset of leaf images affected 

by multiple diseases, we implemented models such as 

Convolutional Neural Networks (CNNs), Transfer Learning 

approaches (e.g., ResNet, Inception), and more advanced 

architectures. The models were evaluated based on accuracy, 

precision, recall, and F1 score. Results indicated that Transfer 

Learning models significantly outperformed traditional CNNs, 

achieving higher accuracy rates in identifying diseases. 

Additionally, the confusion matrix analysis highlighted 

specific challenges in distinguishing between similar disease 

classes. Overall, the findings underscore the capability of deep 

learning algorithms in agricultural applications, providing a 

robust framework for early disease detection and management 

in crops. Future work will focus on enhancing model 

generalization and exploring real-time classification 

capabilities. 

Table 2: Simulation System Configuration 

Software Python 

Operation System Windows 10 

Memory Capacity 16GB DDR4 

Processor Intel Core i5 @ 3.5GHz 

 

Table 2 shows system configuration in which Python is 

installed on a Windows 10 operating system.  

  

Fig 4: Training and Testing Accuracy for Epochs in Plant 

Leaf Diseases 

Fig 4 illustrates the relationship between training and testing 

accuracy over a range of epochs during the model training 

process. The x-axis is used for the number of epochs, while the 

y-axis displays accuracy percentages. The training accuracy, 

ranging from 40% to 100%, shows a steady increase as the 

model learns from the training dataset. This upward trend 

indicates that the model is effectively adjusting its parameters 

to improve its performance and reduces the loss and on the 

training data. Conversely, the testing accuracy, fluctuating 

between 60% and 89%, reveals how well this model for unseen 

data. The gap between training and testing accuracy suggests 

that while the model performs well on training data, there may 

be some overfitting, as indicated by the lower testing accuracy. 

This graph emphasizes the importance of balancing training 

and testing accuracy to ensure robust model performance in 

real-world applications, highlighting areas for potential 

improvement in model generalization. 

 

Fig 5: Receiver Operating Characteristic (ROC) Curve 

and AUC Comparison 

Fig 5 compares the True Positive Rate (TPR) and False Positive 

Rate (FPR) for various classification models, including the 

proposed technique, MobileNetV3, CNN, and VGG-16. The 

area under the curve (AUC) serves as a key performance 

metric, indicating the models' ability to distinguish between 

healthy and diseased plant leaves. The proposed technique 

achieves an impressive AUC of 0.990, signifying exceptional 

classification performance and a high true positive rate with 

minimal false positives. In contrast, MobileNetV3 and CNN 
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both exhibit an AUC of 0.970, indicating strong predictive 

capability, although slightly less effective than the proposed 

method. VGG-16, while still functional, shows a lower AUC of 

0.920, suggesting it may struggle more with differentiating 

classes. The result of the proposed technique in accurately 

classifying plant diseases, reinforcing its potential for 

application in agricultural technology and improving disease 

management strategies. 

  

Fig 6: Output Values of Classification Models 

Fig 6 shows the output values from various deep-learning 

models used for plant leaf disease classification, highlighting 

the probability scores assigned to different disease categories. 

The output probabilities, ranging from 0.0 to 1.0, while the lists 

the samples analyzed. In the first set of output values (0.0, 1.0, 

0.3, 0.0), the model indicates a high confidence (1.0) for one 

specific class, suggesting a strong prediction for that particular 

disease. The presence of lower probabilities (0.3 and 0.0) for 

other classes indicates the model's uncertainty regarding these 

categories, demonstrating its ability to differentiate between 

healthy and diseased leaves effectively. The second set of 

output values (1.0, 0.0, 1.0, 0.0, 1.0) shows multiple instances 

where the model assigns a probability of 1.0 to certain disease 

classes, again indicating high confidence in its predictions. This 

shows the model's capacity to reliably classify plant diseases 

based on learned features from the training data.  

 

Fig 7: Accuracy Across Epochs for Disease Classification 

Models 

Fig 7 illustrates the accuracy of different deep learning models 

MMWF and Hybrid Deep Segmentation Convolutional 

Networks (Hybrid-DSCNN) throughout training epochs. The 

MMWF model shows a notable progression in accuracy, 

starting from 42% and achieving a peak of 100%. The Hybrid-

DSCNN begins with a slightly higher accuracy of 50%, 

reflecting its enhanced initial capability compared to MMWF. 

Throughout the epochs, its accuracy rises to 85%. While this 

improvement is commendable, it suggests that the Hybrid-

DSCNN may have a more complex learning curve, possibly 

due to the intricacies involved in its architecture and the need 

for careful parameter tuning. The significant leap in accuracy 

for MMWF, reaching 100%, underscores its efficiency in 

training and ability to generalize well across the dataset. This 

performance might reflect a well-optimized model that can 

effectively capture the relevant features necessary for accurate 

classification, potentially making it a preferable choice for 

practical applications in agricultural technology. The Hybrid-

DSCNN’s performance, while solid, indicates room for 

improvement. The gap between its final accuracy and that of 

MMWF suggests that further optimization or adjustments in 

training strategy could enhance its performance.  

 

Fig 8: Time Consumption for Disease Classification 

Models 

Fig 8 shows the time consumption and performance across 

different epochs for various deep-learning models used in plant 

leaf disease classification. It represents the epochs, while the 

time consumed during training, is measured in arbitrary time 

units. The first model, MMWF, demonstrates efficient training, 

consuming between 80 to 100 time units across its training 

epochs, indicating a balanced performance concerning time. 

The Hybrid Deep Segmentation Convolutional Network 

(Hybrid-DSCNN) follows closely, with time consumption 

ranging from 105 to 85 time units. This suggests that while it is 

slightly more resource-intensive, compensates with enhanced 

classification accuracy. Convolutional Neural Networks 

(CNNs) exhibit the highest time consumption, ranging from 

110 to 100 time units, which may reflect their complexity and 

the need for extensive training to achieve desired performance. 

The SLB Southern Leaf Blight classification indicates a unique 

case, with time consumption sharply dropping from 5 to 95 

time units, potentially suggesting an initial rapid convergence 

followed by extended training to fine-tune model performance.  

 

Fig 9: Number of Leaves and Performance Percentage for   

Disease Classification Models 

Fig 9 shows the relationship between the number of leaves 

analyzed and the corresponding performance percentages of 

various deep-learning models used for plant leaf disease 
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classification. The number of leaves, while the performance is 

measured as a percentage. The MMWF model shows a 

performance range from 0% to 72%, illustrating its capacity to 

classify a limited number of leaves effectively but highlighting 

potential challenges as the dataset size increases. The Hybrid 

Deep Segmentation Convolutional Network (Hybrid-DSCNN) 

performs slightly better, with a range of 0% to 75%, indicating 

its enhanced capability to generalize across diverse leaf images. 

In contrast, the Convolutional Neural Network (CNN) achieves 

a performance range of 0% to 82%, reflecting its effectiveness 

in classifying larger datasets while still facing limitations. The 

Southern Leaf Blight (SLB) classification model stands out 

with an impressive performance range of 0% to 92%, 

showcasing its robustness and reliability in identifying specific 

diseases.  

 

Fig 10: Confusion matrix for Predicted Label and True 

Label 

Fig 10 represents a Confusion Matrix, a common tool used to 

evaluate the performance of a classification model, particularly 

in binary classification tasks. It shows the predicted labels 

versus the true labels and helps visualize the accuracy of 

predictions made by the model.  In this matrix, the rows 

represent the actual class labels the true labels, and the columns 

represent the predicted class labels by the model. Specifically, 

The True Label is divided into Healthy and Unhealthy, while 

the Predicted Label is divided into Healthy and Unhealthy as 

well. The confusion matrix contains four blocks: True Positives 

(TP) The bottom right cell, which shows 71, indicates the 

number of correctly predicted Unhealthy cases when the true 

label was Unhealthy and the model predicted Unhealthy. True 

Negatives TN The top left cell, with the value 200, indicates 

the number of correctly predicted Healthy cases when the true 

label was Healthy and the model predicted Healthy. False 

Positives (FP) is the top right cell, showing 0, which indicates 

cases where the true label was Healthy but the model 

mistakenly predicted Unhealthy there are none in this case.  

 

Fig 11: Confusion Matrix for Performance of Multi-Class 

Classification Model 

Fig 11 represents a Confusion Matrix, a graphical tool used to 

assess the performance of a multi-class classification model. In 

this confusion matrix, the rows represent the True Labels of 

plant diseases, while the columns represent the Predicted 

Labels made by the classification model. Each row and column 

corresponds to different disease categories such as 

Anthracnose, Bacterial Canker, Cutting Weevil, Die Back, Gall 

Midge, Healthy, Powdery Mildew, and Sooty Mould. The 

diagonal elements of the matrix represent the correct 

predictions. For instance, the model correctly identified 98 

cases of Anthracnose, 136 cases of Bacterial Canker, and so on. 

These values indicate the number of instances correctly 

classified for each disease category. The non-diagonal elements 

show the misclassified instances, where the true label differed 

from the predicted label.  

 

Fig 12: Performance Comparison of Classification       

Techniques 

Fig 12 represents the work, looks at four main performance 

metrics—accuracy, precision, recall, and F1-score—to 

compare different machine learning methods for identifying 

diseases on plant leaves. Long Short-Term Memory (LSTM), 

Feedforward Neural Network (FNN), and Recurrent Neural 

Network (RNN) are some of the ways that were tested. The 

suggested method did better than the others; it had an F1-score 

of 92%, an accuracy of 95%, a precision of 92%, a recall of 

90%, and a recall of 92% methods based on deep learning. This 

study looked at different deep-learning systems side by side. In 

contrast, the FNN demonstrates respectable performance with 
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85% accuracy, while LSTM and RNN lag, scoring 82% and 

70% in accuracy, respectively. The precision and recall metrics 

further illustrate the superior effectiveness of the proposed 

technique in correctly identifying diseased plants. This graph 

highlights the significant advancements made with the 

proposed technique, emphasizing its potential for enhancing 

disease detection in agricultural practices. 

Table 3: Performance Metrics of Classification 

Techniques 
 

Accurac

y (%) 

Precisio

n (%) 

Recal

l (%) 

F1 

Scor

e 

(%) 

Technique 

Proposed 

Deep 

Learning 

Model 

96 94 95 94.5 

Convolutiona

l Neural 

Network 

(CNN) 

91 89 90 89.5 

Support 

Vector 

Machine 

(SVM) 

86 85 84 84.5 

K-Nearest 

Neighbours 

(KNN) 

82 81 80 80.5 

 

Table 3 presents a comparative analysis of various 

classification techniques for plant leaf disease detection. The 

Proposed Deep Learning Model outperforms all others, 

achieving the highest accuracy 96%, precision 94%, recall 

95%, and F1 score 94.5%. This indicates its superior capability 

in accurately identifying diseased leaves while minimizing 

false positives. In contrast, the Convolutional Neural Network 

(CNN) shows strong performance but lags behind the proposed 

model, particularly in precision and F1 score. Result highlights 

the effectiveness of deep learning methods in this application. 

5. RESEARCH CONCLUSION 
This research has demonstrated the significant potential of deep 

learning algorithms for effective plant leaf disease 

classification. By conducting a comprehensive comparative 

analysis of various models, including traditional Convolutional 

Neural Networks (CNNs) and advanced Transfer Learning 

architectures such as ResNet and Inception, we established that 

Transfer Learning methods consistently outperformed 

conventional approaches. These models achieved remarkable 

accuracy rates, effectively identifying a large range of diseases 

from diverse leaf images. The evaluation metrics, including 

precision, recall, and F1-score, highlighted the strengths and 

weaknesses of each algorithm, revealing that while some 

models excelled in overall accuracy, they struggled with 

specific disease classes. The confusion matrix analysis 

indicated areas where misclassifications occurred, particularly 

among diseases with similar visual characteristics. This insight 

is crucial for future developments, as it emphasizes the need for 

more nuanced feature extraction and model refinement to 

enhance classification robustness. Moreover, our study 

underscores the importance of utilizing a well-curated and 

diverse dataset to train these models, as the quality and 

variability of training data directly impact the generalization 

capabilities of the algorithms. The results demonstrate that the 

proposed technique surpasses all other methods, achieving an 

accuracy of 95%, a precision of 92%, a recall of 90%, and an 

F1-score of 92%. This implementation was carried out using 

Python software. As agriculture faces increasing challenges 

from plant diseases, the implementation of deep learning 

techniques in early detection and management systems holds 

significant promise. Future research should focus on refining 

model architectures, improving real-time classification 

capabilities, and integrating these systems into user-friendly 

applications for farmers and agronomists. Ultimately, this work 

contributes to advancing precision agriculture and fostering 

sustainable practices through enhanced disease management 

strategies. 
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